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ABSTRACT

We prove a Poisson-type summation formula. The new formula is closely
related to automorphic forms, since it contains certain triple products of

automorphic forms as weights.

1. Introduction

1.1. Inorder to be able to describe our formula we first introduce some notation
concerning automorphic forms. Then, before actually describing the formula,
we will give an interpretation of the classical Poisson formula which will help
us show that our formula is analogous to the Poisson formula.

1.2. NoTATION. We denote by H the open upper half plane. We write

F0(4):{<Z Z)eSL(Q,Z):CEO (mod4)}.

Let Dy be a fundamental domain of I'y(4) on H, let
dxdy

d:uz = 9

Y
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588 A. BIRO Isr. J. Math.

(this is the SL(2, R)-invariant measure on H), and introduce the notation

(f1, f2) = f1(2) fa(2)dp..
Dy

Introduce the hyperbolic Laplace operator of weight I:
0? 0? 0
A=y —l :
Ly <6$2+6y2> “Y oz
For a complex number z # 0 we set its argument in (—7, 7], and write logz =
log |z| + i arg z, where log |z| is real. We define the power 2° for any s € C by
2% = e*18% We write

. r
e(r) =€ and (w), = ;w(:)n),
as usual.
For z € H we write 0 (2) = Y. ~____ e(m?z), and we define
(1.1) Bo(2) == (Imz)1 0 (2).
If v is the well-known multiplier system (see e.g. [D], (2.1) for its explicit form),
we have
() )"
Bals) =) (1)) Bote) for v € Tula),

|3+ ()]

where for

we write j,(z) = cz + d. Note that v* = 1.

Let [ = é + 2n or | = 2n with some integer n. We say that a function f
on H is an automorphic form of weight [ for I' = SL(2,Z) or T'x(4) (but, if
I =} +2n, we can take only I' = I'g(4)), if it satisfies, for every z € H and
v € T, the transformation formula

o= (7)) 1

in the case [ = 2n,

. l

Jy(2)

s =vi (1)) 1)

l3+(2)]
in the case [ = % + 2n, and f has at most polynomial growth in cusps. The
operator A; acts on smooth automorphic forms of weight [. We say that f is
a Maass form of weight [ for I, if f is an automorphic form, it is a smooth
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function, and it is an eigenfunction on H of the operator A;. If a Maass form
f has exponential decay at cusps, it is called a cusp form.

Denote by L?(D4) the space of automorphic forms of weight [/ for I'g(4) for
which we have (f, f) < co.

Take ug,1/2 = coBo, where ¢ is chosen such that (ug,/2,ug,1/2) = 1. It is not
hard to prove (using [Sa], p. 290) that the only Maass form (up to a constant
factor) of weight é for T'g(4) with Ay /o-eigenvalue —136 is Bp, and the other
eigenvalues are smaller. Let uj /5 (j > 0) be a Maass form orthonormal basis
of the subspace of L? /2 (D4) generated by Maass forms; write

1
Avjpujije = Ajujpe, Ay =55(8; - 1), 8=, +ilj.

Then Ay = 7136, A< 7136 for j > 1, and A; — —o0.

For the cusps a = 0, co denote by F, (z, S, %) the Eisenstein series of weight
5 for the group I'g(4) at the cusp a (for a precise definition see Section 2).
As a function of z, it is an eigenfunction of A/, of eigenvalue s(s —1). If f
is an automorphic form of weight 1/2 and the following integral is absolutely

convergent, introduce the notation

Glfr) = [ f(2)Ea < i ;)duz.

Dy
If | > 1 is an integer, let S;, 1 be the space of holomorphic cusp forms of weight
I+ 5 with the multiplier system ' 2! for the group I'¢(4). Note that 2! = v
if and only if [ is even.
We will be mainly concerned with the case when [ is even. If £k > 1,
let fr1, frz2,---,frs, be an orthonormal basis of SQkJr;, and write gi ;(2) =

(Imz)‘lﬁk fr,j(2). We note that g ; is a Maass cusp form of weight 2k + }, and
Aopy 19k = (k+3) (k= 3) gk (see [F], formulas (4) and (7)).
We also introduce the Maass operators

0 .0
Ky = (z—z)az+kfzyax+yay+k,
0 .0 0
Lk.f(zfz)az—kffzyaxq{yay—k.

For basic properties of these operators see [F], pp. 145-146. We just mention
now that if f is a Maass form of weight k, then Ky »f and Ly /o f are Maass
forms of weight k + 2 and k — 2, respectively.
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1.3. POISSON’S SUMMATION AND OUR FORMULA. Now, to state the Poisson
formula, consider the space of smooth, 1-periodic functions on the real line
R, and let D = d/dx be the derivation operator. Then the eigenfunctions of
D in this space are the functions €2, the eigenvalues are 27win, and these
eigenfunctions form an orthonormal basis of the Hilbert space L? (Z\ R). We
parametrize the eigenvalues with the numbers n, these parameters are contained
in the set R, and the Poisson formula states that if F' is a “nice” function on
R and we write w(n) = 1 for every n, then the expression

Y w(n)F(n)
n=—00
remains unchanged if we replace F' by G, where G is the Fourier transform of
F. We inserted the notation w(n) for the identically 1 function to emphasize
the analogy, since in our case we will indeed have nontrivial weights.

In our case, instead of the smooth, 1-periodic functions on R, consider all
the smooth automorphic forms on H of any weight é + 2k, where k > 0 is any
integer. Instead of the eigenfunctions of D, we will consider the eigenfunctions
of the operators A%Jr%, k > 0. In fact, if £ > 0 is fixed, the eigenfunctions
of Ay +1 are almost in a one-to-one correspondence with the eigenfunctions
of A2(k 1)+ through the Maass operators, except that the eigenfunctions of
weight 2(k + 1) + J corresponding to holomorphic forms are annihilated by
Lj11y41- Hence, the essentially different eigenfunctions of the operators A, 4l
(playing a role in the spectral expansion of functions in the spaces L2,  , (Dy))

2k+ 3
are the following:

1 1
ujal/Q(jZO)v Ea (*72+ZT52> (GZO,OO,TGR>, 9k,j (kZ].,].S‘]SSk)

If u is one of these functions, we will parametrize its Laplace eigenvalue by a

1 1 .
Agpyu= <2+1T) (—2+1T)u

with the suitable k. In particular, this parameter will be

number 7" such that

1 1 1
Tj in case of uj /2, 1 in case of E, (*, 5 +ir, 2), i(4 —k) in case of g ;.

These numbers correspond to the numbers n in Poisson’s formula. In our case
these parameters are contained (at least with finitely many possible exceptions:
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call j exceptional, if T; ¢ R) in the set RU DT, where

(1.2) DT = {z <i - k> :k>1lisan integer} .

Now, in fact we prove not just one summation formula, but many formulas:
to every pair uj,us of Maass cusp forms of weight 0 there will correspond a
summation formula. So let us fix two such cusp forms. Our formula states
that there are some weights Wy, u, (J), Wuy us (@, 7) and Wy, u, (k, j) such that if
F is a “nice” function on R U D* even on R (note that “nice” will mean, in
particular, that the continuous part of F', i.e., the restriction of F' to R, extends
as a holomorphic function to a relatively large strip containing R, so we can
speak about F (T}) even for the exceptional js), then the expression

IRGLICAESD Sy | " s @) F () dr
i=0 —o0

- +iiwm’“2(k’j)F (’ (i_k))

k=1 j=1

remains unchanged if we write us in place of uy, u; in place of us, and we replace
F by G, where G is obtained from F' by applying a certain integral transform
which maps functions on R U DV, even on R again to such functions: this
integral transform is a so-called Wilson function transform of type I1, which
was introduced quite recently by Groenevelt in [G1]. This integral transform
plays the role that the Fourier transform played in the case of Poisson’s formula.
We will speak in more detail about the Wilson function transform of type I1
in Section 1.5 below. We just mention here that it shares some nice properties
of the Fourier transform: it is an isometry on a suitably defined Hilbert space,
and it is its own inverse (this last property is true at least on the even functions
in the case of the Fourier transform).

The weights wy, 4, in the above formula contain very interesting automor-
phic quantities. We give now only wy, u,(j), since the other weights will be
analogous, and everything will be given precisely in the theorem. So we will
have for j > 0 that wy, ., (j) equals

r( 34 o (P =iry)) [ Bo (=) (42)uj 1 (2)dps | Bo(2)uz (42) w1 (2)dus.
rn)e(i-m) [ J

4 Dy
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1.4. REMARKS ON RELATIONS TO OTHER WORKS AND ON POSSIBLE FUTURE
WORK. We have shown above that there is a strong formal analogy between
our summation formula and the Poisson summation formula. I guess that this
analogy may be deeper; perhaps there is a common generalization of the two
formulas. I think that the explanation of this analogy and the proof of further
generalization (perhaps even for groups of higher rank) may come from repre-
sentation theory. Such an approach could be useful also for understanding the
appearance of the Wilson function transform of type I in the formula, which
is rather mysterious at the moment. A representation theoretic interpretation
of this integral transform was given by Groenevelt himself in [G2], but it does
not seem to help in the explanation of our formula. However, it is possible that
the general method of [R] for proving spectral identities may be useful in better
understanding our formula.

Spectral identities having similarities to our result were proved by several au-
thors. We mention, e.g., the concrete identities proved in the above-mentioned
paper [R] (as an application of the general method there), and the paper [B-M],
whose method of proof based directly on the spectral structure of the space
L?(SL(2,Z)\ SL(2,R)) may be also important in the context of our formula.

But, as far as I see, the nearest relative of our result is an identity suggested
by Kuznetsov in [K] and proved by Motohashi in [M]. The weights are different
there than in our case, but the structure of the two formulas are very similar.
Indeed, on the one hand, the summation is over Laplace-eigenvalues and integers
in both cases. On the other hand, in the case of both identities we have the
same type of weights on both sides of the given identity. That formula has been
successfully applied already to analytic problems (see [Iv], [J]), so perhaps our
formula also may be applied along similar lines for the estimation of the weights
Wy, ug, hence the estimation of triple products, especially in view of the fact
that in the case u; = ug the weights are nonnegative.

