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Local average of the hyperbolic circle problem for Fuchsian groups

by András BIRÓ

A. Rényi Institute of Mathematics, Hungarian Academy of Sciences

1053 Budapest, Reáltanoda u. 13-15., Hungary; e-mail: biroand@renyi.hu

Abstract. Let Γ ⊆ PSL(2,R) be a finite volume Fuchsian group. The hyperbolic circle

problem is the estimation of the number of elements of the Γ-orbit of z in a hyperbolic

circle around w of radius R, where z and w are given points of the upper half plane and

R is a large number. An estimate with error term e
2
3
R is known, and this has not been

improved for any group. Recently Risager and Petridis proved that in the special case

Γ = PSL(2,Z) taking z = w and averaging over z in a certain way the error term can

be improved to e(
7
12

+ǫ)R. Here we show such an improvement for a general Γ, our error

term is e(
5
8
+ǫ)R (which is better that e

2
3
R but weaker than the estimate of Risager and

Petridis in the case Γ = PSL(2,Z)). Our main tool is our generalization of the Selberg

trace formula proved earlier.

1. Introduction

Let H be the open upper half plane. The elements

(

a b
c d

)

of the group PSL(2,R) act

on H by the rule z → (az + b) / (cz + d). Write

dµz =
dxdy

y2
,

this is the PSL(2,R)-invariant measure on H.
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Let Γ ⊆ PSL(2,R) be a finite volume Fuchsian group (see [I], p 40), i.e. Γ acts discontinu-

ously on H and it has a fundamental domain of finite volume (with respect to the measure

dµz). Let F be a fixed fundamental domain of Γ in H (it contains exactly one point of

each Γ-equivalence class of H).

For z, w ∈ H let

u(z, w) =
|z − w|2
4ImzImw

,

this is closely related to the hyperbolic distance ρ(z, w) of z and w (see [I], (1.3)). For

X > 2 define

N (z, w,X) := |{γ ∈ Γ : 4u (γz, w) + 2 ≤ X}| ,

the condition here is equivalent to ρ(z, w) ≤ cosh−1 (X/2), hence N (z, w,X) is the number

of points γz in the hyperbolic circle around w of radius cosh−1 (X/2) . Therefore the

estimation of N (z, w,X) is called the hyperbolic circle (or lattice point) problem. This is

a classical problem, see the Introduction of [R-P] for its history.

In order to give the main term in the asymptotic expansion of N (z, w,X) as X → ∞ we

have to introduce Maass forms.

The hyperbolic Laplace operator is given by

∆ := y2
(

∂2

∂x2
+

∂2

∂y2

)

.

It is well-known that ∆ commutes with the action of PSL(2,R).

Let {uj(z) : j ≥ 0} be a complete orthonormal system of Maass forms for Γ (the function

u0(z) is constant), let ∆uj= λjuj , where λj = sj(sj − 1), sj = 1
2 + itj and Resj = 1

2 or

1
2 < sj ≤ 1. Note that sj = 1 if and only if j = 0, and 1

2 < sj < 1 holds only for finitely

many j.

We can now define

M (z, w,X) :=
√
π

∑

sj∈( 1
2
,1]

Γ
(

sj − 1
2

)

Γ (sj + 1)
uj (z) uj (w)X

sj .

It is well-known that

|N (z, w,X)−M (z, w,X)| = Oz,w,Γ

(

X
2
3

)

,
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see e.g. [I], Theorem 12.1. The error term here has never been improved for any group,

but (as it is noted in [I]) it is conjectured that 2/3 might be lowered to any number greater

than 1/2.

It was proved recently in [R-P] that in the case Γ = PSL(2,Z) the error term X
2
3 can be

improved taking a certain local average. More precisely, they proved that if f is a smooth

nonnegative function which is compactly supported on F , then

∫

F

f (z) (N (z, z,X)−M (z, z,X)) dµz = Of,ǫ

(

X
7
12

+ǫ
)

for any ǫ > 0.

In the present paper we show that for this local average the error term X
2
3 can be improved

in the case of any finite volume Fuchsian group Γ. In this generality we get the exponent

X
5
8
+ǫ, which is better than X

2
3 but not as strong as the result of [R-P] in the special case

Γ = PSL(2,Z).

THEOREM 1.1. Let f be a given smooth function on H such that it is compactly

supported on F , and for X > 2 let

Nf (X) :=

∫

F

f (z)N (z, z,X) dµz.

Then

Nf (X) =

∫

F

f (z)







√
π

∑

sj∈( 1
2
,1]

Γ
(

sj − 1
2

)

Γ (sj + 1)
Xsj |uj (z)|2






dµz +Of,Γ,ǫ

(

X
5
8
+ǫ
)

for every given ǫ > 0.

REMARK 1.1. As it is noted in Remark 1.3 of [R-P], the proof there is valid only for

groups similar to PSL(2,Z), as it requires strong arithmetic input not available for most

groups. Our theorem is valid for any finite volume Fuchsian group. In particular, it is

valid for cocompact groups.

The main tool of our proof is our generalization of the Selberg trace formula ([B1]), which

is valid for every finite volume Fuchsian group Γ. Note that the operator whose trace is

studied in [B1] has been used and analysed also in a series of papers by Zelditch (see [Z1],

[Z2], [Z3]).
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REMARK 1.2. As a very brief indication of the idea of our proof we mention that

N (z, z,X) =
∑

γ∈Γ

k (u(z, γz)) , (1.1)

where k is the characteristic function of the interval [0, x] with a large real x (in fact

x = (X − 2)/4). We use the decomposition

k (v) = k∗ (v) + (k (v)− k∗ (v)) , (1.2)

where k∗ is a certain smoothed version of k. We will estimate the contribution of k∗ in (1.1)

in the traditional way, using the spectral expansion of the automorphic kernel function

given by k∗ and estimating the Selberg-Harish-Chandra transform of k∗. However, the

contribution of k (v) − k∗ (v) to Nf (X) is estimated in a completely different way, using

our generalization of the Selberg trace formula ([B1]).

REMARK 1.3. We have seen that N (z, z,X) is the number of points in the Γ-orbit of

z in a hyperbolic circle around z of large radius. Note that the analogous quantity in the

euclidean case (if we choose in place of Γ the group of translations on the euclidean plane

with vectors having integer coordinates in place of Γ) is independent of z, hence averaging

in z does not help in the euclidean case, the problem there remains the same.

We mention that different kind of averages were considered by Chamizo in [C]. In particular,

he proved a strong estimate for the integral with respect to z of the square of N (z, w,X)

for a fixed w over the whole fundamental domain in the case of a cocompact group, see

Corollary 2.2.1 of [C].

