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1. Introduction. In [K-S] Katok and Sarnak proved that the sum of the
integrals of a Maass cusp form ϕ of weight 0 for the group Γ0(1) on certain
geodesic cycles of a given discriminant s > 0 (or the sum of ϕ over Heegner
points of discriminant s for s < 0) equals the sum of bj(s)bj(1) over an
orthonormal basis of the space of those Maass cusp forms of weight 1/2 for
Γ0(4) whose Shimura lifting (introduced in the holomorphic case in [Shim])
is ϕ, where bj(s) is the sth and bj(1) is the first Fourier coefficient of the jth
weight 1/2 form. Here we generalize the s > 0 part of this result to Γ0(N) for
arbitrary level N , and for more general products of coefficients bj(s)bj(ŝ).
As a consequence (similarly to [K-S] for Γ0(1) and the trivial character) we
prove that the L-function of a Maass–Hecke newform for Γ0(N) twisted by
a quadratic character is nonnegative at the centre of the critical strip (this
was first proved in [G]; it would be a trivial consequence of the Riemann
Hypothesis for this L-function). In the course of proof we show that if N
is even, then the Shimura liftings of any Maass cusp form of weight 1/2 for
Γ0(4N) are automorphic of level N , i.e. for Γ0(N) (and not just for Γ0(2N)).

The first paper studying this phenomenon was that of Maass ([M]). The
holomorphic case was considered in [Shim], [Shin], [N], [Wal], [Ko1], [Ko2]
and [Ko-Z]. So the holomorphic case was developed in greater generality
than the theorem of Katok and Sarnak. Our result is similar to the main
result of [Ko2], where the holomorphic case is considered for Γ0(N), but N
is restricted to be odd and squarefree.

Our method of proof is completely different from the proofs in the above-
mentioned papers; the idea of our proof is briefly discussed in Section 3. We
do not use theta-functions and kernel functions for the Shimura lifting. Our
proof is based on the idea of [B] (but we do not refer to that paper, the
relevant formula is developed in Section 5) and on Kuznetsov’s formula
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for half-integral weight Maass forms, which is worked out in [P], and for
Kohnen’s subspace in the Appendix of the present paper. We will also need
a discrete Fourier transform duality relation proved in [Ko2], Proposition 5.
During our proof we obtain automatically the fact that the Shimura lift-
ings produce automorphic forms. The only reason why we consider only the
case s > 0 is that Kuznetsov’s formula in [P] is worked out only for sums∑
b(m)b(n) with m,n > 0, and (as far as I know) the case mn < 0 has not

been worked out yet.
Because of the presence of Kuznetsov’s formula we need several lemmas

for special functions; we prove them in Section 9.

2. Notations and statement of results. We denote by H the upper
half-plane, SL(2,R) is the group of 2× 2 real matrices with determinant 1,
GL+(2,R) denotes the group of 2×2 real matrices with positive determinant.
If M is a positive integer, then Γ0(M) is the group of 2× 2 integer matrices
with determinant 1 and lower left entry divisible by M , and

Γ̂0(M) = Γ0(M)
/{( 1 0

0 1

)
,

(−1 0
0 −1

)}
.

If a is a residue class mod q, (a, q) = 1, then a will denote the residue class
mod q with aa ≡ 1 (mod q). The meaning of a (i.e. the modulus q) will
always be clear from the context. We write e(x) for e2πix.

If n 6= 0 is an integer, then n |x means that x is an integer and n
divides x. If n is a prime power, n ‖x means that x is an integer and n is
an exact divisor of x.

A fundamental discriminant is an integer D which is a product of rela-
tively prime factors of the form

−4, 8, −8 or (−1)(p−1)/2p (p > 2).

(The product may be empty, so we understand D = 1 to be a fundamental
discriminant.) Then

(
D
)

is a primitive character mod |D| (see p. 40 of [Da]).

For g =
(
a
c
b
d

) ∈ GL+(2,R) let jg(z) = (cz + d)/
√

det g. Define the slash
operator (of weight 1/2) acting on functions f : H → C by

(f |g)(z) =
jg(z)−1/2

|jg(z)−1/2|f(gz).

For γ =
(
a
c
b
d

) ∈ Γ0(4) let ν(γ) = εd
(
c
d

)
, where

(
c
d

)
has its usual meaning (we

summarize its definition and basic properties in the Appendix, Section A.1),
and

εd =
{

1 if d ≡ 1 (mod 4),
i if d ≡ −1 (mod 4).
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If N is a positive integer, we say that a function f on H is a Maass form
of weight 1/2 for the group Γ0(4N) if f |γ = ν(γ)f for every γ ∈ Γ0(4N),
f is an eigenfunction of the operator

∆1/2 = y2
(
∂2

∂x2 +
∂2

∂y2

)
− 1

2
iy
∂

∂x

of eigenvalue λ ≤ 0 (so ∆1/2f = λf), and f has at most polynomial growth
at cusps. It is known that then it has a Fourier development at ∞ of the
form

f(z) = cf,∞(y) +
∑

n6=0

bf,∞(n)W 1
4 sgn(n),it(4π|n|y)e(nx),

where W is the Whittaker function (see [M-O], Chapter 7), 1/4 + t2 = −λ,
and cf,∞(y) is a linear combination of y1/2+it and y1/2−it.

Let us introduce the notation V = V1/2(4N) for the Hilbert subspace
generated by Maass forms of the Hilbert space of complex-valued functions
f on H with f |γ = ν(γ)f for every γ ∈ Γ0(4N), and

T
Γ0(4N)\H |f |2 dx dy/y2

< ∞. It is well known that if f ∈ V1/2(4N) is a Maass form, then it has
eigenvalue λ ≤ −3/16, and if λ < −3/16, then f is a cusp form, i.e. the
zeroth Fourier coefficients of f at all cusps vanish.

Definition. For a cusp form f ∈ V1/2(4N) with ∆1/2-eigenvalue λ =
−1/4−t2 and a fundamental discriminant D > 0 we define the Dth Shimura
lifting , ShDf , of f by

ShDf(z) =
∑

k 6=0

aShDf (k)W1/2+2it(kz),

where Ws(z) is defined as in [I1], p. 22, and

aShDf (k) =
∑

PQ=k
P>0, (N,P )=1

|Q|1/2
P

(
D

P

)
bf,∞(DQ2).

If N is odd, let V + = V +
1/2(4N) be the subspace of V generated by

Maass forms f with bf,∞(n) = 0 for n ≡ 2, 3 (mod 4) (Kohnen’s subspace;
see [Ko1], [Ko2] in the holomorphic case). The space V + is the eigenspace
in V with eigenvalue 1 of the operator

Lf = L4Nf =
1

2(1 + i)

3∑
w=0

(
f

∣∣∣∣
(

1 1/4
0 1

))∣∣∣∣
(

1 0
4Nw 1

)

(see Kohnen’s papers and also our Appendix). Define the space V ∗1/2(4N)
by

V ∗1/2(4N) =
{
V1/2(4N) for N even,
V +

1/2(4N) for N odd.
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Theorem 1. If f ∈ V ∗1/2(4N) is a cusp form with ∆1/2-eigenvalue
λ < −3/16, λ = −1/4 − t2, then ShDf is a cusp form for Γ0(N) with
∆-eigenvalue −1/4− (2t)2.

For N even this is the result stated in the introduction.

We remark that in the holomorphic case Shimura proved that his liftings
produce automorphic forms of integral weight (see [Shim]), and it was proved
later in [N] that forms of level 4N are always mapped to level 2N . It was
proved in [Ko1], [Ko2] that the Shimura liftings map Kohnen’s subspace
to cusp forms of level N for N odd, and not just to level 2N (this is the
significance of Kohnen’s subspace).

Theorem 1 shows that forN even all forms of level 4N are always mapped
to level N . If N is odd, the theorem is the exact analogue of Kohnen’s result.

If Q(X,Y ) = aX2 + bXY + cY 2 is a quadratic form with integer coef-
ficients, d = b2 − 4ac is its discriminant, d 6= 0, and D is a fundamental
discriminant with D | d and d/D ≡ 0, 1 (mod 4), define

ωD(Q) =





0 if (a, b, c,D) > 1,(
D

r

)
if (a, b, c,D) = 1,

where r is any number represented by Q with (r,D) = 1. The symbol ωD(Q)
is well defined, and it depends only on the SL(2,Z)-equivalence class of Q
(see [Ko2]).

For an integer matrix γ =
(
a
c
b
d

)
, t = a + d, n = ad − bc, s = t2 − 4n,

s 6= 0, and a fundamental discriminantD withD | s and s/D ≡ 0, 1 (mod 4),
define

ωD(γ) = ωD

(
(−Y X)

(
a b
c d

)(
X

Y

))
= ωD(cX2 + (d− a)XY − bY 2).

If δ ∈ SL(2,Z), then ωD(δ−1γδ) = ωD(γ).
If N is a positive integer, and s is a positive integer with s ≡ 0, 1

(mod 4), let

QN,s={Q(X,Y )=AX2+BXY +CY 2 : A,B,C ∈ Z, N |A, s=B2−4AC}.
If Q(X,Y ) and Q̃(X,Y ) are quadratic forms, we say that they are equiv-

alent over Γ0(N) if Q̃(X,Y ) = Q(X̃, Ỹ ), where
(
X̃
Ỹ

)
= τ

(
X
Y

)
with some

τ ∈ Γ0(N). Denote by ΛN,s a complete set of representatives of the Γ0(N)-
equivalence classes of QN,s. It is well known that ΛN,s is a finite set.

Definition. For Q ∈ QN,s, Q(X,Y ) = AX2 + BXY + CY 2, if z1 and
z2 are the roots of Az2 + Bz + C (if A = 0, one root is ∞), let CQ,N
be the noneuclidean line connecting z1 and z2 factorized by the action of
{γ ∈ Γ0(N) : γz1 = z1, γz2 = z2}.
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For p a prime with (p, 4N) = 1, introduce the weight 0 Hecke operators
Hp by

(HpF )(z) =
1√
p

( p−1∑

k=0

F

(
z + k

p

)
+ F (pz)

)
.

For the weight 1/2 Hecke operators Tp2 see [Shim].
Let {fj(z)}∞j=0 be a Maass form orthonormal basis of V1/2(4N) such

that every fj is an eigenfunction of Tp2 for every (p, 4N) = 1, and for N
odd every fj is an eigenfunction of L. This is possible (see [Ko3] and our
Appendix), since the Hecke operators Tp2 for (p, 4N) = 1, and the operator
L for N odd, are self-adjoint, they commute with each other and with ∆1/2.

Define

pN =
{

1 for N even,
3/2 for N odd.

Our main result is the following.

Theorem 2. Let ϕ be a normalized Maass–Hecke newform for Γ0(N)
with L2-norm 〈ϕ,ϕ〉, let s > 0 be an integer with s ≡ 0, 1 (mod 4), and
D > 0 a fundamental discriminant with D | s and s/D ≡ 0, 1 (mod 4).
Then (dS = |dz|/y is the hyperbolic arc length)

1
〈ϕ,ϕ〉

( ∑

Q∈ΛN,s
ωD(Q)

\
CQ,N

ϕdS
)

= 8pN
√
πs3/4

∑

fj∈V ∗1/2(4N)
ShDfj=bj,∞(D)ϕ

bj,∞

(
s

D

)
bj,∞(D).

Note that if ϕ is odd, then both sides are 0.

Corollary. Let ϕ be an even normalized Maass–Hecke newform for
Γ0(N) with ∆-eigenvalue λ = −1/4 − t2 and Fourier expansion ϕ(z) =∑
k 6=0 a(k)W1/2+it(kz), so a(1) = 1 and a(k) = a(−k). For a fundamental

discriminant D > 0 with (D,N) = 1 define the L-function L(ϕ,D; s) by
holomorphic continuation of the series

∞∑

k=1

(a(k)
√
k)
(
D

k

)
k−s.

Then L(ϕ,D; 1/2) ≥ 0.

As mentioned in the introduction, we need a Kuznetsov-type formula for
Kohnen’s subspace (more precisely, for the space V ∗1/2(4N)). This formula
(Theorem B) is stated in the next section, and proved in the Appendix.
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3. The idea of the proof and preliminaries. Let m be a smooth,
compactly supported real-valued function on (0,∞) (i.e. it vanishes in a
neighbourhood of ∞ and in a neighbourhood of 0), and

m(z, w) = m

( |z − w|2
Im z Imw

)
.

Then m is a point-pair invariant, so m(gz, gw) = m(z, w) for every g ∈
GL+(2,R). Let t, n be given positive integers with s = t2−4n > 0. Observe
that if we choose t and n suitably, then s may be any positive integer with
s ≡ 0, 1 (mod 4). Let D > 0 be a fundamental discriminant with D | s and
s/D ≡ 0, 1 (mod 4). For z ∈ H define

M(N, z) =
∑

γ∈ΓN
ωD(γ)m(z, γz),

where N is a positive integer, and

ΓN = Γn,t,N =
{(

a b
c d

)
: a, b, c, d ∈ Z, N | c, ad− bc = n, a+ d = t

}
.

Of course M(N, z) also depends on t, n and D, and ΓN depends on t and n;
but t, n and D are fixed, while N will vary (among the divisors of a fixed
integer), so we only indicate the dependence on N .

Then for δ ∈ Γ0(N), using m(δz, γδz) = m(z, δ−1γδz), δ−1ΓNδ = ΓN ,
and ωD(γ) = ωD(δ−1γδ), we have

M(N, δz) =
∑

γ∈ΓN
ωD(δ−1γδ)m(z, δ−1γδz) = M(N, z).

Our identity in Theorem 2 will follow by computing M(N, z) in two different
ways. We now describe these two ways briefly.

For the first computation of M(N, z) observe that

z − γz =
cz2 + (d− a)z − b

cz + d
for γ =

(
a b
c d

)
,

so

M(N, z) =
∑

γ=(ac bd)∈ΓN

ωD(γ)m
( |cz2 + (d− a)z − b|2

n Im2 z

)
.

The condition ad−bc = n is equivalent to s−r2 = (4c)b (with the notations
s = t2 − 4n, r = a − d), so (since the sum with c < 0 is the same as that
with c > 0 in view of the pairing

(
a
c
b
d

)↔ (
d
−c
−b
a

)
and D > 0) we have

(1) M(N, z) = M0(N, z) + 2M+(N, z),

where
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M+(N, z)

=
∑
r,c

N | c, c>0, 4c | s−r2

ωD

(
cX2−rXY +

r2−s
4c

Y 2
)
m

(∣∣∣∣cz2−rz+
r2−s

4c

∣∣∣∣
2/
n Im2z

)
,

and

(2) M0(N, z) =
∑

γ∈ΓN , γ∞=∞
ωD(γ)m(z, γz),

which corresponds to c = 0. (Note that M0(N, z) = 0 if s is not a square,
because if c = 0, then s = (a − d)2.) We will apply the Poisson formula in
r for M+(N, z). In this way (Kohnen–) Kloosterman sums for weight 1/2
come into play by using the discrete Fourier transform identity (Theorem A
below), and we will have a possibility of applying Kuznetsov’s formula for
(Kohnen’s subspace of) weight 1/2 Maass forms (see Theorem B below). So
this first computation of M(N, z) leads us to Fourier coefficients of Maass
forms of weight 1/2.