We mention finally that the weights wy, u, (7) (or rather their absolute values
squared) given at the end of Subsection 1.3 are (at least in some cases, and at
least conjecturally) closely related to central values of L-functions. Indeed, let
us assume that u; /o is an eigenfunction of the Hecke operator T)2 (of weight
1/2) for every prime p # 2, and that u; /o is an eigenfunction of the operator
L of eigenvalue 1 (see [K-S] for the definitions of the operators Tj,> and L).
Assume also that the first Fourier coefficient at oo of /5 is nonzero. Then
Shimu; ; /o (the Shimura lift of u; /o) is defined in [K-S], pp. 196-197. It is a
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Maass cusp form of weight 0 which is a simultaneous Hecke eigenform. If u;
and ug are also simultaneous Hecke eigenforms, then by the Theorem of [B] we
see that wy, v, (j) is closely related to

/ luy (2) (Shimu; 1/2) (2) d,uz/ lua(2))? (Shimu; 1 /2) (2) dpz,
SL(2,Z)\H SL(2,Z)\H

at least if we accept the unproved but likely statement that the sum in (1.4)
of [B] is a one-element sum (see Remark 2 of [B] and Remark (a) on p. 197 of
[K-S]). Using the formula of Watson (see [W]) we finally get that |w, u, (7)|?
is closely related to

1 1
L <2,u1 X up X Shimuj71/2> L (2,U2 X Ug X Shimuj,1/2> .

1.5. WILSON FUNCTION TRANSFORM OF TYPE [I. For the statement and for
the proof of our result, we need to quote from [G1] the definition and some
important properties of the Wilson function transform of type I1.
Let t; and t5 be two real numbers, and write
1 . 1 1 . 3 1

a:4+zt1, b:4+lt2, C:4f’bt2, d:4+lt1, t:4

Then this set of parameters is self-dual, i.e., for the dual parameters a, b, ¢, d,
t defined in formula (2.6) and Section 5.1 of [G1] we have

a=a, B:b, c=c, J:d, t=t.

We use the notation ' (X £Y)=T(X+Y)T'(X —Y) and
[(X+Y+2Z)=T(X+Y+2)(X+Y - 2)I(X - Y + 2)I(X —Y — 2),

and define
_ D(y£ity+ix)T () ity iz) D (§ +iz) T (F £iz)
(13) Hz) = 72T (£2ix)
and
2
(1.4) T

Tr(Lkit)T (L Eity)
Let DT be as in (1.2), and define the measure dh for functions F on RUD™,
even on R as

/F(z)dh(:z:) = 267;/000 (x)H (x)dx +iC » | F(z)Res,—. H(2).

zeD+
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Explicitly, with the notation
Rk = Resz:i(i—k)H (Z) y

we have (writing s; = § + it; for j = 1,2)

2k — 5 [T (k +it1)|” |T (k +it2)|* (1 1
(15) iRy = 22| (b +at)l" IT'(k + ita) r( j:z'tl)F( :l:itg).
™ [(s1)] ™ [(s2) 1] 2 2

(Note that there is a mistake in the concrete expression for this residue in
Section 5.1 of [G1]; the formula there should be multiplied by 4¢2, which is i
in our case.) This formula means, in particular, that dh is a measure.

The Wilson function

¢)\ (:C) = ¢)\ (:C7 a, b7 ¢, d)
is defined in [G1], formula (3.2); we use the parameters a, b, ¢, d given above.
We define the Hilbert space H = H (a, b, ¢,d;t) to be the space consisting of
functions on RUD™, even on R that have finite norm with respect to the inner
product

<ﬁmH:/f@mmmmm.

Then the Wilson function transform of type IT is defined in [G1] as

(ww»:/meummu

It is defined first (as in the case of the classical Fourier transform) on the dense
subspace of H where this is absolutely convergent. Then it extends to H, and
the following nice theorem is proved in [G1], Theorem 5.10:

The operator G : H — H is unitary, and G is its own inverse.

In our proof the second statement will be important, i.e., that G is its own
inverse. We mention two more important facts that will be needed. The first
one is ¢y () = ¢z (N); see (3.4) of [G1] and remember that our parameters are
self-dual. The second one is that ¢y (z; a, b, ¢, d) is symmetric in a,b, ¢, 1—d (see
Remark 4.5 of [G1]), hence that our Wilson function transform is symmetric in
t1 and to.

Since we will work separately with the continuous and discrete part of a
function F on R U DT, even on R, we introduce notation for them:

fl@) =F(z) (x €R), an:=F <z<i - n)> (n>1).
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So instead of F', we will speak about a pair consisting of an even function f on
R and a sequence {ay}n>1. In this language, the Wilson function transform of
type I1 of the pair f, {an}n>1 is the pair of the function g and the sequence
{bn}n>1 defined by

(1.6)  g(\) = QC;T /Ooo F(@)6x () H(z)dz +¢c]§ak@ <z <i - k>) Ry

and
(1.7)

by, = 267; /Ooo f(:c)gbi(}l_n) (z) H(x)dx +io]§a’k¢i(i—n) (z (i — k:)) Ry,
for n > 1.

1.6. THE THEOREM. We now state precisely the summation formula. We still
need some notation. If u is a cusp form of weight 0 for SL(2,Z) with Agu =
s(s — 1)u, for n > 0 define a cusp form &, (u) of weight 2n for the group I'g (4)
by

(Kpo1Kp—o-- K1 Kou) (42)

(8), (1= s),

THEOREM: Let uj(z) and uz(z) be two Maass cusp forms of weight 0 for
SL(2,Z) with Laplace-eigenvalues s;j(s; — 1), where s; = 5 +it; and t; > 0

(kn(u)) (2) =

(j = 1,2). There is a positive constant K depending only on u; and ug such
that property P (f,{an}) below is true, if f(x) is an even holomorphic function
for |Imz| < K satisfying that

f(@)e 2 (1 + [a]) ]

is bounded on the domain |Imx| < K, and {a, }n>1 Is a sequence satisfying that

WK+ anf(*l)" 3 Cm

n3/2 nm
0<m<K

is bounded for n > 1 with some constants ¢,, (m runs over integers with 0 <
m< K).
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PROPERTY P (f,{an}): By g and b,, defined in (1.6) and (1.7) the sum of the
following three lines:

(1.8) Zf ( +4T; ) (Bomo (uq) a“j,;) (Bolio (uz) ,ujé),

(CND Sl BT ( iz‘r)ca(Bono<u1>,r>ca<Bono<u2>,r>dr,

aOoo

Sn

(1.10) Z anT <2n+ ) Z (Bokin (1)  gn.;) (Bokin (u2) , gn.;)

equals the sum of the following three lines:

(1.11) ig(Tj)r (i + iTj> (Bono (us) ,uj,é) (Bono (u1) ,ujé),

(1.12) Z/ < :I:z'r) Ca (Boko (uz) ,7) Ca (Boko (u1) ,r)dr,

aOoo

(1.13) Z b, (2n + ) Z (Bokin (U2) , gn.5) (Bokn (U1) , gn.j)-

j=1
The sums and integrals in (1.6) and (1.7) are absolutely convergent for [ImA| < 3
and n > 1, and every sum and integral in (1.8)—(1.13) is absolutely convergent.

The class of functions appearing in the theorem seems to be sufficiently gen-
eral, but it may happen that the statement can be extended further for some
other functions.

Convention: In what follows, u; and ug (hence ¢; and t5) will be fixed. So every
variable and every constant (including the constants implied in the < and O
symbols) may depend on u; and usg, even if we do not denote this dependence.

1.7. SKETCH OF THE PROOF OF THE THEOREM. In this sketch we ignore prob-
lems related to convergence; we just give a formal argument. Assume first that
the following special case of the Theorem is already proved:

(1.14) f)=0(x€R), ap,=0n#N), an=1
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with a fixed positive integer N. Using Groenevelt’s result that the Wilson
function transform of type I is its own inverse, we can see that this special
case (reading it “in the other direction”, and making the changes u; — wuo,
ug — uq) proves another case of the Theorem:

@ @R a=ogy (i) -n))

with a fixed positive integer N.

(1L15)  f(e) =y

There is a special case of the Theorem which is easily seen to be true:

1

1.16 x) = zeR), a,=0 (n>1).
(116) F@= p s pyy CERN @m=0 @21
This special case will follow trivially from the spectral theorem for weight 1/2.
It turns out that the general statement can be proved using these three spe-
cial cases by purely analytical means. This will follow from Lemma 7.4, which
implies that a nice enough even function on R can be written as a linear com-

bination of the functions

1

r@ i) ™ G-m @) (V21

This will mean that if f is a given nice even function on R, then by (1.15)
(using it for every integer N > 1) and (1.16) we can prove that the Theorem is
true for this f and for some sequence {ay },>1. But then, using (1.14) for every
integer N > 1, we can achieve any sequence {an, }n>1 without changing f. This
will complete the proof of the Theorem.

Hence, it is enough to prove the special case (1.14). We now give a sketch of
the proof of this special case.

Observe that we have to give an expression for

SN

(1.17) > (Bokn (u1),9n,5) (Bokn (u2) , gn 5),

j=1
which is the inner product of the projection of Boky (u1) and the projection
of Bokn (uz2) to the space (Imz)iJrN Syny 1~ This is in fact the space of Maass
cusp forms of weight 2N + 5 and A,y 1-eigenvalue (N + ;) (N — §). We will
show that this projection operator can be written as an integral operator: if
U is a cusp form of weight 2N for I'g(4), then the projection of BoU to the
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above-mentioned space is
| Bo@Uma (z, wia.
H

with a suitable kernel function mpy. We can apply a theorem of Fay (see our
Lemma 3.4) to determine the Fourier expansions of By and U on noneuclidean
circles around w. Since the behavior of my(z,w) on such circles is well under-
stood, we can compute this integral using geodesic polar coordinates around w,
and we get that the projection equals

S CouBiw) (U)_, (w),
=0

where the coefficients Cy,; are explicitly known, and

1 1
U)_, = “LN,ZH ---Lny_1LNU, By = “K(l—l)+i -+ K5 K1 Bo.
Hence, applying it with U = kx (u1) and also with U = kv (uz) we see that for
the computation of (1.17) we have to compute integrals of the form

/D Buy (w) (s (u1)) _y, (w)Biy (w) (s (u2))_y, (1)l

We will consider this integral as the inner product of By, (kn (u2))_;, and
Bi,(kn (u1))_;,- These are automorphic forms of weight 5 + 2(ly + lo — N),
and we will compute their inner product using the spectral theorem for this
weight (in the form of Corollaries 3.1 or 3.2 below). This leads us to a sum of
products of triple products of the form

(Bu (e (ua)) 4, F) (B (wn) oy, F),

where F' is a Maass form of weight é +2(l1 + 13 — N). Using partial integration
(in the form of Lemmas 3.1 and 3.2) it turns out in Lemma 4.3 that these triple
products can be written as linear combinations of such triple products which
are present in the Theorem.

