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ABSTRACT. A certain generalization of the Selberg trace formula was proved by the first
named author in 1999. In this generalization instead of considering the integral of K(z, z)
(where K(z,w) is an automorphic kernel function) over the fundamental domain, one
considers the integral of K(z,z)u(z), where u(z) is a fixed automorphic eigenfunction of
the Laplace operator. This formula was proved for discrete subgroups of PSL(2,R), and
just as in the case of the classical Selberg trace formula it was obtained by evaluating in
two different ways ("geometrically" and "spectrally") the integral of K(z, z)u(z).

In the present paper we work out the geometric side of a further generalization of this
generalized trace formula: we consider the case of discrete subgroups of PSL(2,R)" where
n > 1. Many new difficulties arise in the case of these groups due to the fact that the
classification of conjugacy classes is much more complicated for n > 1 than in the case
n=1.

1. INTRODUCTION

1.1. The Selberg trace formula and its generalizations. The Selberg trace formula
(introduced by A. Selberg, see [10]) is a particularly important tool in the theory of auto-
morphic functions, it has many applications in different branches of mathematics. Briefly
speaking, it is obtained by computing the integral

TrK:/FK(z,z) du(z)
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in two different ways ("geometrically" and "spectrally"), where du(z) = y~2dxdy is the
usual measure on the complex upper half-plane H, F' C H is the fundamental domain of a
finite volume Fuchsian group I' < PSL(2,R) acting on H, and K(z,w) is an appropriate
automorphic kernel function (i.e. a function that is invariant under the action of T").

A. Bir6 obtained a generalization of this formula in [I] by evaluating the integral

(1) TrK:/FK(z,z)u(z) du(z),

where the weight u(z) is a Maass form (i.e. an automorphic eigenfunction of the Laplace
operator). Bir6 applied his generalization to the the hyperbolic circle problem (see [4]), and
some ideas of [I] are applied for cycle integral and triple product identities in [2] and [3].

Selberg’s trace formula was developed for a general family of groups, and our aim is to work
out the geometric side of Bird’s generalized formula for discrete subgroups of PSL(2,R)"™
where n > 1. For these, the details of the Selberg trace formula are given in [6].

1.2. Discrete subgroups of PSL(2,R)". The main example of the discrete subgroups of
PSL(2,R)" is the Hilbert modular group. For any totally real finite extension Q < K of
degree n > 1 it is defined as

1 pM (n)  pn) b
a a a
where K1), K are the different embeddings of K into R, and the images of an element
a € K by these embeddings are a(V), ... a(™. As usually, O denotes the ring of integers
in K.

The generalized trace formula (derived from () is fully worked out in the PhD thesis [13]
in the special case when I is a Hilbert modular group for a quadratic field of class number
one. Though a more general situation is handled here, the Hilbert modular groups still play

an important role in the following. Before specifying this role, we give a short summary of
the main results about discrete subgroups of PSL(2,R)"™. Many of these are proved in [7].

1.2.1. Action on the product of upper half-planes. The group PSL(2,R) acts on H in the

usual way, if v = [ CCL Z } € PSL(2,R) and z € H, then
az+b
2 = .
(2) =
This induces a coordinate-wise action of PSL(2,R)"™ on the product space H". For an
element z € H" we will use the notation z = (z1,..., z,) where z;, = zx+iyr € Hwith z € R

and y, € RT (k=1,...,n). That is, if y = (M, ..., 7)) € PSL(2,R)" and z € H", then
vz = ('y(l)zl, e ,'y(")zn). It is convenient to represent an element v € PSL(2,R)" as in the

: : : . a : :
one dimensional case, i.e. as a matrix v = [ . } , whose elements are n dimensional row

d

vectors with real coordinates, e.g. a = (a(V),...,a™). Then the action of PSL(2,R)" on H"
can be written formally as in (2]), where the operations are meant to be performed coordinate-
wise. It is known that I' < PSL(2,R)"™ is discrete if and only if it acts discontinuously on
H"™ (see Proposition 2.1 in [7]).

1.2.2. Irreducible groups. The groups I',T” < PSL(2,R)"™ are said to be strictly commen-
surable if T' N T has finite index in both I" and I. They are said to be commensurable if
I is strictly commensurable with a conjugate of I'. A discrete subgroup I' < PSL(2,R)"™
is said to be irreducible if I' is not commensurable with any direct product IV x I'”, where
I” and I are discrete subgroups of some non-trivial groups G’ and G”, respectively, for
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which PSL(2,R)” = G’ x G” holds. For a discrete subgroup I" of PSL(2,R)"™ we have the
following equivalent conditions for irreducibility (see the Corollary after Theorem 2 in [11]):

(i) T contains no element v = ('y(l), . ,’y(”)) such that v = 1 holds for some i while
~U) 2 1 holds for some 7,
(ii) there exist no partial product G’ of PSL(2,R)" such that the projection of I to G’
is discrete,
(iii) for every v € I\ {1} the centralizer of v in PSL(2,R)"™ is commutative.

In the following I' always denotes an irreducible subgroup. Note that property (i) above
implies that the Hilbert modular group is irreducible.

1.2.3. Cusps. The group PSL(2,R)"™ and hence its subgroup I' act on the set (R U {oco})".
This action is also given by (2]) (using the usual extended operations on the set R U {oo}).
Roughly speaking, an element of (R U {o0})™ is a cusp if its stabilizer in I' is in some sense
as large as possible.
First, let us consider the element co = (00,...,00). The stabilizer I', of co contains
elements of the form
| a b

and among them there are those for which all the coordinates of the vectors a and d are 1,
i.e. the translations. Let us define

tOO:tOO(F):{bGR”: [(1) Z{]GF},

then, since I' is discrete, to, is a discrete subgroup of R”, and hence it is isomorphic to Z™
for some 1 < m < n. The important cases are those, for which m = n holds (i.e. t is a
lattice).

For a general element v € I'o, we have d® = (a®))~1 (1 < k < n), and therefore
vz = a’z + ab holds for any z € H" (again, the operations are accomplished coordinate-
wise). Notice that the the coordinates of the vector a? are all positive. The vectors with this
property are called totally positive and they form the group (R™)"™ w.r.t. the coordinate-wise
multiplication. An element € € (R")" is called a multiplier for T if there is a v € T for
which vz = £z + b holds for some b € R". The multipliers form a subgroup of (R™)", it is
denoted by As = Axo(T).

If to is a lattice, then A, is a discrete subgroup of (R™)"™ and for each € € A, we have
e ... e =1 (see Remark 2.3 in [7]). Taking the logarithm coordinate-wise, we obtain
that log A is a discrete subgroup of R™ contained in the hyperplane

(3) V:{(ZER":a(1)+...+a(n):0}’

and hence cannot be a lattice. That is, if too = Z", then Ay, = Z™ for some 0 < m <n—1.
We say that oo is a cusp for I if too = Z" and Ay, = Z" L

Note that oo is a cusp for the Hilbert modular group. Indeed, in this case the n different
embeddings of K induce a map from Ok to R™ whose image is well-known to be a lattice
that to is isomorphic to. Also, Ay, consists of the squares of the units of O . By Dirichlet’s
unit theorem we have that O = Z"1 x {£1}, hence Ay 2 Z"! and our claim follow.

We say that an element £ € (RU{o0})™ is a cusp for the discrete group I' < PSL(2,R)"
if oo is a cusp for the group o 'I'c for some 0 € PSL(2,R)" with coo = k. It is not
hard to see that in this case oo is a cusp for p~'I'p for every element p € PSL(2,R)"” with
o000 = poo = K. Moreover, we have in fact Ayo(07'T0) = Aso(p™'I'p) =: A., hence this
group is determined uniquely by the cusp x and it is called the multiplier group for k. Note
that to (0 1T'0) is determined only up to a coordinate-wise scalar multiple. Having this in
mind, we will use the notation t, for such a lattice.
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1.2.4. Fundamental domain. Let X be a locally compact second-countable topological space,
and assume that I" is a group of topological (i.e. bijective, continuous and open) maps of X
onto itself. The set F' C X is called a fundamental set for I if

(4) X = J ).

~yel'

For example the space X itself is always a fundamental set. Of course we are interested in
fundamental sets that are in some sense as small as possible.

Also, we would like to consider measurable sets, so assume further that a I'-invariant
Radon measure p is given on X. Then a measurable set F' C X is called a fundamental
domain for I' if (@) holds, and there is a set S C F' such that p(S) = 0 and different points
of F'\ S are not on the same I'-orbit.

Every measurable fundamental set contains a fundamental domain (see Appendix II in
[7]), hence there exists a fundamental domain F' C H" for every irreducible discrete subgroup
I' < PSL(2,R)". In the following we always assume that the volume of F' is finite. This
holds of course when the quotient space H" \ T' is compact. However, this quotient is not
compact once there are cusps for I' since in that case F' contains parts that stretch out to
the boundary of H". Now we are in the position to state the following important theorem
(see Theorem I.1.5 in [6]):

Theorem 1.1. Assume thatn > 2 and I' < PSL(2,R)" is an irreducible discrete subgroup
whose fundamental domain has finite volume but the quotient space H" \ T' is not compact.
Then I' is commensurable with a Hilbert modular group for a number field K of degree n.

In addition, the field K in the theorem above is generated by the elements of A, for any
cusp k (see the proof of Theorem 4 in [11]). Note that if I' is commensurable with the
Hilbert modular group, then its fundamental domain is of finite volume.

From now on, I' always denotes a discrete irreducible subgroup of PSL(2,R)" with a
fundamental domain of finite volume, and we will assume also that I' has at least one
cusp. The group I' acts on the set of its cusps. It is well known that the number of the
equivalence classes (orbits) of the cusps for a Hilbert modular group is the class number of
the corresponding field K (see [12], Proposition 20 on p. 188). It follows from this and from
the theorem above, that the number of the equivalence classes of the cusps for I' is finite.

To describe the fundamental domain of I" we first define the cusp regions. We set

Uo:={z€eH": Ny>C},

where C' > 0 is a positive real number and Na = [[;_; a®) for any real vector a =
(a®,...,a™)T. If x is a cusp for T' and 0 € PSL(2,R)" is a fixed element for which
ooo = k holds, then the sets of the form o(U¢) are called the neighbourhoods of k. Note
that the set of these neighbourhoods does not depend on the choice of o.

The stabilizer T',; of x acts on the sets of the form U, = o(Ug,) (C, € RT, 000 = k). To
construct a fundamental domain for 'y in Uy, it is sufficient to give a fundamental domain
F! for 0710 = (67'T0)w in Ug,, and then the set F := o(F!) is a fundamental domain
for I'x in Ug. Recall that t, is a lattice in R™ and that log A, has rank n — 1 and it is
contained in the hyperplane V defined in [@]). Let P, be a fundamental parallelotope for t,
in R™ and let @), be a fundamental parallelotope for log A, in the vector space V. It is easy
to see that

Y

!/ _ . .
FH—{z—x—i-zyeUcﬂ.xePﬁ,logWGQ,@}

is a fundamental domain for 01T, in Ug, .
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To express Fj; in a simple way, we introduce the coordinates at the cusp . For this we fix
a scaling element o, € PSL(2,R)" such that 0,00 = K, a basis bf,...,bf in R" such that

n

PH:{beR":b:Ztkb“,Ogtk<1for1§k§n}
k=1

is a fundamental parallelotope for t,, and a basis af,...,al_; in V such that

n—1
Q,i:{aEV:a:Zslaf,Ogsl<1for1§l§n—1}
=1
is a fundamental parallelotope for log A.. Note that af = loge[’, where €f,... el | generate
the group A,. Then for any z € H" we write o'z = 2/ + iy’ and
o = XF(z)bf 4+ -+ XF(2)bE,
/
Y
Y& (z) = Ny, log ———
0 (Z) y ) Og (Ny,)l/n
Once the element o, and the bases above are fixed, the numbers X/ (z) and Y*(z) are
uniquely determined and called the coordinates of z at the cusp k. We may simply write X7
and Y}". Note that we also use the notation Yy(z) = Ny or simply Yy (which is the same as
Y5 (z) above once oo is a cusp and we choose 0o = id). The fundamental domain of I',; in
U, can be expressed in a simple form in terms of these coordinates:

Fo={2€U: 0<XF, ..., X5i<1,0<YF,..., Y5 <1}

If x and &’ are inequivalent cusps of I', then there exists neighbourhoods U and U’ of x
and ', respectively, such that v(U) N U’ = ) holds for any v € I (see Lemma 2.9 in [7]).
Hence, if we fix a maximal set S of I'-inequivalent cusps, then a real number C' > 0 can
be chosen such that the sets Uy, = 0, (Uc) are pairwise disjoint for the cusps in S, and the
corresponding sets F; contain at most 1 point from every I' orbit. Finally, the fundamental
domain for I' is given in the form

=Y{(2)logef +--- + Y | (2)logep_.