For the second computation of M(N, z) we will consider it as an auto-
morphic function for Γ0(N) and determine its spectral expansion. One needs
for this the inner product of M(N, z) against cusp forms of weight 0 (see
Section 5), and (as in [B]) this leads to cycle integrals of Maass forms of
weight 0.

Already now we mention that in proving the basic Lemma 10 we will
eventually compute in these two ways the function Im,τ (A) defined before
Lemma 9 (the functions M∗(z) and G(y) are also defined there), where
τ ≥ 0, T0 6= 0 is an integer, and ReA > −1/2 (moreover, at first A will be
large and positive). We will fix t, n,D, τ,N and T0 (but after Lemma 10,
T0, t and n (hence s) will vary) and let m tend to “Dirac’s delta” of the
point s/n, and A→ −1/2 + 0.

We now state two theorems needed for the first computation of M(N, z).
We define the Kohnen–Kloosterman sums SK(m,n; c) in the following way.
If m and n are integers, and 4 | c, let

S∞,∞(m,n; c) =
∑

x (mod c)
(x,c)=1

εx

(
c

x

)
e

(
mx+ nx

c

)
.

For m ≡ 0, 1 (mod 4), n ≡ 0, 1 (mod 4) define

SK(m,n; c) =
{
S∞,∞(m,n; c) if 8 | c,
2S∞,∞(m,n; c) if 4 ‖ c,

and SK(m,n; c) = 0 if 4 does not divide c. Let us mention that for the proof
of Theorems 1 and 2 we do not need this concrete shape of SK(m,n; c), but
just the information contained in Theorems A and B below.
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The following theorem is proved in [Ko2], Proposition 5.

Theorem A. Let c > 0 be an integer , s ≡ 0, 1 (mod 4), s 6= 0, and let
D > 0 be a fundamental discriminant with D | s and s/D ≡ 0, 1 (mod 4).
For any integer T define

F (T ) = Fc,s,D(T ) =
∑

r (mod 4c)
4c|s−r2

e

(
Tr

4c

)
ωD

(
cX2 − rXY +

r2 − s
4c

Y 2
)
.

Then

F (T ) = (1− i)
∑

ĉ|4c
2(4c/ĉ)|T

(
D

4c/ĉ

)
1
ĉ1/2

SK

(
s

D
,D

(
T̂

2

)2

; ĉ
)
,

where T̂ = T/(4c/ĉ).

Let {fj(z)}∞j=0 be a Maass form orthonormal basis of V1/2(4N), where
for N odd every fj is an eigenfunction of L, ∆1/2fj = λjfj , 1/4 + t2j = −λj
with tj ≥ 0 or itj ≥ 0, and denote the Fourier coefficients at a cusp a by
bj,a(n) = bfj ,a(n). Let {κ1, . . . , κh} be a complete set of inequivalent singular
cusps (see Section A.1) for the multiplier system ν and group Γ0(4N). For
each j = 1, . . . , h define the Eisenstein series Ej(z, s, 4N) for the group
Γ0(4N), weight 1/2, multiplier system ν, and cusp κj in the usual way
(see [P], [Du]), and for n 6= 0 and a cusp a define ϕj,n,a(s) such that

πse(−1/8)|n− χa|s−1

Γ
(
s+ 1

4 sgn(n− χa)
) ϕj,n,a(s)

is the nth Fourier coefficient of Ej(z, s, 4N) at a (see Section A.1 for the
definition of χa and the Fourier expansion of a Maass form of weight 1/2 at
a cusp).

Now let ϕ(x) be a smooth function on [0,∞) such that ϕ(0)=ϕ(1)(0)=0,
and for some ε > 0, ϕ(x) = O(x−1−ε) and ϕ(l)(x) = O(x−2−ε) for l = 1, 2, 3
as x→∞. Define the Kuznetsov transform of ϕ by

ϕ̃(t) =
∞\
0

Jt−1(x)ϕ(x)
dx

x
,

and
ϕ̂(t) = β(t)(ϕ∗(t)− ϕ∗(−t)),

where

β(t) =
π2e(3/8)

(shπt)(ch 2πt)Γ (1/4 + it)Γ (1/4− it) ,

ϕ∗(t) = cosπ(1/4 + it)
∞\
0

J2it(x)ϕ(x)
dx

x
.
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If N is odd, let q and s be the cusps of Γ0(4N) given by

q =
{

(N + 1)/(4N) if N ≡ 1 (mod 4),
(3N + 1)/(12N) if N ≡ 3 (mod 4);

s =
{

(3N + 1)/(12N) if N ≡ 1 (mod 4),
(N + 1)/(4N) if N ≡ 3 (mod 4).

We will prove the following theorem in the Appendix.

Theorem B. Let m,n ≥ 1 be positive integers, m,n ≡ 0, 1 (mod 4), let
N be a positive integer ,

∑
=
∑
c>0
N |c

SK(m,n; c)
c

ϕ

(
4π
√
mn

c

)
,

let ϕ and {fj(z)}∞j=0 be as above, and assume that ϕ̃(1/2 + 2j) = 0 for
j = 1, 2 . . . Then

∑
= 4pN

√
mn

∑

fj∈V ∗1/2(4N)

bj,∞(m)bj,∞(n)
ch(πtj)

ϕ̂(tj) + E,

where E is a “remainder term”, the Eisenstein series part , more precisely

E =
h∑

j=1

∞\
−∞

(
n

m

)it
ϕj,m,∞(1/2+it)ϕj,n,∞/K(1/2+it)

ϕ̂(t)
ch(πt)|Γ (3/4 + it)|2 dt,

where

ϕj,n,K(1/2 + it)

=




ϕj,n,∞(1/2 + it) +

1
1 + i

4−itϕj,n/4,s(1/2 + it) if n ≡ 0 (mod 4),

ϕj,n,∞(1/2 + it) +
1

1 + i
4−itϕj,(n+3)/4,q(1/2 + it) if n ≡ 1 (mod 4),

and ϕj,n,∞/K(1/2 + it) is ϕj,n,∞(1/2 + it) for N even, and ϕj,n,K(1/2 + it)
for N odd.

4. The first way of computing M(N, z). We now continue the first
computation of M(N, z), started in the previous section. We will need the
following lemma.

Lemma 1. If c > 0, r and s are real , and z is a complex number , then
∣∣∣∣cz2 − rz +

r2 − s
4c

∣∣∣∣
2

= s Im2 z +
(
s

4c
− c
((

Re z − r

2c

)2

+ Im2 z

))2

.

P r o o f. It is easy to see that we may assume r = 0, and then c = 1, and
the statement with r = 0 and c = 1 follows from 1

4 (z2 + z2) = 1
2 |z|2− Im2 z.
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This shows, in particular, that for c large enough the m-function in
M+(N, z) is 0.

We apply the Poisson formula in r for M+(N, z). In general, a trivial
consequence of the Poisson formula is that if c(n) is periodic with respect
to p, where p is a positive integer, then

∞∑
n=−∞

c(n)f(n) =
∞∑

n=−∞
ĉp(n)f̂

(
2πn
p

)
,

where f̂ is the Fourier transform of f and ĉp is the discrete Fourier transform
of c, i.e.

f̂(t) =
∞\
−∞

f(y)e−ity dy and ĉp(n) =
1
p

∑

a (mod p)

e

(
na

p

)
c(a).

By Theorem A this gives (with p = 4c)

M+(N, z) =
∑

c>0, N |c

∑

2|T

(
1− i

4c

∑

ĉ|4c
2(4c/ĉ)|T

(
D

4c/ĉ

)
1
ĉ1/2

× SK
(
s

D
,D

(
T̂

2

)2

; ĉ
))

m∗(c, T, z),

where

m∗(c, T, z) =
∞\
−∞

m

(∣∣∣∣cz2−rz+
r2 − s

4c

∣∣∣∣
2/
n Im2 z

)
e

(−Tr
4c

)
dr, T̂ =

T

4c/ĉ
.

We would like to apply Kuznetsov’s formula, so we need the condition 4N | ĉ,
but at the moment we only have N | c and 4 | ĉ. This explains the definition

M∗+(z) =
∑

L|N

(
D
L

)

L
µ(L)M+(N/L,Lz),

where µ is the Möbius function. Since m∗(c, T, z) = m∗(c/L, T/L,Lz), we
have

M+(N/L,Lz) =
∑

c>0, N |c

∑

2L|T

(
1− i
4c/L

∑

ĉ|4c/L
2(4c/ĉ)|T

(
D

4c/Lĉ

)
1
ĉ1/2

× SK
(
s

D
,D

(
T̂

2

)2

; ĉ
))

m∗(c, T, z),

where T̂ = T/(4c/ĉ) (= (T/L)/(4(c/L)/ĉ)). Here we can replace the condi-
tion 2L |T by 2 |T , since L | 4c/ĉ. Because(

D

L

)(
D

4c/Lĉ

)
=
(

D

4c/ĉ

)



Cycle integrals of Maass forms 113

and
∑
L|N,L|4c/ĉ µ(L) is 1 for (N, 4c/ĉ) = 1, and 0 otherwise, we have

M∗+(z) =
∑

c>0, N |c

∑

2|T

(
1− i

4c

∑

ĉ|4c, (N,4c/ĉ)=1
2(4c/ĉ)|T

(
D

4c/ĉ

)
1
ĉ1/2

× SK
(
s

D
,D

(
T̂

2

)2

; ĉ
))

m∗(c, T, z).

In M∗+(z) we fix P = 4c/ĉ, Q = T̂ /2 getting

M∗+(z) =
∑

P>0, (N,P )=1

1− i
P

(
D

P

)∑

Q

∑

ĉ>0, 4N |ĉ

1
ĉ3/2

× SK
(
s

D
,DQ2; ĉ

)
m∗(c, T, z),

where T = 2PQ, c = ĉP/4. Indeed, N | c, 4 | ĉ, (N,P ) = 1 implies N | ĉ/4.
In m∗(c, T, z) we put R = πT (r/(2c)− Re z) and

(3)
sinϑ
cosϑ

=
1√
s Im z

(
s

4c
− c
((

R

πT

)2

+ Im2 z

))
.

Then by Lemma 1, for T 6= 0 we get

(4) m∗(c, T, z) = e−iπT Re z 2c
π|T |

∞\
−∞

m

(
s

n cos2 ϑ

)
e−iR dR.

We observe on the other hand that m∗(c, 0, z) depends only on Im z. This
means that if T0 6= 0 is a fixed integer, then setting

M∗+(y, T0) =
1\
0

M∗+(ξ + iy)e(T0ξ) dξ,

ϕy(x)r = x1/2m∗
(
π|T |√s

2x
, T, iy

)

for x > 0, y > 0 (in order to apply Kuznetsov’s formula), we have

M∗+(y, T0) =
1− i

2
√
πs1/4

∑

PQ=T0
P>0, (N,P )=1

(DP )
P
· 1
|Q|1/2

×
∑

ĉ>0, 4N |ĉ

1
ĉ
SK

(
s

D
,DQ2; ĉ

)
ϕy

(
4π
√
s|Q|
ĉ

)
.

Observe that then T = 2T0, since T = 2PQ, T0 = PQ.
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In order to avoid convergence problems we take an integral of the form

I+
m,G =

∞\
0

G(|πT |y)M∗+(y, T0)
dy

y
.

Our choice will be G(y) = Kµ(y)yA with µ purely imaginary and A large
positive. Then Lemma 13, Lemma 14, Lemma 15 and its Corollary together
with (6) below will show that Theorem B is applicable for

ϕ(x)−
( ∞\
−∞

ϕ̂(t)Γ (1/4 + it)Γ (1/4− it)(shπt)t dt
)
ϕ0(x),

where

ϕ(x) =
∞\
0

G(π|T |y)ϕy(x)
dy

y

and ϕ0 is a fixed function (see Lemma 15 and its Corollary for the conditions
satisfied by ϕ0).

So applying Theorem B we get

I+
m,G = F0 +

2pNs1/4
√
π

∑

PQ=T0
P>0, (N,P )=1

1− i
P

(
D

P

)
|Q|1/2

×
{ ∑

fj∈V ∗1/2(4N)

bj,∞(s/D)bj,∞(DQ2)
ch(πtj)

ϕ̂(tj) +
E

4pN
√
s|Q|

}

with

E =
h∑

j=1

∞\
−∞

( |DQ|2
s

)it
ϕj,s/D,∞

(
1
2

+ it

)

× ϕj,DQ2,∞/K

(
1
2

+ it

)
ϕ̂(t)

ch(πt)|Γ (3/4 + it)|2 dt

and

F0 = f0

∞\
−∞

ϕ̂(t)Γ (1/4 + it)Γ (1/4− it)(shπt)t dt,

where f0 is a constant (depending on s, D, T0, N).
We need to compute

T∞
0 JM (x)ϕy(x) dx/x. Use the substitution

x = π|T |y
(√

1
cos2 ϑ

+
(R/(πT ))2

y2 +
sinϑ
cosϑ

)
.



Cycle integrals of Maass forms 115

Then (3) is satisfied with c = π|T |√s/(2x), y = Im z. We have

dx

x
=

dϑ

cos2 ϑ

(
1

cos2 ϑ
+

(R/(πT ))2

y2

)−1/2

,

so using (4), with the notations

(5) ϕM (Y, ϑ)

=
∞\
−∞

LM

(√
Y 2

cos2 ϑ
+R2 + Y

sinϑ
cosϑ

)(
Y 2

cos2 ϑ
+R2

)−1/2

e−iR dR

for Y ∈ (0,∞), ϑ ∈ (−π/2, π/2), and LM (x) = JM (x)/
√
x, we obtain

∞\
0

JM (x)ϕy(x)
dx

x
=
√
s(π|T |y)

π/2\
−π/2

m

(
s

n cos2 ϑ

)
ϕM (π|T |y, ϑ)

dϑ

cos2 ϑ
.

Since cosϑ is even, this gives

(6)
∞\
0

JM (x)ϕ(x)
dx

x

=
√
s

π/2\
−π/2

m

(
s

n cos2 ϑ

)(∞\
0

G(y)
ϕM (y, ϑ) + ϕM (y,−ϑ)

2
dy

)
dϑ

cos2 ϑ
.

