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Abstract. We prove a reciprocity formula that relates a spectral average of products of

triple product integrals involving automorphic forms of weights 0 and 1/2 to the classical

Rankin-Selberg integrals for automorphic forms of weight 0.

1. Introduction

1.1. Triple product integrals of weight 0 and weight 1/2 Maass forms. Let u and

U be two Maass cusp forms of weight 0 for SL(2,Z). This means that u and U are SL(2,Z)-

invariant functions on the open upper half plane H decaying exponentially as Im z → ∞,

and u and U are eigenfunctions of the hyperbolic Laplace operator ∆0 := y2
(

∂2

∂x2 + ∂2

∂y2

)
.

Let D1 be a fundamental domain of the quotient SL(2,Z) \H and dµz := dxdy
y2 . We write

(f1, f2)1 :=

∫
D1

f1(z)f2(z)dµz,

where dµz is an SL(2,R)-invariant measure on H. The triple product integral(
|U |2 , u

)
1

(1.1)

is an important object of study in the theory of automorphic forms. For example, the

famous Quantum Unique Ergodicity (QUE) Conjecture states that if u is fixed, U is a

Hecke eigenform satisfying (U,U)1 = 1 and the Laplace eigenvalue of U tends to −∞, then
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(1.1) tends to 0. This conjecture was proved by Lindenstrauss and Soundararajan (see [L]

and [S]). However, quantifying the rate of convergence in QUE is still an open problem.

Watson (see [Wa]) proved an important identity relating (1.1) to the central value of a

degree 8 L-function. This identity shows that the Generalized Riemann Hypothesis for

some GL(2)×GL(3) Rankin-Selberg L-functions would give a quantitative form of QUE.

The integrals (1.1) can be expressed in terms of triple product integrals involving weight

1/2 Maass forms, see [B1], Theorem 1.1. This motivates the study of the triple product

integrals to be considered in Theorem 1.1 below. To define them properly and to state our

main result we need some notations.

1.2. Necessary notations. There is a list of notations at the end of the paper.

We write

Γ0(4) :=

{(
a b
c d

)
∈ SL(2,Z) : c ≡ 0 (mod 4)

}
.

Let D4 be a fundamental domain of the quotient Γ0(4) \H and

(f1, f2)4 :=

∫
D4

f1(z)f2(z)dµz.

The hyperbolic Laplace operator of weight l is given by:

∆l := y2
(
∂2

∂x2
+

∂2

∂y2

)
− ily

∂

∂x
.

For a complex number z ̸= 0, its argument (denoted by arg z) is chosen to be in the range

(−π, π], and we define log z := log |z|+ i arg z and zs := es log z for any s ∈ C.

We write e(x) := e2πix. For z ∈ H, we define

B0(z) := (Im z)
1
4 θ (z) = (Im z)

1
4

∞∑
m=−∞

e(m2z). (1.2)

We define the symbol
(
c
d

)
where c is an integer and d is an odd integer. For d > 0 this

is the usual Jacobi symbol, and we extend it by the formulas
(
c
d

)
:= c

|c|

(
c
−d

)
for c ̸= 0,(

0
d

)
:= 1 for d = ±1,

(
0
d

)
:= 0 for |d| > 1. Define ϵd := 1 for d ≡ 1 (mod 4), ϵd := i for

d ≡ −1 (mod 4). For γ =

(
a b
c d

)
∈ Γ0(4) let ν(γ) :=

(
c
d

)
ϵd.
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Then for every z ∈ H and γ ∈ Γ0(4) we have

B0(γz) = ν(γ)

(
jγ(z)

|jγ(z)|

)1/2

B0(z), (1.3)

where jγ(z) := cz + d for γ =

(
a b
c d

)
∈ SL(2,R). It is also known that B0 has an

additional transformation formula

B0

(
−1

4z

)
= e

(
−1

8

)(
z

|z|

) 1
2

B0(z) (1.4)

for every z ∈ H.

In this paper, any automorphic function is of weight l = 1
2 +2n or l = 2n with some integer

n. A smooth function f : H → C is said to be an automorphic function of weight l for

Γ if it has at most polynomial growth at the cusps of Γ and satisfies the transformation

formula

f(γz) =

(
jγ(z)

|jγ(z)|

)l

f(z) ·

 1 if l = 2n

ν(γ) if l = 2n+ 1
2

for any z ∈ H and γ ∈ Γ, where Γ is either SL(2,Z) or Γ0(4). If l = 1
2 + 2n, we can take

only Γ = Γ0(4). The operator ∆l acts on automorphic functions of weight l. We say that f

is a Maass form of weight l for Γ, if f is an automorphic function and it is an eigenfunction

of ∆l. If a Maass form f has exponential decay at all of the cusps of Γ, it is called a cusp

form.

A Maass cusp form f of weight 0 for SL(2,Z) is called even if f (z) = f (−z), and it is

called odd if f (z) = −f (−z).

In this work, our weight 0 Maass cusp forms u1, u2 for SL(2,Z) are assumed to be

(i) L2−normalized (i.e. (uj , uj)1 = 1 for j = 1, 2),

(ii) either orthogonal to each other (i.e. (u1, u2)1 = 0) or satisfying u1 = u2,

(iii) and either both even or both odd.

Assume that ∆0uj = sj(sj − 1)uj , where sj = 1
2 + itj and tj > 0 (j = 1, 2). We have the

Fourier expansions

u1(z) =
∑
m ̸=0

ρu1(m)W0,it1(4π |m| y)e(mx), u2(z) =
∑
m ̸=0

ρu2(m)W0,it2(4π |m| y)e(mx).

(1.5)
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Here Wα,β denotes the Whittaker functions, see Section 3.7 for the definition of these

functions.

The Rankin-Selberg L-function is defined in terms of an absolutely convegent Dirichlet

series

L (S) = L (S, u1 ⊗ u2) :=
∑
m>0

ρu1(m)ρu2(m)m1−S (1.6)

for ReS ≫ 1. It is well-known that L (S) extends meromorphically to the whole complex

plane and is regular for ReS ≥ 1/2 with at most a simple pole at S = 1. Such a simple

pole occurs only when u1 = u2.

The Wilson function ϕλ (x; a, b, c, d) was defined in [G1], we give its definition in Section

3.6. We use the abbreviations Γ (X ± Y ) := Γ (X + Y ) Γ (X − Y ) and

Γ (X ± Y ± Z) := Γ (X + Y + Z) Γ (X + Y − Z) Γ (X − Y + Z) Γ (X − Y − Z) .

Recalling the notations tj and sj (j = 1, 2) from above define

N+ (S, t) :=
Γ (S ± it1 + it2) Γ

(
1
4 + it2 ± it

)
sinπ (2it2)

(sinπs1 + sinπ (1− s2 − S))ϕ+
i( 1

2−S)
(t) ,

N− (S, t) :=
Γ (S ± it1 − it2) Γ

(
1
4 − it2 ± it

)
sinπ (−2it2)

(sinπs1 + sinπ (s2 − S))ϕ−
i( 1

2−S)
(t) ,

ϕ+λ (x) := ϕλ

(
x;

3

4
+ it2,

1

4
+ it1,

1

4
− it1,

3

4
− it2

)
,

ϕ−λ (x) := ϕλ

(
x;

3

4
− it2,

1

4
+ it1,

1

4
− it1,

3

4
+ it2

)
,

and let

N (S, t) := N+ (S, t) +N− (S, t) .

This function was introduced in [B2].

CONVENTION. Since the Maass cusp forms u1, u2 and the positive numbers t1 and t2

are fixed, we will not denote the dependence on t1 and t2 in the sequel.

1.3. The main result.

Denote by L2
l (D4) the space of automorphic functions of weight l for Γ0(4) for which

(f, f)4 <∞.
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Take u0,1/2 = c0B0, where c0 is chosen such that
(
u0,1/2, u0,1/2

)
4
= 1. Let

{
uj,1/2 : j ≥ 0

}
be an orthonormal basis of Maass forms for the discrete part of L2

1/2(D4). Write

∆1/2uj,1/2 = Λjuj,1/2, Λj = Sj(Sj − 1), Sj =
1

2
+ iTj .

It is known that Λ0 = − 3
16 and Λj → −∞. It follows from [Sa], Theorem 3.6 that Λj < − 3

16

for j ≥ 1.

For the cusps a = 0,∞ denote by Ea

(
z, s, 12

)
the Eisenstein series of weight 1

2 for the

group Γ0(4) at the cusp a. We give its definition for z ∈ H and Re s > 1 in Section 2.5.

On the one hand, as a function of z it is an eigenfunction of ∆1/2 of eigenvalue s(s − 1).

On the other hand, for every z the function Ea

(
z, s, 12

)
has a meromorphic continuation

in s to the whole plane, and this function is regular at every point s with Re s = 1
2 . If f is

an automorphic function of weight 1/2 and the following integral is absolutely convergent,

define

ζa(f, r) :=

∫
D4

f(z)Ea

(
z,

1

2
+ ir,

1

2

)
dµz.

Let β > 0. We say that a function χ satisfies condition Cβ if χ is an even holomorphic

function defined on the strip |Im z| < β and for every fixed K > 0 the function

|χ(z)| e−π|z| (1 + |z|)K

is bounded on this strip.

Let δu1,u2 be Kronecker’s symbol. We write (κ(u)) (z) := u(4z). We denote by ζ (S) the

Riemann zeta function.

THEOREM 1.1. There is an absolute constant β > 0 such that if χ is a function

satisfying condition Cβ, then the sum of

∞∑
j=1

χ (Tj)
(
B0κ (u2) , uj, 12

)
4

(
B0κ (u1) , uj, 12

)
4

(1.7)

and
1

4π

∑
a=0,∞

∫ ∞

−∞
χ (r) ζa (B0κ (u2) , r) ζa (B0κ (u1) , r)dr (1.8)
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equals the sum of

3

2π3/2

δu1,u2

Γ
(
1
2 ± it1

) ∫ ∞

−∞

Γ
(
1
4 ± it

)
Γ
(
1
4 ± it± it1

)
Γ (±2it)

χ(t)dt

and

− 6

Γ
(
1
2 ± it2

) 1

2πi

∫
( 1

2 )

ζ (2S)L (S)

(2π)
2S

Γ (S) Γ (1− S)Hχ (S) dS, (1.9)

where

Hχ (S) :=

∫ ∞

−∞

Γ
(
1
4 ± it

)
Γ
(
1
4 ± it± it1

)
Γ (±2it)

χ(t)N (S, t) dt.

The sum in (1.7), and the integrals in (1.8) and (1.9) are absolutely convergent.

1.4. Discussion of the main result.

REMARK 1.1. Many ideas of our proof are present also in papers of Nelson, see [Nel1],

[Nel2]. See, in particular, [Nel2, formula (10)], the discussion below that formula and

[Nel2, formulas (14), (11)]. Indeed, using our notation, Nelson considered the following

quantities: ∣∣∣∣∫
D4

B0 (z)ϕ (z)h (z)dµz

∣∣∣∣2 , (1.10)

where ϕ (z) and h (z) are cusp forms for Γ0(4) of weights 0 and 1/2, respectively. He

suggested summing (1.10) over either ϕ or h in an orthonormal basis, and then expressing

the resulting sum using Parseval’s identity as an inner product involving |B0|2, i.e.,∫
D4

|B0 (z)|2 |ϕ (z)|2 dµz. (1.11)

Then he remarks in [Nel2, formula (14)] that |B0|2 is orthogonal to cusp forms, which

implies that |B0|2 can be expressed as a linear combination of Eisenstein series, see [Nel2,

formula (11)]. Then one can unfold the integral (1.11), and this leads to Rankin-Selberg

L-functions.

In this paper, rather than simply summing (1.10) over h, we insert a weight function that

depends on its Laplace eigenvalue. Although Parseval’s identity cannot be applied in this

case, the resulting sum can still be expressed as a sum of inner products involving B0Bn,

where the functions Bn are liftings of B0 via the Maass operators. These products are
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still linear combinations of Eisensein series, a technical variant of this key fact is proved in

Lemma 4.7 below. Then we can apply the unfolding method, getting again an expression

involving Rankin-Selberg L-functions.

Many convergence problems occur during this process, but finally we are able to give an

explicit class of admissible test functions and an explicit form of the integral transform.

Also, instead of the absolute square in (1.10) we consider the product of two such triple

product integrals with two different weight 0 Maass cusp forms u1, u2 for SL(2,Z).

Note that the fact that |B0|2 is orthogonal to cusp forms played a role already in our

work [B3] (see Lemma 6.6 there), where a duality relation was proved for the kind of inner

products considered also in this paper. The duality relation proved in [B3] involved also

holomorphic analogues of the triple product integrals of Theorem 1.1 above. It is possible

to prove an analogue of Theorem 1.1 also for such inner products. We will state this

holomorphic analogue without proof in Section 1.5.

We will give a bit more detailed sketch of the proof of Theorem 1.1 in Section 1.6.

REMARK 1.2. In this remark we show that it is reasonable to expect that a special case

of our formula recovers a particular instance of the spectral reciprocity formulae discovered

recently by Humphries-Khan and Kwan in [H-K] and [Kw].

Remark 1.2 can be skipped, the rest of the paper can be understood without reading it.

Some notions involved in the present remark will not be used later in the paper, therefore

instead of giving every definition here we just refer to the literature. Our main references

will be [B1] and [K-S], most of the notions are defined there.