REMARK 1.4. The structure of the paper is the following. In Section 2 we introduce

the necessary notations. In Section 3 we give the two main lemmas (Lemmas 3.3 and 3.4)

needed for the proof of the theorem. Lemma 3.3 is our main new tool, this is a consequence

of our generalization of the Selberg trace formula in [B1]. Lemma 3.4 is the well-known

spectral expansion of an automorphic kernel function. The proof of Theorem 1.1 is given

in Section 4, using some results proved only later on special functions and automorphic

functions in Sections 5 and 6, respectively.

2. Further notations
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We fix a complete set A of inequivalent cusps of Γ, and we will denote its elements by

a, b or c, so e.g.
∑

a

∑

c or ∪a will mean that a and c run over A. We say that σa is a

scaling matrix of a cusp a if σa∞ = a, σ−1
a Γaσa = B, where Γa is the stability group of

a in Γ, and B is the group of integer translations. The scaling matrix is determined up to

composition with a translation from the right.

We also fix a complete set P of representatives of Γ-equivalence classes of the set

{z ∈ H : γz = z for some id 6=γ ∈ Γ} .

For a p ∈ P let mp be the order of the stability group of p in Γ.

Let

P (Y ) = {z = x+ iy : 0 < x ≤ 1, y > Y } ,

and let YΓ be a constant (depending only on the group Γ) such that for any Y ≥ YΓ the

cuspidal zones Fa (Y ) = σaP (Y ) are disjoint, and the fixed fundamental domain F of Γ is

partitioned into

F = F (Y ) ∪
⋃

a

Fa (Y ) ,

where F (Y ) is the central part,

F (Y ) = F \
⋃

a

Fa (Y ) ,

and F (Y ) has compact closure.

For j ≥ 0 and a ∈ A we have the Fourier expansion

uj (σaz) = βa,j (0) y
1−sj +

∑

n6=0

βa,j (n)Wsj (nz) ,

where W is the Whittaker function.

The Fourier expansion of the Eisenstein series (as in [I], (3.20)) is given by

Ec (σaz, s) = δcay
s + φc,a (s) y

1−s +
∑

n6=0

φa,c (n, s)Ws (nz) .
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For Y ≥ YΓ let us define the truncated Eisenstein series (as in [I], pp 95-96) in the following

way: for a given c ∈ A and every a ∈ A let

EY
c (z, s) = Ec (z, s)−

(

δca
(

Imσ−1
a z

)s
+ φc,a (s)

(

Imσ−1
a z

)1−s
)

for z ∈ Fa (Y ) ,

let

EY
c (z, s) = Ec (z, s) for z ∈ F (Y ) ,

finally let EY
c (γz, s) = EY

c (z, s) for γ ∈ Γ and z ∈ F .

For Y ≥ YΓ and j ≥ 0 let us also define the truncation of uj in the following way: for

every a ∈ A let

uYj (z) = uj (z)− βa,j (0)
(

Imσ−1
a z

)1−sj
for z ∈ Fa (Y ) ,

let

uYj (z) = uj (z) for z ∈ F (Y ) ,

finally let uYj (γz) = uYj (z) for γ ∈ Γ and z ∈ F .

Let {Sl : l ∈ L} be the set of the poles in the half-plane Res > 1
2
of the Eisenstein series

for Γ. Then 1
2 < Sl ≤ 1 for every l ∈ L, and L is a finite set. We have βa,j (0) = 0 if

uj (z) is not a linear combination of the residues of Eisenstein series, so if j ≥ 0 is such

that βa,j (0) 6= 0 for some a, then sj = Sl for some l ∈ L. In particular, uYj is the same as

uj for all but finitely many j.

The constants in the symbols O will depend on the group Γ. For a function g we will

denote its jth derivative by g(j).

For λ ≤ 0 define the special function fλ(θ) in the following way: fλ(θ) is the unique even

solution of the differential equation

f (2)(θ) =
λ

cos2 θ
f(θ), θ ∈ (−π

2
,
π

2
) (2.1)

with fλ(0) = 1. Note that this differential equation (which appeared in [B1] and also in

[Hu], equations (10-(11)) is the Laplacian on functions depending only on the hyperbolic
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distance from the imaginary real axis, i.e. if for z ∈ H we write z = rei(
π
2
+θ) with r > 0

and θ ∈ (−π
2 ,

π
2 ), then for

F (z) := fλ(θ)

we have ∆F= λF .

For λ ≤ 0 define also the special function gλ(r) (r ∈ [0,∞)) as the unique solution of

g(2)(r) +
cosh r

sinh r
g(1)(r) = λg(r)

with gλ(0) = 1. Note that it is well-known (see e.g. [I], (1.20)) that this differential equation

is the Laplacian on functions depending only on the hyperbolic distance ρ(z, i) from the

given point i, i.e. if for z ∈ H we write

G (z) := gλ (ρ(z, i)) ,

then we have ∆G= λG.

Note that f0(θ) and g0(r) are the identically 1 functions.

If m is a compactly supported continuous function on [0,∞), let (see [I], (1.62))

gm (a) = 2qm

(

ea + e−a − 2

4

)

, where qm(v) =
∫∞
0

m(v+τ)√
τ

dτ, (2.2)

and let

hm (r) =
∫∞
−∞ gm (a) eirada. (2.3)

For γ ∈ Γ denote by [γ] the conjugacy class of γ in Γ, i.e.

[γ] =
{

τ−1γτ : τ ∈ Γ
}

.

We use the general notation

(F,G) =

∫

F

F (z)G (z )dµz.

We write F

(

α, β
γ

; z

)

for the Gauss hypergeometric function. We use the notations

Γ (X ± Y ) = Γ (X + Y ) Γ (X − Y ).

3. Basic lemmas
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Our two main results here are Lemmas 3.3 and 3.4, but first we have to prove two simple

lemmas.

LEMMA 3.1. Let a ∈ A. If Y is large enough (depending only on Γ), then for z ∈ Fa (Y )

and γ ∈ Γ we have either

u (γz, z) ≥ DΓY
2 (3.1)

with some constant DΓ > 0 depending only on Γ, or we have γ ∈ Γa.

Proof. Let z ∈ Fa (Y ) = σaP (Y ), then z = σaw with some w ∈ P (Y ), and for γ ∈ Γ we

have

u (γz, z) = u
(

σ−1
a γσaw,w

)

. (3.2)

Let σ−1
a γσa =

(

∗ ∗
C D

)

. Assume |C| > 0, then Imσ−1
a γσaw = Imw

|Cw+D|2 ≤ 1

C2Imw . Since

Imw > Y , for large enough Y this implies

u
(

σ−1
a γσaw,w

)

≥
∣

∣Y − 1
C2Y

∣

∣

2

4Y 1
C2Y

. (3.3)

Since

min

{

|C| > 0 :

(

∗ ∗
C ∗

)

∈ σ−1
a Γσa

}

exists (see [I], p 53), (3.2) and (3.3) imply (3.1).

Assume C = 0. Then σ−1
a γσa∞ = ∞, so γa = a, because σa∞ = a, hence γ ∈ Γa, the

lemma is proved.