F:F0U<UFK>,

KES
where Fy C H™ is compact.

1.2.5. Classification of the elements of I'. Recall that an element id # v € PSL(2,R) is
called elliptic, parabolic or hyperbolic, if [trvy| < 2, |try| = 2 or [trvy| > 2, respectively. An
element of I' is called totally elliptic or totally parabolic, if each of its components are elliptic
or parabolic, respectively. If there are elements of different types among the components,
then this element is called mized. Note that if one component of an element is parabolic,
then so are the others by Theorem [[LII Hence a mixed element consists of elliptic and
hyperbolic components.

Before we turn to the case when every component is hyperbolic we examine the fixed
points of the elements. A totally elliptic element has a single fixed point z € H". Since I
acts discontinuously on H", z has a neighborhood U such that the set {y € T': yUNU # 0}
is finite. This means that a totally elliptic element must be of finite order. A totally
parabolic element fixes a single point in (R U {cc})™. Since I' is irreducible, the parabolic
fixed points are exactly the cusps of I' (see Theorem 3 in [II]). A mixed element with
1 <'m < n hyperbolic components fixes 2™ points in (HUR U {oco})™. If every component
of v € T is hyperbolic, then v fixes 2" points in (R U {cc})”. Such an element is called
hyperbolic-parabolic if there is cusp among its fixed points. Otherwise it is called totally
hyperbolic.



ON THE GEOMETRIC TRACE OF A GENERALIZED SELBERG TRACE FORMULA 6

1.3. Fourier expansion of automorphic forms. A function f : H* — C is called an
automorphic function with respect to the group I' if it is invariant under the action of I,
that is, f(vz) = f(z) holds for every z € H" and v € I". An automorphic form u is a smooth
automorphic function which is an eigenfunction of the Laplace operators
0? 0?
Ak:yi<—2+—2>, (kzl,...,n),
Ory Oy

that is, for which the equations (Ag + Ax)u = 0 hold with some A\ € C. We write these
eigenvalues in the form A\ = sx(1 — si) for some s, € C.
If u is an automorphic form and k is a cusp, then u(o,z) is invariant under the action

of the translation operator Tou = u(z1 + a1,..., 2, + a,) for any a € t,, hence it has the
Fourier expansion
U(Z) _ Z ¢(y7 1)62wi<l,m>’
let:

where z = (x1,...,2), ¥y = (Y1,-..,yn) and t. = {v € R" : (v,w) € Z for any w € t,}
is the dual lattice of t,. In general, the dual lattice is given in the following way. If
L = A(Z™) C R" is a lattice, where A € GL(R"), then its dual is given by L* = (A~1)T(Z").
In our case the columns of A are the vectors bf, ..., bL.

For a vector @ € R™ and a lattice L C R™ we define

al = {((Xlll,. .. 7anln) : (ll,. .. ,ln) S L}

It is easy to see, that if a € t,, and € € A, then ea € t,, and as A, is a group, we have in
fact et, = t,. If E is the diagonal matrix with the coordinates of ¢ in its diagonal, then

() ety = B(A)T(2") = ET(A™)T(Z")
= (AT E)T(Z") = (B4 H)T(Z") = (e 't)" =t
Since the Laplace operator commutes with the action of PSL(2,R)", u(oxz) is still an
eigenfunction of the Laplacians, and its Fourier coefficients can be expressed by means of

its eigenvalues and the modified Bessel function of the second kind, denoted by K, (z) (see
Theorem 5.1 in [14]):

Theorem 1.2. Let u be an automorphic form that satisfies the growth condition u(o,z) =
0(e?™%) asy, — oo (k=1,...,n) (where k is a cusp for T'). Then u(c.z) admits a Fourier
expansion of the form

(6) w(onz) = 3 an(l y)emi<te>,

let:
where

a(l,y) = cu(DVy1 - ynKs 17227 [l y1) - - K, —1/2(27 [ln] yn)
forl # 0, while a,;(0,y) =: ax(y) is the linear combination of two terms of the form y3* ... ys"
and y%_sl o yt=sn where the numbers sy € C are such that (Ay + sg(1 — s))u = 0.

In the following we always assume that an automorphic form w satisfies the growth con-
dition in Theorem and hence admits the Fourier expansion (). Since u(oyz) remains
unchanged if we substitute z — ez for any € € A, comparing the Fourier coefficients, using
[B) and also that Ne = 1 holds, we obtain that c.(el) = c4(I) for every cusp k and for
every € € Ay, I € t}\ 0. Also, well-known bounds for the Bessel function K, (z) and the

absolute convergence of the sum in (@) easily imply the trivial bound ¢, (l) < SINOIM™ for
any 6 > 0, where the implied constant depends on d. From this the exponential decay of
u(okz) — ak(y) "near the cusp" can be derived. Though we will not detail its (technical but
straightforward) proof, the precise statement is given in the following
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Proposition 1.3. Let u be an automorphic form with respect to I' with Laplace eigenvalues
sp(1 — s) that satisfies u(ox2) = o(e*™*) for any 1 < k < n. Assume that log <W>

is bounded, then u(o.z) — ag(y) = O(e~NW) 1/n) for some constant C' > 0 if N(y) is big
enough. The implied constant depends on the bounds on N(y) and log (

(Ny)l/ "
Recall that above we fixed the generators €f,...,el_; of A,. Their coordinates will be
denoted by (8;”)(k) (k =1,...,n). If the zeroth Fourier coefficient of u(o,z) is non-zero,

then the comparison of them on both sides of the equation u(oyz) = u(o4(e}2)) gives for
each 1 < j <n —1 (similarly as in section II.1 of [6]) that

(7) f[ (en®]™ =1.

k=1
Let us define s := (s + - -+ + s,,)/n, then by (7)) we have
1 log(ef)® ... log(er_ )M
(8)  (S1y---,5n) 1 log(a.’f)@) log(gfb'_l)@) = (ns, 2m’mu17,)€, . ,27Tz'mgfl;1))
1 log(e)™ . log(en_ )™
for some my, ;, = (mg,).@, .. m&nﬁ 1)) e 7Z™ 1. Let us denote the matrix above by &k. Since

the vectors log el form a ba51s in the trace 0 subspace of R™ and the first column of & is
not in that subspace, we get that & is invertible. Its inverse is of the form

1/n 1/n e 1/n
e | @Y @
(en— 1)(1) (62—1)(2) N G 1)(n)
and the values sy, ..., s, are determined by s and m,, , through
(S15.-+,8n) = (ns, 27m'm1(}7) 27mm(" Dye-t,
That is,
n—1 ‘ ‘
9) sp=s+ Z QWimgL(ef)(k), Yk = yjexp Z 27Tim1(372€(ef)(k) log yy
j=1 =

For a cusp ~ and for any m € Z" ! set

n n—1 n n—1

mim; (e (k)
(10) Am(y) = exp Zzzﬂ'lmj k) logyr | = H yz im;(ef)

k=1 j=1 k=1 j=1

for every y € (RT)™. With this notation we may write the zeroth coefficient of u(o,2) in
the following way:

() = M1 - Yn) Ny (W) + S(y1 - yn) TN ().

Later we will see that m,, , can be assumed to be the same vector m,, for every cusp, at least
if it can be defined. If however n, = ¢, = 0 holds for all K € S (i.e. u is a cusp form), then
we simply set m, = 0. Aside from the next paragraph, in the following we always assume
that 0 < Res < 1 holds whenever the number s is associated with the form .
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Later we will make use of a specific family automorphic forms, namely the Eisenstein
series that are defined as follows. Let x € S be a cusp. For an s € C and m € Z"! the
Eisenstein series belonging to k is given by

(11) E.(z,s,m) = Z y(v Wz y(y M z,)n
YET L\
for any z € H", where the exponents si,...,s, are defined as in (@)). This series converges

absolutely and uniformly on compact subsets for Res > 1. Also, E(z,s,m) (as a function
in the variable z) is clearly a I'-invariant eigenfunction of the Laplacians and (as a function
of s) it can be continued meromorphically to the whole complex plane. Moreover, for a cusp
k" € S the coefficient 7,/ in the Fourier coefficient a./(y) is 1 if " = k and 0 otherwise. For
the details see chapter II and also section I11.4 of [6].

2. THE GEOMETRIC TRACE

2.1. The automorphic kernel. In the following we fix a compactly supported smooth
function ¢ € C§°(R™) and define the point pair invariant kernel

|21 — w1|2 |20 — wn|2 |z — w|2
k :k g - ==
w<z7w> (z7W) w(hﬂZl'Imwl’ 7Imzn1mwn 1/} Imz-Imw

for every z,w € H". Invariance means that k(z,w) = k(oz,ow) holds for every z,w € H"
and 0 € PSL(2,R)". To avoid long formulae we often use the latter compact notation for
1 and its transforms defined below. In these cases the operations on vectors always indicate
coordinate-wise operations. The automorphic kernel K(z,w) is given by the sum

(12) K(z,w) =Y k(z,qw)

yerl’

that clearly defines an automorphic function w.r.t. I'.
The following transformations of 1) often occur in computations:

(tl, citn)
= dty...dty,
Q) = Qun,..ow) = [ [T )
(13) gu) =g(ur,...,up) == Qe +e " —2,... " +e " —2),

h(r) =h(ry,...,mm) ::/ / gut, ... up)et Zr=1 K duy | duy,.

Note that this is the multidimensional version of the Harish-Chandra transform. Since v is
a compactly supported smooth function, ¢ is also a smooth function with compact support
and hence h is rapidly decreasing.

The inverses of the transforms above are

1 (o] o . n
g(ul,...,un):w/ / h(m,...,rn)e_ZZkzlr’““’“dm...drn,

(14) Q(wl,...,wn):g<210g <\/%+ @) ... 2log <,/%+1+\/%>>,

8w1 awn (w1, ..., wy)

—t1. \/wn—tn

Yt ...ty

dwi . ..dw,

tn t1
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(see Proposition 1.2.2 in [6]).

2.2. The geometric trace. Now we turn to the multidimensional version of the generalized
Selberg trace formula, more precisely, to the geometric trace that is computed by collecting
the terms of the conjugacy classes in the sum (I2]). As in [I], our starting point is the integral

Tr, K = /FK(,Z, 2)u(z) p(z),

where v is a fixed automorphic form that satisfies the growth condition u(z) = o(e?"¥*)
for k =1,...,n, F'is the fundamental domain of I', and p is the product measure on H"
obtained from the measure y~2dxdy on H. Note that Res; < 1 is assumed for each k
(excluding the case u(z) = 1, that would yield the trace formula given in [6]). Since this
integral is not necessarily convergent, we work with the truncated trace defined by

(15) TAK = g K(z,z)u(z)du(z)

for every A > 0, where

Fy=FyU <U F,j‘)

KES

with F2A = {z € F,,: YJ(2) < A}
Substituting the definition of K (z,w) into (1)) and summing over the conjugacy classes

in I we get
TAK = Z Z / (z,02)u(z) du(z),

{7} oe{r}

where {7} denotes the conjugacy class of an element v € I'. Note that the conjugacy class
of the identity element consists only of itself, and the term that belongs to it is a constant

multiple of the integral
/ u(z) du(z).
Fy

This integral converges as A — oo and the limit is zero since the Laplacians are symmetric
operators and the eigenvalues of 1 and u are different.