We will consider the cuspidal sum (1.7) of our Theorem 1.1 above in the case u1 = u2, and

assume also that u1 is a simultaneous Hecke eigenform. We first choose our orthonormal

basis
{
uj,1/2 : j ≥ 0

}
in a special way. In order to do that we have to define some operators.

The Hecke operator Tp2 of weight 1
2 for every prime p ̸= 2 and the operator L are defined

in [K-S], pp 199-200 and p 195, respectively. These operators act on the space L2
1/2(D4),

they are self-adjoint and commute with each other and with ∆1/2. Hence our orthonormal

basis
{
uj,1/2 : j ≥ 0

}
can be chosen in such a way that every uj,1/2 is an eigenfunction of

the operators Tp2 (p ̸= 2) and of the operator L (see [K-S], pp 195-196). By Lemma 5.3 and

Lemma 5.5 (ii) of [B1] we see that B0κ (u1) is an eigenfunction of L of eigenvalue 1. But
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two L-eigenfunctions with different L-eigenvalues are orthogonal to each other. Therefore

we can keep in (1.7) only those uj,1/2 having L-eigevalue 1, since the contribution of other

terms is 0. For the case Luj,1/2 = uj,1/2 we will prove Proposition 1.1 below. We first need

some notations.

Let F ∈ L2
1/2(D4) be a cusp form of weight 1/2 for Γ0(4) which is an eigenfunction of the

Hecke operator Tp2 of weight 1
2 for every prime p ̸= 2 and satisfies LF = F . Assume also

(F, F )4 = 1. Assume ρF (1) ̸= 0, where ρF (1) is the first Fourier coefficient of F at ∞.

Under this assumption the Shimura lift ShimF is defined in [K-S], pp. 196-197. It is an

even Maass cusp form of weight 0 for SL(2,Z), it is a simultaneous Hecke eigenform and

its first Fourier coefficient is 1. Let U be a cusp form and a simultaneous Hecke eigenform

of weight 0 for SL(2,Z) satisfying (U,U)1 = 1.

Assume ∆0 (ShimF ) =
(
−1

4 − t2
)
ShimF, ∆0U =

(
− 1

4 − T 2
)
U, ∆1/2F =

(
−1

4 − r2
)
F .

Note that we have t = 2r e.g. by Theorem 1 of [B4].

PROPOSITION 1.1. Assume that ρF (1) ̸= 0. Using the notations and assumptions

above we have that
∣∣(B0κ

(
U
)
, F
)
4

∣∣2 equals

d
|ρU (1)|2 L

(
1
2 ,ShimF ⊗ sym2U

)
(ShimF,ShimF )1

∣∣∣∣Γ( 1
2 + it

2

)∣∣∣∣2 ∣∣∣∣Γ( 1
2 + 2iT ± it

2

)∣∣∣∣2 ,
where sym2U is the symmetric square lift of U , L

(
s, ShimF ⊗ sym2U

)
is the Rankin-Selberg

L-function of the pair
(
ShimF , sym2U

)
, and d > 0 is an absolute constant.

The Shimura lift ShimF is defined also without the condition ρF (1) ̸= 0 on p 981 of [D-I-

T]. It is very likely that using that definition Proposition 1.1 is true without the condition

ρF (1) ̸= 0, but we were able to prove it only under this condition.

Assume now that Proposition 1.1 is true without the condition ρF (1) ̸= 0. Let u1 = u2,

and assume also that u1 is a simultaneous Hecke eigenform. We can then see that choosing

the test functions suitably the cuspidal sum (1.7) of Theorem 1.1 above coincides with the

cuspidal sum of Theorem 1.1 of [Kw] assuming there that s = 1
2 and Φ is self-dual.

Indeed, we choose U = u1 in Proposition 1.1. Then U and so T are fixed there, but F may

run over those elements of the orthonormal basis
{
uj,1/2 : j ≥ 0

}
having L-eigenvalue 1.

Then ShimF runs over an orthogonal basis of even Hecke normalized Maass-Hecke cusp
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forms of weight 0 for SL(2,Z), see [B-M], Theorem 1.2 and the last lines of p. 982 of

[D-I-T]. We see the coincidence with the cuspidal sum of [Kw] in the above-mentioned

special case. Note that in the special case hhol (k) = 0 the cuspidal sum of Theorem 3.1 of

[H-K] also has this form.

Proof of Proposition 1.1. We apply the Theorem of [B1] for this U and for

u :=
ShimF√

(ShimF,ShimF )1
. (1.12)

Theorem 1.2 of [B-M] implies that we have a one-element sum in the Theorem of [B1].

Then we get that

|ρu(1)|2
∣∣∣∣∫

D1

|U(z)|2 u(z)dµz

∣∣∣∣2 = c1 |ρU (1)|2 |ρF (1)|2
∣∣(B0κ

(
U
)
, F
)
4

∣∣2 , (1.13)

where c1 > 0 is an absolute constant and ρu(1), ρU (1) are the first Fourier coefficients of

u and U , respectively.

Formula (0.19) of [K-S] shows that

|ρF (1)|2 = c2

∣∣∣∣Γ( 1
2 + it

2

)∣∣∣∣2 |ρu(1)|2 L(1

2
, ShimF

)
, (1.14)

where c2 > 0 is an absolute constant and L (s,ShimF ) is the Hecke L-function of ShimF .

We applied again Theorem 1.2 of [B-M] to see that we have a one-element sum in [K-S],

(0.19). We used also t = 2r and that (1.12) implies |ρu(1)|2 = 1

(ShimF ,ShimF )
1

.

By (2.4) of [B-K], which is a consequence of Watson’s identity (proved in [Wa], Theorem

3) we have that∣∣∣∣∫
D1

|U(z)|2 u(z)dµz

∣∣∣∣2 = c3
|ρU (1)|4 L

(
1
2 , ShimF

)
L
(
1
2 , ShimF ⊗ sym2U

)
(ShimF,ShimF )1

GT (t) (1.15)

with

GT (t) :=

∣∣∣∣Γ( 1
2 + it

2

)∣∣∣∣4 ∣∣∣∣Γ( 1
2 + 2iT ± it

2

)∣∣∣∣2 , (1.16)

where c3 > 0 is an absolute constant. We used in (2.4) of [B-K] that the expressions

|ρU (1)|2
∣∣∣∣Γ(1

2
+ iT

)∣∣∣∣2 L (1, sym2U
)
,

L
(
1, sym2u

) ∣∣Γ ( 12 + it
)∣∣2

(ShimF, ShimF )1
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are absolute constants, see [I-K], (5.101).

By (1.13), (1.14), (1.15), (1.16) and the fact that L
(
1
2 , ShimF

)
̸= 0 by our assumption

ρF (1) ̸= 0, and by (1.14) we get the statement.

1.5. Statement of the holomorphic theorem. First we need some further definitions.

We introduce the Maass operators

Kk := (z − z)
∂

∂z
+ k = iy

∂

∂x
+ y

∂

∂y
+ k, Lk := (z − z)

∂

∂z
− k = −iy ∂

∂x
+ y

∂

∂y
− k.

We will give the basic properties of these operators in Lemma 2.1 below. We just mention

here that if f is a Maass form of weight k, then Kk/2f and Lk/2f are Maass forms of

weight k + 2 and k − 2, respectively.

If k ≥ 1 is an integer, let S2k+ 1
2
be the space of holomorphic cusp forms of weight 2k + 1

2

with the multiplier system ν for the group Γ0(4). Let fk,1, fk,2, ..., fk,sk be an orthonormal

basis of S2k+ 1
2
, and write gk,j(z) :=(Im z)

1
4+k

fk,j(z). We note that gk,j is a Maass cusp

form for Γ0(4) of weight 2k +
1
2 , and ∆2k+ 1

2
gk,j =

(
k + 1

4

) (
k − 3

4

)
gk,j (this follows easily

from Lemma 2.1 below, parts (v) and (iii)).

Suppose u is a cusp form of weight 0 for SL(2,Z) with ∆0u= s(s− 1)u. For each n ≥ 0,

define

(κn(u)) (z) :=
(Kn−1Kn−2 . . .K1K0u) (4z)

(s)n (1− s)n
, (1.17)

where (a)n := Γ(a+n)
Γ(a) . It is easy to check that κn(u) is a cusp form of weight 2n for the

group Γ0(4).

THEOREM 1.2. For every integer n ≥ 1 we have that

sn∑
j=1

(B0κn (u2) , gn,j)4 (B0κn (u1) , gn,j)4

equals the sum of
6

π1/2

δu1,u2Γ (n± it1)

Γ
(
2n− 1

2

)
(s1)n (1− s1)n

and

−
24πΓ (n± it1) Γ

(
1
2 ± it1 − n

)
Γ
(
2n− 1

2

)
Γ
(
1
2 ± it2

) 1

2πi

∫
( 1

2 )

ζ (2S)L (S) Γ (S) Γ (1− S)N
(
S, i
(
1
4 − n

))
(2π)

2S
dS.

(1.18)
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The integral in (1.18) is absolutely convergent.

REMARK 1.3. This result was informally announced in our paper [B2], see pp 353-

354. We decided to prove in this paper only the nonholomorphic case, i.e. Theorem 1.1.

Theorem 1.2 can be proved very similarly to the nonholomorphic case.

1.6. Outline of the proof of Theorem 1.1.

We have to give an expression for

∞∑
j=1

χ (Tj)
(
B0κ (u2) , uj, 12

)
4

(
B0κ (u1) , uj, 12

)
4
+ Eisenstein part (1.19)

with a weight function χ. We can choose an automorphic kernel K(z, w) such that (1.19)

equals ∫
D4

(∫
D4

B0(z)u1 (4z)K(z, w)dµz

)
B0 (w)u2 (4w)dµw. (1.20)

By unfolding the inner integral here can be written as∫
H
B0(z)u1 (4z) k(z, w)dµz (1.21)

with a kernel function k. We now use geodesic polar coordinates around w, so we have

to compute the integral on noneuclidean circles around w. We can determine the Fourier

expansion of u1 on such circles using an important theorem of Fay, which is recorded in

the present paper in Lemma 2.2. We get in this way that (1.21) equals

∞∑
n=0

anBn (w) (Kn−1Kn−2 . . .K1K0u1) (4w), (1.22)

where

Bn :=
1

n!
K(n−1)+ 1

4
. . .K 5

4
K 1

4
B0,

and the coefficients an are explicitly determined in terms of the weight function χ and the

Laplace-eigenvalue of u1. Inserting (1.22) in place of the inner integral in (1.20) we get a

weighted sum of integrals∫
D4

Bn (w) (Kn−1Kn−2 . . .K1K0u1) (4w)B0 (w)u2 (4w)dµw.
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This is the inner product involving B0Bn what was mentioned already in Remark 1.1. We

show that B0Bn is a linear combination of Eisenstein series. Since the Fourier coefficients

of Kn−1Kn−2 . . .K1K0u1 can be given explicitly in terms of the Fourier coefficients of u1,

so by unfolding we get an expression which contains the Rankin-Selberg L-function of u1

and u2. Many problems occur concernig convergence and the determination of the involved

special functions, but these are the main steps of the proof of the theorem.

To make the convergence problems easier we will first impoose a stronger condition on the

weight functions χ than the condition assumed in the theorem. This condition will be the

following:

We say that a function χ satisfies condition D if χ is an even entire function satisfying

that for every fixed A,B > 0 the function |χ(z)| e|z|A is bounded on the strip |Im z| ≤ B.

If a function χ satisfies Condition D, then it clearly satisfies Condition Cβ for every β > 0.

Indeed, Condition D requires that χ decays faster than exponentially on horizontal strips,

while Condition Cβ allows exponential growth of a certain rate. We will first prove the

theorem for χ satisfying Condition D. Then we will show that it is relatively easy to

extend the statement for functions satisfying Cβ with a suitable β > 0.

1.7. Structure of the paper. In Section 2 we list the necessary notations and facts

on automorphic functions. In Section 3 we define the many types of special functions

occurring in the paper, give their properties and prove some necessary lemmas on special

functions. We prove some very important lemmas needed for the proof of Theorem 1.1 in

Section 4, and we prove Theorem 1.1 in Section 5. However, the proofs of some important

lemmas on the kernel function and on the integral transform are postponed to Section 6.

We refer to the statements of these lemmas in Section 5.

2. Automorphic preliminaries

2.1. Basic properties of the Maass operators.

LEMMA 2.1. Let k, k1, k2 ∈ R, z ∈ H, γ ∈ SL(2,Z), and let f, g : H → C be smooth

functions. Then we have the following statements.

(i) Kk1−k2
(fg) = (Kk1

f) g + fK−k2
(g).

(ii)
(
K−kf

)
= Lkf .
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(iii) ∆2k = Lk+1Kk + k(1 + k) = Kk−1Lk + k (k − 1), ∆2kLk+1 = Lk+1∆2k+2.

(iv) If ∆2kf = s (s− 1) f , then for every n ≥ 0 we have Lk+1 . . . Lk+nKk+n−1 . . .Kkf =

(−1)
n
(s+ k)n (1− s+ k)n f.

(v) f is holomorphic if and only if Kk

(
y−kf

)
= L−k (y−kf) = 0.

(vi) Kk

(
f (γz)

(
jγ(z)
|jγ(z)|

)−2k
)

=
(

jγ(z)
|jγ(z)|

)−2k−2

(Kkf) (γz).