Now, Lemma 14 and the Corollary to Lemma 12 show that

(7) ϕ̂(t) =
√
s

π/2\
−π/2

m

(
s

n cos2 ϑ

)
Φ(t, ϑ)

dϑ

cos2 ϑ
,

where Φ(t, ϑ) = O((1+|t|)−B) with arbitrary positive B for real t, uniformly
in ϑ if ϑ is small; and we know Φ(t, 0) explicitly. Our idea now is to take
ϑ = 0; this is possible, because an easy estimate shows
(8)
∑

|tj |≤T

|bj,a(n)|2
ch(πtj)

+
h∑

j=1

T\
−T

∣∣∣∣ϕjn,a
(

1
2

+ it

)∣∣∣∣
2

dt

ch(πt)|Γ (3/4 + it)|2 = O(TB0)

for any cusp a of Γ0(4N) for some B0 (e.g. by using in formula (83) of [P]
the function ϕ of [Du], §5), where bj,a(n) is the nth Fourier coefficient of fj
at a. So, if m tends to the point s/n in the sense that m ≥ 0, its support
shrinks to the point s/n, and always

π/2\
−π/2

m

(
s

n cos2 ϑ

)
dϑ

cos2 ϑ
= 1
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(we denote the process just described by m→ s/n), then we can substitute√
sΦ(tj , 0) and

√
sΦ(t, 0) in place of ϕ̂(tj) and ϕ̂(t), respectively.

Now, by (6) and (7), and the definition of ϕ̂,

Φ(t, 0) = β(t)
∞\
0

G(y)(cosπ(1/4+it)ϕ2it(y, 0)−cosπ(1/4−it)ϕ−2it(y, 0)) dy,

so by the Corollary to Lemma 12,

Φ(t, 0) = 2
√
πe(1/8) chπt

∞\
0

G(y)y−1/2K2it(y) dy.

We would like to take a fixed tj instead of the sum over tj , and this explains
our choice G(y) = Kµ(y)yA, in view of the relation

(9)
∞\
0

Kµ(x)Kν(x)xs−1 dx = 2s−3Γ (s)−1
∏

Γ

(
s± µ± ν

2

)

for Re s > |Reµ|+ |Re ν| (see [I1], p. 228), which is a type of orthogonality
relation with s = 0.

So let τ ≥ 0, µ = iτ , A a large positive number, and G(y) = Kµ(y)yA.
In this case we have

Φ(t, 0) = 2
√
πe(1/8)(chπt)Γ (A, τ, 2t)

with the notation

(10) Γ (A, τ, t) = 2A+1/2−3Γ (A+ 1/2)−1
∏

Γ

(
A+ 1/2 + i(±τ ± t)

2

)
.

This proves that with G(y) = Kiτ (y)yA we have

(11) lim
m→s/n

I+
m,G = I+

τ (A),

where I+
τ (A) is defined as the sum of F0(A) and

4pN
√

2s3/4
∑

PQ=T0
P>0, (N,P )=1

|Q|1/2
P

(
D

P

)

×
{ ∑

fj∈V ∗1/2(4N)

bj,∞

(
s

D

)
bj,∞(DQ2)Γ (A, τ, 2tj) +

E(A)
4pN
√
s|Q|

}
,

where

E(A) =
h∑

j=1

∞\
−∞

( |DQ|2
s

)it
ϕj,s/D,∞

(
1
2

+ it

)

× ϕj,DQ2,∞/K

(
1
2

+ it

)
Γ (A, τ, 2t)
|Γ (3/4 + it)|2 dt,



Cycle integrals of Maass forms 117

F0(A) = f1

∞\
−∞

Γ (A, τ, 2t)Γ (1/4 + it)Γ (1/4− it)(sh 2πt)t dt,

where f1 is a constant (depending on s, D, T0, N).

5. Inner product against cusp forms. Now we determine the inner
product of M(N, z) against a cusp form (of weight 0). Let u be a cusp
form for Γ0(N) with eigenvalue λ, and dµ(z) = y−2 dxdy be the invariant
measure, and F be a fundamental domain of Γ0(N) in H. Then\

F

M(N, z)u(z) dµ(z) =
∑

γ∈ΓN
ωD(γ)

\
F

m(z, γz)u(z) dµ(z).

We partition ΓN into conjugacy classes over Γ0(N): for γ ∈ ΓN let [γ] =
{τ−1γτ : τ ∈ Γ0(N)}. We have τ−1

1 γτ1 = τ−1
2 γτ2 if and only if τ2τ−1

1 ∈
C(γ) = {σ ∈ Γ0(N) : γσ = σγ}. So

Tγ =
∑

δ∈[γ]

ωD(δ)
\
F

m(z, δz)u(z) dµ(z)

= ωD(γ)
∑

τ∈C(γ)\Γ0(N)

\
F

m(z, τ−1γτz)u(z) dµ(z).

Since m(z, τ−1γτz) = m(τz, γτz) and u(z) = u(τz), we finally obtain

Tγ = ωD(γ)
\

C(γ)\H
m(z, γz)u(z) dµ(z),

where C(γ) \H is a fundamental domain of C(γ).
Now γ is hyperbolic (since s = t2 − 4n > 0). Denote its fixed points

by z1 and z2. Then obviously C(γ) ⊇ {σ ∈ Γ0(N) : σz1 = z1, σz2 = z2}.
Conversely, if σγ = γσ, then σ permutes the set {z1, z2}; but σz1 = z2,
σz2 = z1 is impossible, because then σ2 = id, since it has at least three
fixed points. This means that σ is elliptic. But γ cannot permute the fixed
points of σ. So C(γ) = {σ ∈ Γ0(N) : σz1 = z1, σz2 = z2}.

It is easy to see that we may assume c 6= 0 in γ =
(
a
c
b
d

)
, since in [γ]

there is always an element with lower left entry nonzero. Then the explicit
form of the fixed points is z1,2 = (a − d ± √s)/(2c). If s is a square, then
(denoting by Γ̂0(N) and Ĉ(γ) the quotient by

{( 1
0

0
1

)
,
(−1

0
0
−1

)}
of Γ0(N)

and C(γ), respectively) Ĉ(γ) = {id}, since id 6= σ ∈ Γ̂0(N) cannot have
two rational fixed points. If s is not a square, then z1 and z2 are quadratic
irrational numbers, conjugate to each other over the rationals, so there is a
id 6= σ ∈ Γ̂0(N) such that σ has z1 and z2 as its fixed points (if A, B and C
are integers with Az2

1,2 +Bz1,2 + C = 0 and N |A, A 6= 0, D = B2 − 4AC,
then D > 0 and D is not a square, so there are positive integers X, Y with
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X2 −DY 2 = 4, and σ =
( (X−Y B)/2

Y A
−Y C

(X+Y B)/2

)
is suitable). Hence Ĉ(γ) is

infinite cyclic.
Let h ∈ SL(2,R) be such that h−1γhz = Rz (z ∈ H), where R =

N(γ) > 1 is the norm of the hyperbolic transformation γ, i.e.
√
R+1/

√
R =

(a+ d)/
√
n, which means R+ 1/R− 2 = s/n. In case s is not a square, let

r0 > 1 be such that
(√

r0
0

0
1/
√
r0

)
is a generator of h−1Ĉ(γ)h. We then have

Tγ = ωD(γ)
\

h−1(C(γ)\H)

m(hz, γhz)u(hz) dµ(z)

= ωD(γ)
\

h−1C(γ)h\H
m(z,Rz)u(hz) dµ(z),

where we can take h−1C(γ)h \H = {z : 1 ≤ |z| < r0} if s is not a square,
and h−1C(γ)h \H = H otherwise. Let Iγ = [1, r0) if s is not a square, and
Iγ = (0,∞) otherwise. Since

m(z,Rz) = m

( |Rz − z|2
Im z ImRz

)
,

with the substitution z = rei(π/2+ϑ) we get

Tγ =
π/2\
−π/2

\
Iγ

m

(
R+ 1/R− 2

cos2 ϑ

)
u(h(rei(π/2+ϑ)))

r

r2 cos2 ϑ
dr dϑ

=
π/2\
−π/2

m

(
s

n cos2 ϑ

)
F (ei(π/2+ϑ))

dϑ

cos2 ϑ
,

where

F (z) =
\
Iγ

u(h(rz))
dr

r
(z ∈ H).

Now, F is constant on euclidean lines through the origin, i.e. F (z) =
F (rz) for all r > 0. If Iγ = (0,∞), then this is obvious, but it is also true
for Iγ = [1, r0), because u(h(z)) is automorphic with respect to h−1Γ0(N)h,
in particular u(h(r0z)) = u(h(z)) for z ∈ H. So F depends only on ϑ (if
z = rei(π/2+ϑ), i.e. F (z) = F (ϑ), where F is a function on (−π/2, π/2).

On the other hand, since u is an eigenfunction of the hyperbolic Laplace
operator ∆ with eigenvalue λ, so is F (z). Using the form of the Laplace
operator in polar coordinates:

∆g = (r cosϑ)2
(
∂2g

∂r2 +
1
r

∂g

∂r
+

1
r2

∂2g

∂ϑ2

)

for g = g(r, ϑ), we find that F (ϑ) satisfies a second order ordinary differential
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equation, which depends only on λ:

F (2)(ϑ) =
λ

cos2 ϑ
F (ϑ) (ϑ ∈ (−π/2, π/2)).

Let fλ(ϑ) be the solution of this differential equation with fλ(0) = 1,
f

(1)
λ (0) = 0, and f̃λ(ϑ) the one with f̃λ(0) = 0, f̃ (1)

λ (0) = 1. Then F (ϑ) =
F (0)fλ(ϑ) + F (1)(0)f̃λ(ϑ), and f̃λ(ϑ) is an odd function, so it gives 0 in Tγ ,
i.e.

Tγ = F (0)
π/2\
−π/2

m

(
s

n cos2 ϑ

)
fλ(ϑ)

dϑ

cos2 ϑ
.

Here

F (0) =
\
Iγ

u(h(ri))
dr

r
=

\
Cγ

u dS,

where dS = |dz|/y is the hyperbolic arc length, and Cγ is the closed geodesic
C(γ) \ lγ , where lγ is the noneuclidean line connecting the fixed points (z1

and z2) of γ.
We now describe the conjugacy classes of ΓN = Γn,t,N over Γ0(N). If

γ =
(
a
c
b
d

)
, let

Qγ(X,Y ) = (−Y X)
(
a b
c d

)(
X
Y

)
= cX2 + (d− a)XY − bY 2.

It is easy to see that the correspondence γ ↔ Qγ is one-to-one between

Γn,t,N and QN,s. If
(
X̃
Ỹ

)
= τ

(
X
Y

)
with some τ ∈ Γ0(N), then (−Ỹ X̃) =

(−Y X)τ−1 (since det τ = 1), and it follows that if γ1, γ2 ∈ Γn,t,N , then γ1

and γ2 are conjugate over Γ0(N) (i.e. γ2 = δ−1γ1δ with some δ ∈ Γ0(N))
if and only if Qγ1 and Qγ2 are equivalent over Γ0(N). From these consid-
erations we see that γ ↔ Qγ defines a one-to-one correspondence between
the conjugacy classes of Γn,t,N over Γ0(N), and ΛN,s. If Q ∈ QN,s, then
CQ,N = Cγ if γ is the element of Γn,t,N with Q = Qγ , so we have proved
the following lemma.

Lemma 2. If u is a cusp form on Γ0(N) with eigenvalue λ, then\
F

M(N, z)u(z) dµ(z)

=
( ∑

Q∈ΛN,s
ωD(Q)

\
CQ,N

u dS
)( π/2\
−π/2

m

(
s

n cos2 ϑ

)
fλ(ϑ)

dϑ

cos2 ϑ

)
.

We would like to apply the spectral theorem for M(N, z), but for this
we have to determine its behaviour near cusps, and subtract from M(N, z)
its main terms near the cusps.
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6. The behaviour of M(N, z) near cusps. In this section N will be
fixed, so in general we do not indicate the dependence on N , writing e.g.
M(z) = M(N, z), M0(z) = M0(N, z). Let F be a fundamental domain of
Γ0(N), and

P (Y ) = {z = x+ iy : 0 < x ≤ 1, y > Y }.
If Y0 is large enough, the cuspidal zones Fq(Y0) = σqP (Y0) are disjoint
(q runs over a complete set of Γ0(N)-inequivalent cusps), and the funda-
mental domain F is partitioned into

(12) F = F (Y0) ∪
⋃
q

Fq(Y0),

where F (Y0) is the central part,

F (Y0) = F \
⋃
q

Fq(Y0),

and F (Y0) has compact closure.
Let q = u/v be a cusp of Γ0(N), where v > 0, v |N , (u, v) = 1 (every

cusp is Γ0(N)-equivalent to a cusp of this form). Then it is not difficult to
check (see [I2]) that the “scaling matrix” of q is σq = τq%q with

τq =
(
u x
v y

)
∈ SL(2,Z) and %q =

(√
mq 0
0 1/√mq

)
,

where mq = N/(N, v2). This means that σq∞ = q and σ−1
q γqσq =

( 1 1
1

)
,

where γq is a generator of the stability group of q in Γ0(N) (we denote this
stability group by Γq). We use these notations in the following lemmas.

We now describe the behaviour of M(z) near cusps. Our function m is
compactly supported on (0,∞); it will vary, and its support will shrink to
s/n, so we assume in the sequel e.g. that m(x) = 0 for x > 2s/n, i.e. the
support is universally bounded.

Lemma 3. There is a constant Y1 such that if q = u/v is a cusp of
Γ0(N), then for z ∈ Fq(Y1) we have M(z) = Mq

0 (z), where

Mq
0 (z) =

∑

γ∈ΓN , γq=q
ωD(γ)m(z, γz).

P r o o f. It is enough to prove that if z ∈ P (Y1), then m(σqz, γσqz) =
m(z, σ−1

q γσqz) = 0 for γ ∈ ΓN , γq 6= q, i.e. that |z−δz|2/(Im z Im δz) > 2s/n
with the notation δ = σ−1

q γσq if δ∞ 6= ∞. But this is true if Y1 is large
enough, because Im z ≥ Y1, Im δz = n Im z/|cz + d|2 ≤ n/(c2 Im z), where c
is the lower left entry of δ, and c2 is bounded below if it is nonzero.



Cycle integrals of Maass forms 121

Next we describe the Fourier expansion of the function Mq
0 (z) at q (ob-

viously Mq
0 (γqz) = Mq

0 (z)). For this let

Mq
0 (y, k) =

1\
0

Mq
0 (σq(ξ + iy))e(kξ) dξ.