This reasoning shows relatively easily that we can get some expression for
(1.17) with the products of inner products which are present in the Theorem.
However, I cannot give a good explanation of the actual form of the relation,
i.e., the occurrence of the Wilson function ¢y (z), besides the fact that this will
be the result of the computation.
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1.8. STRUCTURE OF THE PAPER. In Section 2 we introduce some more notation
and gather together some well-known preliminary facts. In Section 3 we prove
our most important lemmas, then we prove the special case (1.14) of the The-
orem in Section 4, and the general case in Section 5. Some remaining lemmas
on automorphic functions are proved in Section 6. We gather together some
facts related to the function ¢, () in an Appendix. These facts are used in the
proof of our Theorem. However, these lemmas are completely independent of
automorphic forms; they belong to the area of special functions. Therefore, we
state these lemmas here without proof; their proofs will be published elsewhere.

ACKNOWLEDGEMENT. I am grateful to the referee for substantially improving

the presentation of the paper.

2. Further notation and preliminaries
Let Dy be the closure of the standard fundamental domain of SL(2,Z), hence
1 1
D1{26H32 < Rez < o |z|21}.

Then, it is easy to check that the following set is a closure of a fundamental

domain of T'y(4):
5

D, = U v D1,
=0
where
0 -1 .
v = (1 ) (0<4<3),
J
and

(1 0 (1 0
747017757_21-

In the sequel D4 will always denote this fixed fundamental domain of I'y(4).

The three cusps for I'y(4) are 0o, 0 and fé. If a denotes one of these cusps,
we take a scaling matrix o, € SL(2,R) as explained on p. 42 of [I]. We can
easily see that one can take

10 0o 3 -1 3
OO0 — 5 gg — 5 o_1 = .
0 1 2 0 2 2 0
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The only cusp for SL(2,Z) is oo, and, of course, we take the identity matrix
0 for scaling matrix also in this case.

Let L% and F (v, 8,7; z) be the usual notation for Laguerre polynomials and
Gauss hypergeometric functions, respectively; see [G-R], p. 990 and p. 995.

If a is a cusp for T'g(4), we define x, by

L) (—Xa), 0<x.<1
V| Oq a =el—Xa), S Xa .
0 1]° X X

It is easy to check that xoo = xo = 0, and X-1 = Z. So the cusps 0 and co are
said to be singular, and —1/2 is said to be nonsingular.

If f is a Maass form of weight I, and A;f = s(s — 1)f with some Res > ;,

, -1
s = 5 +it, and a is a cusp of T', then f(0q2) (G”“Ei;l) has the Fourier
expansion

cf,a(y) + Z pf,il(m)Wé sgn(m—xa)ﬂ:t (47T |m - X(l| y) € ((m - X(l) ‘/E)
meZ
m_)fcﬁéo

for z =  + iy € H where W, g is the Whittaker function (see [G-R], p. 1014),

and cyq(y) = 0 if x4 # 0, while it is a linear combination of y* and y'—* for
1
2
Let P,(D4) be the space of such smooth automorphic forms of weight [ for

s # 3 and of y/2 and y'/2logy for s = 1, if x, = 0.

I'y(4) for which we have that for any integers B,C' > 0 there is an integer
A = A(B, C) such that
oB o¢
(5:63 y© f) (Z)‘

is bounded on Dy (i.e., every partial derivative grows at most polynomially

-A
(max Im o;lz)
a

near each cusp on the fixed fundamental domain D4). We denote by R;(Dy)
the space of such smooth automorphic forms of weight ! for I'g(4) for which we
have that for any integers A, B, C' > 0 the function

Al 9B 9¢
(mgxlmaa_lz) ‘(8:173 By f) (2)‘
is bounded on Dy (i.e., every partial derivative decays faster than polynomially
near each cusp on the fixed fundamental domain Dy).
Let

I ={y€SL(2,Z) : yoo = o0} .
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For z,w € H let

ev R (F) - (C0)

(the last equality holds because the fourth powers are the same, and the argu-
ments of both sides lie in (—7/4,7/4)), as on p. 349 of [H]. It is easy to see that
for any T € SL(2,R) we have
H*(Tz,Tw) (jT(Z) ) (jT(w) -
| b

H2(z,w) lir(2)] |7 (w)
H(Tz,Tw) [ jr(z) 2 Jr(w) e
(22) H(z,w) <|jT(Z)|) <|jT(w)|) ’

since both sides lie in the right half-plane. Observe also that
(2.3) H(w,z) = H(z,w).

If z € H is arbitrary, let T, € PSL(2,R) be such that T, is an upper
triangular matrix and T,¢ = z. It is clear that T, is uniquely determined by z;
for z = x + iy we have explicitly

If z € H is fixed, the function (Im z)i 0 (TZ (z %fé)) (1- L)fé is holomor-

phic for |L| < 1, so it has a Taylor expansion

(2.4) (Imz)* 6 (Tz (ziJri)) (1-L) > :§BH(Z)L".

We defined in this way a function By, (z) (z € H) for every n > 0. For n =0
this is in accordance with (1.1).
For 41,72 € SL(2,R), we define

w(’71, ’72) = le (722)1/2j72 (2)1/2jV172 (2)_1/2;

the right-hand side is indeed independent of z € H. Clearly w = +£1.
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For a = 0,00, Res > 1, z € H and any integer n, define (I', denotes the
stability group of a in I'y(4))

1
—5—2n

jo';l'y(z)
jo';l'y(z)‘
It follows from [F], formula (5) on p. 145 that for n > 0 we have
1 1
E, (z,s, 9 +2n) =cp (S)Kn_i K3 K1 E, (z,s, 2> ,
for n < 0 we have
1 1
E, (z,s, 9 +2n) =cp (s)Li+n---L72LiEa (z,s, 2)

(of course s is fixed and we apply the operators in z), where

E, (z, s, ; + Qn) = Z v(y)w (o'a_l’,.y) (Im o, 'y2)*

VEFa\FU(Zl)

n—1

1
Cn(s):H 1
l:Os+4+l

for n > 0, and

for n < 0.

It is known that for every z the function E, (z,s, %) has a meromorphic
continuation in s to the whole plane, and this function is regular at every point
s with Res = ;

If 7 > 0 and n > 0 are integers, define

uj,§+2n(z) =Cjn (K"_Z . .-KZK}IUJ»,;) (2),
if j > 1 and n < 0, define

Uj 140 (2) = Cjn (L3+n . 'L_gLiuj,;) (2),

where the numbers ¢;n, are chosen in such a way that (u; 145,,u;149,) = 1,
and, of course, ¢;o = 1 for every j > 0. We see by [F], pp. 145-146 that this
is possible; we have Au o u; 10, = S;(S; — 1)uj1,,,, and for a fixed n the
functions u; 1 45, (j >0 for n >0, and j > 1 for n < 0) form an orthonormal

)2
system in L% +an(Da). We also see by (11) of [F] that

2

1

(2.5) lejnl? =
! (Sj+ 1), (355,
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for n > 0, and
|Cj1n|2 = 1 ! 3
(Sj - 4)—77, (4 - Sj)—n

for n < 0. In this case we used also the general identity

(2.6)

(2.7) Krg = Ly,

and we will use frequently (and sometimes tacitly) this identity throughout the

paper.
Forn>k>1and 1< 5 < s, let

Ikgin = Chjnky s Ky s Ky gr g,

where ¢y ;. is chosen such that (gk jn,9gkjn) = 1. By [F], pp. 145-146 this
is possible, Ay, | 10k jn = (k+ ) (k= 2) gr,jn, and for a fixed n > 0 the

functions
{whon s 520} Ufgrn: 1<k <0 1<) <54}
form an orthonormal system in L3 +op,(D1). We also see by (11) of [F] that
2

1
(2.8) e gl = (

2k + ), . (n—k)!

—k

forn>k>1and1<j < sp.
We will make several times a transition to geodesic polar coordinates: if
zo € H is fixed, then for every z € H we can uniquely write

fTE tanh(r

2.9
(2.9) Z— 2o 2

)e'?

with » > 0 and 0 < ¢ < 27. The invariant measure is expressed in these new
coordinates as du, = sinh rdrde¢.

3. Basic lemmas

3.1. PARTIAL INTEGRATION. We prove here two simple lemmas, but they will
play an important role in the proof of the Theorem, as mentioned in Subsection
1.7.
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LEMMA 3.1: Let f1 € Poy,, (D4) and fy € Pgmz(D4) with my + mo = i, and
assume that at least one of f1 € Rom,(D4) and fo € Rom,(D4) is true. Then
we have

| B (s £) el == [ Bo(@) () (Lo fo) (i
Dy Dy

Proof. By (9) of [F] (we use a slight extension of that formula, because our
functions are not of compact support, but the rapid decay at cusps is sufficient)
and (2.7) we have

[ Bote) (5 f) G = = [ (2150) @) (ife) G
The right-hand side here is 0, since L1 By = 0 by (4) of [F]. On the other hand,
(Limyms (f1f2)) (2) = (L, 1) (2)f2(2) + f1(2) (L, f2) (2)

by the definitions, and this proves the lemma.

In the next lemma we deal with the functions B,, defined in (2.4); the basic

properties of these functions are given in Lemma 6.1 in Section 6.

LEMMA 3.2: Let I > 0 be an integer, let f € Psy,(Dy4) and g € Pa,(Dy) with
m+n = —} —1, and assume that at least one of f € Rgy,(Dy4) and g € Ray,(Dy)
is true. Then

Bi(2)f(2)g(2)d.
Dy

equals
(-1’ §
T,y

L=0

(2) [ Boe) s K ) ()

X (Kn-l-l—L—l te Kn—i—lKng) (Z)dﬂz

Proof. Using (6.2), and formula (9) of [F] (a slight extension of that formula
again), we easily get that

Y
B = O [ B (Ko Koy (f9) ().
Dy : Dy

Using the general identity
(Ko, 4ms (f1f2)) (2) = (Ko, f1) (2) f2(2) + f1(2) (Km, f2) (2)

several times, we get the lemma.
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3.2. INNER PRODUCT OF TWO AUTOMORPHIC FORMS OF WEIGHT §+2n. Here
n is any integer. First we give the spectral decomposition of an f € Ry o, (Dy)
in Lemma 3.3: in the case n > 0 we give a complete spectral decomposition
(Lemma 3.3 (i)), in the case n < 0 a slightly less complete statement will
be enough for our purposes (Lemma 3.3 (ii)). We then give two corollaries
describing the inner product of two forms. We again give a complete statement
in the case n > 0 (Corollary 3.1); in the case n < 0 (Corollary 3.2) the vanishing
property (3.3) will suffice instead of a detailed spectral expression for the inner
product.