Proof. Parts (i), (ii) and (iii) follow by easy computations using the definitions, and part

(iv) follows easily from (iii). Statement (iii) and (iv) are mentioned in [F], formulas (6),

(7) and (8). Part (v) is proved in Lemma 3.2 of [R], and part (vi) is proved in Lemma 3.1

of [R]. The proof is complete.

2.2. Fourier expansions. We first define the Fourier coefficients of Maass forms. To do

that the Whittaker functions Wα,β are needed. Their definition will be given in Section

3.7.

The three cusps for Γ0(4) are ∞, 0 and − 1
2 . If a denotes one of these cusps, we take a

scaling matrix σa ∈ SL(2,R) as it is explained on p. 42 of [I]. We can easily see that one

can take

σ∞ :=

(
1 0
0 1

)
, σ0 :=

(
0 −1

2
2 0

)
, σ− 1

2
:=

(
−1 −1

2
2 0

)
.

The only cusp for SL(2,Z) is ∞, and, of course, we take the identity matrix σ∞ for scaling

matrix also in this case.

If a is a cusp for Γ = SL(2,Z) or Γ = Γ0(4), we define χa by

ν

(
σa

(
1 1
0 1

)
σ−1
a

)
= e(−χa), 0 ≤ χa < 1.

It is easy to check that χ∞ = χ0 = 0, and χ− 1
2
= 3

4 . So the cusps 0 and ∞ are said to be

singular, and −1/2 is said to be nonsingular.

If f is a Maass form of weight l, ∆lf = s(s− 1)f with some Re s ≥ 1
2 , s =

1
2 + it, and a is

a cusp of Γ, then f(σaz)
(

jσa (z)
|jσa (z)|

)−l

has the Fourier expansion

cf,a(y) +
∑

m ∈ Z
m− χa ̸= 0

ρf,a(m)W l
2 sgn(m−χa),it

(4π |m− χa| y) e ((m− χa)x)
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for z = x + iy ∈ H, and cf,a(y) = 0 if χa ̸= 0, while it is a linear combination of ys and

y1−s for s ̸= 1
2 and of y1/2 and y1/2log y for s = 1

2 , if χa = 0.

We will need another type of Fourier expansion, namely Fourier expansion of Laplace-

eigenfunctions on noneuclidean circles. We reproduce here a theorem of Fay, which will be

important in the present paper. To state this theorem we need geodesic polar coordinates:

if z0 ∈ H is fixed, then for every z ∈ H we can uniquely write

z − z0
z − z0

= tanh(
r

2
)eiϕ (2.1)

with r > 0 and 0 ≤ ϕ < 2π. The invariant measure is expressed in these new coordinates

as dµz = sinh rdrdϕ.

LEMMA 2.2. Let k ∈ R, s ∈ C, and let f be a smooth function on H satisfying

∆2kf = s (s− 1) f . If z0 ∈ H is given, then for every z ∈ H we have the absolutely

convergent expansion

f(z)

(
z − z0
z0 − z

)k

=
∞∑

n=−∞
(f)n (z0)P

n
s,k(z, z0)e

inϕ,

where r = r (z, z0) > 0 and 0 ≤ ϕ = ϕ (z, z0) < 2π are determined from z by (2.1), and

Pn
s,k(z, z0) :=

(
tanh(

r

2
)
)|n| (

1− tanh2(
r

2
)
)kn

F (s− kn, 1− s− kn, 1 + |n| ,−y)

with y :=
tanh2( r

2 )

1−tanh2( r
2 )
, kn := k n

|n| for n ̸= 0, k0 := ±k,

n! (f)n (z0) := (Kk+n−1 . . .Kk+1Kkf) (z0) for n ≥ 0,

(−n)! (f)n (z0) :=
(
K−k−n−1 . . .K1−kK−kf

)
(z0) = (Lk+n+1 . . . Lk−1Lkf) (z0) for n ≤ 0.

This follows from Theorems 1.1 and 1.2 of [F]. Lemma 2.2 was stated also in [B3], see

Lemma 3.4 there. It is explained there how to deduce Lemma 2.2 from the theorems of

Fay.

2.3. The functions Bn. If z ∈ H is arbitrary, let Tz ∈ PSL(2,R) be such that Tz is an

upper triangular matrix and Tzi = z. It is clear that Tz is uniquely determined by z, for

z = x+ iy we have explicitly

Tz =

(
y

1
2 xy

−1
2

0 y
−1
2

)
.
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If z ∈ H is fixed, the function (Im z)
1
4 θ
(
Tz

(
i 1+L
1−L

))
(1− L)

− 1
2 is holomorphic for |L| < 1,

so it has a Taylor expansion

(Im z)
1
4 θ
(
Tz

(
i 1+L
1−L

))
(1− L)

− 1
2 =

∞∑
n=0

Bn(z)L
n. (2.2)

We defined in this way a function Bn(z) (z ∈ H) for every n ≥ 0. For n = 0 this is in

accordance with (1.2). These functions satisfy also

1

n+ 1
Kn+ 1

4
Bn = Bn+1 (2.3)

for every n ≥ 0, this is proved in [B3], Lemma 6.1. Indeed, this follows at once from (6.2)

of [B3]. Formula (2.3) implies that Bn is a Maass form of weight 2n+ 1
2 for Γ0(4) and it

has an additional transformation formula

Bn

(
−1

4z

)
= e

(
−1

8

)(
z

|z|

) 1
2+2n

Bn(z) (2.4)

for every z ∈ H, see (6.3), (6.4) and (6.5) of [B3]. These statements follow by induction

using (1.3), (1.4), (2.3) and Lemma 2.1 (vi).

2.4. Rankin-Selberg L-functions. It is known that we have the functional equation

ζ (2S)L (S)

π2S
Γ

(
S ± it1 ± it2

2

)
=
ζ (2 (1− S))L (1− S)

π2(1−S)
Γ

(
1− S ± it1 ± it2

2

)
for the Rankin-Selberg L-function defined in (1.6). We see from this functional equation

that the function ζ (2S)L (S) is regular for S ̸= 1, and it has at most polynomial growth

in vertical strips.

2.5. Further notations. We now explicitly give closures of fundamental domains of the

quotients SL(2,Z) \H and Γ0(4) \H.

LetD1 denote the closure of the standard fundamental domain of the quotient SL(2,Z)\H:

D1 :=

{
z ∈ C : Im z > 0, −1

2
≤ Re z ≤ 1

2
, |z| ≥ 1

}
.

It is easy to check that the following set is a closure of a fundamental domain of Γ0(4) \H:

D4 :=

5∪
j=0

γjD1,
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where

γj :=

(
0 −1
1 j

)
(0 ≤ j ≤ 3), γ4 :=

(
1 0
0 1

)
, γ5 :=

(
1 0
−2 1

)
.

We always integrate over these fixed sets D1 and D4 in the sequel.

We denote by Rl(D4) the space of such smooth automorphic functions of weight l for Γ0(4)

for which we have that for any integers A,B,C ≥ 0 the function(
max

a
Imσ−1

a z
)A ∣∣∣∣( ∂B

∂xB
∂C

∂yC
f

)
(z)

∣∣∣∣
is bounded on D4 (i.e. every partial derivative decays faster than polynomially near each

cusp on the fixed fundamental domain D4).

For z, w ∈ H, let

H(z, w) := i
1
2

(
|z − w|
(z − w)

) 1
2

, (2.5)

as on p. 349 of [H]. It is easy to see that for any T ∈ SL(2,R) we have

H2(Tz, Tw)

H2(z, w)
=

(
jT (z)

|jT (z)|

)(
jT (w)

|jT (w)|

)−1

,

so
H(Tz, Tw)

H(z, w)
=

(
jT (z)

|jT (z)|

) 1
2
(
jT (w)

|jT (w)|

)− 1
2

, (2.6)

since both sides lie in the right half-plane. Observe also that

H(w, z) = H(z, w). (2.7)

We now give the definition of the Eisenstein series of weight 1/2. For γ1, γ2 ∈ SL(2,R),

we define

w(γ1, γ2) := jγ1(γ2z)
1/2jγ2(z)

1/2jγ1γ2(z)
−1/2,

the right-hand side is independent of z ∈ H. Clearly w = ±1. For a = 0,∞, Re s > 1,

z ∈ H, define

Ea

(
z, s,

1

2

)
:=

∑
γ∈Γa\Γ0(4)

ν(γ)w
(
σ−1
a , γ

)
(Imσ−1

a γz)s

 jσ−1
a γ(z)∣∣∣jσ−1
a γ(z)

∣∣∣
− 1

2

,
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where Γa denotes the stability group of a in Γ0(4).

Finally, we will use the notation Γ∞ := {γ ∈ SL(2,Z) : γ∞ = ∞}. The stability group of

∞ is clearly the same in Γ0(4) and SL(2,Z).

3. Preliminaries on special functions

3.1. Generalized hypergeometric functions. We define these functions in the usual

way:

q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq
; z

)
:=

∞∑
n=0

(a1)n . . . (aq+1)n
n! (b1)n . . . (bq)n

zn.

Here the bi are not nonpsitive integers. We have absolute convergence for |z| < 1. The

series is also absolutely convergent for |z| ≤ 1 if we assume that Re (
∑
bi −

∑
ai) > 0.

We will also use the notation F (α, β, γ; z) in place of 2F1

(
α, β
γ

; z

)
.

3.2. Properties of 2F1 functions. For Reα, Reβ, Re γ > 0, −1 < z < 0 and

−Reα,−Reβ < σ < 0 we see by [S], (1.6.1.6) the Barnes-type integral

F (α, β, γ; z) =
Γ (γ)

Γ (α) Γ (β)

1

2πi

∫
(σ)

Γ (α+ s) Γ (β + s) Γ (−s)
Γ (γ + s)

(−z)s ds. (3.1)

This shows that F (α, β, γ; z) extends analytically for z /∈ [1,∞).

For Re s < 0, Re (α+ s) > 0, Re (β + s) > 0 we have that∫ ∞

0

x−s−1F (α, β, γ;−x) dx =
Γ (γ) Γ (α+ s) Γ (β + s) Γ (−s)

Γ (α) Γ (β) Γ (γ + s)
, (3.2)

see [G-R], p. 806, 7.511. For Re γ > Reβ > 0, z /∈ [1,∞) and any α we have that

F (α, β, γ; z) =
Γ (γ)

Γ (β) Γ (γ − β)

∫ 1

0

tβ−1 (1− t)
γ−β−1

(1− tz)
−α

dt, (3.3)

see [G-R], p. 995, 9.111. If Re γ > 0, z /∈ [0,∞), and α and β are any complex numbers

satisfying that α − β is not an integer, we have (idem (α, β) means the same expression

with α and β interchanged) that

F (α, β, γ; z) =
Γ (γ) Γ (β − α)

Γ (β) Γ (γ − α)
(−z)−α

F

(
α, α+ 1− γ, α+ 1− β;

1

z

)
+ idem (α, β) ,

(3.4)
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see [S], (1.8.1.11). For z /∈ [1,∞) we have by [G-R], p. 998, 9.131.1 that

F (α, β, γ; z) = (1− z)
−α

F

(
α, γ − β, γ;

z

z − 1

)
= (1− z)

γ−α−β
F (γ − α, γ − β, γ; z) .

(3.5)

3.3. Properties of 3F2 functions. Let a, b, c be such that Re a, Re b, Re c > 0 and the

set {a, b, c} is symmetric with respect to the real axis. We fix three numbers satisfying

these conditions throughout this subsection.

If n is a nonnegative integer, the continuous dual Hahn polynomials are defined by

Sn

(
x2
)
= Sn

(
x2; a, b, c

)
:= (a+ b)n (a+ c)n 3F2

(
−n, a+ ix, a− ix

a+ b, a+ c
; 1

)
, (3.6)

see [A-A-R], (6.10.2). Formula (3.6) is symmetric in the parameters a, b, c, this follows

from the identity

3F2

(
A,B,C
D,E

; 1

)
=

Γ (E) Γ (D + E −A−B − C)

Γ (E −A) Γ (D + E −B − C)
3F2

(
A,D −B,D − C
D,D + E −B − C

; 1

)
valid for Re (D + E −B − C −A) > 0, Re (E −A) > 0, see Corollary 3.3.5 of [A-A-R].

These polynomials form a complete orthogonal system in L2((0,∞) , wa,b,c (x) dx) with the

weight function

wa,b,c (x) :=
1

2π

Γ (a± ix) Γ (b± ix) Γ (c± ix)

Γ (±2ix)
. (3.7)

Indeed, we have the relations∫ ∞

0

wa,b,c (x)Sm

(
x2
)
Sn

(
x2
)
dx = δmnΓ (n+ a+ b) Γ (n+ a+ c) Γ (n+ b+ c)n!, (3.8)

where δmn is the Kronecker delta symbol, see [A-A-R], (6.10.7). Completeness of the

system follows from Theorem 6.5.2 of [A-A-R], taking into account that wa,b,c (x) decays

exponentially as x→ +∞.

We can deduce a pointwise upper bound from (3.8). This bound is weak, but it will be

enough for our purposes.

LEMMA 3.1. There is a positive M such that∣∣∣∣∣ Sn

(
x2; a, b, c

)
(a+ b)n (a+ c)n

∣∣∣∣∣ ≤Me
π
2 |x| (1 + n)

M
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for every integer n ≥ 0 and every real x.