Our aim is to give the contribution of the different types of classes in this trace. The
main result can be summarized in the form

Tl"ﬁK = Yell + Ymix + Epaur + Ehyp—par,

where the four terms on the right hand side stand for the contribution of totally elliptic,
mixed (and totally hyperbolic), totally parabolic and hyperbolic-parabolic classes, respec-
tively. Note that the totally hyperbolic classes can be handled in the same way as the mixed
classes, hence they are melted in a single term above. Since the individual terms are given
by lengthy and complicated formulae, we do not give the whole sum in one statement, but
split the main result into four theorems below instead. We begin with the contribution
of elliptic, mixed and totally hyperbolic classes, here the corresponding results are similar
to the ones in [I]. Our main focus is therefore on the parabolic and hyperbolic-parabolic
classes, that are handled afterwards.
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2.3. Contribution of totally elliptic, mixed and totally hyperbolic classes. In these

cases the sum

Z (z,02)u(z) du(z)

oefy} A
in Ter belonging to the class {7} actually converges as A — oo (one can see this by
analysing the detailed computations in the proofs of the next two theorems). We will also
see that there are only finitely many classes for which the sum above is non-zero, hence we
can integrate over F instead of Fy (by including an o(A) term as well).

Since oy oy = oy 'voy holds if and only if 09207 Uis in the centralizer C (7) of v, and

this is equivalent to o9 € C(y)o1, we get that

(16) Z / (z,02)u(z)du(z) = Z / (2,0 Yyoz2)u(z) du(z).

E{’Y} UGC(’Y \F

As k(pz, ow) = k(z,w) holds for every p € PSL(2,R)" and u is invariant under the action
of I', this last sum is

[ kozoauodua) = [ krpul) duca)

ocec(\r ¥ ol
and for every o € PSL(2,R)"™ this can be written as

(17) / Koz, oz )u(oz) du(z) = / k(=) 0 v02)uloz) du(z)
0~ 1(C(y)\H") (o7 1C(v)e)\H"

since the measure g and the function k are PSL(2,R)" invariant. Note that (o™*C(7)g) \H"
is nothing else but the fundamental domain of the group o~ *C(v)o.

Now we turn to the contribution of totally elliptic classes. Let us first note that by
Corollary 2.14; in [7] there are only finitely many such classes, hence ¥ is a sum of finitely
many terms of the form (I7).

Before giving the value Xy let us fix the following notations. Every elliptic element v € T’

is conjugate in PSL(2,R)"™ to an element of the form (R(Hgl)), . ,R(Hgn))), where

(18) Rlo) = |

cosa  sina
—sina  cosa

and the vector (0%1), e ,Hgn)) € [0, 7)™ depends only on the conjugacy class of .
Besides, let gx(r) : [0,00) — C be the unique solution of the differential equation

(19) g"(r) +

satisfying the initial condition g(0) = 1.

coshr ,

g'(r) = Ag(r)

sinh r

Theorem 2.1. The contribution of the totally elliptic classes in the truncated trace, i.e.,
the value of Yoy is

> )nu(z,y)/---/1,[)(5(7"1,99)),...,S(rn,ﬂgn))) <H g)\k(rk)sinhrkdrk> + 0(A),
0 0

m
(v} teit. 7 k=1

where the sum runs over all totally elliptic classes and for every class {~} the point z, € H"
is the fized point of v, m, € N is the order of the centralizer of v, S(r,0) = (2sinh 7 sin §)?
for any r,9 € R, (A1,...,\n) is the Laplacian eigenvalue vector of u, and the functions

gy, and the vector (0%1), e ,6?%")) are defined above the theorem. Moreover, there are only
finitely many totally elliptic conjugacy classes, hence the sum above is finite.
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Next we handle the mixed and totally hyperbolic classes, i.e. the classes whose elements
have at least one hyperbolic coordinates. For simplicity, we assume that the first 1 <m <n
coordinates of the element are hyperbolic, while the following n —m coordinates are elliptic.
The results below can easily be reformulated and proved for other distributions of coordinates
of different types. Note also that the case m = n is the totally hyperbolic case, at least if
the fixed points of the element are not cusps, which is assumed in this section.

Any mixed or totally hyperbolic element ~ is conjugate in PSL(2,R)" to an element of
the form

(20) v=(D(NM),...,D(NI™), RS, ..., R(6))

for some Na(,k) > 1 and Hf(yl) € [0,7), where

(21) o =[N o]

0 N71/2

and R(#) is defined in (I8)) above. It is not hard to see that all these numbers are determined
uniquely by the class of 7 (and hence the notations N,Sk) and 95,0 are justified). The number
Nv(k) is called the norm of v*). We also set

NP ) -2
cos? 9

(22) N(@®,~®)y .
for any ¥ € (=5;%) and 1 <k < m.

Let 0, € PSL(2,R)" be an element such that v = 0y lfyg7 holds. To give the contribution
of the class {7} we need to describe that centralizer C'(v) of v in o5 ITp,. By the results of
section L5 in [6] the centralizer C'(y) of «y is a free abelian group of rank m. We fix a set of
its generators denoted by 71, ..., Ym, then the centralizer C'(v) < Q,;lFQ»Y is Q;lC(v)gfy and
it is generated by the elements v; = Q,;l%-gfy for i = 1,...,m. As the v;’s have the same
fixed points as - this is true also for the conjugates and therefore

v = (DON). ... DING™), RED). ... RES))

This is a somewhat imprecise notation since N. (i)

means that Nv(f) is not necessarily the norm of I/Z-(k) in the above sense, but it is still deter-

mined by the (fixed) generator v; and we keep using this notation. The action of the first m
coordinates of the elements v; is simple: for every z = (z1,...,2,) € H" and k =1,...,m

we have |1/i(k)zk| = Nfsf) |zx| and arg Vi(k)zk = arg 2. The next statement follows now easily:

> 1 may not be assured for all k. This

Proposition 2.2. The fundamental domain of the centralizer C(v) = 9510(7)97 is
Fopy={z € H": (log|z1],...,log|zm|) € Py}
where Py is the fundamental parallelepiped of the lattice in R™ generated by the vectors
(log NV, .. JlogN{™)  (i=1,...,m).

Before the next theorem we introduce one more notation. Let f)(¢)) be the unique solution
of the differential equation

(23) F'(0) = —2F(0) (0 € (~n/2,7/2))

cos2 ¥

with the initial condition f)(0) =1 and f{(0) = 0. We are now ready to state
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Theorem 2.3. The contribution of the mized and totally hyperbolic classes in the truncated

trace is
Smix = > T, + o(A),
{7} mized or totally hyperbolic
where for a class {v}, for which the first m coordinates of v are hyperbolic and the rest are
elliptic, the value of T, is

(2m)""™F,(0,...,0)x

SIE]

x/ // /w N@1, 4D, N (O, 7™, 81, 07D, S, 8))
0 0

(NIE
[SIE]

<H I, (0 COS219 ) < H gxk(rk)sinhrk)drk>,

k=m+1

where N (9,~*)) is defined in (23), S(r,0) = (2sinhrsinf)? for any r,9 € R, (A,..., \n)
is the Laplacian eigenvalue vector of u, the functions fy, were defined before the theorem,

the functions g, were defined before Theorem [21, the vector (HSerl), .. ,92/")) is given by

(20) and

£(0,...,0) = / w(oM (r14), ..., 0™ (1), o™V, M)
(logT1,...,Jog rm )EPy

Here o, € PSL(2,R)" is an element for which g;lfyg is of the form (20) and the set P.
given in Proposition[2Z.2 An analogous formula gives the value of T, when the m hyperbolic
and n — m elliptic coordinates are distributed differently. Moreover, the value of T, is zero
except for finitely many classes.

o d?“k

—.
k=1 'k

2.4. Contribution of hyperbolic-parabolic classes. We continue with the contribution
of those classes whose elements have only hyperbolic coordinates but also fix a cusp. Let
v =(vW,..., ™) be such an element and let z = (z1,...,x,) be a cusp fixed by ~. That
is, 2; is a fixed point of the hyperbolic coordinate 79 and we denote its other one by .
Then, by the results of §20 in [I1] the fixed point (z],...,z],) of 7 is also a cusp.

Every hyperbolic-parabolic class is represented by an element that fixes a cusp kK € S. An
element of this type is conjugated by the scaling element o, € PSL(2,R)" to an element of
the form

wo [ @) augy) 2
Ym,a = 0 (ufn)fl/2 ’
where a € t,,, m = (my,...,my_1) € Z" 1\ {0} and uf, = ()™ ... (eF_{)™n-1 € A,.

The cusp in the notation u, indicates that this unit depends also on the multiplier group
A, and its generators. However, as a byproduct of the proof of this section’s main result we
also get the following

Proposition 2.4. The multiplier group Ay is the same for any kK € S.

This fact allows us to drop the index from the notation of the multiplier group and we
simply write A in the following. Also, we can and will fix the same generators e1,...,6,_1
for every cusp and therefore it is legitimate to write u,, instead of uf,. It follows also that
the matrix &, and consequently the integer vector m,, . (defined in (8])) are independent of
and will be denoted simply by £ and m,,, respectively. Note that the lattice t, does depend
on the cusp k.
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170;% and according to the first paragraph

of this section both points are cusps for o, 'I'o,. We will denote by &m o € S the cusp for
I that can be taken (by an element of I') to o,q.
The centralizer C(vfy, o) of V5 o in 0, 'Toy is given in §20 of [11]:

The element 7y, , fixes the points co and g =

Proposition 2.5. The centralizer C(%’Z’a) of the element 7y, , is a free abelian group of

rank n — 1 generated by some elements y(ly),...,v(ln—1), where l; € Z" 1\ {0} for any
1<j<n—-1and

/2 w;=1 _1/2
= |
J) = _
0 u1-1/2

J

In the following we fix a generating set of elements described in the proposition above
and define the (n — 1) x (n — 1) matrix

1 n—1
2 @ e
(24) L= ! 2 o
O 1 A

As before, we need to describe the fundamental domain F(,x y of C(vy, ). One shows by

induction that (I;)® = ~(hl;) holds for any h € Z. Let C denote the group generated by
the (clearly independent) elements

1/2
u,! 0 )
(25) Pl = [ ’ —-1/2 ] (1<j<n-1).
0 U
J
1 ——o
We set T = 0 1I“m ], then C(y5,,) = T7'CT and hence if F¢ is a fundamental

domain for C, then

oty =T 'Fo=Fc+ =Fc+q

1- m
is a fundamental domain for C'(v%,,).

It remains to describe the fundamental domain Fc. As in the case of mixed and totally
hyperbolic elements we use polar coordinates. That is, for a point z = (z1,...,2,) € H" we
write 2z = 7.’ ™/2+%) where 1, € RT and —Z < 9, < Z (1 <k < n). Let p,ifm be the
fundamental domain of the n — 1 dimensional lattice in V. ={a € R" : a3 + -+ + a,, = 0}
generated by the vectors v; = lj(-l) logey + -+ + lﬁ»n_l) logep,—1 (1 < j < n-—1). For
later purposes we specify the choice of ]57’;;704, namely we take the shifted image of the
parallelpiped spanned by vy,...,v,-1 (in V) symmetric to the origin. Let us fix the unit
vector 1 = (n_%, . ,n_%)T, it spans the subspace V4. If Py , = {t1 —1—15,’;7@ : t € R}, then
the fundamental domain F¢ is given by

(D1s-. . 0n) € (—/2i7/2), (ogri,...,logr) € Pl .

The contribution of the class belonging to 7;;, ,, in the truncated trace can be divided into
two parts. A main term (that diverges as A — o0) comes from the zeroth Fourier coefficient
of u(ox(z + ¢q)) and the transformed zeroth coefficient of u(oz,, ,(z + ¢)) while we obtain
the remaining convergent part by subtracting these from u(o4(z + ¢q)). Note that here the
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argument is shifted since we will give the result in terms of the fundamental domain F¢.
For any cusp k' € S we set

Mo (2) = neyst .y 4 Gyl Lyl
and subtract My (z + q) = M, (z) from u(a,@(z +q)), while in the case of /%m o we first apply
a transformation that maps g to co. This is performed by an element 0~ WOk €05 -1 FO‘H

having the matrix form [ ume_l ‘é } where § = ea + f(1 — up,). Using this notation we

0 0
define o
i 0° B u,,
(=) 1= u(on(z + @) = My (2) = My, <‘M>
where By, 1= um'/?> — ;). Note that it is convenient to work with the quantity F,, because

of its skew—symmetry in m. We mention in advance that though the vector § depends on
the choice of 0~ .0k, but the norm of 82 depends only on m and a. Note also that the
Fim.o (2) Was also used to simplify the defining formula of @, o.