LEMMA 3.2. Assume that m is a compactly supported function with bounded variation

on [0,∞). Let a ∈ A, and let Y be large enough depending on Γ and m. For z, w ∈ H

define

M(z, w) :=
∑

γ∈Γ

m

(

|z − γw|2
4ImzImγw

)

, (3.4)

then for z ∈ Fa (Y ) we have

M (z, z) = 4Imw

∫ ∞

0

m
(

y2
)

dy +OΓ,m (1) ,

where z = σaw.

8



Proof. It follows easily from Lemma 3.1 using (3.2) and σ−1
a Γaσa = B that if Y is large

enough, then

M (z, z) =

∞
∑

l=−∞
m

(

l2

4Im2w

)

,

where z = σaw. Then using the inequality of Koksma (Theorem 5.1 of [K-N]) we get the

lemma.

LEMMA 3.3. Let u be a fixed Γ-automorphic eigenfunction of the Laplace operator with

eigenvalue λ = s(s− 1) satisfying

∫

F

|u (z)| dµz <∞, (3.5)

and let Res = 1
2 or 1

2 < s ≤ 1. Denote the Fourier expansion of u by

u (σaz) =βa (0) y
s+β̃a (0) y

1−s+
∑

n6=0

βa (n)Ws (nz) .

Introduce the notations

Bu=
∑

a

βa (0) , B̃u=
∑

a

β̃a (0) .

Assume that m is a compactly supported function with bounded variation on [0,∞) and

∫ ∞

0

m (v)√
v
dv = 0. (3.6)

Recalling the notation (3.4) we have that

∫

F

M(z, z)u(z)dµz = Σhyp +Σell + Σpar, (3.7)

with the definitions

Σhyp :=
∑

[γ]

γ hyperbolic

(

∫

Cγ

udS

)

∫ π
2

−π
2

m

(

N (γ) +N (γ)
−1 − 2

4 cos2 θ

)

fλ(θ)
dθ

cos2 θ
,

where the summation is over the hyperbolic conjugacy classes of Γ, N (γ) is the norm of (the

conjugacy class of) γ, Cγ is the closed geodesic obtained by factorizing the noneuclidean
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line connecting the fixed points of γ by the action of the centralizer of γ in Γ, dS = |dz|
y is

the hyperbolic arc length,

Σell :=
∑

p∈P

2π

mp
u (p)

mp−1
∑

l=1

∫ ∞

0

m

(

sin2
lπ

mp
sinh2 r

)

gλ(r) sinh rdr,

and for s 6= 1 we write

Σpar := Bu2
1−sζ (1− s)

∫ ∞

0

m (v)

v
1+s
2

dv + B̃u2
sζ (s)

∫ ∞

0

m (v)

v
2−s
2

dv,

for s = 1 we write

Σpar := B̃u

∫ ∞

0

m (v)

v
1
2

log vdv

where ζ is the Riemann zeta function. The left-hand side of (3.7) is absolutely convergent

and Σhyp is a finite sum.

Proof. This is essentially proved in [B1] in the case s 6= 1 and in [I] in the case s = 1 (since

for s = 1 this follows from the classical Selberg trace formula), but it is not stated there

exactly in this form, so we explain how it follows from [B1] and from [I].

It follows from Lemma 3.2 and condition (3.6) that M(z, z) is bounded on H, hence by

(3.5) the left-hand side of (3.7) is absolutely convergent. Let us write

Mhyp(z) :=
∑

γ ∈ Γ
γ hyperbolic

m

(

|z − γz|2
4ImzImγz

)

,

Mell(z) :=
∑

γ ∈ Γ
γ elliptic

m

(

|z − γz|2
4ImzImγz

)

,

Mpar(z) :=
∑

γ ∈ Γ
γ parabolic

m

(

|z − γz|2
4ImzImγz

)

.

It is clear by Lemma 3.1 and the fact that Γ acts discontinuously on H (see p 40 of [I]) that

there are only finitely many γ ∈ Γ for which there is a z ∈ H such that the contribution

10



of γ to Mhyp(z) or Mell(z) is nonzero. It follows then, on the one hand, that Mpar(z) is

also bounded on H, and on the other hand that

∫

F

Mhyp(z)u(z)dµz =
∑

[γ]

γ hyperbolic

Tγ ,

∫

F

Mell(z)u(z)dµz =
∑

[γ]

γ elliptic

Tγ

where the summation is over the hyperbolic and elliptic conjugacy classes of Γ, respectively,

and

Tγ :=
∑

δ∈[γ]

∫

F

m

(

|z − δz|2
4ImzImδz

)

u(z)dµz.

Then it follows from (3) and (4) of [B1] (and the reasoning there is valid also for the case

s = 1) that

∫

F

Mhyp(z)u(z)dµz = Σhyp,

∫

F

Mell(z)u(z)dµz = Σell.

Since we have seen that Mpar(z) is bounded, so

∫

F

Mpar(z)u(z)dµz = Σpar

follows from Lemma 3 of [B1] in the case s 6= 1 and from (10.14) and (10.15) of [I] in the

case s = 1 (since in that case u is constant), taking into account that gm (0) = 0 by our

condition (3.6) (see (2.2)). The lemma is proved.

LEMMA 3.4. Let m be a compactly supported continuous function on [0,∞), Assume

that hm (r) (defined in (2.2) and (2.3)) is even, it is holomorphic in the strip |Imr| ≤ 1
2
+ǫ

and hm (r) = O
(

(1 + |r|)−2−ǫ
)

in this strip for some ǫ > 0. Then for z ∈ H we have

(using definition (3.4)) that

M(z, z) =
∞
∑

j=0

hm (tj) |uj (z)|2 +
∑

a

1

4π

∫ ∞

−∞
hm (r)

∣

∣

∣

∣

Ea

(

z,
1

2
+ ir

)∣

∣

∣

∣

2

dr,

and this expression is absolutely and uniformly convergent on compact subsets of H.

Proof. This follows from Theorem 7.4 of [I].

4. Proof of the theorem
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Let x be a large positive number and let 1 < d < x
log x (say). We will choose later the

parameter d optimally.

Let

k (y) = 1 for 0 ≤ y ≤ x, k (y) = 0 for y > x, (4.1)

and let k∗ be a smoothed version of k, more precisely

k∗ (y) :=

∫ ∞

−∞
η (τ) k (yeτ ) dτ, (4.2)

where the function η will be a smooth even function satisfying η (τ) = 0 for |τ | > d/x. We

define η precisely below.

But before defining η let us remark that our goal is to achieve

∫ ∞

0

(k∗(u)− k(u))u−1/2du = 0, (4.3)

since we would like to apply Lemma 3.3 for this difference. By (4.2) we have

∫ ∞

0

k∗(u)u−1/2du =

∫ ∞

−∞
η (τ) e−τ/2dτ

∫ ∞

0

k (v) v−1/2dv, (4.4)

and so we want to have
∫ ∞

−∞
η (τ) e−τ/2dτ = 1.