Proof. It is enough to show that for every real y we have

max
y≤x≤y+1

∣∣∣∣∣ Sn

(
x2; a, b, c

)
(a+ b)n (a+ c)n

∣∣∣∣∣ ≤Me
π
2 |y| (1 + n)

M
(3.9)

with a suitable M . The classical Markov inequality states that for any polynomial p of

degree n we have

max
−1≤t≤1

∣∣∣p(1) (t)∣∣∣ ≤ n2 max
−1≤t≤1

|p (t)| .

This is proved e.g. in [B-E], Theorem 5.1.8. Then we see that if the left-hand side of (3.9)

is m, then there is a subinterval I of [y, y + 1] such that the length of I is ≫ n−2, and∣∣∣∣ Sn(x2;a,b,c)
(a+b)n(a+c)n

∣∣∣∣ ≫ m for every x ∈ I. Then we get the lemma by (3.7), the m = n case of

(3.8) and the Stirling formula.

LEMMA 3.2. If Re γ, ReA > 0 and ReB is large enough in terms of a, b, c and Re γ,

then we have for every real x that

∞∑
n=0

3F2

(
−n, a+ ix, a− ix

a+ b, a+ c
; 1

)
n!

(γ)n (A)n
(A+B)n

equals
Γ (a+ b) Γ (a+ c) Γ (A+B)

Γ (γ) Γ (A) Γ (B) Γ (a± ix) Γ (A+B − γ)

times
1

2πi

∫
(−C)

Γ (γ + s) Γ (A+ s) Γ (a± ix+ s) Γ (−s) Γ (B − γ − s)

Γ (a+ b+ s) Γ (a+ c+ s)
ds

with 0 < C < min (Re a,Re γ,ReA).

Proof. For any complex γ and real x for |t| < 1/2 we have

∞∑
n=0

3F2

(
−n, a+ ix, a− ix

a+ b, a+ c
; 1

)
n!

(γ)n t
n = (1− t)

−γ
3F2

(
γ, a+ ix, a− ix
a+ b, a+ c

;
t

t− 1

)
.

(3.10)

Indeed, this follows easily by inserting on the left-hand side the defining series of 3F2,

changing the summations, and using for every nonnegative integer k that

∞∑
n=k

(−n)k (γ)n tn

n!
= (γ)k (1− t)

−γ

(
t

t− 1

)k

,
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which follows from (3.5). For 0 < t < 1
2 the right-hand side here equals

Γ (a+ b) Γ (a+ c)

Γ (γ) Γ (a± ix)

(1− t)
−γ

2πi

∫
(−C)

Γ (γ + s) Γ (a± ix+ s) Γ (−s)
Γ (a+ b+ s) Γ (a+ c+ s)

(
t

1− t

)s

ds, (3.11)

which can be seen by shifting the integration to the right. Then using Lemma 3.1 by

analytic continuation we see that the left-hand side of (3.10) equals (3.11) for any 0 < t < 1.

Multiplying by tA−1(1− t)
B−1

, integrating from 0 to 1 and using (3.3) with z = 0 we obtain

the lemma.

We have the difference equation

nSn

(
x2
)
= B (x)Sn

(
(x+ i)

2
)
− (B (x) +D (x))Sn

(
x2
)
+D (x)Sn

(
(x− i)

2
)

(3.12)

for every n ≥ 0, where we write

B (x) =
(a− ix) (b− ix) (c− ix)

(−2ix) (1− 2ix)
, D (x) =

(a+ ix) (b+ ix) (c+ ix)

(2ix) (1 + 2ix)
,

see [A-A-R], (6.10.9). This relation has the following consequence.

LEMMA 3.3. Let χ be a function satisfying Condition D. For any A > 0 we have for

integers n ≥ 0 that

Cn,χ (a, b, c) :=

∫ ∞

−∞
χ(x)

Sn

(
x2; a, b, c

)
(a+ b)n (a+ c)n

wa,b,c (x) dx≪χ,a,b,c,A (1 + n)
−A

. (3.13)

Proof. We substitute (3.12) into (3.13), and we shift the integration to Imx = 1 in the

case of Sn

(
(x− i)2

)
, and to Imx = −1 in the case of Sn

(
(x+ i)2

)
. We do not cross any

pole, and we get for nCn,χ (a, b, c) an expression of type (3.13), but with a new function

in place of χ satisfying Condition D. These facts can be checked using (3.7). We iterate

this step many times, and then we apply Cauchy-Schwarz inequality and use (3.8) with

m = n. By the properties of χ this proves the lemma.

3.4. Some integral formulas. For 0 < Re a1, Re a2, Re b1, Re b2, Re b3, assuming that

b4 + a1 is not a nonpositive integer, we have that

1

2πi

∫
(0)

Γ (a1 − s) Γ (a2 − s) Γ (b1 + s) Γ (b2 + s) Γ (b3 + s)

Γ (b4 + s)
ds (3.14)
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equals

3F2

(
a1 + b1, a1 + b2, b4 − b3
a1 + a2 + b1 + b2, b4 + a1

; 1

)
Γ (a1 + b3)

∏2
k=1 (Γ (a1 + bk) Γ (a2 + bk))

Γ (a1 + a2 + b1 + b2) Γ (b4 + a1)
, (3.15)

see [S], (4.2.2.1).

In the special case b4 = a1 + a2 + b1 + b2 + b3 we have the following statement. For

0 < Re a1, Re a2, Re b1, Re b2, Re b3 we have that

1

2πi

∫
(0)

Γ (a1 − s) Γ (a2 − s) Γ (b1 + s) Γ (b2 + s) Γ (b3 + s)

Γ (b1 + b2 + b3 + a1 + a2 + s)
ds (3.16)

equals ∏3
k=1 (Γ (a1 + bk) Γ (a2 + bk))∏
1≤k<l≤3 Γ (bk + bl + a1 + a2)

. (3.17)

This is the Second Barnes Lemma, see [S], (4.2.2.2).

LEMMA 3.4. For 0 < Reα ≤ Reβ, 0 < Re a ≤ Re b, 0 < Re γ, 0 < Re c < Re a+Reα, if

γ + a− c is not a nonpositive integer, we have that∫ ∞

0

F (α, β, γ;−u)uc−1F (a, b, c;−u) du (3.18)

equals the product of

Γ (γ) Γ (c) Γ (a− c+ α) Γ (a− c+ β) Γ (b− c+ α) Γ (b− c+ β)

Γ (α) Γ (β) Γ (b) Γ (a+ b− 2c+ α+ β) Γ (γ + a− c)

and

3F2

(
a− c+ α, a− c+ β, γ − c
a+ b− 2c+ α+ β, γ + a− c

; 1

)
.

Proof. Applying (3.1) for the first factor in (3.18) with σ satisfying

−Reα,−Re c < σ < Re (a− c), 0

and then using (3.2) we get that (3.18) equals

Γ (γ) Γ (c)

Γ (α) Γ (β) Γ (a) Γ (b)

1

2πi

∫
(σ)

Γ (a− c− s) Γ (b− c− s) Γ (α+ s) Γ (β + s) Γ (c+ s)

Γ (γ + s)
ds.

By the equality of (3.14) and (3.15) this gives the statement of the lemma.
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3.5. A hypergeometric integral transform. Our aim here is to prove Lemma 3.7

below, to prepare its proof we need the identities proved in the next two lemmas.

LEMMA 3.5. For every integer n ≥ 0 and for every real t we have that

∫ ∞

0

F
(
3
4 + it, 34 − it, 1;−u

) 1−( u
1+u )

n+1

n+1 du =

Γ
(
3
4 ± it

)
3F2

(
3
4 + it, 34 − it,−n

3
2 , 2

; 1

)
Γ
(
3
2

) .

Proof. Let m ≥ 0 be an integer. Writing b = c = m + 1, γ = 1 we get from Lemma 3.4

and from (3.5) that∫ ∞

0

F (α, β, 1;−u) um

(1+u)a du =

m∑
k=0

(−m)k Γ (a−m− 1 + α+ k) Γ (a−m− 1 + β + k)

k!Γ (a−m− 1 + α+ β + k) Γ (a−m+ k)

(3.19)

under the conditions 0 < Reα ≤ Reβ, 0 < Re a ≤ m+ 1, m+ 1− Re a < Reα, assuming

that a is not an integer. We estimate the hypergeometric function on the left-hand side by

(3.1), and we see by analytic continuation in a that it is enough to assume 0 < Reα ≤ Reβ

andm+1−Re a < Reα. So assuming 1 < Reα ≤ Reβ we see that (3.19) is true for a = m.

Taking the difference of (3.19) for m = 0 and m = n + 1 we get the lemma by analytic

continuation in α and β.

LEMMA 3.6. For any integer n ≥ 0 and for any u > 0 we have that∫ ∞

0

F

(
3

4
− it,

3

4
+ it, 1,−u

)
Γ2
(
3
4 ± it

)
Γ
(
1
4 ± it

)
Γ (±2it)

3F2

(
3
4 + it, 34 − it,−n

3
2 , 2

; 1

)
dt

(3.20)

equals

2πΓ

(
3

2

)
(1 + u)

− 1
2

1−
(

u
1+u

)n+1

n+ 1
.

Proof. First note that for any Re s = 1
2 and any integer k ≥ 0 we have by (3.7) and (3.8)

that∫ ∞

0

Γ
(
1
4 ± it

)
Γ
(
3
4 ± it+ k

)
Γ
(
3
4 ± it+ s

)
Γ (±2it)

dt = 2πΓ (1 + k) Γ (1 + s) Γ

(
3

2
+ k + s

)
.

Then by (3.1) we have that (3.20) equals

2π

n∑
k=0

(−n)k(
3
2

)
k
(2)k

1

2πi

∫
(−1/2)

Γ (−s) Γ
(
3

2
+ k + s

)
usds.
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We can compute the integral here by (3.1) and (3.5), and we get that (3.20) equals

2πΓ

(
3

2

) n∑
k=0

(−n)k
(2)k

(1 + u)
− 3

2−k
.

The lemma follows by the binomial theorem.

The integral transform (3.21) below is a special case of the so-called Jacobi transform, see

e.g. [K]. The inversion formula of this transform is also proved there in Theorem 4.2, but

since it is not hard to prove it using the results on continuous dual Hahn polynomials

mentioned above, so we include a proof.

LEMMA 3.7. Let χ be a function satisfying Condition D. For u ≥ 0 define

kχ(u) :=
1

π
(u+ 1)

1
4

∫ ∞

0

F

(
3

4
− it,

3

4
+ it, 1,−u

) ∣∣∣∣∣Γ
(
1
4 + it

)
Γ
(
3
4 + it

)
Γ (2it)

∣∣∣∣∣
2

χ(t)dt. (3.21)

Then the following statements hold.

(i) The function k
(j)
χ (u)(u+ 1)A is bounded on [0,∞) for every A > 0 and j ≥ 0.

(ii) For every real t we have

χ(t) =
1

2

∫ ∞

0

(u+ 1)
1
4F

(
3

4
− it,

3

4
+ it, 1,−u

)
kχ(u)du.

Proof. By (3.4) we know for real t that

F

(
3

4
− it,

3

4
+ it, 1,−u

) ∣∣∣∣∣Γ
(
1
4 + it

)
Γ
(
3
4 + it

)
Γ (2it)

∣∣∣∣∣
2

= ϕ(u, t) + ϕ(u,−t),

where

ϕ(u, t) =
Γ
(
1
4 − it

)
Γ
(
3
4 − it

)
Γ (−2it)

uit−
3
4F

(
3

4
− it,

3

4
− it, 1− 2it,− 1

u

)
,

hence

kχ(u) =
1

π
(u+ 1)

1
4

∫ ∞

−∞
ϕ(u, t)χ(t)dt.

Now, if u is large, we push the line of integration upwards to a line Im t = B with a large

positive number B depending on A and j, and using (3.3) we get (i). Indeed, for small u

statement (i) is trivial, using the very definition of kχ(u) and (3.3).

23



Let {a, b, c} =
{

3
4 ,

3
4 ,

5
4

}
, and let us write

χ(t)

Γ
(
3
4 ± it

) =
∞∑

n=0

an
Sn

(
t2; 3

4 ,
3
4 ,

5
4

)(
3
2

)
n
(2)n

(3.22)

in the space L2((0,∞) , wa,b,c (t) dt). It follows from (3.8) and Lemma 3.3 that an ≪χ,A

(1 + n)
−A

for every A > 0. Then Lemma 3.1 shows that the right-hand side of (3.22) is

a continuous function, so (3.22) is valid pointwise for every t > 0. We also see applying

Lemma 3.1 and (3.1) that if we express χ(t) from (3.22) and substitute the obtained

expressioon into (3.21), then we can integrate there term by term. Then from (3.6) and

Lemma 3.6 we get that

kχ(u) = 2Γ

(
3

2

)
(1 + u)

− 1
4

∞∑
n=0

an
1−

(
u

1+u

)n+1

n+ 1
.

By Lemma 3.5, (3.6) and (3.22) we obtain (ii). The lemma is proved.

3.6. Properties of 7F6 and 4F3 functions. For complex A,B,C,D,E and F satisfying

Re (2 + 2A−B − C −D − E − F ) > 0 let

W (A;B,C,D,E, F ) := 7F6

(
A, 1 + A

2 , B, C,D,E, F
A
2 , B

∗, C∗, D∗, E∗, F ∗ ; 1

)
where B∗, C∗, D∗, E∗, F ∗ are given by

B +B∗ = C + C∗ = D +D∗ = E + E∗ = F + F ∗ = 1 +A.