Before the main statement of the section we define an equivalence relation on the lattice
t, for any k: the elements a, § € t, are said to be equivalent if 8 = (u,, — 1)a + w;a holds
for some | € Z" ! and a € t,, that is, if and only if 5 and w;o represent the same element
in the finite factor group t' := t./(um — 1)t,. These classes (represented as elements of
t"/A) are used to list the hyperbolic-parabolic conjugacy classes in the next result:

translation i 1nvar1ance of M=

Theorem 2.6. The contribution of the hyperbolic-parabolic classes in the truncated trace is

Yhyp—par = Om, M (A) + Z Z Z Cr(m, a) + o(A),

KES meZ"~1\{0} act?/A
the main term M(A) is given by
!det €| Nk A ¢ Al-
(26) Z — > gllogum)
mezZm~1\{0}
where £ and g were defined in (8) and (ﬂﬂ) respectively, and the term Cy(m, a) is

o ”kHld“/ s (s (T2 )

logrePf, -3 -3

where (A1,...,\n) is the Laplacian eigenvalue vector of u and fy, () is the unique solution
of the differential equation (23) satisfying the initial condition fy, (0) =1 and f;\k(()) = 0.
Moreover, the terms Cy(m,a) and the terms in (20) are zero for any cusp k for all but
finitely many m.

2.5. The (-functions at the cusps. In this section we introduce the {-function belonging
to the lattice t, and the multiplier group A where k is any cusp in S, these will be needed for
the last part of our result in the next section. In fact we define these objects in the following
general situation. Let L < R™ be a lattice of full rank for which the following holds: if
l= (l(l), e ,l(”))T e L and ™) =0 for any 1 < k < n, then [ = 0. We define the norm of [
by Nl =TI,_, 1) Using this terminology, we assume that any non-zero element of L has
non-zero norm. In addition, let M < (R*)™ be a discrete norm-1 multiplicative subgroup
of rank n — 1 that acts on R™ by coordinate-wise multiplication so that L is invariant under
this action. That is, let us assume that M = Z"~! for every ¢ € M Ne = 1 holds, and
finally, for any ¢ € M and [ € L we have ¢l := (5(1)1(1), ., eMIMNT ¢ I, We remark that
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N(el) = Nl holds for every € € M and [ € R" and hence the norm, restricted to the lattice
L, is in fact defined on M-orbits.

Though it is more convenient to give some required technical statements in the above
context, it is important to mention that this generality is illusory. Namely, it only simplifies
the notations and helps to focus on the important properties of the underlying objects, but
does not give a wider point of view since the setting we talk about is basically the same as
in our initial situation above. More concretely, a slight modification of the proof of Theorem
4 in [IT] gives the following

Proposition 2.7. Assume that L and M are as above. Then there exists a totally real
number field Q < K of degree n with embeddings KW c R,..., K™ c R such that for

each € = (5(1), . ,5(”))T € M the coordinate £%) is a totally positive unit in K*) for all
1 < k < n and the coordinates of € are conjugates of each other. Moreover, there is a vector
v=(v1,...,vn)T € R™ with non-zero coordinates such that for any element o € v- L (where

the coordinate-wise product is taken) we have a®) € K®) for every k and the coordinates of
a are conjugates of each other.

Let us fix the generators €1, ...,e,_1 of the group M and define the matrices £y and 5]\_/[1
analogously as £(= &) and its inverse were defined in Section [[L3] Then the corresponding
Grossencharacter-type exponential sum Ay, is given for every m € Z"~ 1 in the same way
as Al was in ([I0]).

We are interested in the sum

(27) Ziy(s,m) =Y

0£leL/M

Ant,—m (|1])
’N”S I

where s € C, m € Z"~! and |I| is the vector whose coordinates are the absolute values of the
corresponding coordinates of [. Since Ays,—y, is a multiplicative function and it is trivial on
M, the function Zy, ps(s,m) is well-defined and it will be called the zeta function belonging
to the lattice L and the group M. For L = t, and M = A we simply write Z,(s,m) and
it will be called the zeta function of I belonging to the cusp . Note that the index of A in
(27) is —m in order to obtain the equivalent form

1

Zim(ssm) = > o
ogler/pm T lin

where s, ..., s, are defined as in ().
We will show a few properties of these functions, they are summarized in the following
lemma:

Lemma 2.8. The sum in (Z7) converges absolutely and locally uniformly for Res > 1, hence

it defines an analytic function on this half-plane. It can be continued meromorphically to the

whole plane C and has no poles on C except for the case m = 0 when s =1 and s = 0 are

the only poles of Zy, (s, 0), they are simple and

2m \det 5]\/[’

Ress—12 )= ————.
ess=1 2.0 (5,0) = S TR 1)

Moreover, the completed function

satisfies the functional equation

vol(R™/L)/2=2 1, ps(s,m) = vol(R™/L*)Y2Z« p(1 — 5, —m)
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where L* is the dual lattice of L. The convexity bound

ZL7M(5,m) <em |[m8|n(1—Res)/2+a

holds for any e > 0 if 0 < Res < 1 and |Ims| is bounded from below by some positive
constant. Also, Zy, p(s,m) Kem |Ims|® holds if Res > 1 and |Ims| is bounded away from
zero.

2.6. Contribution of totally parabolic classes. At last we give the contribution of the
totally parabolic classes in the geometric trace. In advance of that we introduce some
notations. If k is a cusp of I' and o, is the corresponding scaling element, then the zeroth
Fourier coefficient of u(o,z) is ax(y) = neyi' ... yo" + ¢Ky1 L. yl=sn. Recall that if at
least one of 7,, and ¢, is non-zero (i.e. When u does not Vamsh at k) then the zeroth
coefficient a,(y) can be written in the form 7, (y1 .. ¥n)* Ay (V) + (V1 - - Y) A, (1),
where s = w and m, € Z" ' If n, = ¢, = 0 for all x, then m, = 0 holds by
definition. Note that in (I0) the function A\, = A, was defined in terms of the entries of
&, = £ and hence by Proposition 2.4l and its subsequent paragraph A, is independent of the
cusp that (from now on) will not be included in our notation. Now we are in the position
to give Xpar explicitly:

Theorem 2.9. The contribution of the totally parabolic classes in the truncated trace, i.e.,
the value of Xpar is

det&| [(neA® ¢ AT
5 b UEL (B 2R 0

KES

VOB 60) (1 Ze (1 — 5, ~m) F(0) + b Zo (5, m) F(0)) + (1)
as A — oo, where
F(S) = / o () [t dtx  and F(S) = / o (%) [t dtae
(R*)» k=t (R*)» k=t
The values F(0) and F(0) can be expressed in terms of the function h defined in (I3):

F(0) = (22 .877 >n (ﬁ <1—sk> ) / li[ sk;:r,; )rkd%

- (RT)m
and
. n n n 1 Sk:
= i Sk 2 —i—zrk)
Fo = () (10 (3)) [ o0 T pr
b=t COUNE

3. PROOFS OF THE THEOREMS

3.1. Proof in the totally elliptic case. We first prove Theorem 21l As it was already
mentioned, there are only finitely many elliptic conjugacy classes by Corollary 2.14; in [7]),
hence it remains to show the formula for 7', (defined in ([I6))). We prove by induction. Since
our argument is very similar to the one in [I], we only sketch the induction step.

Let v € I' be a totally elliptic element with the elliptic fixed point z, € H". The centralizer
C(7) consists of the elements in I' which leave the point z, fixed (see [II], p. 37) and the
stabilizer ', of z, in T is a finite cyclic group (see Remark 2.14 in [7]). Let us denote by
m., the order of C'(y). Every elliptic element in PSL(2,R) is conjugate to an element of the
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form —CanaH Sig } , hence the generator vy of C(y) can be chosen so that it is conjugate

in PSL(2,R)" to the element

T . lom oY I, ol

cos —  sin — cos —  sin— cos —  sin—

o = M.y Moy Moy Moy - Moy Moy
0 —gin o L . lom lom ’ ’ A lnm ’

B —sin — cos — —sin — cos —

gl gl My My Moy M.y

where [}, € Z with ged(ly, my) = 1 for every k = 2,...,n. Let us write v/ = 0~ 1y, we give
the fundamental domain Fe(,y of C(y') = (75) < ¢ 'To. The first coordinate of 7 is a
rotation around the point ¢ € H by the angle 27 /m.,, therefore every C(v')-orbit has exactly
one point in the set Fy x H* !, where Fy C H is a sector enclosed by two half-lines with
endpoint ¢ and angle 27 /m.. Note that in fact each coordinate is a rotation around ¢ which
means that o takes the point (7,...,%) to the fixed point z, of v. Now by (7)) we have

T, = /F k(z, v 2)u(0z) du(z) = L /n k(z, v 2)u(0z) du(z),

c(H) My

where we used the PSL(2,R)"-invariance of the function k£ and the measure p, the T'-
invariance of u and that 4" and 4, commute. Writing z = (21, ..., 2,) we have

@) [ ke Dule)du) = [ [ ke e duta) - dut).

where p(zx) denotes the measure yk_dek dyi. In the inner integral above the coordinates
z9,..., 2, are fixed, and the function u(pz) can be regarded as a function of z;. It is the
eigenfunction of the Laplace operator A; (because the operator commutes with the group
action), furthermore, the value of k(z,7'z) depends only on the hyperbolic distance of z;
and 7'Mz, To simplify the notation we write u(0z) = ui(z1) and k(z,w) = ky(z1,w1).
Furthermore, as 7/ is fixed we can simply write k(z,7'z) = k(21,7 (" 21). With this notation
the inner integral becomes

Ty = /Hk(zﬁ'z)u(gz) du(z1) = /Hk1(21,7'(1)21)u1(21)d#(zl)-

Recall that in (I8]) we introduced the notation

R(a) = [

cosa  sinw
—sina cosa |’

for any o € R. For a vector ¢ = (o), ... o) € R” we set R(p) = (R(¢™M), ..., R(p™)).
The elements of the centralizer C(7') are of the form R(y), in particular v/ = R(6,) for
some 6, = (0%1), . ,Hgn)) where ng) € [0,7). As it was mentioned in Section 23] it is not
hard to see that the vector ¢, is determined by the class of v, i.e. it is independent of the
choice of ¢ (at least if every coordinate is chosen from the interval [0,7)). Since ' € C(v')
we have in fact ng) = lpm/m, for some integer 0 < I, < my (k=1,...,n).

Next we use geodesic polar coordinates (see [§], section 1.3), i.e. we make the substitution
z1 = R(p1)e "0 where r; € (0,00) is the hyperbolic distance of i and z; and ¢ € [0, 7).
Then we have du(z1) = (2sinhry) drq dp; and

7= [ [ ka(RGee i ROD)RIp)E ) (Rlgn)e " i)2sinbr gy dry
0 0
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As the elements R(Hgl)) and R(p1) commute and k; depends only on the hyperbolic distance
of the variables, we get that

T = / kl(e*”i,R(H,(Yl))e*”i)) </ ui(R(p1)e i) dcp1> (2sinh ) dry.
0 0

Recall that ki(z1,w1) = ¢ (p(z1,w1), ..., p(Zn, wn)) =: Y1(p(z1,w1)), where

| —w
p('zk?wk‘) - Imzk Imwk

for k =1,...,n. One gets by a computation that

B |—e’2r’“ + 1|2 sin? Hgk)
) - 6727’]C

p(e_rki,R(Hgk))e_rki = (2sinh 7 sin 9%’”)2,

hence
(29) T = / 1((2sinh rq sin 951))2) (/ ui(R(p1)e i) dg01> (2sinhry) dry.
0 0

Let us define the function
1 s
Gi(w) = - / ur (R(pr )w) depy,
0

s

where w € H. By Lemma 1.10 in [8] the value of G; depends only on the hyperbolic distance
r of w and i. Moreover, G1 is the eigenfunction of the (one dimensional) Laplace operator
A with eigenvalue A1, where A1 is the first coordinate of the eigenvalue vector of u. Now by
Lemma 1.12 of [§] this function is unique up to a constant factor. Furthermore

9%  coshr O 1 0?