The sum defining Mq
0 (z) is empty if s is not a square, because then the fixed

points of any γ ∈ ΓN are irrational.

Lemma 4. Let s be a square and k be an integer. Then

Mq
0 (y, k) = 2cq(k, s)ymF (|k|y),

where

cq(k, s) =
∑

β (mod
√
s)

βmq≡0 (mod 1), N |yv√s−v2βmq

ωD(
√
sXY + βmqY

2)e
(
− kβ√

s

)
,

mF (α) =
∞\
−∞

m

(
s

n
(1 + ξ2)

)
e(αξ) dξ.

The statement is also true if s is not a square, with cq(k, s) = 0.

P r o o f. We have Mq
0 (σqz) =

∑
γ∈ΓN , γq=q ωD(γ)m(z, σ−1

q γσqz). Here

δ∞ = ∞ for δ = σ−1
q γσq, so δ =

(
a b
d

)
, where ad = n, a + d = t. Then

a − d = ±√s, a and d are integers, %qδ%−1
q =

(
a bmq

d

)
, and the lower left

entry of γ = σqδσ
−1
q is yv(a−d)−v2bmq. So the condition γ ∈ Γ0(N) means

that bmq is an integer, and that N divides the lower left entry of γ. These
conditions depend only on b (mod 1) (because N divides v2mq), and we see
that a − d = +

√
s and a − d = −√s give the same sum; we take the plus

sign. It follows easily from the definition (and from s/D ≡ 0, 1 (mod 4))
that ωD(γ) = ωD(

√
sXY + bmqY

2) depends only on b (mod
√
s). This

shows that for z = ξ + iy, since |√sz + b|2 = (
√
sξ + b)2 + sy2, we get

Mq
0 (z) = 2

∑

β (mod
√
s)

βmq≡0 (mod 1), N |yv√s−v2βmq

ωD(
√
sXY + βmqY

2)

×
∑

b≡β (mod
√
s)

m

(
s

n

(
1 +

(
ξ + b/

√
s

y

)2))
.

(Note that this sum is empty if (N/v, v) does not divide
√
s.) So Mq

0 (y, k)
is 2 times the sum over the same set of β of

∞\
−∞

m

(
s

n

(
1 +

(
ξ + β/

√
s

y

)2))
e(kξ) dξ,
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which implies the lemma by the substitution y−1(ξ + β/
√
s) → ξ, because

the function µ is even.
The last statement is obvious by the remark preceding the lemma.

Corollary. Let G ∈ L1((0,∞)), T0 6= 0 an integer , T = 2T0. Then
with a constant c(N,T0, s) we have

lim
m→s/n

∞\
0

G(|πT |y)
( 1\

0

M0(N, ξ + iy)e(T0ξ) dξ
)dy
y

= c(N,T0, s)
∞\
0

G(y) dy.

(The meaning of m→ s/n is given after (8), and M0(N, z) is given in (2).)

P r o o f. Since ∞ and 1/N are equivalent over Γ0(N), we have
1\
0

M0(ξ + iy)e(T0ξ) dξ = 2c1/N (T0, s)ymF (|T0|y).

Because T = 2T0, we need the limit of

c1/N (T0, s)
π|T0|

∞\
0

G(y)mF

(
y

2π

)
dy as m→ s/n.

If m→ s/n, then mF (y/(2π))→ 1 for any given y, and always |mF (y/(2π))|
≤ 1, which implies the assertion.

We now subtract from M(z) the main terms near the cusps. Assume in
the sequel that

mF (0) =
π/2\
−π/2

m

(
s

n cos2 ϑ

)
dϑ

cos2 ϑ
= 1.

Let 0 < Y0 < Y1, where Y0 is as in the description of the fundamental
domain F (see (12)), and Y1 is as in Lemma 3, i.e. for any q, if z ∈ Fq(Y1),
we have M(z) = Mq

0 (z). Furthermore let ψ be a smooth real-valued function
on (0,∞) with

ψ(y) =
{
y for y ≥ Y1,
0 for y ≤ Y0.

Define

Mψ(N, z) = Mψ(z) = M(z)−
∑
q

2cq(0, s)Eq(z|ψ),

where Eq(z|ψ) is the weighted Eisenstein series

Eq(z|ψ) =
∑

γ∈Γq\Γ0(N)

ψ(Imσ−1
q γz).

Observe that M(z)−Mψ(z) does not depend on m.
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It follows easily from the conditions on Y0 and ψ that if z ∈ Fq1(Y0),
then Eq2(z|ψ) = δq1q2ψ(Imσ−1

q1 z). So, if z ∈ Fq(Y1), by Lemmas 3 and 4 we
have

Mψ(z) = Mq
0 (z)−Mq

0 (Imσ−1
q z, 0),

since mF (0) = 1. Hence, if z ∈ P (Y1) and z = ξ + iy, Lemma 4 implies (m
is smooth)

(13) Mψ(σqz) = 2y
∑

k 6=0

cq(−k, s)mF (|k|y)e(kξ).

We shall need a very crude bound for the inner product of Mψ(z) against
an Eisenstein series (of weight 0).

Lemma 5. Let m → s/n. There is a function H(t) on (−∞,∞) which
is bounded on every finite interval ,

∞\
−∞

H2(t)
(1 + |t|)20 dt <∞,

and ∣∣∣∣
\
F

Mψ(z)Er

(
z,

1
2

+ it

)
dx dy

y2

∣∣∣∣ ≤ H(t)

if r is a cusp of Γ0(N), t is a real number , and Er(z, 1/2 + it) is the cor-
responding Eisenstein series of Γ0(N). It is important that H(t) does not
depend on m.

P r o o f. At another cusp q the Eisenstein series Er(z, 1/2 + it) has the
Fourier expansion

Er(σqz, 1/2 + it)

= δqry
1/2+it + ϕqr(1/2 + it)y1/2−it +

∑

k 6=0

ϕqr(k, 1/2 + it)W1/2+it(kz).

The integral in question converges absolutely, because the decay of mF is
fast. On Fq(Y1) the integral is

2
∑

k 6=0

cq(k, s)ϕqr(k, 1/2 + it)
∞\
Y1

mF (|k|y)W1/2+it(iky)
dy

y
.

Since always |mF | ≤ 1 and cq(k, s) is bounded (depending only on s and
N), this can be estimated by

∑

k 6=0

|ϕqr(k, 1/2 + it)|
∞\

2π|k|Y1

|Kit(y)| dy
y1/2

,
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and by (9), and formula (5.10.24) of [Le], there are positive constants c1 and
c2 such that it is of order

H1,q(t) = (1 + |t|1/2)e−(π/2)|t|
( ∑

k 6=0
|k|≤c1(1+|t|)

|ϕqr(k, 1/2 + it)|

+
∑

k 6=0
|k|≥c1(1+|t|)

e−c2|k||ϕqr(k, 1/2 + it)|
)
.

This is obviously bounded on every finite interval, and by formulas (8.27)
and (8.6) of [I1] we have

T∞
−∞(H2

1,q(t)/(1 + |t|)20) dt <∞.
It remains to estimate the integral on F (Y1). Since F (Y1) has com-

pact closure, there are only a finite number of γ ∈ ΓN for which
|z−γz|2/(Im z Im γz) ≤ 2s/n with some z ∈ F (Y1), and it is easy to see that
for a fixed γ the integral

T
F (Y1)m(z, γz) dx dy/y2 is bounded as m → s/n.

Since M(z)−Mψ(z) is fixed, the F (Y1)-part of our integral can be estimated
by the maximum of |Er(z, 1/2 + it)| on the closure of F (Y1), and our very
weak estimate follows e.g. by estimating trivially the Fourier expansion of
the Eisenstein series, and by (8.24) of [I1].

We shall several times use the following analytic lemma.

Lemma 6. Let r(t) be a function on (−∞,∞) such that

lim
|t|→∞

|r(t)|e−(π/2)|t|(1 + |t|)B = 0

for any positive B, and let R(t) be a given function on (−∞,∞) which is
bounded on every finite interval ,

|r(t)| ≤ e(π/2)|t|R(t),

and e.g.
∞\
−∞

R2(t)
(1 + |t|)40 dt <∞,

and let τ ≥ 0. Define

Fτ,r(α) =
∞\
0

Kiτ (y)yα
( ∞\
−∞

r(t)Kit(y) dt
) dy
y

for Reα > 0. Then Fτ,r is a regular function, and on any compact subset
of {Reα > 0}, |Fτ,r(α)| is smaller than a constant depending only on τ , R
and this subset. Furthermore, (α + τ)2|Fτ,r(α)| is smaller than a constant
depending only on τ and R if 0 < α < 1 (i.e. for τ > 0 we take |Fτ,r(α)|,
for τ = 0 we take α2|Fτ,r(α)|).
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P r o o f. It is clear that the double integral is absolutely convergent, and
changing the order of integration we get, by (9),

Fτ,r(α) = 2α−3 1
Γ (α)

∞\
−∞

r(t)
∏

Γ

(
α+ i(±t± τ)

2

)
dt.

Here we estimate r byR, and use Stirling’s formula and elementary estimates
to get the result. (The point is that the product of Γ -functions decays much
faster as |t| → ∞ than Kit(y) for a fixed y, so we can use for r the weaker
but universal bound, while the stronger (but not universal) bound is needed
for the absolute convergence of the double integral.)

We will handle M(z)−Mψ(z) in the following lemma.

Lemma 7. Let T0 6= 0 be an integer ,

Eq,ψ(y, T0) =
1\
0

Eq(ξ + iy|ψ)e(T0ξ) dξ,

T = 2T0, τ ≥ 0, and

Y (A) =
∞\
0

Kiτ (|πT |y)(|πT |y)AEq,ψ(y, T0)
dy

y
.

Then Y (A) is absolutely convergent for ReA > 0, it extends meromorphi-
cally to ReA > −1/2, it may have singularities only at A = ±iτ , and
(A+ 1/2 + τ)2|Y (A)| is bounded as A→ −1/2 + 0 (i.e. A tends to −1/2 on
the real axis).

P r o o f. By (3.17) of [I1], for y > 0 we have

Eq,ψ(y, T0) =
∑
c>0

Sq∞(0,−T0; c)
∞\
−∞

ψ

(
yc−2

t2 + y2

)
e(T0t) dt.

We use the formula (see [I1], (3.19))
∞\
−∞

(t2 + y2)−se(T0t) dt = 2
πs

Γ (s)

( |T0|
y

)s−1/2

Ks−1/2(2π|T0|y),

write ψ(Y ) = Y + (ψ(Y )− Y ), and with some 1/2 < σ = Re s < 1,

ψ(Y )− Y =
1

2πi

\
(σ)

ψ∗(s)Y s ds, ψ∗(s) =
∞\
0

(ψ(Y )− Y )Y −s−1 dY.

This gives

Eq,ψ(y, T0) = 2(|T0|y)1/2ϕq∞(−T0, 1)K1/2(2π|T0|y)

+
1
πi

(|T0|y)1/2
\

(σ)

ϕq∞(−T0, s)Ks−1/2(2π|T0|y)ψ∗(s) ds,



126 A. Biró

where

ϕq∞(−T0, s) =
πs

Γ (s)
|T0|s−1

(∑
c>0

Sq∞(0,−T0; c)
c2s

)
.

This is justified by the facts that on a line σ = σ0, where σ0 < 1, the function
ψ∗(s) decays faster than any power of |Im s| (see the conditions on ψ), and
Sq∞(0,−T0; c) is bounded in c, so the Dirichlet series is absolutely conver-
gent for σ > 1/2. We can move the line of integration to σ = 1/2 because by
the general estimate (8.27) of [I1], |ϕq∞(−T0, 1/2+it)| is bounded on average
by e(π/2)|t||t|1/2, and the decay of ψ∗(s) is fast on this line as well. Now (re-
member T = 2T0) the lemma follows from these estimates, from Lemma 6,
and because the K1/2-part of Eq,ψ(y, T0) gives in Y (A) a constant times

2AΓ (A+ 1/2)−1
∏

Γ

(
1/2 +A± 1/2± iτ

2

)
.

7. Proof of the basic identity. Our aim in this section is to prove
Lemma 10 below. Theorems 1 and 2 will be easy consequences of that lemma.

Let UN be a complete orthonormal system of Maass cusp forms of weight
0 for Γ0(N) (we do not index them in the usual way to avoid confusion
because of the presence of weight 0 and weight 1/2 Maass forms). For u ∈ UN
we denote by λu its Laplace eigenvalue, i.e. ∆u = λuu, su(su − 1) = λu,
su = 1/2 + itu, tu ≥ 0 or itu ≥ 0, and let its Fourier expansion be

u(z) =
∑

k 6=0

au(k)Wsu(kz).

Lemma 8. Let τ ≥ 0 be fixed , T0 6= 0 an integer , T = 2T0, and

Xm(A) =
∞\
0

Kiτ (|πT |y)(|πT |y)A
( 1\

0

Mψ(ξ + iy)e(T0ξ) dξ
) dy
y
.

Then Xm(A) is meromorphic for ReA > −1/2. Denote by X∗m(A) the dif-
ference of Xm(A) and
(

2
π

)1/2 ∑

u∈Uτ,+N

( ∑

Q∈ΛN,s
ωD(Q)

\
CQ,N

u dS
)

×
( π/2\
−π/2

m

(
s

n cos2 ϑ

)
fλu(ϑ)

dϑ

cos2 ϑ

)
au(−T0)Γ (A, τ, tu),

where Uτ,+N = {u ∈ U : tu = τ or itu > 0}. Then X∗m(A) is regular for
ReA > −1/2, and in any compact subset of {ReA > −1/2}, |X∗m(A)| is
smaller than a constant depending on the subset but independent of m; fur-
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thermore (A+ 1/2 + τ)2|X∗m(A)| is bounded by a constant independent of m
if −1/2 < A < 1/2.

P r o o f. The spectral theorem is obviously applicable for Mψ(z) in view
of the Fourier expansion (13). Since M(z)−Mψ(z) is a linear combination
of weighted Eisenstein series, it is orthogonal to cusp forms, so by Lemmas 2
and 5 and using the Fourier expansion of cusp forms and Eisenstein series
(m, ψ and the functions fλ are real) we see that

T1
0Mψ(ξ + iy)e(T0ξ) dξ is

the sum of

2(|T0|y)1/2
∑

u∈UN

( ∑

Q∈ΛN,s
ωD(Q)

\
CQ,N

u dS
)( π/2\
−π/2

m

(
s

n cos2 ϑ

)
fλu(ϑ)

dϑ

cos2 ϑ

)

× au(−T0)Kitu(2π|T0|y)

and

2(|T0|y)1/2 1
4π

∑
r

∞\
−∞

χm,r(t)ϕr∞(−T0, 1/2 + it)Kit(2π|T0|y) dt,

where |χm,r(t)| ≤ H(−t) (see Lemma 5). Now, since T = 2T0, the lemma
follows by (8.27) and (8.6) of [I1], by our Lemma 6, (9) and (10), elementary
estimates, and by the fact that always |fλ(ϑ)| ≤ 1, which follows easily from
the shape of the differential equation satisfied by fλ.