If a, b, c, d are complex numbers, then writing

ã :=
1

2
(a+ b+ c+ d− 1) , b̃ :=

1

2
(a+ b− c− d+ 1) , (3.23)

c̃ :=
1

2
(a− b+ c− d+ 1) , d̃ :=

1

2
(a− b− c+ d+ 1) , (3.24)

we define the Wilson function ϕλ (x) = ϕλ (x; a, b, c, d) by the formula

ϕλ (x) :=
Γ
(
ã+ b̃+ c̃+ iλ

)
W
(
ã+ b̃+ c̃+ iλ− 1; a+ ix, a− ix, ã+ iλ, b̃+ iλ, c̃+ iλ

)
Γ (a+ b) Γ (a+ c) Γ (1 + a− d) Γ

(
1− d̃− iλ

)
Γ
(
b̃+ c+ iλ± ix

) ,
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as it was introduced by Groenevelt in [G1] in formula (3.2). This definition is meaningful

if the Γ-function is regular at the point ã+ b̃+ c̃+ iλ and Re
(
1− d̃− iλ

)
> 0. However,

ϕλ (x) is an entire function in (x, λ) ∈ C2 (see [G1], below formula (3.3)).

The Wilson function ϕλ (x; a, b, c, d) is symmetric in the parameters a, b, c, 1−d, see [G2],

Lemma 5.3 (ii). We have the symmetry relation

ϕλ (x; a+ iω, b+ iy, b− iy, 1− a+ iω) = ϕω (y; a+ iλ, b+ ix, b− ix, 1− a+ iλ) , (3.25)

see [G2], Lemma 5.3 (i).

We have the identity that

1

2πi

∫ i∞

−i∞

Γ (a± ix+R) Γ (ã± iλ+R) Γ (−R) Γ (1− a− d−R)

Γ (a+ b+R) Γ (a+ c+R)
dR (3.26)

equals

Γ (a± ix) Γ (ã± iλ) Γ (1− d± ix) Γ
(
1− d̃± iλ

)
ϕλ (x; a, b, c, d) , (3.27)

assuming that Γ is regular at the points a± ix, ã± iλ, 1−d± ix, 1− d̃± iλ. Here the poles

of the functions Γ (a± ix+R), Γ (ã± iλ+R) lie to the left of the path of integration, and

the poles of the functions Γ (−R), Γ (1− a− d−R) lie to the right of it, and ã, b̃, c̃, d̃ are

defined above. This can be seen by shifting the integration to the right in (3.26) above

and applying (3.3) of [G1].

We need some important identities, and in order to state them we need further notations.

For complex A,B,C,D,E and F let

ψ (A;B,C,D,E, F ) :=
Γ (1 +A)W (A;B,C,D,E, F )

Γ (B∗) Γ (C∗) Γ (D∗) Γ (E∗) Γ (F ∗) Γ (1− S)
, (3.28)

where

S := B + C +D + E + F − 2A− 1, (3.29)

see (2.1) of [W] or p 127 of [S].

We can check that we have

ϕλ (x; a, b, c, d) = ψ
(
ã+ b̃+ c̃+ iλ− 1; a+ ix, a− ix, ã+ iλ, b̃+ iλ, c̃+ iλ

)
(3.30)
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with this notation.

Let us write

4F
∗
3

(
A,B,C,D
E,F,G

; 1

)
:=

Γ (A) Γ (B) Γ (C) Γ (D)

Γ (E) Γ (F ) Γ (G)
4F3

(
A,B,C,D
E,F,G

; 1

)
. (3.31)

Then assuming E + F +G−A−B − C −D = 1 and Re (1 +A−G) > 0 we have that

4F
∗
3

(
A,B,C,D
E,F,G

; 1

)
− 4F

∗
3

(
1 +A−G, 1 +B −G, 1 + C −G, 1 +D −G

1 + E −G, 1 + F −G, 2−G
; 1

)
= P1P2

(3.32)

with the abbreviations

P1 :=
Γ (A) Γ (B) Γ (C) Γ (D) Γ (1 +A−G) Γ (1 +B −G) Γ (1 + C −G) Γ (1 +D −G)

Γ (G) Γ (1−G)
(3.33)

and

P2 := ψ (B + C +D −G;B,C,D,E −A,F −A) . (3.34)

This follows by some computations from (2.4.4.3) of [S]. See also (2.3) of [W].

Assuming Re (2 + 2A−B − C −D − E − F ) > 0 and Re (B +D −A) > 0 we have that

ψ (A;B,C,D,E, F ) sin (π (D + E + F −A))

Γ (B +D −A) Γ (B + E −A) Γ (B + F −A) Γ (1− C)
(3.35)

equals the sum of

ψ (E + F − C;E,F, 1 +A−B − C, 1 +A− C −D,E + F −A) sin (π (B −A))

Γ (1 +A− E − F ) Γ (1 +A−D − F ) Γ (1 +A−D − E) Γ (1− S)
(3.36)

and

ψ (2B −A;B,B + C −A,B +D −A,B + E −A,B + F −A) sin (π (C − S))

Γ (D) Γ (E) Γ (F ) Γ (1 +A−B − C)
, (3.37)

using the notation (3.29). This is formula (2.7) of [W] (see also (4.3.7.8) of [S]).

3.7. Whittaker functions. For complex numbers α, β satisfying 0 < 1
2 − Reα− |Reβ|

and for y > 0 we define the Whittaker function Wα,β (y) by the formula

Wα,β (y) :=
e−

y
2

2πi

∫
(σ)

Γ (v) Γ
(
1
2 − α± β − v

)
Γ
(
1
2 − α± β

) yα+vdv (3.38)
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with 0 < σ < 1
2 − Reα − |Reβ|, see [G-R], p. 1015, formula 9.223. For given y > 0 this

function extends to an entire function of (α, β) ∈ C2. Indeed, this can be seen from the

formula

Wα,β (y) =
yα

ey/2

 1

2πi

∫
(σ)

Γ (v) Γ
(
1
2 − α± β − v

)
Γ
(
1
2 − α± β

) yvdv +
∑

0≤j<−σ

(−1)
j ( 1

2 − α± β
)
j

j!yj

 ,

(3.39)

where σ < 1
2 − Reα − |Reβ| and σ is not a nonnegative integer. This is valid for every

(α, β) ∈ C2 and y > 0.

We see from (3.39) that if α and β are fixed, then for 0 < y < 1 we have Wα,β (y) ≪δ y
δ

for every δ < 1
2 − |Reβ|. We also see that Wα,β (y) decays exponentially as y → ∞.

The next lemma follows from [G-R], p. 819, 7.625.4 and p. 1022, but since it is very

important in our paper we give a proof of it.

LEMMA 3.8. For any ReS > 0, for any positive numbers t1, t2, M and for any complex

k and λ such that the function Γ is regular at the two points 1
2 − λ± it2, we have that∫ ∞

0

ySWk,it1(My)Wλ,it2(My)
dy

y2
(3.40)

equals

M1−S

Γ
(
1
2 − λ± it2

) 1

2πi

∫ i∞

−i∞

Γ
(
−1

2 ± it2 + S − s
)
Γ
(
1
2 ± it1 + s

)
Γ (1− λ+ s− S)

Γ (1− k + s)
ds,

(3.41)

where the path of integration is chosen in such a way that the poles of the functions

Γ
(
1
2 ± it1 + s

)
and Γ (1− λ+ s− S) lie to the left of the path of integration, and the

poles of the functions Γ
(
− 1

2 ± it2 + S − s
)
lie to the right of it.

Proof. By a substitution we can assume M = 1. Using analytic continuation in k, λ and

S we may assume Re k = 0, Reλ = 0, ReS > 1. By these assumptions, using (3.38) for

both Whittaker functions we get that (3.40) equals

1

2πi

∫
(1/4)

Γ (µ) Γ
(
1
2 − λ± it2 − µ

)
Γ
(
1
2 − λ± it2

) Iµdµ (3.42)

with

Iµ :=
1

2πi

∫
(1/4)

Γ (v) Γ
(
1
2 − k ± it1 − v

)
Γ (S + k + v + λ+ µ− 1)

Γ
(
1
2 − k ± it1

) dv,
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because ∫ ∞

0

e−yyS+k+v+λ+µ dy

y2
= Γ (S + k + v + λ+ µ− 1)

by the definition of the Γ-function. The integral Iµ can be computed by the b4 = b3 case

of the equality of (3.14) and (3.15), and we get that

Iµ =
Γ
(
−1

2 ± it1 + S + λ+ µ
)

Γ (S − k + λ+ µ)
.

Substituting it into (3.42) and writing s = S + λ+ µ− 1 we obtain the lemma.

Part (ii) of the following lemma will be applied directly in this paper.

LEMMA 3.9. (i) Let t > 0 be given and let n ∈ Z. We have∫ ∞

0

∣∣∣∣Wn,it(y)Γ

(
1

2
− n

)∣∣∣∣2 dyy ≪t 1. (3.43)

(ii) Let t1, t2 > 0, S > 1/2 be given and let n ∈ Z, M > 0. Then we have that∫ ∞

0

∣∣ySWn,it1(My)W0,it2(My)
∣∣ dy
y2

≪t1,t2,S
M1−S

Γ
(
1
2 − n

) .
Proof. To show (i) we apply Lemma 3.8 with k = λ = n, t1 = t2 = t, S = M = 1. Note

that Wn,it(y) is real. Then we compute (3.41) using the equality of (3.14) and (3.15),

applying it with the parameters

a1 =
1

2
+ it, a2 =

1

2
− it, b1 =

1

2
− it, b2 = −n, b3 =

1

2
+ it, b4 = 1− n.

We get in this way that the left-hand side of (3.43) equals

3F2

(
1, 12 + it− n, 12 − it− n
3
2 − it− n, 32 + it− n

; 1

)
Γ
(
1
2 ± it− n

)
Γ (1± 2it)

Γ
(
3
2 ± it− n

) .

We estimate this series trivially and we get (i).

By a substitution we see that M = 1 can be assumed in (ii). The statement then follows

from Cauchy-Scwarz, applying part (i). The lemma is proved.

We finally note that for x > 0 and arbitrary λ and µ we have

x
d

dx
Wλ,µ (x) =

(
λ− 1

2
x

)
Wλ,µ (x)−

(
µ2 −

(
λ− 1

2

)2
)
Wλ−1,µ (x) , (3.44)
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see [G-R], p. 1017, 9.234.3.

4. Important lemmas preparing the proof of Theorem 1.1

In this section χ will denote a given function satisfying Condition D.

4.1 Triple product integrals containing an automorphic kernel function. Our

goal here is to prove Lemma 4.2, where we give a useful expression for the integral (4.7),

which contains B0(z), a cusp form of weight 0 and an automorphic kernel function of

weight 1/2.

LEMMA 4.1. Let U be a cusp form of weight 0 for Γ0(4). For z = x+ iy ∈ H let

V (z) := B0(z)U(z).

Let k be a smooth function on [0,∞) such that k(j)(u)(u + 1)A is bounded on [0,∞) for

every A > 0 and j ≥ 0. For z, w ∈ H write

k(z, w) := k

(
|z − w|2

4Im zImw

)
H(z, w) and K(z, w) :=

∑
γ∈Γ0(4)

k(γz, w)ν(γ)

(
jγ(z)

|jγ(z)|

)− 1
2

.

Then for any w ∈ H we have∫
D4

V (z)K(z, w)dµz = 2
∞∑

n=0

Bn(w)

∫
H
k̃(Z, i)

(
Z − i

Z + i

)n

U(TwZ)dµZ

with

k̃(u) := k(u) (u+ 1)
− 1

4 (u ∈ [0,∞)), (4.1)

and

k̃(z, w) := k̃

(
|z − w|2

4Im zImw

)
(z, w ∈ H). (4.2)

The sum
∞∑

n=0

∣∣∣∣∣Bn(w)

∫
H
k̃(Z, i)

(
Z − i

Z + i

)n

U(TwZ)dµZ

∣∣∣∣∣ ,
as a function of w ∈ D4, grows at most polynomially at the cusps of Γ0(4).

The integral
∫
D4
V (z)K(z, w)dµz, as a function of w ∈ D4, belongs to R 1

2
(D4), and∫

D4
|V (z)K(z, w)| dµz decays faster than polynomially at the cusps.
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Proof. It is clear, using (1.3), that if w ∈ H is fixed, then for every δ ∈ Γ0(4) and z ∈ H

we have

V (δz) = ν(δ)

(
jδ(z)

|jδ(z)|

)− 1
2

V (z), K(δz, w) = ν(δ)

(
jδ(z)

|jδ(z)|

) 1
2

K(z, w). (4.3)

Hence V (z)K(z, w) is invariant in z under Γ0(4), and∫
D4

V (z)K(z, w)dµz =
∑

γ∈Γ0(4)

∫
D4

k(γz, w)V (γz)dµz = 2

∫
H
k(z, w)V (z)dµz. (4.4)

We have k(TwZ, Twi) = k(Z, i) by (2.6), because Tw is upper triangular. Then making the

substitution z = TwZ we get that (4.4) equals

2

∫
H
k(Z, i)V (TwZ)dµZ . (4.5)

For a given Z ∈ H let Z = i 1+L
1−L , where |L| < 1. Then it is easy to see, using also (2.5),

that

H(Z, i) =
(1− L)

1
2

|1− L|
1
2

, Im

(
Tw

(
i
1 + L

1− L

))
= (Imw)

1− |L|2

|1− L|2
.