—2 + B a + R 2 P

or sinhr dr  4sinh*r 0y

hence the function G; (as a function of r) satisfies the differential equation (I9) with the
constant A = Ay, and consequently

A =

Gi(w) = g, (M) (i) = gAl(T)U(Q(l)i, 0@z, ..., 0™ Zn),
where gy, (r) : [0,00) — C is the solution of (I9) with A = \; satisfying the initial condition
gr (0) = 1. By substituting this in (29), then interchanging the integrals in ([28) and
proceeding by induction one gets the statement of the theorem.

3.2. Proof in the mixed and totally hyperbolic cases. We continue with the proof of
Theorem 23l Let v € T' a mixed or a totally hyperbolic element. We assume that the first
1 < m < n coordinate of v are hyperbolic while the following n —m coordinates are elliptic,
the proof of the statement is similar in the other cases. We have seen in Section 23] that
such an element is conjugated by an element o € PSL(2,R)" to an element of the form

v = <D(N7(1)), . ,D(Ngm)),R(HgmH)),...,R(Hgn))> for some Nv(k) > 1 and Hgl) € [0;27),
where D(N) and R(6) were defined in (2I) and (I8)), respectively. An easy computation

shows that these numbers are uniquely defined by the class {v}.
As in the totally elliptic case, by (IT) we need to consider the integral

r- [  Herzule ),

where Fg(,) is the fundamental domain for the centralizer C(v) < 0 'To of v = o~ y0.
This domain was described in Proposition and the notations introduced there will be
used in the following.



ON THE GEOMETRIC TRACE OF A GENERALIZED SELBERG TRACE FORMULA 19

For the first m coordinates of z we change to polar coordinates, i.e. make the substitution
2z, = 13,"™/2H%) where r; € (0,00) and ¥y, € (—%,3) (k = 1,...,m), while for the last
n—m coordinates we change to geodesic polar coordinates as in the previous proof. A simple
computation shows that p(z;, v z,) = N(9%,4®) for k = 1,...,m (where N (93, 7*)) was
defined in (22))), and by ylf dxy, dyy, = (), cos? 93,) "1 dry dv, and the results of the previous
proof we obtain that T, is

o 3
27‘( n- m/ // /w 1917 ,-.., (ﬂm/y(m)) S(Tm+170(m+1))7"'7S(rn’6’(yn)))

-2 T3
- o dv ddp,
i(5+91) i(5+0m) 1
x F(e" 2T e'le )cos2191 . ( H Ire rk)smhrkdrk>
k=m+1
where S(r,6) = (2sinhrsin #)? and
. n). " dr
F(z) = / u(g(l)(mzl), 0™ (Pmzm), o ol )z) 7"—:
k=1

(log71,...,log rm)EPy

for any z € H™. Since u(pz) is invariant under the action of the centralizer C(v), one sees
easily that the function F' is invariant under is coordinate-wise scalar multiplication, i.e.
F(Riz1,...,Rmzm) = F(21,...,2n) holds for any Ry,..., R, € (0,00) and zq1,..., 2, € H.
This means that F depends only on the vector (91,...,0m) (where zj, = rpe(2 7).
Moreover, since u is the eigenfunction of every Ay with eigenvalue A\ and these operators
commute with the group action, we infer that F'(z) is also an eigenfunction of the Laplacians

Aq,...,A,, with the same corresponding eigenvalues. As

0? 4 0 _, 0?
Ak:(rkcosﬁk)z <82+’I“klak+ k28192>

we obtain the differential equations

0’F Ak

(30) 8192(191,...,19 ) =

F(¥1,...,9m) (O € (—7/2,7/2), k=1,...,m).

Let fy, (¢) be the unique solution of the differential equation (23)) with A = Ay, and the initial
conditions fy,(0) =1 and f} (0) =0, and fr,(9) the one with fy (0) = 0 and f;\k (0) =1.
Note that fy, (—¥) satisfies ([23)) and the initial conditions of fy, (¥}) and hence they agree,
i.e. fy, is an even function. Similarly, f)\k is an odd function.

The equation

F (O "92’ s ’ﬂm)f)q(l?l)

F(1,. i) = F(O, 02, 0m) fr, (91) + 55-

holds by (B0) for every fixed ¥, ..., VU, hence the inner integral in T is

us
2

YD), N @y ™), S, 054), S, 05))

<

(N (

S

NIE]

oF

< (FO0a e )1 01) 4 50020 )y (00) 251

cos? ¥y
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B(N@1,7Y), o N, v ™), S(rpgr, 05, L Sy, 0807))

I
\wlﬂ

|
(ME

ddy
cosZ 94

F(O,’ng, s a’lgm)f>q (191)

because N (91,7V) and cos~2(¢91) are even and fy,(¥1) is an odd function. Then, by
induction (using also that f), is even) we infer

T, =(27)" "™ F(0,...,0)x

s E
2

X/// /w (91,9, N (s ), S (g1, 00DY, L S, 60))
0 0

-5 3
dd}, n .
(H I cos219 ) ( H gAk(rk)Slnhrk)drk>7
k=m+1
where

- W) (ryd @ (). olmT1); (n) : " dry,
F(0,...,0) = u(oW (r1i), ..., 0% (1), 0 i, 0 Z)H__
Tk

(logT1,...,log rm)EPy k=1

It remains to show that there are only finitely many mixed or totally hyperbolic equiva-
lence classes for which T, is non-zero. Note that since ¢ has compact support and

N+ (V)1 — 2

N('ﬁlm fy(k)) = C082 01{:

k k)\—1
> NW 4 (N1 2 =

tr [’Y(k)]‘ -2,

we get T, = 0 once {tr [y(k)” is big enough for some k. Hence it is enough to show that there
are only finitely many classes whose representatives have hyperbolic coordinates of bounded
norm (and trace).

By Theorem [LTI I is commensurable with a Hilbert modular group I'g, so there is an
M, € NT such that vM~ is conjugate to an element in I'g, moreover, the exponent M, is
bounded by a constant depending on I'. It follows that it is enough to show that there are
only finitely many mixed or totally hyperbolic classes in I'x with coordinates of bounded
trace.

Note that the trace of (VMV)(]“) is in Oy for every 1 < k < n, and these values
are conjugates of each other. Hence if each of them is bounded, then the norm of them
is bounded as well, so there are finitely many possibilities for the values of these traces.
Finally, by Proposition 1.7.1 and the paragraph after Definition 1.7.2 in [6], there are only
finitely many totally hyperbolic conjugacy classes with fixed traces, and this completes the
proof of Theorem 2.3

3.3. Proof in the hyperbolic-parabolic case. In this section we prove Theorem In
the course of the following proof the statement of Proposition 2.4] will also be verified, but
until that point of our argument we always indicate any possible or evident dependence on
a cusp. Accordingly, we temporarily use the notations A, for the multiplier group and €5
for its generators.

Recall that every hyperbolic-parabolic class is represented by an element that fixes a cusp
k € S and such an element is conjugated by the scaling element o, € PSL(2,R)" to an
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element of the form

(up)'? alug,) 2

(31) Tm,a = 0 (u%)71/2 )

where a € t,;,, m = (ma,...,mp_1) € Z" 1\ {0} and uf, = (e§)™ ... (ef_;)™ -1 € A,. To
simplify the notation, we often write u,, instead of u¥, in the following, at least when & is
fixed. Note that the action of 7y, , on a point z € H" can be written as v, .2 = up,2 + «
and hence ¢ = % is the real fixed vector of 7y, , that is also a cusp for o 1To, (as it was
already mentioned in Section 2.4]).

A simple computation shows that if elements 7, o and 7, g of the form (BI)) are conjugate
in U,eram then m’ = m or m’ = —m holds. Assume first that the elements 7, , and Ym,B
are conjugate to each other. Again, it follows by a straightforward calculation that

B = (up, — Da+ (uf) e
holds for some [ € Z"~! and a € t,, in this case. This means exactly that /3 represents the
same element in the finite factor group t7 := t,./(uf, — 1)t as (uf) 'a, and hence for a
fixed m (and k) the hyperbolic-parabolic classes are represented by the equivalence classes
of t]"/A.

Now assume that the elements vy, o and v_,, g are conjugate for some m € Z"~1\ {0}
and o, 8 € tg, ie. T_l’)/m,aT = Y_m,p for some 7 € lelfan. Since T_l’)/mpﬂ' fixes 77 1oo
and also 77 1¢, one of these points must be co. If 77loo = 0o was true, then the conjugate
would be of the form ~,, 3, which is impossible (since m # 0). It follows that 771 takes ¢
to oo, hence these cusps are equivalent in o 'I'o,. Similarly, if these cusps are equivalent
then v, o is conjugate to an element y_,, 3.

Based on this the contribution of the hyperbolic-parabolic classes in the trace can be
written as

1 _—
X Y Y Y [ ke heue)de) -
RES meZM=1\0 o€t /A seo(y\r
Y~V a
1 K
(32) =32 2. > > / L R a)u(oez) du(z),
KES meZn—1\0 act?/Ax UGC(W%ya)\U,ZlFaR o(ox Fa)

where C(vf;, ) is the centralizer of ~f, , in o, 'To.. We multiply the whole sum by 1/2
since every class is taken into account for both fixed cusps of their elements except for those
whose fixed points are equivalent in I'. But in the latter case we count these classes twice
for an m and —m as well.

Let us focus on the inner sum

(33) Z / (2, Ym.a2)u(0k2) du(z).
oeC( Vma \J/i Loy (ox FA

First, note that k(z,7y, 2) can be written as

(1) (1)\—1/2\2 (n) (n)y—1/2y2
" ((Em T —al(um ) / ) n (E(l))Q,. (Em T _an(u ) / ) + (Er(r?))2> ,

yi mey yi
" —-1/2 1/2 . . . .
where E,, = E = uy '~ — up,. Since v is compactly supported, it follows immediately

that (33]) is zero for all but finitely many m, and hence the sum in (32]) is finite.
The union of the sets o(o;'Fy4) in the integrals above, where o runs through the right
cosets of the centralizer C(vy, ), makes up the fundamental domain Fg(ys ) of C(75,4)
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except for the images of the part F'\ Fy =: F'}. We will now show that for some cosets it is
unnecessary to omit the images of F}, since there we integrate only the zero function. For
this we write the kernel function in the form

|/’<71—C]1|2 |Zn_Qn|2 )
- .
EW) 2 (B

(34) k(2771ler,az) =1 ((

The part o(o, ' F}) is the same as

U{ZGFC(%@”Q):U,QJ L2 e F, Y (0,0 '2) > A}

The condition Y* (O'H ) > A means that z € O'O';lo'n/UA, that is, there is a w € U4 such
1 a b

oww. Let us define v = oo o = d
of the expressions in the arguments on the right hand side of ([34]) is

n 2 2 n
‘kak_Qk’ _ m
I | - = | |

ion (ES)) =2y, (vw)?

that z = oo . If w = w+iv, then the product

2

VEWg —
—

apwy + by oy

crwg +di 1 — u,g?

N((1 - UM)2) ‘
Yo(vw)? H

L N0 —un)?) Pr (0 u(S?)ak — aen)’v}
et (1— m) |crwr + di|?

> N((1 — um)a — ac)’>N(c)*Yo(w)?.

The first two factors of the last product are bounded away from zero by Lemma 2.9; in
[7], at least if they are non-zero. This follows for the second factor easily but requires some
explanation in the case of the first factor. The point ¢ is a cusp for o 'T'o,, hence ¢ = o713
for some cusp S of I'. Let A € S denote the base element of the I'-equivalence class of 3,
then ¢ = o 90\ for some vy € T, i.e. 0;170710,@ € 0;11’0,{ takes ¢ to co, hence it is of the
form [ ume,l £ } where § = eav + f(1 — up,).

0 o
We first show that N(62) depends only on ¢, i.e. on m and a. Assume that O';l’)//O',i also

/ /
takes ¢ to oo for some +' € T', and therefore it is of the form [ uf_l ‘); ] . Now
5 &

-1

(03" ox) (03 g ok) T = 0 'Y 008 € ) 'Toy

fixes oo (which is a cusp for agll“aA), and then

1
um—1 o um—1 o - um—1 1—um -
o o ) ) o P ) €

holds for some u € Ay and t € ty. It follows that & 2 = ud?, hence N(§2) = N(§?).

iu% t
0 :I:ufé
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Now
*

—1_ -1 * -1
Oy Y OkV = _ (A-um)a—ac % €0y Loy,
6
and choosing A := ¢ 'T'o, in Lemma 2.9; of [7] we get that N((1—u;,)a—ac)? > N(52)Cy
for some positive constant Cp > 0 (assuming that (1 — u,,)a — ac # 0).
Next we handle the cases where one of the factors N(c)? and N((1 — u,,)a — ac)? is 0.