Let τ ≥ 0 be fixed, G(y) = Kiτ (y)yA, define

M∗(z) =
∑

L|N

(
D
L

)

L
µ(L)M(N/L,Lz),

and

Im,τ (A) =
∞\
0

G(|πT |y)
( 1\

0

M∗(ξ + iy)e(T0ξ) dξ
) dy
y
.

The following identity is obvious.

Lemma 9. If F is any function on H which is periodic with respect to 1,
L > 0 is an integer and T0 is an integer , T = 2T0, then, assuming absolute
convergence,
∞\
0

G(|πT |y)
( 1\

0

F (L(ξ + iy))e(T0ξ) dξ
) dy
y

=
∞\
0

G

(∣∣∣∣π
T

L

∣∣∣∣y
)( 1\

0

F (ξ + iy)e
(
T0

L
ξ

)
dξ

)
dy

y

for L |T0, and the left-hand side is 0 otherwise.
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This, (1), the Corollary to Lemma 4, and (11) show that if we define
(remember G(y) = Kiτ (y)yA)

Iτ (A) = 2I+
τ (A) + c∗(N,T0, s)

∞\
0

G(y) dy

with a suitable constant c∗(N,T0, s), then, if A is a large enough positive
number,

lim
m→s/n

Im,τ (A) = Iτ (A).

On the other hand, we know (Lemmas 7–9) that the functions Im,τ (A)
and Iτ (A) are meromorphic for ReA > −1/2, and there is a finite subset
S = Sτ,N,T0 of {ReA > −1/2} such that on {ReA > −1/2}\S each function
is regular, and on every compact subset of this domain each function is
smaller than a bound depending on the subset but independent of m. This
implies that limm→s/n Im,τ (A) = Iτ (A) for every A ∈ {ReA > −1/2} \ S
(we use the following function-theoretic result: if f1, f2, . . . and f are regular
functions on a domain, if there is a constant C such that |fn|, |f | ≤ C for
every n, and if limn→∞ fn(z0) = f(z0) for a point z0 of this domain, then
limn→∞ fn(z) = f(z) for every point z of this domain; see [P-Sz], Part 3, the
solution to Problem 256, p. 362). Let ε > 0 be such that (−1/2,−1/2 + ε]
∩ S = ∅. Examining the behaviour of the functions Im,τ (A) and Iτ (A) on
(−1/2,−1/2+ε], since the order of magnitude of Γ (A, τ, τ) as A→ −1/2+0
is 1/(A + 1/2) for τ > 0, and 1/(A + 1/2)3 for τ = 0, taking into account
Lemmas 6–9, (11) and the definition of I+

τ (A) (see below (11)) we obtain
the following lemma for the case τ ≥ 0.

Lemma 10. Let τ ≥ 0 or 0 < iτ < 1/2. Then the sum

8pN
√
π s3/4

∑

PQ=T0
P>0, (N,P )=1

|Q|1/2
P

(
D

P

) ∑

fj∈V ∗1/2(4N)
2tj=τ

bj,∞

(
s

D

)
bj,∞(DQ2)

equals
∑

L|N,L|T0

(
D
L

)

L
µ(L)

∑

u∈UN/L
tu=τ

( ∑

Q∈ΛN/L,s
ωD(Q)

\
CQ,N/L

u dS
)
au

(
−T0

L

)
.

P r o o f. We have proved this above for τ ≥ 0. The remaining case is
similar; using e.g. the functions Im,1(A) and I1(A), and examining their
residues in the half-plane {ReA > −1/2} we get the result for the excep-
tional eigenvalues, i.e. for 0 < iτ < 1/2.

8. The proof of Theorem 1, Theorem 2 and its Corollary. Mul-
tiplying the equation of Lemma 10 by W1/2+iτ (−T0z) (where z ∈ H), and
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summing over T0 6= 0 we get

(14) 8pN
√
π s3/4

∑

fj∈V ∗1/2(4N)
2tj=τ

bj,∞

(
s

D

)
ShD fj(z)

=
∑

L|N

(
D
L

)

L
µ(L)

∑

u∈UN/L
tu=τ

( ∑

Q∈ΛN/L,s
ωD(Q)

\
CQ,N/L

u dS
)
u(Lz).

Here the summation is over any orthonormal basis {fj} of the ∆1/2-eigen-
space of V ∗1/2(4N) with eigenvalue −1/4 − (τ/2)2; denote this subspace
(finite-dimensional) by W = W4N,1/2,τ . Since s/D ≡ 0, 1 (mod 4), DQ2 ≡
0, 1 (mod 4) and s/D > 0, DQ2 > 0, we can factor by the subspace of func-
tions whose nth Fourier coefficient is 0 for every n > 0 with n ≡ 0, 1 (mod 4).
More precisely let W = W0 ⊕W1, where

W0 = {f ∈W : bf,∞(n) = 0 for n > 0, n ≡ 0, 1 (mod 4)},
and W1 is the orthogonal complement of W0 in W . Then we can take for
the orthonormal basis {fj} of W the union of an orthonormal basis of W0

and of W1. This shows (since u(Lz) is a cusp form for Γ0(N) if u ∈ UN/L)
that ∑

fj∈W1

bj,∞

(
s

D

)
ShD fj(z)

is a cusp form for Γ0(N). Now, if D is fixed, s/D may be any positive
integer congruent to 0 or 1 mod 4, and the dimW1 ×∞ matrix ({fj} is an
orthonormal basis of W )

{ bj,∞(n) : fj ∈W1, n > 0, n ≡ 0, 1 (mod 4)}
has rank dimW1, because if

∑
j,fj∈W1

αjbj,∞(n) = 0 with some complex
numbers αj for every n > 0, n ≡ 0, 1 (mod 4), then f =

∑
j,fj∈W1

αjfj ∈
W0, so f ∈ W0 ∩W1, i.e. f = 0, and hence every coefficient αj is 0 ({fj}
is an independent system). We conclude that for each fj ∈W1 the function
ShD fj is a cusp form for Γ0(N). For fj ∈ W0 this is obvious, since then
ShD fj = 0. So Theorem 1 is proved.

Up to this point we have not used the Hecke operators, but it is obvious
that we may assume in (14) that our cusp forms (either of weight 1/2 or of
weight 0) are Hecke eigenforms. So assume that every fj is an eigenfunction
of Tp2 for every p with (p, 4N) = 1, and every u ∈ UN is an eigenfunction
of the Hecke operators Hp for (p, 4N) = 1. This is possible, since the Hecke
operators Tp2 for (p, 4N) = 1 are self-adjoint, they commute with each other,
with ∆1/2, and if N is odd, they also commute with L, and the analogous
statements are true for Hp with (p, 4N) = 1.
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Now, let w ∈ UN be a newform for Γ0(N) (w ∈ UN , so its square integral
is 1), and choose τ = tw. Then, by definition, w is orthogonal to any u(Lz),
where u ∈ UN/L, L > 1; and of course w is orthogonal to any u ∈ UN if
u 6= w. On the other hand, it is well known (and very easily proved using
the action on Fourier coefficients at∞ ) that ShD commutes with the Hecke
operators, i.e. ShD ◦Tp2 = Hp ◦ ShD for any (p, 4N) = 1, which implies that
for fj ∈ V ∗1/2(4N) with 2tj = τ the Tp2 -eigenvalue of fj is the same as the
Hp-eigenvalue of ShD fj . So (since Hp is self-adjoint for (p, 4N) = 1), w is
orthogonal to ShD fj if there is a (p, 4N) = 1 for which Tp2fj 6= λw(p)fj ,
with the notation Hpw = λw(p)w. The strong multiplicity one theorem for
Γ0(N) shows that if Tp2fj = λw(p)fj , i.e. Hp(ShD fj) = λw(p) ShD fj for
(p, 4N) = 1, then ShD fj is a constant multiple of w. Since the first Fourier
coefficient of ShD fj is bj,∞(D), this means ShD fj(z) = bj,∞(D)w(z)/aw(1).
These considerations together with (14) imply

(15)
( ∑

Q∈ΛN,s
ωD(Q)

\
CQ,N

w dS
)
w(z)

= 8pN
√
π s3/4

∑

fj∈V ∗1/2(4N)
ShD fj(z)=bj,∞(D)w(z)/aw(1)

bj,∞

(
s

D

)
bj,∞(D)

w(z)
aw(1)

.

Then (15) (dividing by w and then conjugating) implies Theorem 2, upon
writing ϕ in place of w/aw(1).

Proof of the Corollary to Theorem 2. For lα ‖N (l is a prime, α ≥ 1) we
introduce the Atkin–Lehmer involution Wlα (see [A-L]) by

Wlα =
1√
lα

(
lα a
N lαb

)
,

where a, b are integers with l2αb−Na= lα. It is well known thatWlαΓ0(N)Wlα

= Γ0(N), W 2
lα ∈ Γ0(N), and Wlα commutes with the Hecke operators Tp

for (p,N) = 1. Hence, if ϕ is a newform for Γ0(N), then

ϕ(Wlαz) = wlαϕ(z)

with wlα = ±1.
We will take s = D2 in Theorem 2. A complete set of representatives of

the Γ0(N)-equivalence classes of QN,D2 is
{
Qµ(X̃, Ỹ ) :

(
X̃
Ỹ

)
= Wt

(
X
Y

)
, µ (mod D), t |N, (t,N/t) = 1

}
,

where Qµ(X,Y ) = DXY + µY 2, and if t =
∏r
i=1 l

αi
i is the prime factoriza-

tion of t, then Wt =
∏r
i=1Wl

αi
i

(the order in the product is not important,



Cycle integrals of Maass forms 131

because if l1 6= l2 then

Wl
α1
1
Wl

α2
2
Γ0(N) =

1√
lα1
1 lα2

2

(
lα1
1 lα2

2 a
N lα1

1 lα2
2 b

)
Γ0(N),

where a, b are integers with l2α1
1 l2α2

2 b−Na = lα1
1 lα2

2 ). This is stated in [Ko2]
for N squarefree, but it is easily seen to be true in general. (One can prove
it in the following way. Firstly, these forms are inequivalent, which follows
from the properties of the Atkin–Lehmer involutions, and from the fact that
if Qµ1(X̃, Ỹ ) = Qµ2(X,Y ) with

(
X̃
Ỹ

)
= γWt

(
X
Y

)
and γ ∈ Γ0(N), then t = 1

and µ1 ≡ µ2 (mod D) (because we must have γWt∞ =∞). So it is enough
to prove that the number of equivalence classes is D2ν(N), where ν(N) is the
number of distinct prime factors of N . But this is true, because for N = 1
the statement is easy, and for general N the Γ0(N)-equivalence classes of
Q1,D2 are {

Qµ(X̃, Ỹ ) :
(
X̃
Ỹ

)
= γi

(
X
Y

)}
,

where we can take µ = 0, N, 2N, . . . , (D − 1)N , and {γi} is a set of repre-
sentatives of left cosets Γ0(N) in Γ0(1). We can take for {γi} a set

{(
u ·
v ·

)
∈ Γ0(1) : u |N, v

(
mod

N

u

)}
,

and it is easy to see that we get a class in QN,D2 exactly when (u,N/u) = 1
and N/u | v.)

It is obvious that if Q ∈ QN,D2 , t |N , (t,N/t) = 1 and Q̃(X,Y ) =

Q(X̃, Ỹ ) with
(
X̃
Ỹ

)
= Wt

(
X
Y

)
, then Q̃ ∈ QN,D2 and ωD(Q̃) =

(
D
t

)
ωD(Q).

On the other hand, for Q ∈ QN,D2 the curve CQ,N is the whole semicircle.
So (taking wt =

∏r
i=1 wlαii for t =

∏r
i=1 l

αi
i ) we get

∑

Q∈ΛN,s
ωD(Q)

\
CQ,N

ϕdS

=
∑

µ (modD)

∑

t|N
(t,N/t)=1

(
D

µ

)(
D

t

)
wt

−µ/D+i∞\
−µ/D

ϕ(z)
dy

y
.

If Re s is large, then

∑

µ (modD)

(
D

µ

)−µ/D+i∞\
−µ/D

ϕ(z)ys
dy

y

= 2π−s−1/2D1/2Γ

(
s+ 1/2 + it

2

)
Γ

(
s+ 1/2− it

2

)
L(ϕ,D; s+ 1/2),
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by the Fourier expansion of ϕ,
(
D
µ

)
=
(
D
−µ
)

(as D > 0),

∑

µ (modD)

(
D

µ

)
e

(
µk

D

)
=
(
D

k

)
D1/2

([La], Satz 215), and
∞\
0

Kν(x)xS−1 dx = 2S−2Γ

(
S + ν

2

)
Γ

(
S − ν

2

)
.

By analytic continuation, if N =
∏R
i=1 l

αi
i we have

∑

Q∈ΛN,s
ωD(Q)

\
CQ,N

ϕdS = 2π−1/2D1/2
( R∏

i=1

(
1 +

(
D

lαii

)
wlαii

))

× Γ
(

1/2 + it

2

)
Γ

(
1/2− it

2

)
L(ϕ,D; 1/2).

Together with Theorem 2 (with s = D2) this implies the Corollary.

9. Lemmas on special functions

Lemma 11. Let ReM > 1/2. Then

lim
y→0+0

∞\
−∞

JM (
√
y2 +R2)

(
√
y2 +R2)3/2

e−iR dR = 2
(

2
π

)1/2 1
M2 − 1/4

cos
π

2

(
M − 1

2

)
.

P r o o f. By [W], p. 385, (2), we have

(16)
∞\
0

e−aRJν(bR)Rµ−1 dR

=
(b/2)νΓ (µ+ ν)
aµ+νΓ (ν + 1)

F

(
µ+ ν

2
,
µ+ ν + 1

2
; ν + 1;− b

2

a2

)

if Re(µ+ ν) > 0, Re a > 0, Re(a+ ib) > 0, Re(a− ib) > 0. Now substitute
b = 1, µ = −1/2, ν = M , and let a → ti (t < −1 or t > 1) inside the right
half-plane. By taking the limit the formula is still valid for a = ti. We let
t→ 1 + 0 (t→ −1− 0), and use

lim
z→1−0

F (α, β, γ; z) =
Γ (γ)Γ (γ − α− β)
Γ (γ − α)Γ (γ − β)

for Re(γ −α− β) > 0 ([Le], p. 294), and Γ (s)Γ (s+ 1/2) = π1/221−2sΓ (2s),
getting the assertion.
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Lemma 12. For y > 0 let

ϕM (y) =
∞\
−∞

JM (
√
y2 +R2)

(
√
y2 +R2)3/2

e−iR dR

(M is any complex number). Then

y2ϕ
(2)
M (y)+2yϕ(1)

M (y)−ϕM (y)(y2 +M2−1/4) = −2(2/π)1/2 cos
π

2
(M−1/2).