Every statement here is more or less standard, therefore we just give brief
indications of the proofs.

LEMMA 3.3: Let n be an integer, and f € Ré+2n(D4). Write

Gl = | F()E < Lin gn)dﬂz

Dy 2

for a = 0,00 and real r. Define

oo
gr=1f— Z(f, Uj,;+2n)uj,;+2n

Jj=Jjo
1 e 1 1
- a;@/oo Calfym)E, (*, 5 +ir, 5 + 2n> dr,
where jo =0 for n > 0, and jo =1 for n < 0.
(i) If n > 0, we have

n Sk
(3.1) 9f = ZZ(J‘, kj.n )Gk j.n-
k=1 j=1
(i) Ifn <0, we have
(32) gr =Y K 5K 3K 1Grp,

k=1

where G, (2) = (Im z)~4t*Hy, . (2) with some Hy,, € Sor—1-

Remarks on the proof. The case n = 0 (where the statement in (3.1) is gy = 0)
is well-known, and follows, e.g., from [P], formula (27). For larger |n| we can
prove the statements by induction, applying the suitable operator L for the
left-hand side of (3.1) and (3.2), and applying [F], formula (4).
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COROLLARY 3.1: If f1, f2 € R1 5, (D4), then for n > 0 we have that (f1, f2)
equals the sum of

D ity o) (for g1 100) + D (13 Gkin) (F20 Gk jin)
=0 k=1 j=1
and
Ar Z / Ca fla Ca f2a )
a=0,00

Moreover, we have that the sum of

Z‘fl; +2n f23 ],2-{-277,

Gk,g,n) (f2, Gk jn)
k=1 j=1

and

Ca f17 Ctl(an )

4772/

a=0,00

is < (fD |fi(= | dMZ) (fD4 |f2(= | d'uz)l

Remarks on the proof. The expression for (f1, f2) follows at once from Lemma
3.3 (i). The inequality of the lemma follows by Cauchy’s inequality.

COROLLARY 3.2: If n <0 and f € R;+2n(D4), then we have (gy is defined in
Lemma 3.3)

(33) K?Z e KnJriernJrif'anJrifr e LfiJrnLiJrngf =0
for every integer r > 0. If h is another element of R1 +2n(D4), then (f, h) equals

(34) gf’ + Z f) u] 1+2n)(h"u],1+2n Z / Ca f’ Ca h T)

aOoo

and

gf’ |+Z‘f’ +2n h’u]é+2n

Cal(fs1)Ca(h, )| d

4772/

a=0,00

is < (fm |f(z)|2duz) : (J"D4 Ih(Z)Izduz)é

Remarks on the proof. We see by (2.7) and Lemma 3.3 (ii) that for the proof
of (3.3) it is enough to show that

Li"'Lk—i(LHZ”'L— LK Sr"'Kk—}le,n):O

n—,+r-t—m—j i+
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for every 1 < k < —n. This is true by (8) and (4) of [F], so (3.3) follows.
Formula (3.4) follows at once from the definition of g;. Lemma 3.3 (ii) easily
implies

(97,h) = (95, 9n),
and then the inequality follows from (3.4) and Cauchy’s inequality.

3.3. FOURIER EXPANSION OF LAPLACE-EIGENFORMS ON NONEUCLIDEAN CIR-
CLES. We reproduce here an important theorem of Fay, which will be applied
several times in the paper.

LEMMA 3.4: Let k€ R, s € C, and let f be a smooth function on H satisfying
Aopf = s(s—1)f. If 20 € H is given, then for every z € H we have the
absolutely convergent expansion

k )
(35) 1 (570) = X 0GP e,

zZ0 — %
0 n=-—oo

where r = r (z,z0) > 0 and 0 < ¢ = ¢ (z,20) < 27 are determined from z by
(2.9), and

(3.6) P;k(z,zo) =

(tanh (;))‘nl (1 — tanh? (;))kn F(s—kp1—s—kp1+4+|n|,—y)

with
~ tanh?(}) on B
yil—tanhQ(g)’ kn—km' forn #0, ko= =Lk,
n! (f), (20) = (Kign-1- - Kpp1Kif) (20) forn >0,
(3.7) (=)' (), (20) =(K—p—n-1-- K1 K_&f) (20)

=(Lggnt1- - Le—1Lrf) (z0) forn <0.

Proof. This follows from Theorems 1.1 and 1.2 of [F]. Formula (3.6) is formally
different from (13) of [F], but the right-hand side of (3.6) equals

(tanh (;))M (1 — tanh? (;))SF (s — kn, 5+ |n| + kn, 1+ |n|, tanh? (;))

by [G-R], p. 998, 9.131.1. For the second equality in (3.7) we use again (2.7).
We remark that for a fixed » > 0 the left-hand side of (3.5) is a smooth 27-
periodic function of ¢ € R (z is determined from ¢ by (2.9)), and the right-hand
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side is its Fourier expansion, hence it is absolutely convergent. The lemma is
proved.

4. Proof of the theorem in a special case

Let N > 1 be an integer. Our aim in this section is to prove the following
special case. See the Theorem for property P (f,{a,}).

LEMMA 4.1: Property P (f,{ay,}) is true if f is identically zero, a, = 0 for
n # N, and ay = 1. We have the estimates

or, (z(i - N)) r (i :I:iTj) (Bono (u2) ,uj,é) (Bono (u1) u])‘

(4.1)

o0
j=1

< CNP,
@ 1 3
> oeli = N))T( " £ir) ¢ (Boko (u2) ,7) Ca (Boko (u1) , r)dr
a_om/_m <<4 )) <4 ) < CNP,
sy
;; b1 1) (z (i —N))F(Qk—i— ;) (Bore (u2)  g3) (Boser (11 gy

< CONP,
with positive constants C' and D depending only on uy, us.

In the proof of the general case of the theorem the upper bounds (4.1)-(4.3)
will be important.

4.1. PROJECTION TO THE SPACE SQNJr;. We first construct a kernel function,
then we show that the integral operator with this kernel function maps BoU (if
U is a cusp form of weight 2N for I'y(4)) into Sy finally, we expand this
image of ByU in our given basis of S2N+;-

Write

kn(y) = (L+y) V74, Hy(z,w) = H(z,w)"" Y,
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where H(z,w) is defined in (2.1), and for z,w € H define

|z — w|?
4Im zImw

kn(z,w) =kn < )HN(z,w)

and
Kn(z,w) = E z, W)V 3+(2) _é_QN'
N( ’ ) - 7€F0(4) kN(’}/ ) ) (7) (|]'y (Z)|) ’

this sum can be seen to be absolutely convergent. It is not hard to check that
if w € H is fixed, then for every 6 € I'y(4) and z € H we have

. 142N
(4.4) Ky (dz,w) = v(d) (|j§22|) Ky (z,w).

Let U be a cusp form of weight 2N for I'g(4) with AonyU = s(s —1)U. Then
we may define
(4.5) Fy(w) = (Imw)_N_‘11 / Bo(2)U(2)Kn(z, w)dp,
Dy
for w € H. We claim that Fyy € S’QNJr;. We remark first that it is not hard to
check using (2.2) and (2.3) that

(4.6) Kn(w,z) = Kn(z,w).

So the required transformation property of Fy; follows at once from (4.4). Tt is
1

not hard to check that (Imw) ™ "4 ky(w, z) is holomorphic in w for every z,

using the identity

(4.7) AImzImw + |z —w|* = |z — w|?,

and then the same is true for (Im w)fo‘lL Kn(w,z), using
I
(4.8) Y = Imyw
| (w)]
Hence Fy(w) is holomorphic. It remains to check the behavior at cusps, i.e.,
that

|Fo () (i (w)) V3| = 0

as Imw — oo for each of the three cusps (in the case of a = —

1
2

be enough in fact, but it can be proved easily). To see this, we use the trivial

vz — wl?

<

|Kn(z,w)| < Z kn (4Im~yzlmw ’
~v€lo(4)

much less would

estimate
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and the fact that |Bg(z)U(z)| is bounded in z. These bounds together with
the definition of kn(y) imply that the integral in (4.5) is bounded in w, and
then the factor (Imw) ™~ i assures the required estimate (taking into account
(4.8)). Hence indeed, Fiy € Spy 1.

Consider the inner product

(4.9) /D (Im w) 22 By (w) fvj () dpta,

for some 1 < 5 < spy. This is easily seen to be absolutely convergent as a double
integral (see (4.5)). Using (4.6) we see by unfolding for any z € D, that
(4.10)

Kn(z,w)fn,j(w) (Imw)NJr‘l‘d,uw = 2/ kn(w,2)fn j(w) (Imw)NJr‘l‘d,uw.

Dy H

We use geodesic polar coordinates around z:
w—z N
= tanh ( )e“b,
w—z 2

and since (using (4.7) and the definition of ky(y)) we have

2 2 2 N—y
1 |w — z| |z — wl |z — w|
9 = and ky = ,
1 —tanh(}) 4ImzImw 4ImzImw 4ImzImw
so (taking into account the definition of ky(w,z) and Hy(w, z)) we see that
(4.10) equals

L 1 14N o oN41 2
9;3+2N ( ) / (1 — tanh? (T)) ? ( FT(¢)d¢> sinh rdr,

where we write

Fo(@) = (w—2)* 2 fs(w)
using the explicit expression for w in terms of r and ¢:

z—ztanh(})Z
w = 1~ tanh(})Z with Z =

For fixed 0 < r < oo and z € Dy this last expression is a regular function of Z
(with values in H) in a domain containing the unit circle, hence by Cauchy’s
formula the inner integral is 27 (z — )%HN fn,j(2), so (4.10) equals (recall

gw(2) = (m2)N 2 fy5(2))

o0 N+3
gy i( / 1 — tanh? (2 )) sinh rdr.
0
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The integral can be computed; its value is 4/(4N —1). So by (4.5) we get
that (4.9) equals

167
iy ), BTl

Since the functions fy,; form an orthonormal basis of Sy 1, this implies for
any w € H that

(411) FU(U}) (Imw)N'l‘}l — 4;]67:. . Z (/D BO(Z)U(Z)QNJ(Z)CZ,U/z) gN,j(’IU)-

j=1

4.2. COMPUTATION IN GEODESIC POLAR COORDINATES. We now compute the
left-hand side of (4.11) in another way: by unfolding the right-hand side of
(4.5). Up to some point, we continue working with a general cusp form U of
weight 2N for I'g(4), but then we will specialize to U = xn(u), where u is a
cusp form of weight 0 for SL(2,Z).