Since o = o 'y0o, for some v € I, hence ¢ = 0 holds if and only if
00 = VOO = 00;10,@/00 = 0;17/{',
that is, k = 0,00 = yx/. But I" permutes the elements of the class of s/, so ¢ = 0 can hold
only if K = «/, and then v = o, and therefore oo = ooo holds. Consequently, the condition
Yy (0,071 2) > A reduces to Yo(o'2) = Yy(2) > A in this case.
Assume now that (1 — u;,)a — ac =0, that is, £ = ¢ holds. This means that
o\ = ¢ = voo = o, IyK/,
hence ' = A must hold. This means that the exceptional set o (o, 1F}) can be reduced to

{Z S FC('\/,";”LQ) : Yo(O';lU,QO'ilZ) > A}

The element 0;1050_1 takes ¢ to oo, hence - as we have already seen above - it is of the

form [ ume_l ‘Z: }, where 0 = eav + f(1 — uy,), and then
)

5

_ N(0%)Yo(2)  N(SE;1)2Yo(2)

= o= )
HZ=1 ‘(USE) — 1Dz, + ag [Ti=1 I26 — k|

Yooy towotz)

All this shows that the expression in (33]) can be written as

/ B2 o2 u(02) dp(2),
Sa

where

—1\2
Sa = {Z S FC(%’%,a) : Yo(z) <A N((SEm ) Yb(z) < A},

) n 2 —
[Ti=1 |2k — al
at least when A is big enough. Recall that the centralizer C(vy;, ) and its fundamental

domain was described in Section 2.4l In the following we also use some relating notations
defined there. A direct calculation shows now that the last integral above is

|21 - Q1|2 |Zn - C]n|2
P Yoy u(okz) du(z) =
/sA <<E£&>>—2y% (BT 2gz ) 1 )

E%) 2 Er(:) n2
= / w(‘ al ’ QZ’>U(%(2+Q))d#(2),

y? y2

Sa—q

where

—1\2
SA_QZ{ZGFC: Yo(z) < A, YO ) T0l2) sA}.

2
szl |2k |

The two inequalities above can be written in terms of the polar coordinates as follows:

—1\2 T . n
Ay = N(OF )Ly 008 Uy < Hrk < ——"—— A = A”.
A P [Ti_q cos vy
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drd dr di
Since S A , the integral above becomes after the change of variables
Y2 r cos? ¥
w/2 w/2 1) (n) n
(B (B dv
35 IL,(A, ¥, m,
(35) / / v <0082 917 cos2d, ( m, ) H cos?Z Uy,
—7/2 —7/2 k=1
where
- " d
L(A,9,m,a) = / U (O.K(rel(g-i-ﬂ) 4 q)) iy
Tk
k=1
logrePy,
Ag<Nr<A?

We handle the zeroth term and the remaining terms of the Fourier expansion of the
function u(oy(z + q)) separately. To this end, for any cusp ' we write

u(a,.i/z) = nm’yfl cee yin + QSH’y%_SI cee yrlzisn + Rm’('z) = MH’(Z) + Rm’('z)'

Subtracting the contribution of the zeroth term M, (re’(Z 7% 4¢) from the integral I,(A, 9, m, o)

one obtains
n

s d'l"k;
[l I
Tk
k=1
logrePT’jL’a
Ay<Nr<AY

However, this integral does not converge as A — oo, but Proposition [[3] gives that it does
converge if one integrates only over {logr € Pro:1<N r}. Note that by the compact
support of ¥ the coordinates of the vector cos? can be assumed to be bounded away from
zero and hence R, in the above integral can be bounded uniformly exponentially using
Proposition [L3l To ensure convergence on the other half of the set {logr € Py, ,} we will
subtract the main term of u at ¢. By the [-invariance of u we have

oz +a) = ulon(oy 25 ol + ) = (2 (—eteq+ 1) - LELEY ),

hence (after the substitution r — 1) the integral of u (aﬁ(rei(%Jrﬁ) + q)) over the set {logr €
Py o+ Ag < Nr < 1} becomes

n

[ ulon (~etea+ )+ ea+ pre ) L2 =

P
logrePy, ,
1<Nr<Ay?
s ST n drk
= [ (e pPreE0) 1 By ((eq+ P30 — eteq + ) TT T
Tk
logrePy, k=t
1<Nr<Ay?

Here we also used the translation invariance of My. It is now clear that the integral of the
second term above converges, i.e.

i eq + f)? i L S
u <”ﬁ<”’ G+ q>> — My (‘ﬁ) - (%(re G+ 4 q>) — M, <_W
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is integrable over {logr € PJ, , : Nr < 1}. A straightforward computation (detailed below)

shows the same for MH(Tei(%“?)) and then consequently for the function

<k iz iz i(z 0 Byt
Uy o (1€ G+ =y <a,i(re G+ 4 q)) — M, <re (2+79)> — M, <_W> :

A similar argument gives that ﬁ’%7a(rei(%+’9)) is integrable over {logr € Py, , : 1 < Nr} and
hence over the whole set {logr € P}, ,}.
Now I,,(A, 9, m,«) can be written as

(36)
(= PE 2y I\ 1 d B . nog
(R 20| Caypweey tawn
logre Py, k=1 logreP, k=1
Ay<Nr<AY

First we turn to the second integral above. Observe that the function U(z) := u(o.(z + q))
is invariant under the action of p;; (defined in (23)):

U(pi;2) = u(ow(u,;z + q)) = w(ow(u, (z + q) + (1 —w;)q))
= u(oxy(lj)(z + q) = ulox(z +q)) = U(2),

because the element (I;) is in the centralizer C(v5 ,,) < o To,, and u is invariant under

the action of I'. The same invariance holds for My(z) and M)y (—%) as well, hence

the invariance of 4y, ,(2) under the action of p;; follows.
Let us define the function

“ dr

- k

Fral)= [ ) [T
logrePf, k=1

By the observation of the last paragraph we can see as in the case of mixed elements
that FJ, , is invariant under coordinate-wise scalar multiplication, i.e. Fy, ,(2) = FJ, (V)
depends only on ¥ where z = ret(z+0),

Since the Laplacian Ay is an invariant operator (i.e. it commutes with the action of

PSL(2,R)"), we get that U(z) is an eigenfunction of it with the eigenvalue A;. But the
same is true My (z) and M) < 52'”7;””1), and therefore 4y, ,(2) and also F}}, ,(z) are eigen-

functions of Ay with the eigenvalue A;. In the same way as in the case of mixed elements
we conclude that the contribution of the second integral of ([36]) in (35 is

/ / 2 (B fo o (V) diy
cos2791 " cos? ¥, Pt cos2 9}, ’

_ T _

l\.')
l\.')

where fy, (¥) is the unique solution of the differential equation (23) with the initial condition
fr(0) =1 and f{ (0) =0 and

o dr

- . . k
Fro(0,...,0) = / u(rlz,...,rnz)Hﬁ.
logrePy, , k=1
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Finally we calculate the first integral in ([B6). The map r +— (logry,...,logr,) maps the
set we integrate on to

Fai= U {11} x P,
1 1
n” 2 log Ay<t<n~ 2 log AY

and the determinant of its Jacobian is [[;_; 7",;1, so the integral is
g PE2u-
(37) / M., <e$+z(§+ >) + M, ( Jeawie: > H dxy,.
Fa

The first term of the zeroth Fourier coefficient M, gives the following contribution to the
integral above:

(38) N H (cos 9g)°* /exp <Z skxk> H dxy,.
k=1

Fa k=1

Let £ be the linear map that maps the standard basis of R™ to 1,vf,...,vff_; (see Section

[2.4] for the definitions) so that L£([n~ 2 log Ag;n "2 log Aﬁ] [—3; 31" 1) = Fa. The matrix
of this map w.r.t. the standard basis is [£] = &, [ ] where & is defined in (§)
and Ly, , is defined in (24)). Hence, after a change of Varlables the integral in (B8]) becomes

1
-3 9
n~ 2 log A 1 1/2

n—1
|det[L]] / e Yo dtOH / exp tqugj)Zskloge“ (k) dty =
j=1 k=

1 q= 1_
n"2 log Ag 1/2

1
-3 ?
n~ 2 log A n—1 1/2

1 n_l . .
(39) — |det[£]| / eon®s gty T / exp | 2mity S 19mY), | dt,

1 q=1_ Jj=1
n~ 2 log Ay 1/2

by (8). This expression is zero unless (L, )Tmu «~ = 0 holds. Since

0 # det[L] =n~ 2 det &, det L~

m,a’

i.e. det Ly, , # 0, this can hold only if m,,, = 0. In the latter case (38) becomes
N |det Ec| [det LE, | o N(OE,")* Ty (cos 9)**] _ 1w |det & |det L, | A®

ns As ns

+o(A4).

Here we used that since i has a compact support, the values cos ¥ are bounded away from
zero by a constant depending on 1 and I'. The same argument gives that the contribution
of the second term of the zeroth Fourier coefficient My, in I,,(A, ¥, m,«) is

r |det E| |[det L, | AT*
’ A).
n(l —s) +o(4)

Now we turn to the integral of the second term in (37). The first term of this Fourier
coefficient contributes

A H <(6(’9))2(E7(ﬁ))—2(u%))—1 cos 19k>8k /exp <—Z«9k$k> H dxy.
k=1 k=1 k=1

Fa

(40)
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The same computation as above shows that this is zero unless m, , = 0, in which case one
gets

~3log A"
" n og

ny [det[L]| N(6E;, H cos ¥i)° / tO”QSdt

N |det Ec| |det Lma|
ns

4+ 0(A).

1
n” 2 log(A?)—1

Finally, we get one more term which is of the form as the one in (@0), replacing ¢, by ¢,.
We conclude that (37) contributes in (35]) (aside from an O(A) term) as

<(77n+?7x) _|_(¢n‘|’¢>\)A1 8> |det Ly, aHdetE \/ / <

49
(3082 9 - (3082 I’

s 1-s
—7/2—7/2
where the last integral is
2 E(”) 2 n do
/ l/ () 1 A0
cos2 191 " cos? Y, P cos2 Yy,
1 /OO /OO Tzz)(tl, .. ’ & (1) (n)

= e = g(loguy,’, ... logu,’).

N{TEw] i (Ew > LT = e )

We summarize the results obtained so far. The contribution of the hyperbolic-parabolic
classes in the truncated trace is

1
(41) 2hyp—par = 5 Z Z Z [6mu K,M (m Q A) + Cx ( )] + O(A)’
KES meZn—1\{0} act?/Ax

where the main term M, (m,a, A) is given by

(s + i) A* | (0 Bin) Al=s\ |det LE, | |det & (log )
. s nN(ER) R

where Fp,o € S is the cusp for I' that can be taken (by an element of I') to 015+, and
the term Cy(m, a) is

(42) / (ri kl‘[ldﬁg /2/2 (Cos2ﬂ> <H I i;ﬂiﬂk) ’

logrePy, , z 3

tol

Moreover, the terms above are zero for any cusp « for all but finitely many m.

Let us fix a x € S, an m € Z" 1\ {0} and an o € t™/A, in the sum (Iﬂl) above. The
corresponding term is counted twice, it occurs also in the case of the cusp x’ = /%m . for an
appropriate m’ € Z"~1\ {0} and a class 3. It follows that the main terms —.7f (m a, A)
and 0., , M (m’, 3, A) are equal.