We will take

η (τ) :=
x

d
η0

(x

d
τ
)

, (4.5)

where the function η0 will be a smooth even function satisfying η0 (τ) = 0 for |τ | > 1.

Then
∫ ∞

−∞
η (τ) e−τ/2dτ =

∫ ∞

−∞
η0 (τ) e

−τ d
2x dτ, (4.6)

so we need
∫ ∞

−∞
η0 (τ) e

−τ d
2x dτ = 1. (4.7)

We now define η0. First let ψ0 be a given smooth even nonnegative function on the real

line such that

ψ0 (τ) = 0 for |τ | > 1

12



and
∫ ∞

−∞
ψ0 (τ) dτ = 1. (4.8)

Then

Id,x :=

∫ ∞

−∞
ψ0 (τ) e

−τ d
2x dτ = 1 +O

(

(

d

x

)2
)

(4.9)

with implied absolute constant. If x is large enough, then clearly 1/2 < Id,x < 2. Let

η0 (τ) =
ψ0 (τ)

Id,x
(4.10)

for real τ , then we have (4.7). Note that η0 slightly depends on d and x, but we do not

denote it. Formulas (4.9), (4.10), (4.5) define η, and by (4.7), (4.4), (4.6) we get (4.3).

Note that by the definitions for any integer j ≥ 0 we have that

∫ ∞

−∞

∣

∣

∣
η(j) (τ)

∣

∣

∣
dτ ≪j

(x

d

)j

, (4.11)

and we also have (by (4.8), (4.9), (4.10) and (4.5)) that

∫ ∞

−∞
η (τ) dτ = 1 +O

(

(

d

x

)2
)

. (4.12)

So the smoothed version k∗ of k is now defined. As it is mentioned in Remark 1.2, we will

use the decomposition (1.2), and we will apply Lemma 3.4 for the first term there, we will

apply Lemma 3.3 for the second term. To apply these lemmas we need estimates for the

function transforms occurring in those lemmas. We give such estimates in the next three

lemmas.

For simplicity introduce the abbreviations q∗ = qk∗ , g∗ = gk∗ and h∗ = hk∗ (see (2.2) and

(2.3)).

LEMMA 4.1. For every integer j ≥ 2 we have for r ≥ 1 that

|h∗ (r)| ≪j
d3/2

x

( x

dr

)j

. (4.13)

We also have for every complex r that

|h∗ (r)| ≪ x
1
2
+|Imr| log x. (4.14)

13



Proof. By (2.2) and (4.1) we have

qk (y) = 2
√
x− y for 0 ≤ y ≤ x, qk (y) = 0 for y > x. (4.15)

It is easy to see by (2.2) and (4.2) that we have

q∗ (v) =

∫ ∞

−∞
η (τ) e−

τ
2 qk (ve

τ ) dτ, (4.16)

and by the substitution eµ = veτ we can also write

q∗ (v) =
√
v

∫ ∞

−∞
η (µ− log v) e−

µ
2 qk (e

µ) dµ.

Then for any integer j ≥ 0 we have on the one hand that

(q∗ (v))(j) =

∫ ∞

−∞
η (τ) e(j−

1
2 )τq

(j)
k (veτ ) dτ, (4.17)

and we have on the other hand that

(q∗ (v))(j) =
√
v

∫ ∞

−∞

∑j
l=0 cl,jη

(l) (µ− log v)

vj
e−

µ
2 qk (e

µ) dµ (4.18)

with some constants cl,j .

It is clear from (4.15) and (4.16) that for v ≥ xed/x we have

q∗ (v) = 0. (4.19)

It is also clear by the same formulas that for 0 ≤ v ≤ xed/x we have

0 ≤ q∗ (v) ≪
√
x. (4.20)

The estimate (4.14) follows at once from (4.19), (4.20), (2.2) and (2.3).

Assume that 0 ≤ v ≤ xe−2d/x. Then for η (τ) 6= 0 we have

veτ ≤ ved/x ≤ v +
x− v

2
,

since this latter inequality is easily seen to be equivalent to

2ed/x − 1 ≤ x

v
,
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which is true, since x
v ≥ e2d/x. So for any integer j ≥ 1 we have by (4.15) that

∣

∣

∣q
(j)
k (veτ )

∣

∣

∣≪j (x− veτ )
1
2
−j ≪j (x− v)

1
2
−j
,

hence by (4.17) we get that

∣

∣

∣
(q∗ (v))(j)

∣

∣

∣
≪j (x− v)

1
2
−j

(4.21)

for 0 ≤ v ≤ xe−2d/x and j ≥ 1.

Now let xe−2d/x ≤ v ≤ xed/x. Then we use (4.18). If the integrand here is nonzero, then

we must have |µ− log v| ≤ d/x, so

xe−3d/x ≤ eµ ≤ xe2d/x,

hence by (4.15) one has

qk (e
µ) ≪

√
d,

and by the upper and lower bounds for eµ and v one also has

x≪ eµ ≪ x, x≪ v ≪ x

Using these estimates, by (4.18) and (4.11) we get for any integer j ≥ 1 that

∣

∣

∣
(q∗ (v))(j)

∣

∣

∣
≪j d

1
2
−j (4.22)

for xe−2d/x ≤ v ≤ xed/x.

We see by (2.2) for every j ≥ 1 and real a that

∣

∣

∣
(g∗ (a))(j)

∣

∣

∣
≪j

j
∑

l=1

∣

∣

∣

∣

(

q∗
(

sinh2
a

2

))(l)
∣

∣

∣

∣

el|a|. (4.23)

By (2.3) we have by repeated partial integration for every j ≥ 1 and r ≥ 1 that

|h∗ (r)| ≪j
1

rj

∫ ∞

−∞

∣

∣

∣
(g∗ (a))(j)

∣

∣

∣
da.

By (4.19), (4.21), (4.22) and (4.23) we obtain (4.13). The lemma is proved.
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LEMMA 4.2. For 1
100 ≤ it ≤ 1

2 (say) we have that

h∗(t) =
√
π
Γ (it) 22it+1

Γ
(

3
2 + it

) x
1
2
+it +O

(

x

(

d

x

)2
)

+O
(

x
1
2

)

.

Proof. Assume first it < 1
2 . By (1.62’) of [I] (the function Fs(u) is defined by the formulas

on p.26., line 7, and (B.23) of [I]) and by [G-R], p 995, 9.113 we have that

h∗(t) =
2

iΓ
(

1
2 ± it

)

∫

(σ)

Γ
(

1
2
± it+ S

)

Γ (−S)
Γ (1 + S)

(
∫ ∞

0

k∗(u)uSdu

)

dS,

where it− 1
2
< σ < 0, so by (4.1) and (4.2) we get

h∗(t) =
2

iΓ
(

1
2
± it

)

∫ ∞

−∞
η (τ)

∫

(σ)

Γ
(

1
2 ± it+ S

)

Γ (−S)
Γ (1 + S)

(x/eτ )
S+1

S + 1
dSdτ.