From the definition of V and from (1.2) we then obtain that k(Z, i)V (TwZ) equals

k

(
|Z − i|2

4ImZ

)(
1− |L|2

) 1
4
(
(Imw)

1
4 θ(TwZ)(1− L)−

1
2

)
U(TwZ).

It is easy to check that

(
1− |L|2

) 1
4

=

(
1 +

|Z − i|2

4ImZ

)− 1
4

, L =
Z − i

Z + i
.

So, taking the Taylor expansion (2.2) for w in place of z, we get for every Z ∈ H that

k(Z, i)V (TwZ) = k̃(Z, i)U(TwZ)
∞∑

n=0

Bn(w)

(
Z − i

Z + i

)n

. (4.6)

We need the weak estimate that if w ∈ D4 and 0 ≤ j ≤ 5 is such that γ−1
j w ∈ D1, then

|Bn(w)| ≪ (n+ 1)
A0
(
Im γ−1

j w
)A0

with some absolute constant A0. This follows easily

from Lemma 6.2 of [B3]. Using that U is bounded, we then see that inserting (4.6) into

(4.5) we can integrate term by term. In this way we get the assertions of the lemma except
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the last sentence. In the last sentence the transformation property follows easily from

(2.6). For the estimates we use

|K(z, w)| ≤
∑

γ∈SL(2,Z)

∣∣∣∣∣k
(

|γz − w|2

4Im γzImw

)∣∣∣∣∣ ,
and we note that if z, w ∈ D1, then for any A > 0 the right-hand side here

≪A (Im z)
A0

(
1 +

Imw

Im z

)−A

with some absolute constant A0. This follows from Lemma 6.3 of [B3]. Using that V

decays faster than polynomially at the cusps, the lemma follows.

LEMMA 4.2. Let k = kχ be the function defined in Lemma 3.7, and let K(z, w) be as

in Lemma 4.1. Let u be a cusp form of weight 0 for SL(2,Z) with ∆0u = S (S − 1)u,

S = 1
2 + iT . Then for any w ∈ H we have that∫

D4

B0(z)u(4z)K(z, w)dµz (4.7)

equals

4

Γ
(
1
2 ± iT

) ∞∑
n=0

Cn,χ (T )

Γ
(
1
2 + n

)Bn (w) (Kn−1Kn−2 . . .K1K0u) (4w), (4.8)

where

Cn,χ (T ) :=

∫ ∞

−∞

∣∣∣∣∣Γ
(
1
4 + it

)
Γ
(
1
4 + it± iT

)
Γ (2it)

∣∣∣∣∣
2
Sn

(
t2; 1

4 + iT, 14 ,
1
4 − iT

)(
1
2 + iT

)
n

(
1
2 − iT

)
n

χ(t)dt.

The sum
∑∞

n=0

∣∣∣∣Cn,χ(T )

Γ( 1
2+n)

Bn (w) (Kn−1Kn−2 . . .K1K0u) (4w)

∣∣∣∣ , as a function of w ∈ D4,

grows at most polynomially at the cusps.

Proof. We will apply Lemma 4.1 with U(z) = u(4z), and we use the notations (4.1), (4.2).

Remark that if n ≥ 0, w ∈ H, then we get∫
H
k̃(Z, i)

(
Z − i

Z + i

)n

u(4TwZ)dµZ =

∫
H
k̃(z, w)

(
z − w

z − w

)n

u(4z)dµz (4.9)
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by the substitution z = TwZ. We now make a transition to geodesic polar coordinates

around w, i.e. we use (2.1) with w in place of z0. See also the form of the invariant measure

given below (2.1). We get in this way that (4.9) equals

∫ ∞

0

k̃

(
tanh2( r2 )

1− tanh2( r2 )

)
tanhn(

r

2
)

(∫ 2π

0

u(4z)e−inϕdϕ

)
sinh rdr. (4.10)

Here we write R in place of tanh( r2 ), and use

sinh rdr =
4R

(1−R2)
2 dR. (4.11)

We apply also Lemma 2.2 and (4.1), and we get in this way that (4.10) is the same as

8πIk (S)

n!
(Kn−1Kn−2 . . .K1K0u) (4w),

where

Ik (S) :=

∫ 1

0

k
(

R2

1−R2

)
R2n+1

(
1−R2

)− 7
4 F

(
S, 1− S, n+ 1; R2

R2−1

)
dR.

Using here the definition of k = kχ from Lemma 3.7 the resulting double integral is easily

seen to be absolutely convergent. We get, writing u = R2

1−R2 and applying (3.5) that

Ik (S) =
1

2π

∫ ∞

0

∣∣∣∣∣Γ
(
1
4 + it

)
Γ
(
3
4 + it

)
Γ (2it)

∣∣∣∣∣
2

χ(t)In (t, T ) dt,

where

In (t, T ) :=

∫ ∞

0

F

(
3

4
− it,

3

4
+ it, 1;−u

)
unF (

1

2
+ iT + n,

1

2
− iT + n, 1 + n;−u)du.

Using Lemma 4.1, Lemma 3.4 and (3.6) we get that (4.7) equals (4.8). The last statement

of the lemma follows from the corresponding statement of Lemma 4.1.

4.2. An expression for the spectral sum. We give an expression for the spectral

sum of Theorem 1.1 in terms of an automorphic kernel function. Our main result here is

Lemma 4.5.
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LEMMA 4.3. The notations and assumptions of Lemma 4.1 are valid. Let f be a Maass

form of weight 1
2 for Γ0(4) with ∆1/2f = s(s− 1)f for some Re s ≥ 1

2 , s =
1
2 + it. Then∫

D4

(∫
D4

V (z)K(z, w)dµz

)
f(w)dµw = 16π

(∫
D4

V (z)f(z)dµz

)
Lk(s), (4.12)

where

Lk(s) :=

∫ 1

0

k

(
R2

1−R2

)(
1−R2

)−9/4
F

(
s+

1

4
,
5

4
− s, 1;

R2

R2 − 1

)
RdR.

If k = kχ is the function defined in Lemma 3.7, then

Lk(s) = χ (t) . (4.13)

Proof. Taking real and imaginary parts, we may assume that k(u) is real for any u ∈ [0,∞).

Since k is real, it is not hard to see, using (2.6), (2.7) and (1.3) that K(z, w) = K(w, z).

Hence by (4.3) and the transformation formulas satisfied by f we see that K(z, w)f(w) is

invariant in w under Γ0(4). We also see that∫
D4

(∫
D4

V (z)K(z, w)dµz

)
f(w)dµw =

∫
D4

V (z)

(∫
D4

f(w)K(w, z)dµw

)
dµz,

the application of the Fubini theorem is justified by the last statement of Lemma 4.1. By

the definition of K we see that∫
D4

f(w)K(w, z)dµw = 2

∫
H
f(w)k(w, z)dµw. (4.14)

We have

H(w, z) = i
−1
2

(
w − z

|w − z|

) 1
2

=

(
w − z

z − w

) 1
4

,

the last equality holds because the fourth powers are the same, and the arguments of both

sides lie in (−π
4 ,

π
4 ). We use geodesic polar coordinates around z (see (2.1)) and we write

F (r, ϕ) := f(w)

(
w − z

z − w

) 1
4

.

We get in this way that (4.14) equals

2

∫ ∞

0

k

(
tanh2( r2 )

1− tanh2( r2 )

)(∫ 2π

0

F (r, ϕ)dϕ

)
sinh rdr.
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By Lemma 2.2 we get∫ 2π

0

F (r, ϕ)dϕ = 2πf(z)
(
1− tanh2(

r

2
)
)−1/4

F

(
s+

1

4
,
5

4
− s, 1;

tanh2( r2 )

tanh2( r2 )− 1

)
.

Writing R in place of tanh( r2 ), using (4.11) we obtain (4.12). By the substitution u = R2

1−R2

and by Lemma 3.7 we get (4.13), the lemma is proved.

LEMMA 4.4. If f1, f2 ∈ R 1
2
(D4), then we have that (f1, f2)4 equals

∞∑
j=0

(
f1, uj, 12

)
4

(
f2, uj, 12

)
4
+

1

4π

∑
a=0,∞

∫ ∞

−∞
ζa(f1, r)ζa(f2, r)dr.

Proof. This is well-known, see [P], formula (27).

LEMMA 4.5. Let k = kχ be the function defined in Lemma 3.7, and let K(z, w) be as in

Lemma 4.1. Let u1 and u2 be two cusp forms of weight 0 for SL(2,Z). Then∫
D4

(∫
D4

B0(z)u1 (4z)K(z, w)dµz

)
B0 (w)u2 (4w)dµw (4.15)

equals the sum of

16π
∞∑
j=1

χ (Tj)
(
B0κ (u2) , uj, 12

)
4

(
B0κ (u1) , uj, 12

)
4

(4.16)

and

4
∑

a=0,∞

∫ ∞

−∞
χ (r) ζa (B0κ (u2) , r) ζa (B0κ (u1) , r)dr. (4.17)

Proof. Let

f1 (w) := B0 (w)u2 (4w), f2 (w) :=

∫
D4

B0(z)u1 (4z)K(z, w)dµz.

If f is a Maass form of weight 1
2 for Γ0(4) with ∆1/2f = s(s − 1)f for some s = 1

2 + it,

then we have by Lemma 4.3 that

(f2, f)4 = 16πχ (t)

∫
D4

B0(z)u1 (4z) f(z)dµz.

Lemma 4.4 implies that (4.15) equals the sum of (4.16) and (4.17), but at the moment it

seems that j = 0 should be present in the summation in (4.16). However, that term is 0

by Lemma 6.6 of [B3]. The lemma is proved.
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4.3. Writing BtB0 as an Eisenstein series. We mentioned in Sections 1.4 that it is

very important for our proof that the functions BtB0 are linear combinations of Eisenstein

series. We write a certain average of this function as an incomplete Eisenstein series in

Lemma 4.7.

LEMMA 4.6. For z ∈ H let

F (z) :=
5∑

j=0

|B0(γjz)|2 , G(z) :=
∑

γ∈Γ∞\SL(2,Z)

ψ (Im (γz)) ,

where

ψ (y) :=
∞∑

m=1

e−πm2

y .

Then for every z ∈ H we have F (z) = 6G(z) + 3.

Proof. During the proof of Lemma 6.6 of [B3] (see the last lines of p. 632) it is shown that

F (z) = DG(z) +C for z ∈ H with some constants C and D. So it is enough to determine

these constants.

Recall the definitions of γj from Section 2.5. Note first that B0

(
Z − 1

2

)
=

√
2B0 (4Z) −

B0 (Z) for Z ∈ H by (1.2). One has γ5z = − 1
w − 1

2 with w = 4z− 2, hence using also (1.4)

we get

B0 (γ5z) =
√
2B0

(
− 4

w

)
−B0

(
− 1

w

)
= e

(
−1

8

)(
w

|w|

) 1
2 (√

2B0

( w
16

)
−B0

(w
4

))
for every z ∈ H. This shows by (1.2) that B0 (γ5 (iy)) = o (1) as y → ∞. For 0 ≤ j ≤ 3

it is clear by (1.4) that we have |B0(γjz)| =
∣∣B0

(
z+j
4

)∣∣. We easily get from these remarks

and (1.2) that F (iy) = 3y1/2 + o (1) as y → ∞. On the other hand, it is easy to see that

G(iy) = ψ (y) + o (1) as y → ∞, and it follows from (1.4) that

1 + 2ψ (y) = y1/2
∞∑

m=−∞
e−πm2y = y1/2 + o (1) .

Letting y → ∞ we get the lemma.

LEMMA 4.7. If t ≥ 0 is an integer, for z ∈ H let

Ft(z) :=

5∑
j=0

Bt(γjz)B0(γjz)

(
jγj (z)∣∣jγj (z)

∣∣
)−2t
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and

Gt(z) :=
∑

γ∈Γ∞\SL(2,Z)

ψt (Im (γz))

(
jγ (z)

|jγ (z)|

)−2t

,

where

ψt (y) :=
1

t!

∞∑
m=1

e−πm2

y

(
πm2

y

)t

.

Then for every t > 0 we have Ft(z) = 6Gt(z).

Proof. We have F0 = F , G0 = G (see Lemma 4.6). It is easy to see that for every t ≥ 0

we have
1

t+ 1
KtGt = Gt+1,

this follows from the identity

1

t+ 1

(
ψ
(1)
t (y) y + tψt (y)

)
= ψt+1 (y)

and Lemma 2.1 (vi). Using Lemma 4.6 we see that it is enough to prove that

1

t+ 1
KtFt = Ft+1 (4.18)

for every t ≥ 0. We use Lemma 2.1 (i) with k1 := t+ 1
4 , k2 := 1

4 ,

f(z) := Bt(γjz)

(
jγj (z)∣∣jγj (z)

∣∣
)−2t− 1

2

, g(z) := B0(γjz)

(
jγj (z)∣∣jγj (z)

∣∣
)− 1

2

.

Then K−k2 (g) = 0 by Lemma 2.1 (vi) and (v). So (4.18) follows using (2.3) and Lemma

2.1 (vi). The lemma is proved.