At this point we specify the function u(z), namely, we work with the Eisenstein series
E,(z,s,0) for some fixed 3 < s < 1 (defined in (II])). It is not a cusp form and s; = ... = s,
hold for its eigenvalues, and therefore m,,, = m, .+ = 0 must hold by (8) which implies
Mi(m,a,A) = M (m/,3,A). Also, since 1, = 1 and 7,s = 0, the first factor of each of
these main terms is non-zero.
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/%m,a
m/

Assume that uff, # u holds, then we can choose the function g so that exactly one

m,o

of g(logu”) and g(logun™*) is zero. This yields that exactly one of My(m,a, A) and

Mz, . (m', B, A) is zero, which is impossible, and hence uf, = u;'f““ must hold.
Let us choose the vector m = e; = (0,...,0,1,0,... ,0)T whose the jth coordinate is 1

and the others are zero (1 < j <n —1). Then Ug, = €5, and it follows that ef € A ie.
Ay C Az, .. Changing the role of k£ and &y, in the previous argument and specifying m’
instead of m we infer that Az,, , C A, hence these groups are identical. Hence to conclude
the proof of Proposition 241, that is, to show that the multiplier group A, is independent

of k it is enough to prove the following:

Rm,a)

Lemma 3.1. For any two different cusps k, k' there is a hyperbolic-parabolic element in T’
with fized points k and K'.

Proof. In the first step we show the analogous statement for the Hilbert modular group I'x
and any two different cusps x and x’ for I'r. These cusps can and will be represented by an
element of the field K and the corresponding vector is obtained via the different embeddings
of K into R. It is well-known that the number of the equivalence classes of cusps for I'gx
is the class number h = h(K) of K (see Proposition 20 on page 188 in [12]). These classes
are represented by a fixed set of integer ideals ay, ..., a; C O such that the corresponding
cusps are written in the form \; = p;/o; where p;,0; € Ok and a; = (p;,0;).

Assume first that K = A; for some 1 < j < h. Let us fix the elements 7;,; € aj_1 such
that p;jn; — &;0; = 1 holds, then the matrix

A = [ Pi & ] € SL(2, K)

g My

takes oo to Aj, hence oo is a cusp of Aj*lI‘KAj. The stabilizer of co in this group consists
of elements of the form
w Cut
]

with u € OF and ¢ € a;2 (see [12]). For a ' € (K U{o0}) \ {k}, let ¢ = A;lm’ be a cusp
of Aj_lI’ K A; different from co. We show that the latter matrix above can be chosen so that

its other fixed cusp is c. For this, it is enough to choose the unit u so that ¢(1 — u?) € a;2
holds. But this can be reached since for an arbitrary integral ideal a one can choose u so
that a | (1 — u?) <= 1 —u? € a holds.

It follows that there is a hyperbolic-parabolic element in I" with fixed points \; and &'.
But any cusp k can be written as 7;1)\j for some j and 7! € T, so if v € T is a hyperbolic-
parabolic element that fixes A\; and ~,x’, then ~, 1y~ fixes k and x/. Since the cusps are
the same for any finite index subgroup of ' (though their equivalence classes are not), the
claim of the lemma follows now from Theorem [l O

From now on, we drop the index in the notation of the multiplier group and assume that

the generating set €, ...,e_; is the same for any x € S. Hence the matrices &, are identical

for any k, so we omit the indices here as well. Note that the integer vectors m,, . are also
defined in terms of £ and therefore their common value will be denoted by m,,.
Returning to the main terms M, (m,«, A) and M,  (m',(,A) in our argument, from

Km,a
uy, = ufnT’a we infer that m = m/ and we simply write u,, and E,, in the following. Finally,

the equality of the main terms implies that |det Ly, ,| = | det LZ’”B“ .
Now we return to a general form u, and we only assume that it is not a cusp form

and m,, = 0 holds (otherwise there are no main terms in ([@I])). We split each main term
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M, (m,a, A) into two parts:

MeAS ¢ AL |det LE, | [det &|
s T Ti=s AN (Em])

g(log um)+

w A5 gn AYSN |det LE, | |det €
+<nm,a D )\ alldeté] (o,

L AN (En])

This main term has the (equal) pair Mz, ,(m, 3, A), and if A = &, o then clearly A, 53 = &
and the pair of My(m, 3, A) is My (m, «, A). That is, this pairing gives a bijection for every
m on the set of pairs (x, ), where x € S and « € t}'/A. Moreover, the term Mz, ,(m, 3, A)
has the split form

Moo A B A | det Ly | |det €|
s 1—s nN(|En|)

g(log upm)+

A5 g Als | det LEm| |det €
(A0 | 5 |1det &
s 1-s nN(|Enl)

By the last remark of the previous paragraph we have that the first term of M, (m,«a, A)
is the second term of Mz, ,(m,3,A) and vice versa. These simple observations imply
immediately that if we sum the main terms in (4I]) obtaining

Om, |det & neAS AT g(log um) K
IS (M) S S S e

KES meZn—1\{0} aEt™/A

g(log upy,).

g(log um) DimaA® | Orma A
— ’ ’ det LE
Py Y fEEm) v (T et s,
k€S mezZn—1\{0} act? /A
then the two triple sums above are equal, hence this expression simply becomes

Om, |det & neAS AT g(log um) K
oy mlEEST(BELAES) ST G S etk |

KES mezZn—1\{0} actm/A

Next we give group theoretic interpretations of the quantities N(|Ep,|) and |det Ly, |-
The sublattice (u,;, — 1)t, of t, is obtained by coordinate-wise multiplication, i.e. via
multiplication by a diagonal matrix with entries (uy, —1)*) in its diagonal. It is well-known
that the index of this sublattice in t,;, i.e. the order of the factor group t]' = t,/(um —1)t, is
the absolute value of the determinant of this matrix, that is simply |N(um —1)| = N(|En)).

Now we consider the A-equivalent elements of t]'. Assume that for an o € t}' we have
wa = a (in t7) for some [ € Z"~!. This means exactly that 5,1,;—110‘ € t.. A simple
computation shows that in this case the element

/2 -1 —1/2
W umflaul
0 U,

Every element of the centralizer C(y, o) has this form by Proposition 2.5, and hence ujoa = «
is equivalent to y(I,m,a) € C(vy, ). Again, by Proposition 2.5 this holds if and only if log u;
is in the lattice spanned by vf,...,vf_; in the subspace V ={a € R" : a1 + - -- 4 a,, = 0},
where v} = l]@) logey + -+ + l](An*l) loge,—1 and the integer vectors [; € 7"~ are defined in
Proposition Hence, for a fixed «, the number of inequivalent points w;a € t]* is exactly

y(l,m, &) =
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the index of the before-mentioned sublattice in the lattice generated by logeq,...,loge, 1
in V, and this is exactly |det Ly, ,|. It follows that

Y ldet Ly, o = [t = N(|Enl),
actm /A
and hence (43)) becomes
O, |det & i A° ¢KA1 s
Y G I DR
S mezZn—1\{0}
and this (together with (4I]) and ([@2)) completes the proof of Theorem

3.4. Extension of (-functions corresponding to lattices. In this section we prove
Lemma -8 We use the notations of Section and note that the following argument
is a standard one in analytic number theory (we basically copy the proof of Theorem 1.7.2
in [5]) and hence some details will be omitted.

It is easy to see that the sum in (27) converges absolutely and locally uniformly for
Re s > 1, and this latter condition will be assumed in the first part of the proof. We write
the terms of the sum in ([27) as follows: let 0 #1 € L, [ = (l(l), . ,l("))7 then

o0 s 1 00 s T (2
/ gm0y % 4T ki/ T 16(72)
0 T (AR CHE e (O]
and hence

o r (x12) 2k d.%'k g )\M —m |l| Sk
/(R+ t H . O INIF HF( >

where x = (z1,...,2,)7, xI? is the coordinate-wise product of x and [, and the trace tr (-)
of a vector is the sum of its coordinates. Then

(10 (3)) At -
k=1

n

%k dx
e~ Ttr (x12) 12 tedid
\/(VRJr)n H k Tk

OAIEL/M k=1
n
-y / o (ex12) H del“k
X
ceprz’ (RT)" OyéleL/M k=1 k
- > e H o
(RE) /M2 \ 1€, =

Let us define the following theta function for the lattice L:

Or(x) := Z e~ T (x1%),

leL

Using this notation we have

_ _ns = Sk - + do
44) Zpa(s,m) == U (2) ) Zoa(s,m) = 016 —1) [T o’ =
(44) Zpar(s,m) =7 @ <2>> Laels,m) /<R+>n/M2( BRI S

For a fixed x € (RT)™ we set fy(y) = ™ (%) its Fourier transform is

fx (&) = fx( )e 28 gy = H —e—”fk/l"k

ko1 V Tk
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By the Poisson summation formula we have
1
(45)  OL(x) =) fx(l)= o f(8) = O (1/x).
leZL vol( R vol(R"/L) 5%* vol(R"/L)(Nx)!/2

Now we split the integral in (44)) into two parts depending on Nx. If Nx < 1, we use (43])
and then substitute 1/x to obtain that =y, (s, m) is

n n 1—s,
[ e -n]lad T G e n AT
(R¥)" /M2 = (R+)" /M2 =
Nx>1 Nx>1
—&dmk 1 - 1_—2$&d.%'k
/ 1:[1 w | vol(R"/L) / Exk e
) /M2 (R+)" /M2
Nx<1 Nx>1

A straightforward computation (similar to the one that led to ([B9) in the previous proof)
shows that

L dx
/ ]+ x—k 2" |det €| / "SyO/QdyoH / T dy;.

@
Nx<1

This expression is 0 unless all coordinates of m are zero, in which case it is 2" |det Epr] /(ns).
Similarly,

ko dx
H k xk on— 1|det5M|/ n(l— sy0/2dy0H/ —27m;jiy; dy

(RT)™ /M> =

Nx>1

and as above, this is 0 if m # 0 and otherwise we get % (note that Res > 1 is still

assumed here).

Therefore if m # 0, then =, (s, m) is entire and
(46) vol(R™ /L)%, ps(s,m) = vol(R™/L*)Y2Z < 3 (1 — 5, —m)
holds. If m = 0, then Zp, (s, m) is holomorphic except for s = 1 and s = 0, where it has
simple poles with residues % and —W
(6] holds also in this case for any s # 0, 1.

One can reorder the equation (46) asymmetrically:

, respectively. The functional equation

n 1—sg
Z1 (s, m) = vol(R"/L*)n"*~3 (H w> Zpe (1 —5,—m).

k=1 F(T)
Here )
1—Sk _ 7I'Sk TSg
(5o o2
I‘(?) 2 2 ™ T2
i.e.

Zp (s, m) = vol(R"/L*)2ms (s~ 1) <H I'(1 — sg)sin %Sk> Zr (1 —s,—m).
k=1
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If Res is bounded and |Im s| > tg for some big enough ¢y > 0 then by Stirling’s formula

NG sk)sin% = |Im s|/2~Res

and hence |Zp, pr(s,m)| < (Im S)”(%fRes) |Zr+ m(1 —s,—m)|. By the Phragmén-Lindel6f
principle, it follows from this and from the trivial bound |Z, ar(s,m)| < |Zr am(Re s, 0)| for
Res > 1 that

ZL’M(S’m) <Lem |Im S|”(17Res)/2+€

holds for 0 < Res < 1 and |[Ims| > ¢op > 0. Similarly, one can bound Zy, p(s,m) by |[Im s|®

once Res > 1 and |Ims| > tg (or by a constant if Res > 1+ ¢ for some § > 0). This
completes the proof of Lemma 2.8

3.5. Proof in the totally parabolic case. We proceed by calculating the part of the
trace where we sum over parabolic classes. Every such class is represented by an element
that fixes a cusp k € S. An element of this type is conjugated by o, € PSL(2,R)" to an
element of the form

1l «

where 0 # «a € t,. A simple computation shows that two such elements % and V5 are

conjugate in o}, 'T'o, if and only if a = ¢ for some € € A (see also [6], section I11.2). Hence
summation over parabolic classes means a double summation over the elements of S and the
non-zero elements of t,/A. Therefore the contribution of the parabolic classes in the trace
can be written as

XX [ Heo o) =

KES 0£acty /A ceC(y)\I'
™~Va

(47) -y Y Y [ ke du)

1
RES 0#acty /A geC(ye)\onm ' Tox (0 Fa)

where C/(v%) is the centralizer of 4% in o 'T'o,, given by

con={|y 1] epstarr: sent,

and its fundamental domain is Fi(ys) = {z € H" : 0 < X{(2),..., X/ (2) < 1}.