P r o o f. Put RM (x) = JM (x)/x3/2 for x > 0. Then

R
(2)
M (x) + 4

R
(1)
M (x)
x

+RM (x) = (M2 − 9/4)
RM (x)
x2 .

We will repeatedly use the following claim:

Claim. If j(R) is a smooth function on the positive real axis with j(k)(R)
= Ok(1/R2) as R→∞ (k = 0, 1, 2, . . .), and

F (y) =
∞\
−∞

j(
√
y2 +R2)e−iR dR for y > 0,

then

(i)
F (1)(y)

y
=
∞\
−∞

j(1)(
√
y2 +R2)√

y2 +R2
e−iR dR,

(ii) F (2)(y)− F (y)− F (1)(y)
y

=
∞\
−∞

j(2)(
√
y2 +R2)e−iR dR.

P r o o f. Assertion (i) follows by differentiating the definition of F (y)
under the integral sign; (ii) follows by a further differentiation, using (i),
and applying partial integration two times for the definition of F (y).

By repeated application of this claim, and using

(R(1)
M (x)/x)(1)

x
=
R

(2)
M (x)
x2 − R

(1)
M (x)
x3 ,

we have

(17)
(ϕ(1)
M (y)/y)(1)

y
=
∞\
−∞

R
(2)
M (
√
y2 +R2)

(
√
y2 +R2)2

− R
(1)
M (
√
y2 +R2)

(
√
y2 +R2)3

e−iR dR.

Similarly, with the notation

γM (y) = ϕ
(2)
M (y) + 3

ϕ
(1)
M (y)
y

,
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using also the differential equation for RM (x), we obtain

γM (y) = (M2 − 9/4)
∞\
−∞

RM (
√
y2 +R2)

(
√
y2 +R2)2

e−iR dR.

Since (
RM (x)
x2

)(2)

+ 3
(RM (x)/x2)(1)

x
=
R

(2)
M (x)
x2 − R

(1)
M (x)
x3 ,

this implies in view of (17) that

1
M2 − 9/4

(
γ

(2)
M (y) + 2

γ
(1)
M (y)
y

− γM (y)
)

=
(ϕ(1)
M (y)/y)(1)

y
,

so we have obtained a fourth order differential equation for ϕM (y). Multi-
plying by y and using yγM (y) = (yϕ(1)

M (y) + 2ϕM (y))(1) we get

(M2 − 9/4)
ϕ

(1)
M (y)
y

− yγ(1)
M (y)− γM (y) + yϕ

(1)
M (y) + 2ϕM (y) = c1,M

with some constant c1,M , because the derivative of the left-hand side is 0.
From this, as above, we get

(M2−9/4)ϕM (y)−y2γM (y)+yϕ(1)
M (y)+2ϕM (y)+y2ϕM (y) =

c1,M
2

y2+c2,M ,

because the derivative of the left-hand side is c1,My.
Now, the left-hand side is

−(y2ϕ
(2)
M (y) + 2yϕ(1)

M (y)− ϕM (y)(y2 +M2 − 1/4)).

It is easy to see that ϕM (y), ϕ(1)
M (y), ϕ(2)

M (y) = O(1/y) as y → ∞, so c1,M
is 0. On the other hand, if for example M is a large enough positive num-
ber, then (by Lemma 11) the limit of this left-hand side as y → 0 + 0 is
2(2/π)1/2 cos π2 (M − 1/2), which proves the lemma.

Corollary. Let
ηM (y) = ϕM (y) cos π2 (M + 1/2),

ψM (y) =
(Γ (1/4 +M/2)Γ (1/4−M/2))−1

sin π
2M cosπM

(ηM (y)− η−M (y)).

Then

ψM (y) = − 2
π3/2

y−1/2KM (y) cos π2M.

P r o o f. It is clear by the lemma that

y2ψ
(2)
M (y) + 2yψ(1)

M (y)− ψM (y)(y2 +M2 − 1/4) = 0,

so

y2(y1/2ψM (y))(2) + y(y1/2ψM (y))(1) − (y2 +M2)(y1/2ψM (y)) = 0,
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which means that y1/2ψM (y) is a constant multiple of KM (y), because obvi-
ously y1/2ψM (y) = O(1) as y →∞. Now we determine the constant. Let, for
example, M ∈ (9, 10), and y → 0 + 0. Then, by the power series expansion
of the J-function and the K-function, and since

∞\
−∞

(1 +R2)−
1
2 (M+3/2) dR = π1/2Γ (M/2 + 1/4)

Γ (M/2 + 3/4)

(see (3.18) of [I1]), as y → 0 + 0 we have

y1/2ψM (y) ∼ − cos
π

2

(
−M +

1
2

)
(Γ (1/4 +M/2)Γ (1/4−M/2))−1

sin π
2M cosπM

× 2My−M

Γ (−M + 1)
π1/2Γ (M/2 + 1/4)

Γ (M/2 + 3/4)

and

KM (y) ∼ π

2
(sinπM)−1 2My−M

Γ (−M + 1)
.

Hence using sin 2s = 2 sin s cos s and Γ (s)Γ (1− s) = π(sinπs)−1 we get the
result (by analytic continuation).

Lemma 13. If M = 3/2+2t (t = 0, 1, 2, . . .), then ϕM (y, ϑ)+ϕM (y,−ϑ)
= 0 for every y ∈ (0,∞), ϑ ∈ (−π/2, π/2). (See the definition of ϕM (y, ϑ)
in (5).)

P r o o f. In these cases LM (z) is an odd entire function, so

z 7→
(
LM

(
z + y

sinϑ
cosϑ

)
+ LM

(
z − y sinϑ

cosϑ

))/
z

is an even entire function, hence the integrand is an entire function of R. We
can change the line of integration from (−∞,∞) to (−iT −∞,−iT +∞),
and it is easy to see that the integral tends to 0 as T → ∞, because
JM (z) = O(|z|−1/2e|Im z|) as |z| → ∞ (e.g. from the expression for JM (z)
as an elementary function in case M is half an odd integer; see [W], p. 53).

It is very likely that one could compute the integral of the following
lemma explicitly, but an upper bound will suffice for our purposes.

Lemma 14. Let µ be a given purely imaginary number , and let B be a
fixed positive constant. Then, if A is a large enough positive number , and

Iµ,A(M,ϑ) = cos
π

2
(M + 1/2)

∞\
0

Kµ(y)yAϕM (y, ϑ) dy,

where
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ϕM (y, ϑ)

=
∞\
0

LM

(√
y2

cos2 ϑ
+R2 + y

sinϑ
cosϑ

)(
y2

cos2 ϑ
+R2

)−1/2

(eiR + e−iR) dR

and LM (x) = JM (x)/
√
x, then

Iµ,A(M,ϑ) + Iµ,A(M,−ϑ)− (Iµ,A(−M,ϑ) + Iµ,A(−M,−ϑ))

= OA,B,µ(eπ|ImM |(1 + |ImM |)−B)

if |ReM | ≤ A/100, uniformly in ϑ if |ϑ| is small enough (smaller than a
positive constant depending on A, B and µ).

P r o o f. We will prove the desired upper bound for Iµ,A(M,ϑ) −
Iµ,A(−M,−ϑ). Let ImM = t; we assume t ≥ 2.

We use the weak estimate

(18) JM (z) = O(e(π/2−α)te|Im z|tA/10(1 + 1/|z|)A/10)

for −π/2 < α = arg z < π/2 and |ReM | ≤ A/100. By Phragmén–Lindelöf
it is enough to prove this when ReM is an even integer, and in this case it
follows easily from

Jν(z) =
(z/2)ν

Γ (ν + 1/2)Γ (1/2)

1\
−1

(1− t2)ν−1/2 cos zt dt (Re ν > −1/2),

and from the relation Jν−1(z) + Jν+1(z) = 2νz−1Jν(z).
Consider Iµ,A(M,ϑ). Replace the path of integration [0,∞) in y by P1 =

[0, (c log t)eiα] and P2 = [(c log t)eiα + 0, (c log t)eiα +∞), where c is a large
and α a small positive constant so that c sinα is also small. If y ∈ P2, then
we may integrate in R e.g. on the same path as in y, and since Kµ(y) =
O(e−Re y), and c is a large constant and ϑ is small, it is enough to deal
with P1.

If y ∈ P1 is fixed, integrate in R on the paths

Q1 =
[
0, (c log t)eiα − y sinϑ

cosϑ

]
,

Q2 =
[
(c log t)eiα − y sinϑ

cosϑ
+ 0, (c log t)eiα − y sinϑ

cosϑ
+∞

)

(we fix c and α first, and let ϑ be very small with respect to them). It is
enough to deal with

Q3 =
[
(c log t)eiα − y sinϑ

cosϑ
+ t1−ε, (c log t)eiα − y sinϑ

cosϑ
+∞

)

with a small ε > 0, otherwise we are done by (18). But here the
eiR-part of the integral is small (push the line of integration upwards), and√
y2/ cos2 ϑ+R2 is very close to R, so using Taylor’s formula, substituting
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R + y sinϑ/cosϑ → R, and handling Iµ,A(−M,−ϑ) similarly, but “down-
wards”, we can replace Iµ,A(M,ϑ)− Iµ,A(−M,−ϑ) with a small error by an
expression of the type (since we can now y-integrate over the real line)

J∑

j=0

T∑
t=0

K∑
q=0

aj,tbj,t,q
j!

sinq ϑ cos−2j−2t−q ϑ

×
(∞\

0

Kµ(y)yA+2j+2t+qeiy sinϑ/ cosϑ dy
)
Ij,2t+q(M),

where aj,t, bj,t,q are defined by the power series expansions
(

(1 + x)1/2 − 1
x

)j
(1+x)−1/2 =

∞∑
t=0

aj,tx
t,

(
1

1− x
)1+j+2t

=
∞∑
q=0

bj,t,qx
q,

and

Ij,z(M) = cos
π

2

(
M +

1
2

) \
Q+

L
(j)
M (R)

R1+j+z e
−iR dR

− (−1)z cos
π

2

(
−M +

1
2

) \
Q−

L
(j)
−M (R)

R1+j+z e
iR dR

with the notations

Q+ = [(c log t)eiα + t1−ε, (c log t)eiα +∞),

Q− = [(c log t)e−iα + t1−ε, (c log t)e−iα +∞).

So it suffices to prove that Ij,z(M) is small for all j, z ≥ 0. We choose a large
constant E and a large positive integer N . Then the multiplier (1− e−ER)N

is practically 1 on Q±; with this factor we can transform back the integration
to [0,∞), and it is enough to show that (remember ImM ≥ 2)

∞\
0

J
(j)
M (R)e−iR − i(−1)zJ (j)

−M (R)eiR

R3/2+j+z
(1− e−ER)N dR

= O(e(π/2) ImM (ImM)−C)

for every C > 0. For j = 0 this follows easily from (16), and in view of
Jν−1(R)− Jν+1(R) = 2J (1)

ν (R) this proves the lemma.

Lemma 15. Let ϕ be a smooth function on (0,∞) such that ϕ(x) =
O(xA) with some large constant A as x → 0, and ϕ(x) = O(x−1/2) as
x→∞. Assume that ϕ̃(1/2+2j) = 0 for j = 1, 2, . . . , and ϕ∗(t)−ϕ∗(−t) =
O(e2π|t|(1+|t|)−B) in a strip |Im t| < C with some large constants B and C.
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If

(19)
∞\
−∞

ϕ̂(t)Γ (1/4 + it)Γ (1/4− it)(shπt)t dt = 0,

then ϕ satisfies the conditions of Theorem B, i.e. for some ε > 0, ϕ(x) =
O(x−1−ε) and ϕ(l)(x) = O(x−2−ε) for l = 1, 2, 3 as x→∞.

P r o o f. For x > 0 define

ψ(x) =− 2
π2e(3/8)

∞\
−∞

J2it(x) cos(πit+π/4)ϕ̂(t)Γ (1/4+ it)Γ (1/4− it)
chπt

t dt.

Then it is easy to check that ψ(0) = ψ(1)(0) = 0 (moving the line of inte-
gration to Im t = −(1/2 + ε) and using ϕ̂(−i/2) = 0), and ψ(x) = O(x−1−ε)
and ϕ(l)(x) = O(x−2−ε) for l = 1, 2, 3 as x→∞ (using, for x very large with
respect to t, the asymptotic formula for the J-function and its derivatives,
and taking into account (19), we get in fact much stronger estimates). So
it is enough to prove that ϕ = ψ. But the Corollary to Lemma A.9 below
shows that ϕ̂ = ψ̂ and ψ̂(1/2 + 2j) = 0 for j = 1, 2, . . . So for the function
d(x) = (ϕ− ψ)(x) we have

∞\
−∞

d(x)F (x, 2t,−1/2)
dx

x
= 0

for each real t with

F (x, 2t,−1/2) = J2it(x) cosπ(it+ 1/4)− J−2it(x) cosπ(−it+ 1/4),

and
∞\
−∞

d(x)J2j−1/2(x)
dx

x
= 0 with j = 1, 2, . . .

But then d≡ 0, because d is easily seen to be orthogonal in L2((0,∞), x−1dx)
to any compactly supported smooth function by the Appendix in [K].

Corollary. There is a fixed function ϕ0 satisfying the conditions of
Lemma 15 apart from (19) (writing ϕ0 in place of ϕ there), such that if ϕ
is any other such function then Theorem B is applicable to the function

ϕ(x)−
( ∞\
−∞

ϕ̂(t)Γ (1/4 + it)Γ (1/4− it)(shπt)t dt
)
ϕ0(x).

P r o o f. We take ϕ0 with
∞\
−∞

ϕ̂0(t)Γ (1/4 + it)Γ (1/4− it)(shπt)t dt = 1



Cycle integrals of Maass forms 139

(if this integral is 0 for every function satisfying the desired conditions, then
we can take ϕ0 ≡ 0).

APPENDIX: KUZNETSOV’S FORMULA FOR KOHNEN’S SUBSPACE

Here we prove Theorem B stated in Section 3. The proof is based on
the ordinary Kuznetsov formula for Maass forms of weight 1/2 (proved by
Proskurin [P]) and the fact that (just as in the holomorphic case) Kohnen’s
subspace is the invariant space of a certain self-adjoint operator L satisfying
a quadratic equation.