5. Proof of the theorem

5.1. A special case. We first assume that χ is a function satisfying Condition D.

By Lemma 4.5 and Lemma 4.2 we have that the sum of

16π

∞∑
j=1

χ (Tj)
(
B0κ (u2) , uj, 12

)
4

(
B0κ (u1) , uj, 12

)
4

(5.1)

and

4
∑

a=0,∞

∫ ∞

−∞
χ (r) ζa (B0κ (u2) , r) ζa (B0κ (u1) , r)dr (5.2)
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equals

4

Γ
(
1
2 ± it1

) ∞∑
n=0

Cn,χ (t1)

Γ
(
1
2 + n

)Jn(u1, u2), (5.3)

where

Jn = Jn(u1, u2) :=

∫
D4

B0(w)Bn(w)u2 (4w) (Kn−1Kn−2 . . .K1K0u1) (4w)dµw.

Let us write

f (z) = fn,u1,u2 (z) := u2 (z) (Kn−1 . . .K1K0u1) (z) . (5.4)

We then have that

f(γz) =

(
jγ(z)

|jγ(z)|

)2n

f(z) (5.5)

for every γ ∈ SL(2,Z). Since the substitution w → − 1
4w normalizes Γ0(4), so

Jn =

∫
D4

B0 (w)Bn(w)f (4w) dµw =

∫
D4

B0

(
−1

4w

)
Bn

(
−1

4w

)
f

(
−1

w

)
dµw, (5.6)

hence by (2.4) and (5.5) we get

Jn =

∫
D4

B0 (w)Bn(w)f (w) dµw.

Using again (5.5), we finally get

Jn =

∫
D1

Fn(w)f (w) dµw, (5.7)

with the function Fn defined in Lemma 4.7. Using Lemmas 4.6 and 4.7 we see by unfolding

that

Jn = 6

∫ ∞

0

∫ 1

0

ψn(y)f (x+ iy)
dxdy

y2
+ 3δ0,n

∫
D1

f (w) dµw, (5.8)

where δ0,n is Kronecker’s symbol.

It is trivial by our assumptions that if n = 0, then∫
D1

f (w) dµw = δu1,u2 . (5.9)
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It is well-known that if u is a cusp form of weight 0 for SL(2,Z) with ∆0u= s(s − 1)u,

where s = 1
2 + it, and

u(z) =
∑
m ̸=0

ρu(m)W0,it(4π |m| y)e(mx),

then for any N ≥ 0 we have

(KN−1KN−2 . . .K1K0u) (z) =
∑
m ̸=0

ρuN (m)WNsgn(m),it(4π |m| y)e(mx)

with

ρuN (m) = (−1)Nρu(m) (5.10)

for m > 0, and

ρuN (m) = (s)N (1− s)N ρu(m) (5.11)

for m < 0, but we show now these statements for the sake of completeness. Indeed, by

(3.44), if m > 0, then

Lk (Wk,it(4πmy)e(mx)) = −

(
(it)

2 −
(
k − 1

2

)2
)
Wk−1,it(4πmy)e(mx), (5.12)

and if m < 0, then

Kk (W−k,it(4π |m| y)e(mx)) = −

(
(it)

2 −
(
−k − 1

2

)2
)
W−k−1,it(4π |m| y)e(mx). (5.13)

Since, by Lemma 2.1 (iv), we have

(L1L2 . . . LN (KN−1KN−2 . . .K1K0u)) (z) =
Γ(s+N)

Γ(s−N)
u(z),

so by repeated application of (5.12) we get (5.10), and by repeated application of (5.13)

we get (5.11).

It is easy to see using (5.4) that∫ ∞

0

∫ 1

0

ψn(y)f (x+ iy)
dxdy

y2
=
∑
m ̸=0

ρu2(m)ρu1
n (m)In,t1,t2 (m) (5.14)
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with

In,t1,t2 (m) :=

∫ ∞

0

ψn(y)Wnsgn(m),it1(4π |m| y)W0,it2(4π |m| y)dy
y2

(5.15)

(remark that ψn(y) is real). By the well-known formula

1

2πi

∫
(σ)

Γ (S)Y −SdS = e−Y

we see for every l ≥ 0 and σ > 1
2 that

ψl(y) =
1

l!

1

2πi

∫
(σ)

π−Sζ (2S) Γ (l + S) ySdS. (5.16)

We will compute (5.3) by (5.8), (5.14), (5.15), (5.16), in this way we get summations over

m,n and integration over y and S. We can see that if σ is fixed to be a large enough absolute

constant, then these summations and integrations are absolutely convergent together. This

can be seen by the definition of Cn,χ in Lemma 4.2, by Lemma 3.3, (5.10), (5.11), estimating

the integral involving Whittaker functions by Lemma 3.9 (ii).

Applying Lemma 3.8, we get for any ReS > 0 that∫ ∞

0

ySWnsgn(m),it1(4π |m| y)W0,it2(4π |m| y)dy
y2

(5.17)

equals

(4π |m|)1−S

Γ
(
1
2 ± it2

) 1

2πi

∫ i∞

−i∞

Γ
(
− 1

2 ± it2 + S − s
)
Γ
(
1
2 ± it1 + s

)
Γ (1 + s− S)

Γ (1− n+ s)
ds (5.18)

in the case m > 0, and

(4π |m|)1−S

Γ
(
1
2 + n± it1

) 1

2πi

∫ i∞

−i∞

Γ
(
−1

2 ± it1 + S − s
)
Γ
(
1
2 ± it2 + s

)
Γ (1 + n+ s− S)

Γ (1 + s)
ds

(5.19)

in the case m < 0. Indeed, we obtain it by the choice

k = n, λ = 0 in the case m > 0,

k = 0, λ = −n in the case m < 0.

In the case m < 0 we apply Lemma 3.8 by exchanging t1 and t2.
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By (5.8), (5.9) and (5.14) we have

Jn = 3δ0,nδu1,u2 + 6
∑
m ̸=0

ρu2(m)ρu1
n (m)In,t1,t2 (m) . (5.20)

We can determine ρu1
n (m) by (5.10) and (5.11). We use that

ρu1(m)ρu2(m) = ρu1(−m)ρu2(−m)

for every m ̸= 0, since it is assumed that either u1 and u2 are odd, or both of them are

even. We then see by (5.15), (5.16), (5.17), (5.18), (5.19) and (1.6) that fixing σ to be a

large enough absolute constant,

Γ

(
1

2
± it1

) ∞∑
n=0

Cn,χ (t1)

Γ
(
1
2 + n

) ∑
m ̸=0

ρu2(m)ρu1
n (m)In,t1,t2 (m) (5.21)

equals

4π
1

2πi

∫
(σ)

(
4π2
)−S

ζ (2S)L (S)

(
E+

(
S,

1

2

)
+

sinπs2
sinπs1

E−
(
S,

1

2

))
dS, (5.22)

where E+ (S,D) denotes the sum

∞∑
n=0

Cn,χ (t1) Γ (S + n)

n!Γ (D + n) 2πi

∫
(τ)

Γ
(
− 1

2 ± it1 + S − s
)
Γ
(
1
2 ± it2 + s

)
Γ (1 + n+ s− S)

Γ (1 + s)
ds,

and E− (S,D) denotes the sum

∞∑
n=0

(−1)n
Cn,χ (t1) Γ (S + n)

n!Γ (D + n) 2πi

∫
(τ)

Γ
(
−1

2 ± it2 + S − s
)
Γ
(
1
2 ± it1 + s

)
Γ (1 + s− S)

Γ (1− n+ s)
ds

(5.23)

with ReS − 1 < τ < ReS − 1
2 , τ > −1

2 . There is such a τ for every ReS > 0. Our

computations are justified by the discussion below (5.16). We see by Lemma 3.3 that the

summation and integrations in n, s and S are absolutely convergent.

See Section 2.4 for the properties of the function ζ (2S)L (S). This function is regular at

S = 1 if u1 ̸= u2, and its residue at S = 1 in the case u1 = u2 is

resS=1ζ (2S)L (S) = ζ (2)
1

Γ
(
1
2 ± it1

)
|D1|

=
π

2Γ
(
1
2 ± it1

) . (5.24)
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This follows from [I], (8.12), (8.9) and (8.5), taking into account ζ (2) = π2

6 , |D1| = π
3 .

The last relation follows from [I], (6.33), (3.26).

Since Cn,χ (t1) decreases faster than polynomially in n by Lemma 3.3, so by the properties

of L (S) we see shifting the integration to the left that for a small ϵ > 0, e.g. take ϵ = 1
100 ,

we have that (5.22) equals the sum of

4π
1

2πi

∫
( 1

2−ϵ)

(
4π2
)−S

ζ (2S)L (S)

(
E+

(
S,

1

2

)
+

sinπs2
sinπs1

E−
(
S,

1

2

))
dS (5.25)

and

δu1,u2

1

2Γ
(
1
2 ± it1

) (E+

(
1,

1

2

)
+ E−

(
1,

1

2

))
. (5.26)

Note that this last term is present only in the case t1 = t2. We now determine E+
(
1, 12

)
+

E− (1, 12) in the case t1 = t2. Since (−1)n Γ(s)
Γ(1−n+s) = −Γ(n−s)

Γ(1−s) , so, using the substitution

s→ −s in the integral in (5.23), we have that E+
(
1, 12

)
+ E− (1, 12) equals

∞∑
n=0

Cn,χ (t1)

Γ
(
1
2 + n

)
2πi

(∫
(τ)

Γ
(
1
2 ± it1 ± s

)
Γ (n+ s)

Γ (1 + s)
ds−

∫
(−τ)

Γ
(
1
2 ± it1 ± s

)
Γ (n+ s)

Γ (1 + s)
ds

)

with 0 < τ < 1
2 . For n > 0 the difference of these integrals is 0, and for n = 0 it is

2πiΓ2
(
1
2 ± it1

)
. Hence, if t1 = t2, we have

E+

(
1,

1

2

)
+ E−

(
1,

1

2

)
=
C0,χ (t1)

Γ
(
1
2

) Γ2

(
1

2
± it1

)
. (5.27)

It is clear that (5.25) equals

lim
δ→0+0

4π

2πi

∫
( 1

2−ϵ)
eδS

2 (
4π2
)−S

ζ (2S)L (S)

(
E+

(
S,

1

2

)
+

sinπs2
sinπs1

E−
(
S,

1

2

))
dS,

(5.28)

and for a given δ > 0 we have that

4π

2πi

∫
( 1

2−ϵ)
eδS

2 (
4π2
)−S

ζ (2S)L (S)

(
E+ (S,D) +

sinπs2
sinπs1

E− (S,D)

)
dS (5.29)

is a regular function of D for ReD > 0. Let us consider this function first for large enough

ReD. By the definition of E+ (S,D), E− (S,D), Cn,χ (t1), the upper bound for χ and

Lemma 3.1 we see that if D has large enough real part, then we can compute (5.29) by
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inserting the defining integral for Cn,χ (t1) in E
+ (S,D) and E− (S,D), since the resulting

triple integral in s, S, t and summation in n are absolutely convergent. We will use the

following two identities, both of them follow from Lemma 3.2.

For any S and s with ReS = 1
2 − ϵ, Re s = −1

4 − ϵ
2 we have that

∞∑
n=0

3F2

(
−n, 14 + it, 14 − it
1
2 + it1,

1
2 − it1

; 1

)
n!

Γ (S + n) Γ (1− S + s+ n)

Γ (D + n)

equals
Γ
(
1
2 ± it1

)
Γ
(
1
4 ± it

)
Γ (D − S) Γ (D + S − s− 1)

F1 (s) ,

defining F1 (s) as

1

2πi

∫
(−c)

Γ
(
1
4 ± it+ T

)
Γ (S + T ) Γ (1− S + s+ T ) Γ (−T ) Γ (D − 1− s− T )

Γ
(
1
2 ± it1 + T

) dT

with 1
4 − ϵ

2 < c < 1
4 ; and

∞∑
n=0

3F2

(
−n, 14 + it, 14 − it
1
2 + it1,

1
2 − it1

; 1

)
n!

Γ (S + n) Γ (−s+ n)

Γ (D + n)

equals
Γ
(
1
2 ± it1

)
Γ
(
1
4 ± it

)
Γ (D − S) Γ (D + s)

F2 (s) ,

defining, again with 1
4 − ϵ

2 < c < 1
4 ,

F2 (s) :=
1

2πi

∫
(−c)

Γ
(
1
4 ± it+ T

)
Γ (S + T ) Γ (−s+ T ) Γ (−T ) Γ (D − S + s− T )

Γ
(
1
2 ± it1 + T

) dT.

Using these identities and the definition of E+ (S,D), E− (S,D), Cn,χ (t1), (3.6) and that

(3.6) is symmetric in a, b, c, we get for D with large enough real part that (5.29) equals

4πΓ
(
1
2 ± it1

)
2πi

∫
( 1

2−ϵ)

∫ ∞

−∞
eδS

2 (
4π2
)−S ζ (2S)L (S)

Γ (D − S)

Γ
(
1
4 ± it± it1

)
Γ (±2it)

χ(t)M (S, t) dtdS,

(5.30)

where

M (S, t) :=M1 (S, t) +M2 (S, t) ,
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and M1 (S, t) denotes

1

2πi

∫
(− 1

4−
ϵ
2 )

Γ
(
−1

2 ± it1 + S − s
)
Γ
(
1
2 ± it2 + s

)
Γ (1 + s) Γ (D + S − s− 1)

F1(s)ds,

M2 (S, t) denotes

sinπs2
sinπs1

1

2πi

∫
(− 1

4−
ϵ
2 )

Γ
(
− 1

2 ± it2 + S − s
)
Γ
(
1
2 ± it1 + s

)
Γ (1 + s− S)

Γ (1 + s) Γ (−s) Γ (D + s)
F2(s)ds.