By unfolding we see that

(4.12) /D By(2)U(2)Kn(z,w)dp, = Q/HB()(Z)U(Z)/{N(Z,’LU)CI/LZ

for any fixed w € H. The integrand here can be written as (see (2.1))

(20 (7)) (v (7))o (i)

We now use geodesic polar coordinates around w:

=T :tanh(r)ew,
zZ—w 2

and using the substitution
2
Y= tanh” ()
1 — tanh?(})

we get that (4.12) equals

(4.13) 4/000 kn () </027r (BO(Z) <fu-i) i) (U(z) <Z_Z>N> d¢> dy,

where 0 < 7 =r(y) < oo and z = 2(y, ) € H are determined from y and ¢ by
the relations above.



612 A. BIRO Isr. J. Math.

For every fixed y we will now compute the inner integral by the Fourier
expansions of the two functions there, and then we will integrate in y. To
justify this computation, we remark that if

Bo(2) (Z_t)4 = i a(y)e’” and U(z) (Z_Z)NZ i bi(y)e'?,

l=—00 l=—00

then for any y, by Cauchy’s inequality in [ and Parseval’s formula in ¢, we have
that (the implied constant in < below is absolute)

>l < ([ |Bo<z>|2d¢)é ([ weras) g

l=—00

hence by Cauchy’s inequality in y we get that

oo

/ooo kn(y) S lai)b-i(y)| dy

l=—00

is

< ([ mtn [ Bl sy ) % ([ et | TP doy) g

which is (making backwards the steps leading from (4.12) to (4.13))

o= ([ mse sl a) ([ gimoora.)

Dy Dy

with implied absolute constant, where

z—w|?
Ky (zw) = Z kv <4|I’Iyn'yzln|1w> '
YE€T0(4)

We get an upper bound for this by extending the summation for v € SL(2,Z),
and then we can see by Lemma 6.3 (using (6.9) and (6.10) for fixed z;) and the
concrete form of ky that K (z,w) is bounded in z, so My (w) is a finite number
for every fixed w, hence we can compute (4.13) as we described above.

We now compute (4.13) explicitly for a given w. By Lemma 3.4 and (6.2),
taking into account that Ly,,Bo = 0, we get

o (57) =5 G (7)) 1 () s
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and again by Lemma 3.4 we have

v (7)) - mi (), () P (2, 0)e™

with the functions (U),, defined in Lemma 3.4; we will determine them explicitly
tanh?(7)
1—tanh22( %) )

/Ooo kn (y) (tanh (;))l (1 — tanh? (;ﬂ))é11 Psf]lv(z, w)dy

/ Y (1+y) 2" F(s+N,1—s+N,1+1,—y)dy,
0
and by [G-R], p. 807, 7.512.10 the value of this integral is
PA+)T(s— 3+ N)T(=s+,+N)
r(A+0r(2+2N) '
So Fyy(w) (Imw)™ 1 equals (using (4.5), (4.12) and (4.13))
D(s= 4T (s 4+ N) §2 T+
I () +2N) r(3+1)

later. Using (3.6) we get for any I > 0 that (recall y =

equals

(4.14)  8r Bi(w) (U)_,; (w).

=0

It remains to determine (U)_, (w). By (3.7) for every [ > 0 we have
1

(4.15) Uy (w) =, (K-ntio1 Koy Ko (U)) (w).

We now assume that U = kn(u), where u is a cusp form of weight 0 for SL(2,Z)
with Agu = s(s — 1)u, s = J + it and ¢t > 0. Using (4.15), the definition of
Kn(u), (2.7) and [F], p. 145, formula (8), we get that
(-1
(4.16) U)_, (w) = I (kn—i(u)) (w) for 0 <[ <N,
and then it follows by induction on the basis of (4.15) that
N

(=1)

!

We note a consequence of (4.16) and (4.17), which will be useful later: by the
definition of k,(u) and by [F], formula (11) we can check for every [ > 0 with

(4.17) U)_, (w) = (K_Nji-1- K1 Ko (u)) (4w) for I > N.

v =u or v = u that

N),

(418)  |(U)_, (w)| = (j!(S)N< ! K|l_N_1~-~K1Ko(v)> (4w)

(S)|I7N\
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4.3. THE INNER PRODUCT OF TWO PROJECTIONS. We now consider two cusp
forms of weight 2N for I'g(4), and we substitute the results of the previous two
subsections. For proving convergence, we need an upper bound lemma.

Let Uj(z) = (kn(uj)) (2) for j = 1,2, where u1, us are as in the Theorem.
Then U; and U, are two cusp forms of weight 2NV for I'g(4) with AsnU; =
sj(s; = D)U; (j = 1,2), and we have by (4.11), applying it for U = Uy and also
for U = Us, that

Dy

(4.19) Z/D Bo(Z)Ul(Z)gN,j(Z)duz/ Bo(2)U2(2)gn.j(2)dp-
equals

AN —1\° Nt N4t
167 ; Fy, (w) (Imw)™ "4 Fy, (w) (Imw) ™ ™ 4 dpty,.
4

Using (4.14) twice in this last expression, we then see that (4.19) equals
(4.20)
[y (T (si— 3+ N)T (=i + 4 + N)) i T(1+0) T(1+1)

I
I (-} +2N) (L n)r (L)

where I, ;, is defined by

a2) = [ (B, @) (Bu) ), )

(this depends also on U; and Us, of course, but we do not denote it). This
computation is justified by the next lemma, which will be used also later.

LEMMA 4.2: We have

o~ D(A+0) T(1+D) 1 D2o2N
J = i, < DyiN722
llgzor(gﬂl)r(;ﬂz) *TIr2(l+N)

with some positive constants D1, Dy depending only on u; and ug, where

1
2

= ([ 11 w) (W) 4, ) i ) ; (f 18 (), (Wl die
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Proof. Let 1 < K < 3/2 be fixed. Clearly J;, ;, is at most

(]. + ZQ)K / 2
Bi, (w) (U2)_, (w)[* g
(141)" D4} ' i ()
(]. + ll)K / 2
By, (w) (Ur)_,, (w)|” dptw.
(1412)% Jo, B, u ()
Hence, by Lemma 6.4 and (4.18) we have, using K > 1, that
2 2 oo 2
1 1K (Si —N)
J<mm2§:@mN S+ct | og? @11 - ).
i=1 =0

Using N > 1, K < 3/2, by simple estimates (using, e.g., also the summation
formula for F («, 8,7;1); see [G-R], p. 998, 9.122.1) and Stirling’s formula we
obtain the lemma.

4.4. INNER PRODUCTS (By,(Uz2)_y,, F). For the computation of I, ;, (see (4.21))
using Corollaries 3.1 and 3.2, we give expressions for such inner products, mostly
with Maass forms F (see (i), (ii) and (iii) of Lemma 4.3 below), but because of
Corollary 3.2 we need such inner products also for some automorphic F' which
are not Laplace eigenfunctions (see (iv) of Lemma 4.3).

Let U, be as in Subsection 4.3. The definition of the constants c;, and cy
can be found above formulas (2.5) and (2.8), respectively. During the proof we
will use several times tacitly (2.7) and the general fact that if Ajg = s(s —1)g,
then A_;g = s(s — 1)g.

LEMMA 4.3: Let l1,lo > 0, and m = i + (l1 + I3 — N). Introduce the notation

1 —1)Ete (s = N+l + L S—m), _
AL, (S):F( —i—S)( ) (52 +l+L) )i -1,
4 l2' F(SQ+N7127L1)F(S+WL711+L1)
Let F € Py, (Dy) satisfy the conditions of (i), (ii), (iii) or (iv) below. Then

1y
az) [ B, P = S () @),

=0
where Ji,, (F) is given in the various cases as follows.
(i) If F = wjom, where j > 0 for m > 0, and j > 1 for m < 0, then for
every 0 < Ly <y we have that Jr,, (F) equals

1 1
A, (S5) ¢aitla—N (5j+4 sgn (m—4)>| | Bo(w)us (4w)uy 1 (w)dpy.
m— |/ Da
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(i) If F = Eq, (*,s,2m) with a = 0 or co, Res = }, then for every 0 <
Ly <11 we have that

Ju, (F) = Ap, (s) /

Dy
(il) If F = gk j.1,+i,—N With some 1 <k <y +1ly— N, 1 <j < sy, then for
every 0 < Ly <[y we have that

1
By(w)uz (4w)E, (w, s, 2) dftey,.

Jr, (F)
(b ) ngamon () Bt (s () (g i

(iv) If m < 0, and F € Pa,,(Dy) is such that
K s Knmrp1KmrLmy1—r - Ln 1 L 7 =0
for every integer r > 0, then for every 0 < L; < I} we have that
Jr, (F)=0.
Proof. First we assume only F' € Pa,,(D4). By Lemma 3.2 we see that (4.22)
holds with
(4.23) Jp, (F)
= (Bo, (LN—ty-Ly41 - Ln—tiy—1 L1y (U2) _y,) (Ln—ty 4Ly 41 - Lno1 Lin F))
(the right-hand side denotes an inner product on Dy). It is clear by (4.15) that

lo + L1)!
(4.24)  LN-tp-r14+1 LN—ts—1LN—1, (U2)_;, = ( 1! 1) (U2) 4,1, -

For the computation of Jr, (F') we now distinguish between two cases.
CASE I. We assume Iz + L1 < N. Then we see by (4.24) and (4.16) that

(LN—ty-rLy41- - Ln-1,-1Ln 1, (U2)_y,) (w)
equals

)N T (sa—N+ls+Ly)
12! F(SQ‘{’N*ZQ*Ll)
Hence, using Lemma 3.1, we see that if [s + L1 < N, then Ji,, (F) equals

(L1-N+ta4L, -+ Lo1Louz) (4w) .

(=12 T (sg = N+ 1y + Ly)

4.25
( ) 12' F(SQ#LN*lQ*Ll)

/ Bo(w)(uz) (4w) Fiy 1, (1)dji,
Dy
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where we write

(4.26) Fiyr, :==Ls - Lomsn—ri-1Lomiti—1, (Lm—ti+0141 Lin—1 L F) .