Shifting the integration to the left we get (and observe that it is also true for it = 1
2 ) that

h∗(t) =
4π

Γ
(

1
2
+ it

)

Γ (2it)

Γ
(

3
2
+ it

)

∫ ∞

−∞
η (τ) (x/eτ )

1
2
+it

dτ +O
(

x
1
2

)

,

and taking into account the properties of η and the duplication formula for the Γ-function

([I], (B.5)) we obtain the lemma.

If m is a compactly supported continuous function on [0,∞), λ ≤ 0 and T > 0, introduce

the notation

Mm,λ (T ) :=

∫ π
2

− π
2

m

(

T

cos2 θ

)

fλ(θ)
dθ

cos2 θ
. (4.24)

Note that this kind of transform appeared in [B1], equation (7) and also in [Hu], equation

(31).

We obviously have

Mk∗,λ (T ) =

∫ ∞

−∞
η (τ)Mk,λ (Te

τ ) dτ. (4.25)

LEMMA 4.3. (i) For every T > 0 the functions

Mk,− 1
4
−t2 (T ) , Mk∗,− 1

4
−t2 (T )

are entire functions of t.
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(ii) Let 0 < δ < 1
2 be given. There is a constant Aδ > 0 depending only on δ such that for

every t satisfying 1
4 + t2 ≥ 0 or |Re (it)| ≤ 1

2 − δ one has the following statements with the

notation λ = −1
4
− t2:

For T ≥ xed/x we have that

Mk∗,λ (T ) =Mk,λ (T ) = 0, (4.26)

for xe−2d/x ≤ T ≤ xed/x we have that

|Mk∗,λ (T )|+ |Mk,λ (T )| ≪δ (1 + |t|)Aδ

(

d

x

)1/2

, (4.27)

and for 0 < T ≤ xe−2d/x we have that

Mk∗,λ (T )−Mk,λ (T ) ≪δ
(1 + |t|)Aδ d2

T 1/2 (x− T )
3/2

.

Proof. Note first that we can give an explicit formula for fλ, namely

fλ(θ) = F

(

1
4 + it

2 ,
1
4 − it

2
1
2

;− sin2 θ

cos2 θ

)

(4.28)

for θ ∈ (−π
2 ,

π
2 ), where λ = −1

4 − t2. This can be proved in the following way. One has

1

π
1
2

∫ π
2

−π
2

F

(

1
4 + it

2 ,
1
4 − it

2
1
2

;− sin2 θ

cos2 θ

)

cos2s θ
dθ

cos2 θ
=

Γ(s− 1
4 + it

2 )Γ(s− 1
4 − it

2 )

Γ2(s)

for Res > 1
2 , as one can see by the substitution y = sin2 θ

cos2 θ and by [G-R], p 807, 7.512.10.

By Lemma 11 of [B1] it follows that

∫ π
2

0

(

F

(

1
4 + it

2 ,
1
4 − it

2
1
2

;− sin2 θ

cos2 θ

)

− fλ(θ)

)

cosn θdθ = 0

for every nonnegative integer n, which easily implies (4.28).

We can see part (i) at once.

To show part (ii) note that using (4.24), (4.28) and the substitution

Y = log
1

cos2 θ

one has for T ≤ x that
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Mk,λ (T ) =

∫ logx−log T

0

F

(

1
4
+ it

2
, 1
4
− it

2
1
2

; 1− eY
)

eY dY√
eY − 1

, . (4.29)

and for T > x we have Mk,λ (T ) = 0. Then (4.26) is obvious by (4.25). We also have by

(4.29) and Lemma 5.1 for T ≤ x that

Mk,λ (T ) ≪δ (1 + |t|)Aδ

( x

T
− 1
)1/2

, (4.30)

and then (using also (4.25)) (4.27) follows.

By (4.25), (4.12) and since η is even, we have that

Mk∗,λ (T )−Mk,λ (T ) (4.31)

equals

∫ ∞

0

η (τ)
(

Mk,λ (Te
τ ) +Mk,λ

(

Te−τ
)

− 2Mk,λ (T )
)

dτ +O

(

(

d

x

)2
)

Mk,λ (T ) . (4.32)

Assuming Teτ ≤ x by (4.29) we have that

Mk,λ (Te
τ ) +Mk,λ

(

Te−τ
)

− 2Mk,λ (T ) =

=

∫ log x
T
+τ

log x
T









F

(

1
4
+ it

2
, 1
4
− it

2
1
2

; 1− eY
)

eY

√
eY − 1

−
F

(

1
4
+ it

2
, 1
4
− it

2
1
2

; 1− eY−τ

)

eY −τ

√
eY−τ − 1









dY.

For 0 < T ≤ xe−2d/x and |τ | ≤ d/x we then have by the mean-value theorem and by

Lemma 5.1 that

Mk,λ (Te
τ ) +Mk,λ

(

Te−τ
)

− 2Mk,λ (T ) ≪δ (1 + |t|)Aδ τ2
( x

T

)1/2
(

1 +
1

log x
T

)3/2

.

So by (4.30), (4.11) with j = 0 and by (4.31), (4.32), using that η (τ) = 0 for |τ | > d/x we

get for 0 < T ≤ xe−2d/x that

Mk∗,λ (T )−Mk,λ (T ) ≪δ (1 + |t|)Aδ

(

d

x

)2
( x

T

)1/2
(

x

x− T

)3/2

.

The lemma is proved.
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REMARK 4.4. We now compare (4.28) to formulas (86) and (87) of [F]. Indeed, by the

notation used there we see that

N0
1
2
+it,0

(

θ + π
2

)

and N0
1
2
−it,0

(

θ + π
2

)

are solutions of our differential equation (2.1) for −π
2
< θ < 0. Using (87) of [F] and the

quadratic transformation [G-R], p 999, 9.134.1 one sees that

N0
1
2
+it,0

(

θ +
π

2

)

=

(

cos2 θ

sin2 θ

)
1
4
+ it

2

F

(

1
4 + it

2 ,
3
4 + it

2
1 + it

;−cos2 θ

sin2 θ

)

for −π
2
< θ < 0. Using the same relation with −t in place of t we see by [G-R], p 999,

9.132.2 that the right-hand side of (4.28) is a linear combination of N0
1
2
+it,0

(

θ + π
2

)

and

N0
1
2
−it,0

(

θ + π
2

)

on the interval −π
2 < θ < 0, hence it is also a solution of (2.1). Since it is

an even function, it gives a solution of (2.1) on the whole interval −π
2
< θ < π

2
.

Continuing the proof of Theorem 1.1 let

m1 (v) = k∗ (v) , m2 (v) = k (v)− k∗ (v) . (4.33)

For m1 (v) we will apply Lemma 3.4, and for m2 (v) we will apply Lemma 3.3.