In Section A.1 we give some notations, in Section A.2 we state the basic
properties of the operator L and determine its action on Fourier coefficients
(which is important for the proof), and in Section A.3 we compute the
relevant Kloosterman sums. After these preliminaries we can easily prove
Theorem B in Section A.4. We have there a general test function on the
Kloosterman sum side and not on the spectral side; Section A.5 deals with
the inversion of the integral transformation involved.

A.1. Further notations. We define the symbol
(
c
d

)
for c an integer,

and d an odd integer. For d > 0 this is the usual Jacobi symbol, and we
extend it by the formulas

(
c

d

)
=

c

|c|
(
c

−d
)

for c 6= 0;
(

0
d

)
= 1 for d = ±1,

(
0
d

)
= 0 otherwise.

A few basic properties are the following. We have
(
c
d

)
= 0 for (c, d) > 1,

and the symbol is completely multiplicative in both variables. If n is odd,
then

(−1
n

)
= (−1)(n−1)/2 and

(
2
n

)
= (−1)(n2−1)/8. If A is an integer, then

for any integer c and d odd one has
(
c
d

)
=
(

c
d+A(4c)

)
, but if 4 | c, then(

c
d

)
=
(

c
d+Ac

)
is also true. If A and c are any integers, d is odd and d > 0,

then
(
c
d

)
=
(
c+Ad
d

)
. Finally, the extended quadratic reciprocity law states

that if p and q are odd integers, (p, q) = 1, and p > 0, then
(
p

q

)(
q

p

)
= (−1)(p−1)/2 · (q−1)/2.

(P r o o f. For q > 0 this is well known, so we assume q < 0. Then
(
p

q

)
=
(
p

−q
)
,

(
q

p

)
= (−1)(p−1)/2

(−q
p

)
,

hence (as −q > 0)
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(
p

q

)(
q

p

)
= (−1)(p−1)/2(−1)(p−1)/2 · (−q−1)/2 = (−1)(p−1)/2 · (1−q)/2,

and (−1)n = (−1)−n for every integer n.)
For a complex number z 6= 0 we set its argument in (−π, π], and log z =

log |z| + i arg z, where log |z| is real. We define the power zs for any s ∈ C
by zs = exp(s log z).

For g1, g2 ∈ GL+(2,R), we define

w(g1, g2) = jg1(g2z)1/2jg2(z)1/2jg1g2(z)−1/2.

The right-hand side is indeed independent of z ∈ H. Clearly w = ±1. One
has

f |g1g2 = w(g1, g2)(f |g1)|g2.

We will frequently (and sometimes tacitly) use the following lemma.

Lemma A.1. Let g1, g2 ∈ GL+(2,R), g1 =
(
a1
c1

b1
d1

)
, g2 =

(
a2
c2

b2
d2

)
and

g1g2 =
(
A
C
B
D

)
.

(i) If c2 > 0 and C > 0, then w(g1, g2) = 1.
(ii) If c1 = 0 and d1 > 0, or if c2 = 0 and d2 > 0 (i.e. jg1(z) or jg2(z)

is a positive constant), then w(g1, g2) = 1.

P r o o f. We use the identity jg1g2(z) = jg1(g2z)jg2(z). Statement (ii) is
trivial from this, but statement (i) also follows from z = x + i, x → ∞
(because then arg jg1g2(z)→ 0 and arg jg2(z)→ 0).

The function ν defined in Section 2 is a multiplier system on Γ0(4) (and
on every Γ0(4N)) of weight 1/2, in the sense that |ν| = 1, ν

((−1
0

0
−1

))
=

e−πi/2, and

ν(g1g2) = w(g1, g2)ν(g1)ν(g2)

for every g1, g2 ∈ Γ0(4).
Let N be a positive integer. For a cusp a of Γ0(4N) denote the stability

group of a by Γa = {γ ∈ Γ̂0(4N) : γa = a}. The scaling matrix of a is an
element σa ∈ SL(2,R) such that σa∞ = a and σ−1

a Γaσa = B, where B is
the group of integer translations. As a transformation on H it is determined
up to composition with a translation from the right. For a cusp a and a
multiplier system ν one defines χa by

ν

(
σa

(
1 1
0 1

)
σ−1
a

)
= e(−χa), 0 ≤ χa < 1.

The cusp a is said to be singular for the multiplier system ν if χa = 0.
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It is known that if f is a Maass form of weight 1/2 for Γ0(4N), then at
every cusp a of Γ0(4N) it has a Fourier development of the form

f |σa(z) = cf,a(y) +
∞∑

n=−∞
n−χa 6=0

bf,a(n)W 1
4 sgn(n−χa),it(4π|n−χa|y)e((n−χa)x),

where W is the Whittaker function, 1/4 + t2 = −λ, and cf,a(y) = 0 if
χa 6= 0, while for χa = 0 it is a linear combination of y1/2+it and y1/2−it.
The numbers bf,a(n) are called the Fourier coefficients of f at the cusp a.

A.2. The operator L and its action on Fourier coefficients. Let
(up to Section A.4) N be an odd positive integer. The three relevant cusps
of Γ0(4N) are ∞, (N + 1)/(4N) and (3N + 1)/(12N). Now Γ∞ is obviously
the group generated by

( 1
0

1
1

)
, and it is not hard to check that

γ(N+1)/(4N) =
(

1−N(N + 1) (N + 1)2/4
−4N2 1 +N(N + 1)

)
,

γ(3N+1)/(12N) =
(

1− 3N(3N + 1) (3N + 1)2/4
−36N2 1 + 3N(3N + 1)

)

are generators of Γ(N+1)/(4N) and Γ(3N+1)/(12N), respectively.
For scaling matrices we can choose

σ∞ =
(

1 1
0 1

)
, σ(N+1)/(4N) =

(
(1 +N)/2 1/2

2N 2

)
,

σ(3N+1)/(12N) =
(

(1 + 3N)/2 1/2
6N 2

)
.

In our case

ν(γ(N+1)/(4N)) = ε1+N(N+1)

( −4N2

1 +N(N + 1)

)
,

ν(γ(3N+1)/(12N)) = ε1+3N(3N+1)

( −36N2

1 + 3N(3N + 1)

)
.

This shows that using the notations

q =
{

(N + 1)/(4N) if N ≡ 1 (mod 4),
(3N + 1)/(12N) if N ≡ 3 (mod 4),

s =
{

(3N + 1)/(12N) if N ≡ 1 (mod 4),
(N + 1)/(4N) if N ≡ 3 (mod 4),

we have χs = 0, χq = 3/4 (so s is a singular cusp of Γ0(4N) for ν, and q is
nonsingular).
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If f is a function on H with f |γ = ν(γ)f for every γ ∈ Γ0(4N), let

Lf =
1

2(1 + i)

∑

w (mod 4)

(
f

∣∣∣∣
(

1 1/4
0 1

))∣∣∣∣
(

1 0
4Nw 1

)
(A.1)

=
1

2(1 + i)

∑

w (mod 4)

f

∣∣∣∣
(

1 +Nw 1/4
4Nw 1

)
.

It is easy to check that the definition is correct and the second equation
holds.

Lemma A.2. Let f be a function on H with f |γ = ν(γ)f for every
γ ∈ Γ0(4N). Then the same is true for Lf . The operator L : V → V is self-
adjoint (V = V1/2(4N)), commutes with ∆1/2 and with the Hecke operators
Tp2 , and satisfies the quadratic equation (L−1)(L+1/2) = 0. We have V =
V +⊕V − (orthogonal decomposition), where V + =V +

1/2(4N) is the eigenspace
of L with eigenvalue 1, and V − = V −1/2(4N) is the eigenspace of L with
eigenvalue −1/2. For a Maass form f ∈ V , we have f ∈ V + if and only if
bf,∞(n) = 0 for n ≡ 2, 3 (mod 4).

P r o o f. In the holomorphic case these statements are proved in [Ko3],
and the modifications needed are not hard.

We now describe the action of L on Fourier coefficients.

Lemma A.3. Let f be a Maass form of weight 1/2. For n 6= 0 we have

bLf,∞(n) =





1
2
bf,∞(n) +

1
2(1 + i)

bf,s

(
n

4

)
if n ≡ 0 (mod 4),

1
2
bf,∞(n) +

1
2(1 + i)

bf,q

(
n+ 3

4

)
if n ≡ 1 (mod 4),

−1
2
bf,∞(n) if n ≡ 2, 3 (mod 4).

P r o o f. For w = 2 in (A.1) we have(
1 + 2N 1/4

8N 1

)
=
(

1 + 2N −(1 + 3N)/2
8N 1− 6N

)(
1 3/4
0 1

)
.

The first factor on the right-hand side is in Γ0(4N), 1 + 2N ≡ −1 (mod 4),
and

(
8N

1+2N

)
=
( −4

1+2N

)
, which is −1. So the terms w = 0 and w = 2 in the

expression (A.1) for Lf give
1

2(1 + i)

(
f

∣∣∣∣
(

1 1/4
0 1

)
+ if

∣∣∣∣
(

1 3/4
0 1

))
,

while the terms w = 1 and w = 3 give
1

2(1 + i)
(f |σs + f |σq)

∣∣∣∣
(

2 0
0 1/2

)
.

From these last results we obtain the statement of the lemma.
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A.3. Kloosterman sums. We now determine (Lemma A.6 below) the
relevant Kloosterman sums. In general, if a1, a2 are cusps of a group Γ , ν is
a given multiplier system of weight 1/2 on Γ , m and n are nonzero integers
and c > 0, then the definition of the Kloosterman sum is

SΓa1,a2
(m,n; c) =

∑

γ=( ac
∗
d )

νa1,a2(γ)e
(

(m− χa1)a+ (n− χa2)d
c

)
;

here the summation is over inequivalent elements γ of σ−1
a1
Γσa2 (in our case

Γ = Γ0(4N)) with lower left entry c, where γ1 and γ2 are equivalent if
Bγ1B = Bγ2B; and νa1,a2(γ) = ν(σa1γσ

−1
a2

)w(σa1γσ
−1
a2
, σa2)w(σa1 , γ). We

need S
Γ0(4N)
∞,∞ (m,n; c), SΓ0(4N)

∞,s (m,n; c) and S
Γ0(4N)
∞,q (m,n; c).

If a1 = ∞, we can choose σa1 =
( 1

0
0
1

)
, and then, since c > 0, using

Lemma A.1(i) we see that the w functions are 1 provided the lower left
entry of σa2 is positive; but in our cases this condition holds, so νa1,a2(γ) =
ν(σa1γσ

−1
a2

).
In preparation of Lemma A.6 we need two lemmas.

Lemma A.4. Suppose M is an odd positive integer , N |M , and a, b, c, d
are arbitrary (not necessarily integer) numbers with ad−bc = 1; furthermore

(
a b
c d

)
=
(
A B
C D

)(
(1 +M)/2 1/2

2M 2

)
.

Then a necessary and sufficient condition for
(
A
C
B
D

) ∈ Γ0(4N) is

{2 ‖ c, N | c, 2 | a, 2 | d, ad ≡ 1 (mod (c/2))} in the case M ≡ 3 (mod 4);

{2 ‖ c, N | c, a ≡ 0 (mod 1), d ≡ 0 (mod 1), a(d− c/2) ≡ 1 (mod c)}
in the case M ≡ 1 (mod 4).

P r o o f. First we seek the condition for
(
A
C
B
D

) ∈ Γ0(4). Since
( 1

4
0
1

) ∈
Γ0(4), and

(
1 0
4 1

)
=
(

(1 +M)/2 1/2
2M 2

)(
0 −1/2
2 (1 +M)/2

)
,

we have
(
A
C
B
D

) ∈ Γ0(4) if and only if 2b is an integer, 2 | d, 2 | c and
2 | (1+M)b−a. If these conditions are fulfilled, then a is an integer (because
2b | (1+M)b), ad−1 = (2b)c/2 is odd, and so 2 ‖ c and 2b is odd. This implies
that a is odd for M ≡ 1 (mod 4), and even for M ≡ 3 (mod 4). It is easy to
get as necessary and sufficient conditions for

(
A
C
B
D

) ∈ Γ0(4) the conditions
stated in the lemma without N | c. But C = 2c − 2Md, and N |M , so we
get the lemma.
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Lemma A.5. If M is an odd positive integer , δ =
(
A
C
B
D

) ∈ Γ0(4N),
(
a b
c d

)
=
(
A B
C D

)(
(1 +M)/2 1/2

2M 2

)
,

and c > 0, then

ν(δ) =





ε3c/2

(
d/2
c/2

)
for M ≡ 3 (mod 4),

e

(
(c/2)(d− c/2− 1)

8

)(
d

c/2

)
for M ≡ 1 (mod 4).

P r o o f. We will repeatedly use the basic properties of the quadratic
residue symbol (see Section A.1).

First observe that
(
C
D

)
=
(
C+4D
−D

)
. Indeed, if D < 0, we must have C > 0

since c > 0, and
(
C+4D
−D

)
=
(
C
−D
)

=
(
C
D

)
. So we may assume D > 0. Then

C + 4D > 0, as otherwise 2c = (1 +M)(C + 4D)− 4D ≤ 0, a contradiction.
But then

(
C+4D
−D

)
=
(
C+4D
D

)
=
(
C
D

)
. We will use this observation twice.

Observe also that c ≡ 2 (mod 4) and d is an even integer.
Assume first that M ≡ 3 (mod 4). Then since 4 | 1 +M , we have

(
d/2
c/2

)
=
(

C/4 +D

(1 +M)(C/4 +D)−D
)

=
(
C/4 +D

−D
)

=
(
C + 4D
−D

)
=
(
C

D

)
.

On the other hand εD = ε3c/2 since 4 |C, 4 | 1 + M , and this proves the
lemma in this case.

For M ≡ 1 (mod 4) set x = d − c/2. Then x is an odd integer, and we
will prove

(
c
x

)
=
(
C
D

)
. Indeed, c > 0, so
(
c

x

)
=
(
c

|x|
)

=
(

2d
|x|
)

=
(
d/2
|x|
)
.

We have x = d − c/2 = (1 − M)d2 + D. If this is positive, then d > 0
(as c > 0), and then D > 0 (since 1 −M ≤ 0). In this case, continuing the
computation, since 4 | 1−M and d/2 = C/4 +D, we have

(
d/2
x

)
=
(
C/4 +D

D

)
=
(
C

D

)
.

If x = d− c/2 < 0, then as above,
(
d/2
−x
)

=
(
C/4 +D

−D
)

=
(
C

D

)

again (see the beginning of the proof). On the other hand εD = εd−c/2
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(again because 4 | 1−M), so by quadratic reciprocity (c > 0!)