By (4.25) and (4.26) we get (iv) of the lemma at once (since if m < 0, then we
are in Case I for every Ly <1y).
Assume that F' is a Maass form, and Ay, F = S(S — 1)F. Then, applying

(8) of [F], we see that if I; + 1o > N > ls + L1, then
L(S+Hr©S-—m+i - L

(4.27) Fio, = (S+3)0(S=m+h 1)Ls---Lm_1LmF;
L(S— )T (S+m—hL+1L) *

if l; + 13 < N, then

r (s~ -

(S+m)T(S—m+1 Ll)LS,,,L_m_lL_m(F).
rS—-—m7>oi(S+m-U4+L) *

And, using (8) and (4) of [F], by (4.25), (4.27) and (4.28) we get, checking every
case, that (i), (ii) and (iii) are true for the case lo + L1 < N. (In case (iii) we
have that (4.27) is 0, and also A, (k+ 1) =0.)

CASE II. Assume now that Iy + L1 > N. In this case, we need to consider F'

(4.28) Fo, =

only of the following form: F = K, 1 K;—2--- Ki+tK}1+tF0 with an integer
0<t<l;+1Ily— N and a Maass form Fy of weight % + 2t for T'y(4), such that
we have t =0 or L1, Fo = 0. Let Ay o Fo = S(S—1)Fp. It is clear, using (4)
and (8) of [F], that if s+ L1 — N < ¢ (hencem —l; + L1 +1 < i—i—tﬁ m and
t > 0), then

(429) Lm—l1+L1+1 e Lm_leF = 0
Iflo+ Ly — N >t then Lyt 410,41 Lmm—1Lm F equals (by (8) of [F])
r(s—, 7127L1+N)F(S+m)K
3 .
D(S+L4lo+Li —N)T(S—m) —atlthy
and so, by (4.23), Lemma 3.1 and (4.24), Jr, (F) equals
(4.30)
(—1)letbr-N =t [ (S—3—l—Li+N)I (S+m)
I (S84 )+la+Li — N)I'(S—m)

Ky Koy

/ Bo(t)Viy 1., (w) Fo () e,
Dy

where we write

lo+ L1)!
Vig.L, == (L2 " ) Livi- LNty i1 L Nyio 1L, ((U2)7127L1)'
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Since Iy + L1 > N, by (4.17) we get

=Y
U2)—tp—r (W) = ) 0

hence, again by (8) of [F], for Iz + L1 — N >t we get
(4.31)

Wz,Ll (’LU) =

(K-NttoL1—1 - K1 Ko (u2)) (4w),

N
(—1)" T (sp — t); (s2— N+1y+ Lq) (Ki1 - K1 Ko (u2)) (4w).

12! F(82+t) (SQﬁ*N*lQ*Ll)
By (4.23), (4.29), (4.30) and (4.31), checking every case, we get that (i), (ii)
and (iii) are true also for Iy + L; > N. (In case (iii) and Iy + L1 — N < k we
have that (4.29) is 0, and also Az, (k+ }) =0.) The lemma is proved.

4.5. EXPRESSION FOR THE SUM IN (4.20). We first compute I, ;, (see (4.21))
on the basis of the previous subsection, using Corollary 3.1 for the case
l1+13 > N, and Corollary 3.2 for [ +15 < N. Then we substitute the obtained
expressions into (4.20).

We first note that

(432) | Butw©)_, )P,

is the same as the left-hand side of (4.22), if we use the substitutions l; <> lo,
Uy <> Us. Hence we can compute also (4.32) using Lemma 4.3.

As in Lemma 4.3, write

= i +1i+1s — N.

In fact we should write m = my, , to indicate the dependence on l; and I3 (note
that N is fixed), but for simplicity we use just the notation m.

In the case I; + 13 > N, by Corollary 3.1 and (i), (ii) and (iii) of Lemma 4.3,
using also (2.5) and (2.8) we get that Ij, ;, equals the sum of

l1+12 N sg
E Cll l2,j anuj 1) vlauj 1 E E Cll l2 k j ’02 kagkj)(vl kagkj>
7=0
and

471- Z / Oll l2 ga V2, T )Ca(vl, )

a=0,00

where we write

’UZ':’UL(), 'Ui,k :Boﬂk (’LLl) (Z: ].,2 andk:O,l,Q,...),
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and the coefficients are defined as follows:

(4.33) Cuiizj = Diy15,0(55),
. 1
(4.34) Cll,lz (k,j) = Dll,lz,k </€ + 4> s
1
(4.35) Ciils (T) =D 1,0 (2 + ’LT) ,

with the notation (for general S)

DS+ 3+k)T(5-5+k) T(S+m)
(436) Dl17l21k(S> - (ll|)2 (12|)2 T (1 S+ m) El1,l2 (S),

l
(4.37) Y,.0,(S Z Z L1+L2< 1> <L22> G(S,11,12, L1, L),

L1=0L2>=0

where G(S, 11,12, L1, L2) denotes

F(SQ*N+12+L1>F(517N+11+L2)
F(SQ"’N*ZQ7L1)F(51+N7117L2)
(S — m)zlle (S - m)zTL2
D(S+m—1+ L)L (S+m—1l>+Lo)

(4.38)

In the case Iy +1s < N, we apply Corollary 3.2 for the choices f(w) =
By, (w)(Ur)_y, (w), h(w) = By, (w)(Uz) _;, (w). Applying (iv) of Lemma 4.3 and
(3.3) we obtain that

| B, w)gsw)dn, =
Dy

Then using (i) and (ii) of Lemma 4.3, after some calculations we obtain from
Corollary 3.2 (using also (2.6) and the fact that ReS; = é or S; is real) that
1;, 1, equals

2011,12,3‘(?)2,“]-,;)(Uhuj,;)+ / Cly 1 (1)Ca (v2, 1) Ca (1, 7)dr

j=1 a=0,00

for I; + lo < N, with the above notation.
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Then, using that (v1, Uo,;) = 0 by Lemma 6.6, combining the cases l1+1s > N
and [; + ls < N, we get that

L T(1+0h) T(1+1)
. I
(4.39) llgor(;+zl)r(;+zz) ot
equals the sum of
(4.40) ZC Ug,u] 1)(U1,u] 1 +ZZC k ] 'U2 kagk,J)(Ul kagk,])
Jj=1 k=1j=1
and
(441) Ar G;OO/ C Ca V2, T )Ca(vla )
where
— [(l+h) M1+ l2)
4.42 C; = 1,02,5>
( ) 7 lhlzzzo ( 1) F( ) l l2,J
] > (1+11)F(1+l)
4.43 C(k,j) = Cuy 15 (k
( ) ( .7) llgo ( ll) F( ) 11,1 )
= (1+11) F(1+l2)
(4.44) C(r) = Chy 15 (1)
2 ()T ()

(in the case of C(k,7) we used that the factor 1/T'(1 — S +m) in (4.34) is 0,
ifk>1l1+1o— N, since S=k+ i) The reordering of the sum is justified by
Lemma 4.2 and the inequalities in Corollaries 3.1 and 3.2, and we also see by
these statements that if

N (1+ll) T (1+1)
C;: |Cl»27j|7
ll,lZFO ( )F( Jrlg) it
; ~ T(1+04) T(1+1)
C(k,j)" = Co b,
: 11,122:0 L(5+0)T(5+12) 1,2 (5 ]
o T+0) T(L+12)
C(r)* = o |
" ll,lzz::o (3+0L)T(5+ )|ll 7)|
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then with a constant Dy depending only on w1, us we have

e (v2,u 1) (1, u ZC (k. 7) ‘U2,kagk,j)(vl,kagk,j)
(4.45) 77 h=ti=t
ND222N
<<’u,1,’u.2 F2 ( + N)
and
ND222N
(4.46) ir Z / C(r)* |Calve,r )Ca(vl,r)‘ dr <u us (14 N)

We can compute C;, C(k, j) and C(r) by formulas (4.36)—(4.38) and Lemma
7.1, using (4.42) and (4.33) in the case of C}, (4.43) and (4.34) in the case of
C(k,j), and finally (4.44) and (4.35) in the case of C(r). Then, on the one hand,
by (4.19), (4.20), (4.39)—(4.41) and (1.4), (1.5) we get the property P (f,{an})
required in Lemma 4.1; on the other hand, by (4.45) and (4.46) we obtain also
the upper bounds (4.1)—(4.3), so Lemma 4.1 is proved.

5. Proof of the general case of the theorem

5.1. SOME UPPER BOUNDS. Lemma 7.2 (i) and (4.3) with N = 1 implies that

Sk

(5.1) Z k3/2 <2k+ 1) 3

j=1

(Bokk (u2) , gk,j) (Bokr (u1) agk,j)’ < oo.

We now prove that there is a constant A > 0 depending only on u; and ug such
that

oo

652 D ) (B (un) ) (Boo (1) )| < o

(5.3) Z_/

a=0,00

eI (1 4 |r) ™™ Ca (Boko (u2) ,7) Ca (Boko (u1) ,7)| dr < co.

To prove this, let k£ be a large positive integer. It follows from Lemma 7.4 and
elementary linear algebra that if M > 0 is large enough in terms of k, then
there is a nonzero vector (am),s<,m<ons Such that for

2M
am

J@)= 2 (m =+ iz)

m=M
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formula (7.4) is true and the coefficients e; in (7.5) are 0, so we have
F@) =Y dvdyy ) @)
N=1

with some coefficients dy = O (N _k). If k is large enough in terms of the con-
stant D in (4.1), we get, combining (4.1) for different integers N with coefficients
dy, that

oo

D

j=1

f(T;)Tr (i + iTj) (Bono (u2) ,ujé) (Bolio (u1) ,ujé)’ < 00,

and similarly for Eisenstein series on the basis of (4.2). By the definition of f
and Stirling’s formula this proves the estimates (5.2) and (5.3).

5.2. A CONSEQUENCE OF LEMMA 4.1. It is clear, in view of the upper bounds
(4.1)—(4.3), that if {Cn}n>1 is a rapidly decreasing sequence, then we can
take the linear combination of the cases of Lemma 4.1 with these coefficients,
since everything is absolutely convergent. We will now show that we can take
such a linear combination even in some cases when {Cxn}n>1 is not so rapidly
decreasing.

LEMMA 5.1: For every A with Re A > g we have that

=y (L= A [0, (s2), T (20 - 1)
(5.4) Z( b L(n) |0 (n+it)] T (n+ita)|

X Z (Bokin (u1) , gn.j) (Bokin (U2) s gn.;)

j=1

n=1

equals the sum of the following three expressions (see Lemma 7.3 for the defi-
nition of My(A)):

(5.5) iMTj (A)T <i :I:Z'Tj) (Bono (us) ,ujé) (Bono (u1) ,uj,é),

(5.6) 417T > /_OO M,(A)T (i :I:z'r) Ca (Boko (uz) ,7) Ca (Boko (u1) ,r)dr,

a=0,00

1) My (A (264 ) D (Bos (un) g05) (B (1) ),
k=1

j=1
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and every sum and integral is absolutely convergent here for every such number

A.