We can see e.g. by (1.62’) of [I] (the function Fs(u) is defined by the formulas on p.26.,

line 7, and (B.23) of [I]) and by Lemma 6.2 of [B2] that the conditions of Lemma 3.4 are

satisfied writing m1 in place of m, hence for z ∈ H we have that

∑

γ∈Γ

m1

(

|z − γz|2
4ImzImγz

)

(4.34)

equals
∞
∑

j=0

hm1
(tj) |uj (z)|2 +

∑

a

1

4π

∫ ∞

−∞
hm1

(r)

∣

∣

∣

∣

Ea

(

z,
1

2
+ ir

)∣

∣

∣

∣

2

dr.

Then applying Lemma 4.1 (we apply (4.13) with j = 2 for 1 ≤ r < x
d , we apply (4.13)

with j = 3 for r ≥ x
d
, finally we apply (4.14) for |Rer| < 1, |Imr| < 1

100
), Lemma 4.2 and

[I], Proposition 7.2, for every z ∈ H satisfying f (z) 6= 0 and for every ǫ > 0 we get that

(4.34) equals

∑

j, itj>0

√
π
Γ (itj) 2

2itj+1

Γ
(

3
2
+ itj

) x
1
2
+itj |uj (z)|2 +Of,ǫ

(

xǫ
(

x√
d
+ x

1
2
+ 1

100 +
d2

x

))

, (4.35)
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where we took into account that f is compactly supported on F .

Let f (z) be as in the theorem, and consider the integral

∫

F

f (z)





∑

γ∈Γ

m2

(

|z − γz|2
4ImzImγz

)



 dµz. (4.36)

By (4.3) and Lemma 3.2 we see that the function in the bracket here is bounded. Then it

follows from the Spectral Theorem ([I], Theorems 4.7 and 7.3) that (4.36) equals

∞
∑

j=0

(f, uj)

∫

F

uj (z)





∑

γ∈Γ

m2

(

|z − γz|2
4ImzImγz

)



 dµz+ (4.37)

+
∑

a

1

4π

∫ ∞

−∞

(

f, Ea

(

∗, 1
2
+ ir

))
∫

F

Ea

(

z,
1

2
+ ir

)





∑

γ∈Γ

m2

(

|z − γz|2
4ImzImγz

)



 dµzdr.

By (4.3) we see that the conditions of Lemma 3.3 are satisfied writing m2 in place of m

and writing u = uj or u = Ea

(

∗, 12 + ir
)

. By Lemma 6.3, Lemma 5.2, (4.2), (4.11) with

j = 0, using also (6.28) of [I] and a convexity bound for the Riemann zeta function we get

that after applying Lemma 3.3 the contribution of Σell and Σpar to (4.37) is Of,ǫ

(

x
1
2
+ǫ
)

for every ǫ > 0.

Therefore, for a hyperbolic γ ∈ Γ introducing the notation

T (γ) =
N (γ) +N (γ)

−1 − 2

4

and recalling (4.24) we get that (4.36) equals

Of,ǫ

(

x
1
2
+ǫ
)

+
∑

[γ]

γ hyperbolic

(Σ1 (γ) + Σ2 (γ)) (4.38)

with the notations

Σ1 (γ) :=

∞
∑

j=0

(f, uj)

(

∫

Cγ

uYΓ

j dS

)

Mm2,− 1
4
−t2

j
(T (γ))+

+
∑

a

1

4π

∫ ∞

−∞

(

f, Ea

(

∗, 1
2
+ ir

))

(

∫

Cγ

EYΓ

a

(

∗, 1
2
+ ir

)

dS

)

Mm2,− 1
4
−r2 (T (γ)) dr,

(4.39)
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Σ2 (γ) :=
∞
∑

j=0

(f, uj)

(

∫

Cγ

(

uj − uYΓ

j

)

dS

)

Mm2,− 1
4
−t2

j
(T (γ))+

+
∑

a

1

4π

∫ ∞

−∞

(

f, Ea

(

∗, 1
2
+ ir

))

(

∫

Cγ

DYΓ

a

(

∗, 1
2
+ ir

)

dS

)

Mm2,− 1
4
−r2 (T (γ)) dr,

where for simplicity we wrote

DYΓ

a

(

∗, 1
2
+ ir

)

:= Ea

(

∗, 1
2
+ ir

)

−EYΓ

a

(

∗, 1
2
+ ir

)

.

Observe that for any a ∈ A and any y > 0 we have by [I], (6.22) and (6.27) that

∑

c

1

4π

∫ ∞

−∞

(

f, Ec

(

∗, 1
2
+ ir

))(

δcay
1
2
+ir + φc,a

(

1

2
+ ir

)

y
1
2
−ir

)

Mm2,− 1
4
−r2 (T (γ)) dr

equals
1

2π

∫ ∞

−∞

(

f, Ea

(

∗, 1
2
− ir

))

y
1
2
−irMm2,− 1

4
−r2 (T (γ)) dr.

We then see using the notations of Lemma 6.2 (taking into account also that Ea

(

∗, 12 − ir
)

and Ea

(

∗, 1
2
+ ir

)

are conjugates of each other for real r) that

Σ2 (γ) =

∞
∑

j=0

(f, uj)

(

∫

Cγ

(

uj − uYΓ

j

)

dS

)

Mm2,− 1
4
−t2

j
(T (γ))+

+
∑

a

1

2πi

∫

( 1
2 )

(
∫

F

f (z)Ea (z, s) dµz

)

(

∫

Cγ

Aa (∗, s)dS
)

Mm2,s(s−1) (T (γ)) ds.

Since Mm2,s(s−1) (T (γ)) is analytic in s by Lemma 4.3, so shifting the line of integration

to the right, using Lemma 6.4 to see that the residues cancel out and using also Lemma

6.3 (iii) and Lemma 4.3 we get that

Σ2 (γ) = (f, u0)

(

∫

Cγ

(

u0 − uYΓ

0

)

dS

)

Mm2,0 (T (γ))+

+
∑

a

1

2πi

∫

(1−δ)

(
∫

F

f (z)Ea (z, s) dµz

)

(

∫

Cγ

Aa (∗, s)dS
)

Mm2,s(s−1) (T (γ)) ds,

(4.40)

where δ > 0 is a small number chosen in such a way that 1 − δ > Sl for every l ∈ L

satisfying Sl < 1.
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Choosing δ small enough in terms of ǫ, applying Lemma 4.3, Lemma 6.3, Lemma 6.2, using

(4.38), (4.39) and (4.40) we get that (4.36) equals

Of,ǫ

(

x
1
2
+ǫ
)

+

Of,ǫ















xǫ
∑

[γ]

γ hyperbolic, T (γ) ≤ xe−2d/x

d2 logN (γ)

T (γ)
1/2

(x− T (γ))
3/2















+

Of,ǫ















xǫ
(

d

x

)1/2
∑

[γ]

γ hyperbolic, xe−2d/x ≤ T (γ) ≤ xed/x

logN (γ)















.