ν(δ) = εd−c/2

(
2

d− c/2
)

(−1)(c/2−1)/2 · (d−c/2−1)/2
(
d− c/2
c/2

)
.

It is easy to check that εn
(

2
n

)
= e

(
n−1

8

)
for every odd n, and this proves

the lemma.
We can now turn to the main result of this section.

Lemma A.6. We have

SΓ0(4N)
∞,∞ (m,n; c) = 0 if c is not divisible by 4N ;

SΓ0(4N)
∞,s (m,n; c) = SΓ0(4N)

∞,q (m,n; c) = 0

if the condition (2 ‖ c and N | c) does not hold.

Moreover ,

(i) SΓ0(4N)
∞,∞ (m,n; c) =

∑

x (mod c)
(x,c)=1

εx

(
c

x

)
e

(
mx+ nx

c

)
if 4N | c;

(ii) SΓ0(4N)
∞,s (m,n; c) = ε3c/2

∑

x (mod c/2)
(x,c/2)=1

(
x

c/2

)
e

(
(m4)x+ nx

c/2

)

if 2 ‖ c and N | c;

(iii) SΓ0(4N)
∞,q (m,n; c) = ε3c/2(−1)n

∑

x (mod c)
(x,c)=1

(
x

c/2

)
e

(
mx+ (n− Vc)x

c

)

if 2 ‖ c and N | c,
where Vc is the integer defined by

Vc =
{

(6 + c)/8 for c ≡ 2 (mod 8),
(6 + 3c)/8 for c ≡ 6 (mod 8).

P r o o f. The statement for SΓ0(4N)
∞,∞ (m,n; c) is obvious, and the others

are immediate consequences of the previous two lemmas, because σs and σq
have the form

( (1+M)/2
2M

1/2
2

)
with N |M , and M ≡ 3 (mod 4) for s, while

M ≡ 1 (mod 4) for q. In the case of SΓ0(4N)
∞,s (m,n; c) we write x = d/2. In

the case of SΓ0(4N)
∞,q (m,n; c) we write x = d− c/2, use the fact that x− 1 is

even,

e

(
(c/2)(1− x)

8

)
= ε3c/2e

(
(3/4− Vc)x

c

)
e

(
3
8

)
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for 2 ‖ c, and

e

(
(n− 3/4)d

c

)
= e

(
(n− 3/4)x

c

)
(−1)ne

(
−3

8

)
.

The following lemma gives another expression for the sums SK(m,n; c)
introduced in Section 3.

Lemma A.7. Let 4 ‖ c, m ≡ 0, 1 (mod 4), n ≡ 0, 1 (mod 4), and let

S∞,∞(m,n; c) = SΓ0(4)
∞,∞ (m,n; c),

S∞,s(m,n; c) = SΓ0(4)
∞,s (m,n; c), S∞,q(m,n; c) = SΓ0(4)

∞,q (m,n; c),

so their explicit definition is given in Lemma A.6 with N = 1. Then

SK(m,n; c)

=





S∞,∞(m,n; c) +
2

1 + i
S∞,s

(
m,

n

4
;
c

2

)
if n ≡ 0 (mod 4),

S∞,∞(m,n; c) +
2

1 + i
S∞,q

(
m,

n+ 3
4

;
c

2

)
if n ≡ 1 (mod 4).

In other words, we have

S∞,∞(m,n; c) =





(1− i)S∞,s
(
m,

n

4
;
c

2

)
for n ≡ 0 (mod 4),

(1− i)S∞,q
(
m,

n+ 3
4

;
c

2

)
for n ≡ 1 (mod 4).

P r o o f. By quadratic reciprocity, using the pairing x↔ x+c/2, the fact
that if x ≡ 1 (mod 4), then x+c/2 ≡ 3 (mod 4), and that x+ c/2 ≡ x+c/2
(mod c), we have

S∞,∞(m,n; c)

= (1 + i(−1)(c/4−1)/2+m+n)
∑

y≡1 (mod 4), y (mod c/4)
(y,c/4)=1

(
y

c/4

)
e

(
my + ny

c

)
,

where yy ≡ 1 (mod c). Since

e

(
my

c

)
= e

(
m4y
c/4

)
e

(
mc/4

4

)
for y ≡ 1 (mod 4),

and for m ≡ 0, 1 (mod 4)

(A.2) (1 + i(−1)(c/4−1)/2+m)e
(
mc/4

4

)
= (1− i)ε3c/4,

in the case n ≡ 0 (mod 4) we have

S∞,∞(m,n; c) = (1− i)S∞,s(m,n/4; c/2).
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If n ≡ 1 (mod 4) take an integer r with r ≡ 2 (mod c/4), r ≡ 1
(mod 4), and let rr ≡ 1 (mod c). Then for y ≡ 1 (mod 4) we have

e

(
ny

c

)
= e

(
((n+ 3)/4− Vc/2)ry

c/2

)
(−1)(n+3)/4−Vc/2e

(
4Vc/2 − 3

c
y

)
,

and

e

(
my

c

)
= e

(
mry

c/2

)
e

(
−mc/4

4

)
,

because after writing every term in the form e(l/c) with some integer l we
have to prove a congruence mod c, which is easily proved mod 4 and mod c/4
(and (4, c/4) = 1) by our conditions.

Since

e

(
4Vc/2 − 3

c
y

)
= i(−1)(c/4−1)/2

for y ≡ 1 (mod 4), so by the substitution ry 7→ y, using(
2
c/4

)
(−1)Vc/2(−1)(c/4−1)/2 = −1,

and the conjugate of (A.2), we get

S∞,∞(m,n; c) = (1− i)S∞,q(m, (n+ 3)/4; c/2) for n ≡ 1 (mod 4).

A.4. Kuznetsov’s formula. First we state Kuznetsov’s sum formula
for the weight k = 1/2 and for the group Γ0(4N) (N may be even here)
as given in [P] (see also [Du]). Proskurin actually derived the formula for
more general groups and weights, but considered only the case when the two
cusps are equal. The modifications for mixed cusps are straightforward. We
will need the case of mixed cusps, so state the formula in such a form.

Let N be a (not necessarily odd) positive integer. In addition to the
notations introduced in Section 3, let a1, a2 be two cusps of Γ0(4N), and let
{fij}dji=1 be an orthonormal basis for the space of holomorphic cusp forms
for Γ0(4N) of weight 1/2 + 2j (j = 1, 2, . . .), with multiplier system ν, and
with Fourier coefficients bij,a(n) at a cusp a.

For n,m ≥ 1 set

V1(m,n) = 4
√

(m− χa1)(n− χa2)
∑

j

bj,a1(m)bj,a2(n)
ch(πtj)

ϕ̂(tj),

V2(m,n) =
h∑

j=1

∞\
−∞

(
n− χa2

m− χa1

)it

× ϕj,m,a1
(1/2 + it)ϕj,n,a2(1/2 + it)

ϕ̂(t)
ch(πt)|Γ (3/4 + it)|2 dt,
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V3(m,n) = 4
∑

j≥1

Γ (1/2 + 2j)e(1/8 + j/2)
(4π)1/2+2j(m− χa1)j−1/4(n− χa2)j−1/4

× ϕ̃(1/2 + 2j)
dj∑

i=1

bij,a1(m)bij,a2(n).

Lemma A.8 (Proskurin). With the above notations, for n,m ≥ 1 we have

∑
c>0

S
Γ0(4N)
a1,a2 (m,n; c)

c
ϕ

(
4π

√
(m− χa1)(n− χa2)

c

)
=

3∑

l=1

Vl(m,n).

Proof of Theorem B. The case 2 |N is a straightforward application
of Kuznetsov’s formula (Lemma A.8), so we assume that N is odd. By
Lemma A.7 we have

∑
=
∑
c>0
N | c

S∞,∞(m,n; c)
c

ϕ

(
4π
√
mn

c

)

+
1

1 + i

∑
c>0
N | c

S∞,s(m,n/4; c)
c

ϕ

(
4π

√
m(n/4)
c

)
,

if n ≡ 0 (mod 4), and
∑

=
∑
c>0
N | c

S∞,∞(m,n; c)
c

ϕ

(
4π
√
mn

c

)

+
1

1 + i

∑
c>0
N | c

S∞,q(m, (n+ 3)/4; c)
c

ϕ

(
4π

√
m((n+ 3)/4− χq)

c

)
,

if n ≡ 1 (mod 4).
Now we apply Kuznetsov’s formula three times, and use Lemma A.3, to

get
∑

= 4
√
mn

∑

j

bj,∞(m)
{

1
2bj,∞(n) + bLfj ,∞(n)

}

ch(πtj)
ϕ̂(tj) + E.

This proves the theorem, because 1
2bj,∞(n) + bLfj ,∞(n) is 0 for fj ∈ V −,

and 3
2bj,∞(n) for fj ∈ V +.

A.5. Inverting the formula. The following lemma is important in
inverting the Kuznetsov transform ϕ 7→ ϕ̂. This lemma is in a sense the
converse of the theorem in the Appendix of [K]. We need only the case
α = −1/2 here.
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Lemma A.9. Let h be an even smooth function on (−∞,∞), and assume
that for some ε > 0 we have h(l)(t) = Ol(eπtt−(2+ε)) as t → ∞ for l =
0, 1, 2, . . . Define

F (x, t, α) = Jit(x) cos
π

2
(α− it)− J−it(x) cos

π

2
(α+ it).

Then for any s > 0 we have

h(s) = −
∞\
0

F (x, s,−1/2)
(∞\

0

F (x, t,−1/2)
chπt

h(t)
t dt

shπt

)
dx

x
.

P r o o f. First we assume that h(t) = 0 for |t| ≥ T with some posi-
tive T . The lemma will follow from this by approximating a general h(t) by
h(t)ω0(t/T ) with T →∞, where ω0 is a fixed smooth function on (−∞,∞)
with 0 ≤ ω0 ≤ 1, ω0(t) = 1 for |t| ≤ 1/2, and ω0(t) = 0 for |t| ≥ 1. Using
the formula

(A.3) Jit(x) =
(x/2)it

Γ (1/2 + it)Γ (1/2)

1\
−1

(1− s2)it−1/2 cos sx ds

we see that if we know the theorem for functions with compact support,
this approximation gives the theorem for any h satisfying the conditions of
the lemma (for x small we replace cos sx by 1 in (A.3), and then we apply
partial integration two times in t).

So let h(t) = 0 for |t| ≥ T . It is easy to see by (A.3) that the integral in x
is absolutely convergent. Let gn(y) be the function on (−∞,∞) defined by
gn(y) = 0 for y ≤ an, gn(y) = 1 for y ≥ bn, gn(y) = (y − an)/(bn − an) for
an ≤ y ≤ bn, where {an} and {bn} are two sequences with limn→∞ bn = −∞
and limn→∞(bn − an) =∞. Then it is enough to prove that

h(s) = − lim
n→∞

∞\
0

gn(log x)F (x, s,−1/2)
(∞\

0

F (x, t,−1/2)
chπt

h(t)
t dt

shπt

)
dx

x
,

so that

h(s) = − lim
n→∞

∞\
0

(∞\
0

gn(log x)F (x, s,−1/2)F (x, t,−1/2)
dx

x

)
h(t)
chπt

t dt

shπt
.

We now prove that for Re ν ≥ 0, ν 6= −is we have

lim
n→∞

∞\
0

gn(log x)Jν(x)Jis(x)
dx

x
=

2 sinπ(ν − is)/2
π(ν − is)(ν + is)

.

Indeed, for Re ν > 0 this follows from (B.37) of [I1], so it is enough to prove
that the limit also exists for Re ν = 0, ν 6= −is, and gives a continuous
function of ν for Re ν ≥ 0, ν 6= −is. To prove this we can integrate from 0
to 1, and here we can replace the J-functions with the first term of the power
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series expansion, obtaining
T1
0 gn(log x)xν+is dx/x. Applying the substitution

ey = x and then integrating by parts we get

(A.4)
1\
0

gn(log x)xν+is dx

x
=

1
ν + is

− 1
bn − an

bn\
an

ey(ν+is)

ν + is
dy.

The limit of this as n→∞ is 1/(ν + is) (see the conditions on an and bn),
which proves the present assertion.

Then an easy calculation shows that for t, s > 0, t 6= s, we have

lim
n→∞

∞\
0

gn(log x)F (x, s,−1/2)F (x, t,−1/2)
dx

x
= 0.

Let s and t be bounded, t > 0, s > 0, t 6= s. Then
∞\
0

gn(log x)F (x, s,−1/2)F (x, t,−1/2)
dx

x

= lim
N→∞

∞\
0

(gn − gN )(log x)F (x, s,−1/2)F (x, t,−1/2)
dx

x

showing by (A.4) that
∞\
0

gn(log x)F (x, s,−1/2)F (x, t,−1/2)
dx

x
=
∑

Rn(±t,±s) + on(1),

where

Rn(T, S) =
2−i(T+S) cos π2 (−1/2− iT ) cos π2 (−1/2− iS)

Γ (1 + iT )Γ (1 + iS)

× (−1)1+T/|T |+S/|S| 1
bn − an

bn\
an

eiy(T+S)

i(T + S)
dy,

and since

lim
y→−∞

∞\
0

H(t)
sin y(t− s)

t− s dt = −H(s)
∞\
−∞

sinx
x

dx = −πH(s)

for any smooth, compactly supported function H on [0,∞) and for any
s > 0, and

πs

Γ (1 + is)Γ (1− is) = shπs, 2 cos
π

2

(
−1

2
− is

)
cos

π

2

(
−1

2
+ is

)
= chπs,

this proves the lemma.

Corollary. Let f be an even smooth function on (−∞,∞), and assume
that f (l)(t) = Ol(t−(3/2+ε)) for some ε > 0 as t → ∞ for l = 0, 1, 2, . . .
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Define

ϕ(x) = − 2
π2e(3/8)

∞\
−∞

J2it(x) cos(πit+ π/4)f(t)Γ (1/4 + it)Γ (1/4− it)
chπt

t dt,

and assume that ϕ(0) = ϕ(1)(0) = 0, and ϕ(x) = O(x−1−ε) and ϕ(l)(x) =
O(x−2−ε) for l = 1, 2, 3 as x→∞. Then Theorem B is applicable to this ϕ,
i.e. ϕ̃(1/2 + 2j) = 0 for j = 1, 2, . . . , and f = ϕ̂.

P r o o f. The condition ϕ̃(1/2 + 2j) = 0 for j = 1, 2, . . . follows from
(B.37) of [I1], and f = ϕ̂ by Lemma A.9 with

h(t) =
(shπt)(chπt)

ch(πt/2)
Γ

(
1
4

+ i
t

2

)
Γ

(
1
4
− i t

2

)
f

(
t

2

)

and the definition of the Kuznetsov transform.
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