Proof. By formulas (1.4)—(1.13) we see that the identity of this lemma is ob-
tained formally by taking a linear combination of the identities of Lemma 4.1
with coefficients (*1)Ni(cl';zi)1‘AE;vl)' It follows from (1.4), (1.5) and Lemma 4.1
that if Re A is large enough (depending on u; and us), then the statement of the
present lemma is true (note, in particular, that (5.5) and (5.6) are absolutely
convergent if Re A is large enough). We extend this result to Re A > 5/2 by
analytic continuation and continuity.

It follows from (5.1) (applying it with w; in place of uz, and us in place of uy,
which is possible; these are also fixed cusp forms) that (5.4) extends regularly
to Re A > g and extends continuously to Re A > g The same assertions are
true for (5.7) using Lemma 7.3 (ii) and (5.1).

We claim that the same assertions are true for (5.5) and (5.6) too, but the
proof in this case is more complicated. Take any compact subset L of the half-
plane Re A > g, and let K be a large but fixed integer. Take the integer t > 0,
complex numbers Aj, A, ..., A; and polynomials Q1,Qs,...,Q; as in Lemma
7.3 (iii). Define for ReA > 5 and |[Im A| < % (taking into account Lemma 7.3

(1)

t

(5.8) Sa(A) = My(A) = 2474Q; (A) My(A;).

i=1

We see by (5.2) and Lemma 7.3 (iii) that if K is large enough depending on
uy and ug, and we write St (A) in place of My, (A) in (5.5), then the sum in T}
will be uniformly absolutely convergent for A € L, and the resulting function
of A will be regular on every open subset of L. The same is true for (5.6) if we
write S,(A) in place of M,(A) there. We have seen in the first paragraph of
the proof of the present lemma that (5.5) and (5.6) are absolutely convergent if
we write any A; in place of A (since K is large enough depending on u; and us
and Re 4; > K). Hence, expressing Mr,(A) and M, (A) from (5.8), we finally
prove that (5.5) and (5.6) are uniformly absolutely convergent for A € L, and
the resulting functions are regular on every open subset of L.

By analytic continuation and continuity, these considerations prove
the lemma.
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5.3. CONCLUSION. We now finish the proof of the Theorem, combining Lemmas
4.1, 5.1 and 7.4.

We remark first that we have to show that the statement of the Theorem is
true if we fix the constant K to be large enough. We will choose K to be larger
and larger several times during the proof.

The statement about the absolute convergence in (1.6) and (1.7) follows easily
from the absolute convergence of the left-hand side of (7.3), (7.2), (1.5) and
Prop. 4.4 of [G1].

When f is identically 0, the statement follows at once from Lemma 4.1 and

5 7 9
272720 °°

Indeed, by subtracting a suitable finite linear combination of these cases of

from the cases A = of Lemma 5.1 (a finite number of them suffice).
Lemma 5.1, we can achieve that a,, = O (n*R) for any given R > 0 (we use for
this Stirling’s formula in the form [G-R], p. 889, 8.344), and then we can apply
Lemma 4.1.

In the case when f(z) = 1/I'(2 £iz) and a, = 0 for every n, we have
g(x) = f(z) and b,, = 0 by the formula in the proof of Theorem 6.5 of [G1] with
n =0 and g = 1/4 there. Then by Corollary 3.1 and Lemma 6.6 we see that
both sides equal

/ |Bo (2)|? u1 (42) ug (42)dps.
Dy

Hence the statement is true for this case, and so we may assume that f satisfies
(7.4) by subtracting a suitable constant multiple of 1/T" (% + iz).

Let f be a function satisfying (7.4) and the conditions of the theorem; then
we can apply Lemma 7.4. Define now sequences b,, and a,, (n > 1) in the
following way: iCb, R, = d,, i.e.,

ZOmem( ( ))Rk

for [Imz| < % on the basis of (7.6), and

an :fchbm ( ( k:))Rk.

Observe that the pair f, {a,} is the Wilson function transform of type IT of
the pair g, {b,}, where g = 0. The sequences a,, and b,, satisfy the condition
given for a, in the theorem (the constant K there may be different than the
original K, but it is still large), for b, it follows from (7.5) and (1.5), and for
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an it follows from (7.3). We claim that with this b, a, and f formula (1.13)
equals the sum of (1.8), (1.9) and (1.10). Indeed, this follows from an already
proved special case of our Theorem, the P (g, {b,}) case (this is really proved
already, since g = 0), writing in this special case u; in place of ug, us in place
of u1, and taking into account that ¢, (z;a,b, ¢, d) is symmetric in a,b, ¢, 1 —d,
hence that our Wilson function transform is symmetric in ¢; and ts.

Since our Wilson function transform is its own inverse by Theorem 5.10 of
[G1] (note that our functions are square integrable with respect to the measure
dh of [G1]), we get that (1.6) and (1.7) are true with ¢ = 0 and with b,, a,
and f above. Hence the fact (proved above) that (1.13) equals the sum of (1.8),
(1.9) and (1.10) implies that our theorem is true with the given f and with this
sequence ay,.

Since we proved the f = 0 case already, the theorem is proved.

6. Lemmas on automorphic functions

6.1. THE FUNCTIONS B,,. We prove in Lemmas 6.1 and 6.2 basic identities and
estimates for the functions B,, defined in (2.4). Lemma 6.3 is needed for Lemma
6.2 but it is used also at another point in the paper. Recall that L{ denotes
Laguerre polynomials.

LEMMA 6.1: We have

oo

(6.1) B,(z) = yi Z L;é (4mm?y) e (m*2)

for everyn >0 and z = x + iy € H, and
1

(6.2) .

Kyt K3 Ky By = By,

for every n > 1. We also have the following relations for every n > 0:

1/1
6.3 A 1Bn = -1 Bna
( ) 2n+2 4 (4 )

. 2n+é
(6.0 B0 =ve) (5] Bl

for every v € T'g(4),

@ (D) e
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and finally, for every z = x + iy € H and n > 0 we have that

i —;—271
o_1,.(2
Bu(o_12) J 12(2)
’3071/2(2)’
equals

oo £ () o) () )

m=—0o0

Proof. Using [G-R], p. 992, formula 8.975.1, we have
ZL" (4mm?y) L™ = (1 — L)_é e ot

for y > 0 and |L| < 1, from which it follows for z = x4+ iy € H and |L| < 1 that

i (m:imm (4wm?y) ¢ <m2z>) v (r (i F7))a-o

which, together with (2.4), proves (6.1). To prove (6.2), it is enough to show
that

1
(67) n+ 1Kn+}1Bn = Bn11
for every n > 0. By the definition of the operators K and by (6.1) we have that

(Kt 1Bn)(2) equals (here (L;é )1 denotes the derivative of L;é)

n

| — 1 _1 EERNCY

Y4 Z ((—47rm2y+n+ 2) L,? (47Tm2y) +4mm?2y (Ln 2) (47rm2y)) e (mzz) ,
and applying [G-R], p. 991, 8.971.3 we get (6.2). Formula (6.3) can be checked
directly for n = 0, and then it follows for larger n from (6.2) and [F], p. 145,
formula (6). Similarly, (6.4) and (6.5) are well-known for n = 0, and they follow
for larger n from (6.2) and [F], p. 145, formula (5). The case n = 0 of (6.6)
is known (and not hard to prove), and the general case follows by induction,
using again (6.2), [G-R], p. 991, 8.971.3 and [F], formula (5). The lemma is
proved.

LEMMA 6.2: Let z € Dy, and let 0 < j <5 be such that yj_lz € D1.
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(i) There is an absolute constant A > 0 such that if n > 0 is an integer
and Im (yflz) > An, then

|Bn(2)] < A (Im (7;12))‘1‘ (n+1)"2

(ii) If N > 0 is an integer and Im (vj_lz) < N + 1 with implied absolute
constant, then for any ¢ > 0 we have

Z B, ()] < (N +1)2+°

Proof. Part (i) follows easily from (6.1), (6.5), (6.6) and [G-R], p. 990, formula
8.970.1, since L, 2(0) < (n+ 1) 2
For the proof of (ii) let n > 0, and write

hz(L)z(Imz)ie(Tz (ii—'—i))(l—L)_;.
Then
(6.8) Bu(z) = 1_/ ha(L)

for any 0 < r < 1. Now
14+ 1—|Lf
Im (T, (2 = (Imz ,
(= (1172)) = omar

h.(L) = By <Tz <zii§>) (1 - ILIQ)_‘11 liﬁé

Hence, using Parseval’s identity and (6.8) for a fixed r, and then averaging over

2 1
1-— <r<i-
N+2—T— N +2’

14 ret? 2 rdodr
BO 2 . 95
1 —re'® (1—172)

Z IBu(2)] < (N 4+ 1) / |Bo (Tw)|? dyr
weH,| ¥

i
M w4

SO

we get
2N 1— N+2 2m
> Bu(2))? < (N+1)~ / /
n=N N+2

hence, using a substitution,
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with implied absolute constant. For simplicity, instead of |BO|2, we take an
SL(2,Z)-invariant majorant and write

5
2
F(Z)=>_|Bo(v;2)f.
§=0
Since
2
w—1 L2
‘erz w1
weil?  4AImw’
1- ’eri
hence
Z Bu(2)?P < (N+1)"2 | K (z,w; N +2) F(w)dp,
Dy

where we write

K (z,w;x) = Z 1.

~ESL(2,2), 177w <o

Im vz Imw =

Since we have F(w) < (Im w)é for w € Dy (which follows from the n = 0 case
of (i)), Lemma 6.3 below proves the present lemma.

LEMMA 6.3: Let 21,22 € D1, write y; = Im 21, yo = Im 29, and let x > 2. Then
for every € > 0 we have

(6.9) K (21, 20;2) <c 2176+ (xylyg)é,
and if F is a large enough absolute constant and ys > Exy,, then
(6.10) K (z1,22;x) = 0.