From the prime geodesic theorem (Theorem 10.5 of [I]) we then get assuming

d ≥ x3/4

that (4.36) equals

Of,ǫ

(

(xǫ)

(

x
1
2 +

d2

x
+
d3/2√
x

))

. (4.41)

Then by (4.33), (4.34), (4.36), (4.41) and (4.35) we get for x3/4 ≤ d ≤ x
log x that

∫

F

f (z)





∑

γ∈Γ

k

(

|z − γz|2
4ImzImγz

)



 dµz

equals

∫

F

f (z)





∑

j, itj>0

√
π
Γ (itj) 2

2itj+1

Γ
(

3
2
+ itj

) x
1
2
+itj |uj (z)|2



 dµz +Of,ǫ

(

(xǫ)

(

x√
d
+
d3/2√
x

))

.

Choosing d = x3/4 and x = X−2
4 we get the theorem.

5. Lemmas on special functions
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LEMMA 5.1. Let 0 < δ < 1
2 be given. There is a constant Aδ > 0 depending only on δ

such that for every t satisfying 1
4 + t2 ≥ 0 or |Re (it)| ≤ 1

2 − δ and for every X ≥ 0 one has

that

∣

∣

∣

∣

F

(

1
4
+ it

2
, 1
4
− it

2
1
2

;−X
)∣

∣

∣

∣

+

∣

∣

∣

∣

(1 +X)
d

dX
F

(

1
4
+ it

2
, 1
4
− it

2
1
2

;−X
)∣

∣

∣

∣

≤ Aδ (1 + |t|)Aδ .

Proof. Note that

d

dX
F

(

1
4 + it

2 ,
1
4 − it

2
1
2

;−X
)

= −2

(

1

16
+
t2

4

)

F

(

5
4 + it

2 ,
5
4 − it

2
3
2

;−X
)

and so

(1 +X)
d

dX
F

(

1
4
+ it

2
, 1
4
− it

2
1
2

;−X
)

= −2

(

1

16
+
t2

4

)

F

(

1
4
+ it

2
, 1
4
− it

2
3
2

;−X
)

,

where we used the third line of [G-R], p 998, 9.131.1. Then it is trivial by [G-R], p 995,

9.111 that the statement of the lemma is true for |t| < 1/10 (say). The satement of the

lemma is also trivial for every t and for |X | < 1
10(1+|t|)2 (say) by estimating trivially the

series definition of the hypergeometric function.

For j = 0, 1 and X > 0 one has that

F

(

1
4 + j + it

2 ,
1
4 + j − it

2
1
2 + j

;−X
)

equals the sum of

Γ
(

1
2 + j

)

Γ (it) Γ (1− it)

Γ
(

1
4 ± it

2

)

Γ
(

3
4 − it

2

)

Γ
(

1
4 + j + it

2

)

∫ 1

0

y−
1
4
− it

2 (1− y)
− 3

4
− it

2 (X + y)
− 1

4
−j+ it

2 dy

and the same expression writing −t in place of t, this follows from [G-R], p 999, 9.132.2 and

[G-R], p 995, 9.111. Then the statement follows for the case |t| ≥ 1/10, |X | ≥ 1
10(1+|t|)2 .

The lemma is proved.

LEMMA 5.2. Let x > 0 and let the function k be defined by (4.1). Let 0 < a < 1. There

is an absolute constant A0 > 0 such that for every t satisfying 1
4 + t2 ≥ 0 one has, writing

λ = −1
4
− t2 that

∣

∣

∣

∣

∫ ∞

0

k
(

a sinh2 r
)

gλ(r) sinh rdr

∣

∣

∣

∣

≤ A0 (1 + |t|)A0

(

1 +
x

a

)1/2

.
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Proof. Note first that we can give an explicit formula for gλ, namely

gλ(r) = F

(

3
4
+ it

2
, 3
4
− it

2
1

;− sinh2 r

)

cosh r (5.1)

for r ≥ 0, where λ = −1
4 − t2. This can be proved in the following way. One has

∫ ∞

0

F

(

3
4
+ it

2
, 3
4
− it

2
1

;− sinh2 r

)

cosh r sinh1−2s rdr =
Γ(s− 1

4 ± it
2 )Γ(1− s)

2Γ( 3
4
± it

2
)Γ(s)

for 1
2 < Res < 1, as one can see by the substitution y = sinh2 r and by [G-R], p 806, 7.511.

By Lemma 11 of [B1] it follows that

∫ ∞

0

(

gλ(r)− F

(

3
4 + it

2 ,
3
4 − it

2
1

;− sinh2 r

)

cosh r

)

sinh1−2s rdr = 0

for every 1
2 < Res < 1, which easily implies (5.1).

Then by the substitution y = sinh2 r and by the particular shape of k we see that

∫ ∞

0

k
(

a sinh2 r
)

gλ(r) sinh rdr

equals

1

2

∫ x/a

0

F

(

3
4
+ it

2
, 3
4
− it

2
1

;−y
)

dy.

Since the integrand here equals

(1 + y)
−1/2 1

π

∫ 1

0

q−1/2 (1− q)
−1/2

F

(

1
4 + it

2 ,
1
4 − it

2
1/2

;−qy
)

dq

by [G-R], p 807, 7.512.11 and the third line of [G-R], p 998, 9.131.1, so using Lemma 5.1

the present lemma is proved.

6. Lemmas on automorphic functions

LEMMA 6.1. There is a constant AΓ > 0 depending only on Γ such that if γ ∈ Γ is

hyperbolic and z ∈ H is a point on the noneuclidean line connecting the fixed points of γ,

then for every a ∈ A one has

σ−1
a δz /∈ P

(

AΓ

√

N (γ)
)

for every δ ∈ Γ.
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Proof. By the conditions on γ and z we have (see [I], p 19) that

ρ(z, γz) = logN (γ) ,

where ρ is the distance function on H defined in (1.2) of [I]. Then by (1.3) of [I] we have

that

u(z, γz) =
N (γ) +N (γ)

−1 − 2

4
,

and so for every δ ∈ Γ one has

u
(

δz,
(

δγδ−1
)

δz
)

=
N (γ) +N (γ)

−1 − 2

4
. (6.1)

Now, δγδ−1 is hyperbolic, so it is not an element of Γa. Assume that AΓ is large enough

and σ−1
a δz ∈ P

(

AΓ

√

N (γ)
)

, then by Lemma 3.1 we have

u
(

δz,
(

δγδ−1
)

δz
)

≥ DΓA
2
ΓN (γ) .

If AΓ is large enough, then this contradicts (6.1), the lemma is proved.

LEMMA 6.2. For a ∈ A and any complex s write

Aa (z, s) :=
(

Imσ−1
a z

)1−s
for z ∈ Fa (YΓ) ,

Aa (z, s) := 0 for z ∈ F \ Fa (YΓ) ,

finally let Aa (γz, s) = Aa (z, s) for γ ∈ Γ and z ∈ F . Let γ ∈ Γ be hyperbolic, then for

0 ≤ σ := Res ≤ 1 one has (using the notations of Lemma 3.3) that

∫

Cγ

(

1 +
∑

a∈A

|Aa (∗, s)|
)

dS ≪ (N (γ))
1−σ
2 logN (γ) .