The union of the sets (o' F4) in ([@7) makes up the set Fo(yx) except for the images of
the part F'\ F4 = F’}. As in the hyperbolic-parabolic case, for some cosets the images of
F} can be added to the domain we integrate over because the kernel function vanishes on
those sets. If o € o !T'o,, leaves oo fixed, then so does every element in its coset, and the
part o(o; 1F%) is the same as

{2 € Fopyry o 'ze0lo,0Uy, for some cusp k' € S},

at least if A is big enough. If  # «/, then o oy = [ ch Z ] does not fix the point oo and

1

hence ¢ # 0. Since 0~ 1oo = 0o, the values Yy(o~12) and Yy(2) are the same. Therefore, if
1

o7tz € 0;10,4U4, then there is a w € Uy such that o'z = o Lo w, and hence

Yo(z2) = Yo(o ™ '2) = Yo(oy, 'oww) <

(Nc)2A’
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The inequality above follows easily from the identity |cxz + dk|2 “Im (0 towz), = Imz
that holds for every k = 1,...,n. The function v is compactly supported, hence for a large
enough A the kernel

21— (21 — ) |20 = (20 — )| af a
k('z?fyﬁz)zw ey :,l/} _7"'7_n
“ yi va vi'n

vanishes for every z € F,,,) for which o712 € 0 10,4U4 holds for some x # k', hence these
parts can be simply added to the domain we integrate over.

Now assume that o does not fix the cusp co. Then oo ?
would be equivalent to

o, cannot fix oo, because this

k= (0x00, to)00 = (000, 1)K

But o,00,! € T and hence x # &’ cannot hold, because these two cusps are not equivalent.
Also, 0,00 " does not fix k, so (similarly as above) the parts oo, o, U4 can be added.
Hence (47)) becomes

> X / (4 <z—§ oo 3—§> w(oyz) du(z) =

n
KES 0#acty/A 2€F oy, Yo(z) <A

2 2 dyy ...dyn,
:Z Z / / ¢<a_%?aa_;> u(anz)HdﬂTl...dﬁn.

2
KES 0#£act, /A 0<XF,.., X<l Yp<A " '

Using the Fourier expansion of u(o,z) and that for an [ € t} we have

vol(R"/t,,), ifl =0,

0 otherwise,

2™ <be> dyy L dxy, = {

0<Xfh,.., Xn<1

the sum above can be written in the following way:

2 2
o o _ o dyy...dy
Z VOI(Rn/tH) Z / (0 (y—%, sy y—g> (Uﬁyfl .. .yfln—i—(b,@y% 51 .y,ll 8”)72 2”.
1
A

KES OZact, /A v, n Y-+ Yn

The substitution uy = |ag| /yx gives then

n 1 2 2
Z vol(R" /t,;) Z Na| / ¥ (uf,. .. up) X

KES 0750461?11//\
0<U1 ... yUn <00

INa|<Auj...un

[Naf® [Na|'™

where |a| denotes the coordinate-wise absolute value of the vector . Hence we have to
examine two terms:

(48)

s Am,, (J)
N vol(R" /t,;) / w(u%,...,u%) ug ooy, — " duy ...duy,
2 IN(a)]!

0<UL,...,;Un <00 0#act, /A
[Na|<Aug..un
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and
(49)
¢ vol(R" /t) / ¥ (uf,. . ul)uf Lo uset Z )\’_]Qn%(‘)’a’) duy ... duy,.

0<UT ..oy Uy <OO 0#act, /A
INa|<Aui...un

We express the sums in (£8]) and (49) in terms of the zeta functions Z,(1 — s, —m,,) and
Zy(s,my), respectively. By Lemma Z(s,m,,) can be continued meromorphically to C

with simple poles at 0 and 1 if and only if m, = 0, and in the latter case its residue at 1
2" | det €|
n-vol(R™ /t) "
that the coordinates of v - t, are conjugate integers. Hence we may write

ZH(S,mu) = Z M — |NV|S Z )\_mu(\a/y] |N | Z amu ,
O%aci ta/A |N(a/v)] Ottt /A IN(a)[?

is By Proposition [27] there is a vector v € R™ with non-zero coordinates such

where
B = S Alal /),
0#acv-te /A, |Na|=k
Since A is isomorphic to a finite index subgroup of the multiplicative group of the units in
Ok, the latter sum can be estimated from above by the number of integer ideals of norm &
in K and hence by 7(k)*@ <« k9 for any § > 0, where 7(k) is the number of divisors of
the rational integer k.
Now we can apply Theorem 5.2 and Corollary 5.3 in [9] for the function

Z am, (k) Z(s+S,my)

ks+S - |NI/|S+S

asvmu

If0<Res<1and oy >1-—Res, then

(k) 1 oo+iT AS
/amu
k<A oo—iT

where 3 indicates that if A is an integer, then the last term is to be counted with half
weight, further

A 4"0+A"0 la
—R . Lz
Ry, < > lam, (k) k"% min (LT\ s M) kaes-
AJ2<k<2A, k#A

Hence for any oy > Re s the integral in (48] can be rewritten as

|Nv|t—s / ¥ (ui,. . ud) up ™ uy

0<ut .. ,upn <00

oo+iT
(|Nv|Auy ... u,)°

S

< |55 1 —5,—m, (S) -
oo—iT

ds + Rl—s,—mu dui . ..du,,

where with the notation B = |[Nv|Au; ... u, we have that Ry_s _,,, is bounded by

i B 47 + B7 S Jazm, (k)]
50 _ k kRes 1 1 - .
o B/2<k<z23 k#£B om0 m < "T|B— k’) T et Loo+1-Res
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Let us fix an 0 < §y < 1 — Res and use the estimate a_,,, (k) < k%. Also, we set the
values 09 = Res + dg + @ and T = AResT91 for some 6y < §; < 1 — Res. Since uy, is
bounded from above for any 1 < k < n, the second term on the right hand side of (50) is
bounded by A% % log A = 0(1) (as A — o), and the implied constant depends on dg.

Turning to the first term we divide the sum in it into three parts. The first one is where
|B — k| < BT. The terms of this part are of the form |a_,,, (k)| kR¢5~1 <« kfot+Res—1 hence
they give at most a constant times (BT) - Bo+Res—1 — (|Ny|uy ... u, )% Res A%=%  and
since v is compactly supported this gives an o(1) term in the last integral above.

The second part is where BT < |B — k| < BT + 1, i.e. it consists of at most two terms
bounded by a constant times

B B50+Res

k&)-ﬁ-ReS—l
TIB—H < 728

< BoOHRes=L — (INy|Auy ... uy )20 tRESL

Hence we obtain a term in the integral above that can be bounded by

AlotRes—1 (ug ... un)50_1 duy ...du,
0<UT .y <C

for some C' > 0, and the latter integral converges at 0 giving an o(1) term as A — oc.
The third part is where |BT + 1| < |B — k|. Note that in this case 1 < |B — k| < B,
hence this error term is bounded by

B 1
B50+R€8—1 i T Z ’B — k’ < (‘NV”LLl o un)5o+ReSA(50—51 Z
1<|B—k|<B 1<k<B
< A% max(0,log B) < A% %1 log A = o(1).

1

Finally, to cover also those cases when k = |Nv|Au; ... u, is an integer we may add
1 a’_mu (k)
2 ks

to the error term Ry_g _,,, which also gives an o(1) term.
It follows that aside from an o(1) term the expression in ({8 is

< (|Nv|Auy ... uy,)%0+Res—1

n,.vol(R" /t,. )| Nv|1~* / O (ui,. . ug) up ™yt

n n
0<u1,...,un <00
oo+iT

1 (INv|Auy ... up)

X i 1—s,—m, (5) - 5

oo—1iT

S
ds du1 .. .dun

where og = Res + §p + @ and T = AResH91 for some dy < §; < 1 — Res. Substituting
the definition of a1_s _m, () and interchanging the order of integration this becomes

oo+iT
1k VOLR™ /ty) / _ Cn A2
s F(S)Z.(1—-5s+S,—my) 5 ds,
oo—1iT

where

F(S):/.../¢(u%,...,ui)uf_sl...uiS"dul... duy,.
0 0
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Let us choose a number Res —1 < 01 < 0 and set G(S) = F(S)Z,(1 —s+ S, —mu)%s. We
shift the line of integration to the line oy + i, then by the residue theorem

oo+iT
— / G(S)dS =Zu(1— s, —mu)F(0)+5mu-%-%F(s)
oo—iT
o1+4T o1—iT oo—iT
(51) —zim. /G(S)dS+ / G(S)dS + / G(S)dS
oo+iT o1+iT o1—iT

We show that the last three integral above is o(1) as A — oo. Firstly, repeated integration
by parts in F'(S) with respect to u; (for example) gives

AS o o
G(S)=2Z,1—-s+S5, —mu)w/---/Hgiv)(ul,...,un)ufsl...ui_s"dul... duy,
0 0

where N is any positive integer and H. giv) is a compactly supported smooth function.

To estimate the integrals on the right hand side of (&Il) we apply Lemma 2.8 if 0 < Res,
then we have Z,(s,—m,) < |Im S|n/2+€ for any € > 0 as |t| — oo, hence on the horizontal
segments we have

uy ... upA)° AReS
Zn(l — s+, _mu)( 1 SN-‘Z ) < TN ./ 2+e < ARe S+(Res+d1)(n/2+e-N—-1)

Here (by the compact support of Hs(fv)) Ui, ..., U, can be bounded from above by a constant.
Choosing an appropriate N it follows that these integrals give o(1) terms. On the vertical
line we have

(u ... up,A)° A%

/2+ o /24+e—N—1
S < g Mm Sl < A s

Zy(1—s+S,—my)

if |Im S| is big enough and hence (choosing an N >n/2+¢ —1)
o1—iT
G(S)dS < A%t = o(1).
o1+1T

The expression (48]) becomes

2™ det AS
(Mx2"|det & A°

NVOL(R" /) Z, (1 — s, —my, ) F(0) + Oy,
n s

(s) +o(1)
One can show similarly that (49) is

$x2" det £ A5 .

GrVOl(R™ /t ) Z,c (5,0 ) F(0) + 6y, F(1—5)+o(1)

n 1—s

where

oo oo
F(S) = //w(u%,,ui) uf+81_1...u§+3"71 duy ... duy,.
0 0
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Next we calculate the values 2" F(s) and 2"F(s) in the case m, = 0, when

MF(s)=2"F(1—s) = 7 /¢ ul) T dux
0 0

://M IT dtx = 900,...,0).
0 0

k=1
Finally, we evaluate F and F at 0:
o oo
FO) = [ [y dur . du,
0 0
x R s
0 0

Using (EIZ]) we get that this is

1 w 9 ’w 2 PEEEEY 2
awl aw" ! n) dwy ... dw, Y Un duy ... du,
\/wl—ul AWy — Uy Ul ... Up,
o [ ] oe N
_ = i’ duy, | d d
(2m)m / / Owy ... dwy, (W, -, wn) kl—[l/ W — Uk+/Uk, B B o
0 0 =10

We have

_a -« 1
/711 i du=w"2B 1—oz’l :uf%ir(lz )F(f) —w 222
w — uy/u 2 72 (5% +3) Il -—a)
0

for any w > 0 and a € C with 0 < Rea < 1, where B is the beta function and we used the
following relations:

r(1/2) =vx, T <z + %) = 2172 /71 (22).

Then F(0) is

1 sk sy s
21 Sﬂ_ HFl—sk / /8101 wl,...,wn)wl2...wn2dw1...dwn.

We substitute wy = et + e~ — 2 to express this in terms of the function g, and then the
integral above becomes

n

0o 0o o ) ) .
/”'/6331...(9 (x1,. H e P —2)7 2 drxy.
0 0

k=1

o0 o0

on _A\n .
99 TlyenoyTp) = (=) / . /h(m, ce TR e Tt razn) g dry,
.0z
0 0
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and
[ 1 1
—2a . .
/(ex Le T 2) o —zm: dr = / % %) yzr—l dy _ / (1 _ y)f2a ya—f—lr—l dy
0 0 0

INa+ir)(1 - 2a)

=Bla+ir,1 —2a) = T —a+ir)

We conclude that F'(0) is

) n n 1_5k 2 70 /OO ’I“kr( —f—’LT'k)
__t []r O ||—dr.
<22—sﬂ-2> Pt < 9 > / / ( 1 ) F(2 28k —|—Z’I“k) k

k=1

Similarly, F(0) is

; n n s ) 00 00 n ’I“kr 1 sk +iTk)
() ({1 (") [ [ [T

and this completes the proof of Theorem 2.9
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