Proof. Tt is easy to see by (1.2), (1.3) of [I], and by the triangle inequality (for
the hyperbolic distance function on H), that if

v e (“ Z) € SL(2,Z)

¢
and
21 — 20|
4Tm(yz1)Imzg —
then

. . 2
Iy (iy1) — iy

) <Cux
41Im (v (iy1)) y2
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with some absolute constant C' > 0. The left-hand side here is
(ay1 — dy2)” + (b+ cyrya)’

4y1y2 ’
hence we need
(6.11) azyf + dzyg +b%+ c2yfy§ < (4Cx 4+ 2) y1ya-
This implies
1

4Cx +2\ 2

(6.12) b < (aCo+ 2’ 1< (072
1Y2

If y1y2 < 4Cx + 2, then the number of possible (b, ¢) pairs is < . If b and ¢
are given and bc # —1, then ad = 1 + be is also given, and 0 # |ad| < z, hence
the number of possible (a,d) pairs is < z¢. If bc = —1, then the number of
possible (b, ¢) pairs is < 1, and a = 0 or d = 0, and we also see by (6.11) and
the relations y1y2 < 4Cx + 2 and y1,y2 > 1 that a® 4+ d2 < x2. This proves
(6.9) for the case y1y2 < 4Cx + 2.

If y1y2 > 4Cx + 2, then (6.12) implies ¢ = 0, hence the number of possible
(a,d) pairs is < 1, and the number of possible numbers b is < (zy1y2) > The
inequality (6.9) is proved. Since d? + c?y? > 1, (6.11) implies (6.10).

6.2. AN UPPER BOUND FOR AN INTEGRAL OF MAASS FORMS.

LEMMA 6.4: Let C > 1/2, and let u be a cusp form of weight 0 for SL(2,Z)
with Agu = s(s — 1)u, where s = } + it and t > 0. Then for integers n > 0 we
have, by the notation

l:05+l

u(n)(2) = <H 1 ) (Kn-1Kn—2--- K1Kou) (),

the inequality

/ Z (1+0)7B)(2)] |t (4z)|2 dp. <o log® (n+2).
Da \i=0

Proof. We use the substitution z — —1/4z, which normalizes I'o(4). By (6.5)
we see that |B; (—1/42))* = |Bi(2)?, and U(p) (4(—1/42)) = u, (2) by the
SL(2,Z)-invariance of u. For z € Dy we have

5 oo

(1+0)"“|Bi(v2)f <c (Imz)"/?
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by Lemma 6.2, so it is enough to prove that
/ (Im z)1/2 |(n) (z)’2 dp. <y log? (n+2).
Dy

We will give an upper bound by extending the integration to Im z > v/3/2,
|Re z| < 1/2, and using Parseval’s formula. Consider the Fourier expansion

u(n) (Z) = Z bu,n(m)Wn sgn(m),it(4ﬂ- |m| y)e(mx)
m##0

It is well-known (see [D], formulas (2.4) and (2.6), and take into account our
formula (2.7)) that for m > 0 we have

bun(m) = (~1) <H ) Jlr z) buo(m),

=0

and for m < 0 we have

by n(m) = (—1)" <H (s — z>> bu,o(m).

=1

By [G-R], p. 814, 7.611.4 and p. 893, 8.362.1 we see for real t # 0 and any
integer m (note that Wy, ;+(y) is real) that

> 1
/ ’Wm,it (y)T ( —m+ it)
O 2

o i 1 B 1
7sin27rtk:0 é—it—m—i—k %—i—it—m—i—k ’

2dy

which is < log (Jm| +2). By these relations, Lemma 6.5 below and formulas
(8.17) and (8.5) of [I] we easily get the lemma.

LEMMA 6.5: There are positive absolute constants C1, Cy, C3 such that ifn € Z,
t > 0, then

1
(6.13) 'Wnyit(y)F <2 —n+ it) ‘ < Cie= %Y fory > Cymax (14t,n).

Proof. By [G-R], p. 1015, formula 9.223 we have for y > 0 and ¢ > 0 that

1 -5 Tu—n)T (L —u—it)T (L - it
Wit (y)T ( nJrit) _e’ / (u n) (2 vt ) (2 ute )y“du
’ 2 (1/4)

2mi r(3—n—it)
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is < than

e_gi Resu:jf(u—n)f‘(%—u—it)f‘(%—u—i—it) N

. Y
= F(éfn—zt)

(this is of course 0 for n < 0). We use the well-known statement that if o is a real
number which is not a nonpositive integer, then max,;cr |I' (o + i7)| = T (0)].
We apply this statement to estimate I' (u — n) if Rew = 1/4, and ' (§ — u — it)
if w = j. Then Stirling’s formula easily implies (6.13); the lemma is proved.

6.3. AN ORTHOGONALITY RELATION.

LEMMA 6.6: If u is a cusp form of weight 0 for SL(2,Z), then

(6.14) /D |Bo(2)]* u(42)dp. = 0.

Proof. By the substitution z — —1/4z and by (6.5) with n = 0 we get (as in
the proof of Lemma 6.4) that the left-hand side of (6.14) equals

5
(6.15) /D |Bo()[? u(z)dp = /D S 1Bo(2) | ulz)de.
4 1 j:O

We now determine the Fourier expansion of F(z) := Z?:o |Bo(v;2)|*. We
use that

L) O 6 )

It is also not hard to see for any integer n and y > 0 that

1 3 . N\ (2 1 .
/ Z By (:C+Z?J+J) e(—nz)dr = 4/ By <x+ ly)
0 . 0 4

Jj=0

4
hence, using (6.5) and (6.6), we get that fol F (z 4 iy) e(—nx)dz equals

y; Z e—27r(mf+m§)y + 2y% Z e—2w(m?+m§) A )

ml,mgeéz 772117771226Z
mi—ms=4n

2
e(—4nzx)dz,

2 2__
mi—mo=n

One easily checks that the two sums above have the same value, and, writing
a = mj —ma, d = my + me in the first sum, we finally get for any y > 0 and
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integer n that

1
(6.16) / F (x + iy) e(—nz)dx = 3y> Z e (@ )y,
0 a,dez
ad=n

We now show that a certain incomplete Eisenstein series has the same Fourier
coefficients. Indeed, for z € H let

G(2)=E(z,9)= Y ¢(m(y2)),

YET o \SL2(Z)

where

<

S
I

[~

o

|

3
<

m=1

Then by [I], (3.17) we have for y > 0 and n # 0 that

[t imetcnnia= S50 [~ (2, ecni

c=1
where S(0,n, ¢) is given by [I], (2.26). We can compute easily that
0o -2 0 2
yc B 1 — m202+m"C
/Oow<t2+y2>e(nt)dtd\/ymz_l em® ( i 2)

with a nonzero absolute constant d. Since for any positive integer a we have

a if aln,

ZS(O,n,c) =
cla

0 otherwise,

we get finally for any y > 0 and nonzero integer n that

/0 G (z +iy)e(—nx)dr = d\/yz e_ﬂy<a2+zg )

aln

This and (6.16) imply that there is a nonzero absolute constant D such that
F(z) — DG(z) depends only on Im z. Since F'(z) — DG(z) is SL(2,Z)-invariant,
it is a constant. This implies that (6.15) is 0 (since cusp forms are orthogonal
to incomplete Eisenstein series and constants); the lemma is proved.
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7. Appendix: lemmas on Wilson functions

Let t1,t2 € R be given nonzero numbers. See Subsection 1.5 for the notation
81, 82, Ox (z) and H (z).

LEMMA 7.1: Let n be a fixed positive integer, and write

1
My 1, = 4 +1l+1ls—n.

For nonnegative integers l1, lo and complex S define

l
0, (8 Z Z L1+L2< ><L22)G(S,l1,l2,L1,L2)a

L,1=0L>=0

where G(S, 11,12, L1, Lo) denotes

D(sg—n+la+ L) T(s1 —n+1l+ La)
D(so4+n—1Iy—L)L(s1+n—1l— L)
(S —muy 1), 1, (S —muy1s),_ 1,
T (S +miyy g, — I 4 L) T (S +muy 1, — 2+ La)
Note that since n is given, we have not denoted the dependence on n in my,
Y1,.0,(S) and G(S, 11,12, L1, L2).
Then, if S = é + 41, where T is either real or purely imaginary, we have that

los

the sum

L (S +mu,.1,) 211,15 (9)
Lo PA=S4+mupn) T (p+ 1) T(1+0)T (5 +12) T (1+12)
is absolutely convergent, and equals
T (s)* T (s2)’T (=5 +2n) (. (1
i U V)L
LEMMA 7.2: (i) We have

(7.1) ¢_3; (z (i —k)) :c(l;}/lk (14 0(1))

with a nonzero constant c as k — oc.
(ii) For any given compact set L on the complex plane and any ¢ > 0 we

1
d))\ (Z (4 - k))‘ <<e,L ke+2\hn)\\

have

(7.2)
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for positive integers k and A € L.
(iii) If a, (n > 1) is any given sequence satisfying a,, = O (n?) with a
number d < ;, then for any positive integer M there are constant

coefficients b,,, such that

0 Sroa((1-0) - (E i own)

as k — oo over positive integers, and the left-hand side here is absolutely
convergent for every integer k > 1.

LEMMA 7.3: Write

" ras4 g(”kr(ﬁ(mm@ (i)

(i) Mx(A) is absolutely convergent if ReA > 1+2[Im A|, or if A =i (} — k)
with a positive integer k and Re A > 2.

(ii) If a compact set L on the complex plane is given such that 2 < Re A
for everyA € L, then

My(s_yy(4) = O (k=32

K2

for any A € L and positive integer k. The left-hand side here is regular
in A on every open subset of L for every fixed positive integer k.

(iil) If a compact set L on the complex plane and an integer K > 2 are given
such that 2 < Re A for every A € L, then we can find an integer t > 0,
complex numbers A1, As, ..., Ay with ReA; > K (i = 1,2,...,t) and
polynomials Q1,Q2, .. .,Q: such that

¢
= DA Qu (4) Ma(4i) = O (2 (14 ) 7)
i=1
for any A € L and real . The left-hand side here is regular in A on
every open subset of L for every fixed real \.

LEMMA 7.4: Assume that K is a positive number, and f(x) is an even holo-
morphic function for [Imz| < K satisfying

(7.4) [mf(T)H(T)F 31 o dt =0,
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and that
[ F)em1 (14 Ja)) <

is bounded on the domain |Im x| < K. If k is a positive integer and K is large
enough in terms of k, then we have a sequence d,, satisfying

A RN
(7.5) n= s an+ k41

J=0

with some constants e; and
(7.6) @) =3 dudy(y (@)
n=1

for every [Imz| < %, and the sum on the right-hand side of (7.6) is absolutely

convergent for every such x.
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