Proof. It is well-known that
∫

Cγ
1dS ≤ logN (γ), so it is enough to show that

|Aa (z, s)| ≪ (N (γ))
1−σ
2

for every a ∈ A and every z ∈ H lying on the noneuclidean line connecting the fixed points

of γ, and this follows from Lemma 6.1. The lemma is proved.

LEMMA 6.3. Let the function f be as in Theorem 1.1.
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(i) For integers j ≥ 0 one has that

sup
z∈F

∣

∣

∣
uYΓ

j (z)
∣

∣

∣
≪ (1 + |tj |)C

and for any a ∈ A and R > 0 one has that

sup
z∈F

∫ R

−R

∣

∣

∣

∣

EYΓ

a

(

z,
1

2
+ ir

)∣

∣

∣

∣

2

dR≪ (1 +R)
C

with some absolute constant C.

(ii) For every positive integer K one has for j ≥ 0 that

|(f, uj)| ≪f,K (1 + |tj |)−K
.

(iii) For any a ∈ A the function

∫

F

f (z)Ea (z, s) dµz

is meromorphic for 1
2
≤ Res ≤ 2 having poles only at the points {Sl : l ∈ L}, and for

every positive integer K and every 1
2 ≤ σ ≤ 2 one has

∫ −1

−∞

∣

∣

∣

∣

∫

F

f (z)Ea (z, σ + ir) dµz

∣

∣

∣

∣

2

r2Kdr ≪f,K 1

and
∫ ∞

1

∣

∣

∣

∣

∫

F

f (z)Ea (z, σ + ir) dµz

∣

∣

∣

∣

2

r2Kdr ≪f,K 1.

Proof. Part (i) follows e.g. from [I], Proposition 7.2 and formulas (9.13), (8.1), (8.2), (8.5),

(8.6). For parts (ii) and (iii) we use that the Laplace operator is self-adjoint (see (4.2) of

[I]), and we apply repeatededly (4.2) of [I]. Part (ii) follows at once in this way. Part (iii)

also follows in this way if we can show that there is an absolute constant K0 > 0 such that

∫ −1

−∞

∫

F

∣

∣EY
a (z, σ + ir)

∣

∣

2
dµz

r2K0
dr +

∫ ∞

1

∫

F

∣

∣EY
a (z, σ + ir)

∣

∣

2
dµz

r2K0
dr ≪Y 1 (6.2)

for 1
2
< σ ≤ 2 and Y ≥ 1. (We can assume indeed σ > 1

2
, since the case σ = 1

2
of the last

statement of (iii) follows from the 1
2 < σ ≤ 2 case of that statement by continuity, since

the upper bound is uniform in σ.)
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Statement (6.2) can be deduced from the Maass-Selberg relations in the following way.

One first shows by (6.31) of [I] (using the notations of that book) that

|φa,a (σ + ir)| ≪ 1

for 1
2 < σ ≤ 2, |r| ≥ 1 and for any cusp a, then the same estimate follows for φa,b (σ + ir)

for any two cusps a, b. Finally, still by (6.31) of [I], we get

∑

b

|φa,b (σ + ir)|2 ≤ 1 +O

(

σ − 1

2

)

for 1
2
< σ ≤ 2, |r| ≥ 1 and for any cusp a. By the Hadamard inequality (see e.g. Corollary

7.8.2 of [H-J]) we then see that for the determinant φ = det(φa,b) we have that

|φ (σ + ir)|2 ≤
∏

a

(

∑

b

|φa,b (σ + ir)|2
)

≤
(

1 +O

(

σ − 1

2

))

∑

b

|φa0,b (σ + ir)|2

for any fixed cusp a0, and combining it with Propositions 12.7 and 12.8 of [He] we get that

∑

b

|φa0,b (σ + ir)|2 ≥ 1−O

((

σ − 1

2

)

ω (r)

)

for 1
2
< σ ≤ 2, |r| ≥ 1 and for any cusp a0 with ω defined in Proposition 12.7 of [He]. Then

using again (6.31) of [I] and Proposition 12.7 of [He] we get (6.2). The lemma is proved.

LEMMA 6.4. For any a ∈ A and l ∈ L such that 1
2 < Sl < 1 we have that

∑

j≥0, sj=Sl

(f, uj) βa,j (0) =

∫

F

f (z) ress=Sl
Ea (z, s) dµz. (6.3)

REMARK 6.5. Note that since f could be any function satisfying the conditions of

Theorem 1.1, so we could easily get

∑

j≥0, sj=Sl

uj (z)βa,j (0) = ress=Sl
Ea (z, s)

for every z ∈ H, but we will use (6.3) during the proof of Theorem 1.1, so it is enough for

our purposes.
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Proof. For z ∈ H we have that

f (z) =
∞
∑

j=0

(f, uj) uj (z) +
∑

a

1

4π

∫ ∞

−∞

(

f, Ea

(

∗, 1
2
+ ir

))

Ea

(

z,
1

2
+ ir

)

dr, (6.4)

and this expression is uniformly and absolutely convergent on compact subsets of H.

Formula (6.4) follows from the Spectral Theorem ([I], Theorems 4.7 and 7.3).

Using Lemma 6.3 and that f (σaz) is also bounded, (6.4) implies that for any a ∈ A the

sum
∞
∑

j=0

(f, uj)βa,j (0) y
1−sj+

+
∑

c

1

4π

∫ ∞

−∞

(

f, Ec

(

∗, 1
2
+ ir

))(

δcay
1
2
+ir + φc,a

(

1

2
+ ir

)

y
1
2
−ir

)

dr

is bounded for z ∈ P (YΓ). Since by [I], (6.22) and (6.27) we have

∑

c

(

f, Ec

(

∗, 1
2
+ ir

))

φc,a

(

1

2
+ ir

)

=

(

f, Ea

(

∗, 1
2
− ir

))

for any real r, so for any a ∈ A the sum

∞
∑

j=0

(f, uj)βa,j (0) y
1−sj+

+
1

4π

∫ ∞

−∞

((

f, Ea

(

∗, 1
2
+ ir

))

y
1
2
+ir +

(

f, Ea

(

∗, 1
2
− ir

))

y
1
2
−ir

)

dr

is bounded for z ∈ P (YΓ), i.e.

∞
∑

j=0

(f, uj) βa,j (0) y
1−sj +

1

2πi

∫

( 1
2 )

(
∫

F

f (z)Ea (z, s) dµz

)

y1−sds

is bounded for z ∈ P (YΓ). We now shift the integration to the right, to Res = 1− δ with

a small δ > 0, and we see that every residue must be 0 because of the boundedness. The

lemma follows.

References
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