One can check that (5.30) is a regular function of D for ReD ≥ 1
2 , hence by analytic

continuation this equals (5.29) also for D = 1
2 . In the case D = 1

2 we can apply Lemma

6.2 to determine M (S, t). Hence we proved for any δ > 0 that in the case D = 1
2 (5.29)

equals (5.30) with M (S, t) given by the sum of (6.21) and (6.22). Recalling the definition

of N (S, t) and Hχ (S) from the Introduction we see that (5.29) for D = 1
2 equals

−
4πΓ

(
1
2 ± it1

)
2πi

sinπs2
sinπs1

∫
( 1

2−ϵ)
eδS

2 (
4π2
)−S

ζ (2S)L (S) Γ (S) Γ (1− S)Hχ (S) dS. (5.31)

Assume that β in Theorem 1.1 is large enough. Applying Lemma 6.3 (ii) and a convexity

bound we see that (5.28) equals (5.31) by writing δ = 0 there. Using Lemma 6.3 (ii) again

we see that we can shift the line of integration to ReS = 1
2 in (5.31). Hence we proved

finally that (5.25) equals

−4πΓ

(
1

2
± it1

)
sinπs2
sinπs1

1

2πi

∫
( 1

2 )

(
4π2
)−S

Γ (S) Γ (1− S) ζ (2S)L (S)Hχ (S) dS.

Using this last relation, (5.1), (5.2), (5.3), (5.20), (5.21), (5.22), (5.25), (5.26) and (5.27),

taking into account the definition of C0,χ in Lemma 4.2 and Γ
(
1
2

)
= π1/2, we get Theorem

1.1 for the case when χ satisfies Condition D.

5.2. The general case. To extend the theorem for the general case, we first need a

lemma.

LEMMA 5.1. Let β > 0 and let χ be an even holomorphic function on the strip |Im z| < β

such that for a fixed A > 0 the function |χ(z)| eA|z|2 is bounded on the strip |Im z| < β.

Then for every 0 < γ < β there is a sequence χn of entire functions, and a nonnegative

function M on [0,∞) with the following properties. The function χn satisfies Condition
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D for every n, for every fixed K > 0 the function M(R)eKR is bounded on [0,∞), we have

|χn (z)| ≤ M (|z|) for every n ≥ 1 and |Im z| < γ, and finally, χn(z) → χ(z) for every

|Im z| < γ.

Proof. It follows from elementary facts on Fourier transforms that

χ(z)e
A
2 z2

=

∫ ∞

−∞
h(x)eixzdx

for |Im z| < β where h is an even function such that h(x) ≪δ e
−δ|x| for every 0 < δ < β.

Define now

χn(z) := e−
A
2 z2

∫ n

−n

h(x)eixzdx,

then for |Im z| < γ we have

|χn (z)| ≤
∣∣∣e−A

2 z2
∣∣∣ ∫ ∞

−∞
|h (x)| eγ|x|dx.

The lemma follows.

Note that using the convexity bound we see that there is a constant β0 > 0 such that

1

2πi

∫
( 1

2 )
|ζ (2S)L (S)| |S|−

1
2−2β0 dS <∞.

We choose β such that β > β0. Let χ be a function satisfying Condition Cβ . Then the

sum in (1.7) and the integral in (1.8) are absolutely convergent by [B3], formulas (5.2) and

(5.3). Then it follows from Lemma 6.3 (ii) and the dominated convergence theorem that

it is enough to prove Theorem 1.1 for every function χ(z)e−z2/N (N is a positive integer)

instead of χ. So we may assume that there is an A > 0 such that χ(z)eA|z|2 is bounded

on the strip |Im z| < β. Finally, for such functions the theorem follows from Lemma 5.1,

Lemma 6.3 (ii), the dominated convergence theorem and the already proved special case

of Theorem 1.1. The theorem is proved.

6. On the kernel function and the integral transform

In this section t1 and t2 are fixed nonzero real numbers, and we write sj = 1
2 + itj for

j = 1, 2.

6.1. Determination of the kernel function. The first lemma is proved here in a

slightly more general form than necessary; in fact, for Theorem 1.1 we use only the n = 0
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case. The n ≥ 1 case would be needed for the proof of Theorem 1.2. Our main result in

this subsection is Lemma 6.2.

LEMMA 6.1. Let ϵ = 1
100 , and let S, B and integer n be given such that ReS = 1

2 − ϵ,

and either

n = 0,
3

4
− ϵ

2
< ReB <

3

4
,

or

n ≥ 1, B =
1

2
.

Let γ1 and γ2 be curves (in s) connecting −i∞ and i∞ such that

the poles of Γ

(
1

2
± it2 + s

)
Γ (1− n+ s− S) lie to the left of γ1,

the poles of Γ

(
−1

2
± it1 + S − s

)
Γ (n− 1 +B − s) lie to the right of γ1,

the poles of Γ

(
1

2
± it1 + s

)
Γ (1 + n+ s− S) Γ (B − S + s+ n) lie to the left of γ2,

the poles of Γ

(
−1

2
± it2 + S − s

)
lie to the right of γ2.

In the case n = 0 both of γ1 and γ2 may be the line with real part −1
4 − ϵ

2 .

Consider the integrals

1

2πi

∫
γ1

Γ
(
− 1

2 ± it1 + S − s
)
Γ
(
1
2 ± it2 + s

)
Γ (1− n+ s− S) Γ (n− 1 +B − s)

Γ (1− n+ s) Γ (n− 1 +B − s+ S)
ds (6.1)

and

sinπs2
sinπs1

2πi

∫
γ2

Γ
(
− 1

2 ± it2 + S − s
)
Γ
(
1
2 ± it1 + s

)
Γ (1 + n+ s− S) Γ (B − S + s+ n)

Γ (B + n+ s) Γ (1 + n+ s)
ds.

(6.2)

Then (6.1) equals

(−1)
n−1

Γ (B − S) Γ (1− S) Γ

(
1

2
− n± it1

)
sinπs2
sinπs1

(
C+

1 Q
+ + C−

1 Q
−) , (6.3)

and (6.2) equals

(−1)
n−1

Γ (B − S) Γ (1− S) Γ

(
1

2
− n± it1

)
sinπs2
sinπs1

(
C+

2 Q
+ + C−

2 Q
−) , (6.4)
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where

C+
1 :=

Γ
(
B − 1

2 + n+ it2
)
Γ
(
1
2 + n+ it2

)
Γ (S ± it1 + it2)

sinπ (2it2)
sinπs1,

C−
1 :=

Γ
(
B − 1

2 + n− it2
)
Γ
(
1
2 + n− it2

)
Γ (S ± it1 − it2)

sinπ (−2it2)
sinπs1,

C+
2 :=

Γ
(
B − 1

2 + n+ it2
)
Γ
(
1
2 + n+ it2

)
Γ (S ± it1 + it2)

sinπ (2it2)
sinπ

(
1

2
− it2 − S

)
,

C−
2 :=

Γ
(
B − 1

2 + n− it2
)
Γ
(
1
2 + n− it2

)
Γ (S ± it1 − it2)

sinπ (−2it2)
sinπ

(
1

2
+ it2 − S

)
,

Q+ := ϕi( 1
2−S)

(
i

(
1−B

2
− n

)
; 1− B

2
+ it2,

B

2
+ it1,

B

2
− it1, 1−

B

2
− it2

)
, (6.5)

Q− := ϕi( 1
2−S)

(
i

(
1−B

2
− n

)
; 1− B

2
− it2,

B

2
+ it1,

B

2
− it1, 1−

B

2
+ it2

)
. (6.6)

Proof. Formula (6.1) equals, by shifting the integration to the left, the sum of

Γ (1 + 2it2) Γ (−2it2) Γ
(
1
2 − it2 − n− S

)
Γ
(
1
2 + n+ it2 + S

)
Γ
(
1
2 − it2 − n

)
Γ
(
1
2 + it2 + n

) F+, (6.7)

Γ (1− 2it2) Γ (2it2) Γ
(
1
2 + it2 − n− S

)
Γ
(
1
2 + n− it2 + S

)
Γ
(
1
2 + it2 − n

)
Γ
(
1
2 − it2 + n

) F− (6.8)

and
Γ
(
3
2 − n± it2 − S

)
Γ
(
−1

2 ± it2 + n+ S
)

Γ (S) Γ (1− S)
G, (6.9)

where we write

F+ :=

∞∑
m=0

Γ
(
B − 1

2 + n+ it2 +m
)
Γ
(
1
2 + n+ it2 +m

)
Γ (±it1 + S + it2 +m)

m!Γ (1 + 2it2 +m) Γ
(
B − 1

2 + n+ it2 + S +m
)
Γ
(
1
2 + n+ it2 + S +m

) ,
F− :=

∞∑
m=0

Γ
(
B − 1

2 + n− it2 +m
)
Γ
(
1
2 + n− it2 +m

)
Γ (±it1 + S − it2 +m)

m!Γ (1− 2it2 +m) Γ
(
B − 1

2 + n− it2 + S +m
)
Γ
(
1
2 + n− it2 + S +m

) ,
G :=

∞∑
m=0

Γ
(
1
2 ± it1 − n+m

)
Γ (B − S +m) Γ (1− S +m)

m!Γ
(
3
2 − n± it2 − S +m

)
Γ (B +m)

.

By (3.31), (3.32), (3.33) and (3.34) we have that

F+ − F− =
Γ
(
B − 1

2 + n± it2
)
Γ
(
1
2 + n± it2

)
Γ (±it1 + S ± it2)

Γ (1 + 2it2) Γ (−2it2)
P, (6.10)
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and that F+ −G equals

Γ
(
B − 1

2 + n+ it2
)
Γ
(
1
2 + n+ it2

)
Γ (S ± it1 + it2) Γ

(
1
2 ± it1 − n

)
Γ (B − S) Γ (1− S)

Γ
(
1
2 + n+ it2 + S

)
Γ
(
1
2 − n− it2 − S

)
(6.11)

times Q+, where (the function ψ is defined in (3.28))

P := ψ

(
α;B − 1

2
+ n− it1,

1

2
+ n− it1, B − 1

2
+ n+ it2,

1

2
+ n+ it2, S + it2 − it1

)
with the abbreviation

α := B − 1 + 2n+ S + it2 − it1,

and

Q+ := ψ

(
S + 2it2;S,

3

2
+ it2 −B − n, S + it2 + it1,

1

2
+ n+ it2, S + it2 − it1

)
. (6.12)

Let

Q− := ψ

(
S − 2it2;S,

3

2
− it2 −B − n, S − it2 + it1,

1

2
+ n− it2, S − it2 − it1

)
, (6.13)

then by (3.35), (3.36) and (3.37) we have that

sinπ
(
1
2 + it2 + n+ S

)
Q+

Γ
(
1
2 + n− it2

)
Γ (S − it2 ± it1) Γ

(
B − 1

2 + n− it2
) + sinπ (2it2)P

Γ (B − S) Γ (1− S) Γ
(
1
2 − n± it1

)
(6.14)

equals
sinπ

(
1
2 − it2 + n+ S

)
Q−

Γ
(
1
2 + n+ it2

)
Γ (S + it2 ± it1) Γ

(
B − 1

2 + n+ it2
) . (6.15)

The identity

1 =
sinπ

(
1
2 − it2 − n− S

)
sinπ

(
1
2 + it2 − n− S

) + sinπS sinπ (1 + 2it2)

sinπ
(
1
2 − it2 − n

)
sinπ

(
3
2 + it2 − n− S

) (6.16)

follows from the easily checked fact that the right-hand side is a bounded entire function

of S, and its value is 1 at S = 0. Multiplying (6.7) by the right-hand side of (6.16), we see

that the sum of (6.7), (6.8) and (6.9) equals the sum of

Γ (1− 2it2) Γ (2it2) Γ
(
1
2 + it2 − n− S

)
Γ
(
1
2 + n− it2 + S

)
Γ
(
1
2 + it2 − n

)
Γ
(
1
2 + n− it2

) (
F− − F+

)
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and
Γ
(
3
2 − n± it2 − S

)
Γ
(
− 1

2 ± it2 + n+ S
)

Γ (S) Γ (1− S)

(
G− F+

)
,

which sum, by (6.10) and (6.11), equals the sum of

πΓ
(
B − 1

2 + n± it2
)
Γ
(
1
2 + n+ it2

)
Γ (±it1 + S ± it2)

Γ
(
1
2 − n+ it2

)
sinπ

(
1
2 + it2 − n− S

) P (6.17)

and

πΓ
(
B − 1

2 + n+ it2
)
Γ
(
1
2 + n+ it2

)
Γ (S ± it1 + it2) Γ

(
1
2 ± it1 − n

)
Γ (B − S)

Γ (S) sinπ
(
3
2 + it2 − n− S

) Q+.

(6.18)

Hence we proved that (6.1) equals the sum of (6.17) and (6.18).

By shifting the integration to the right, we see that (6.2) equals

sinπs2
sinπs1

(
Γ (−2it2) Γ (1 + 2it2)F

+ + Γ (2it2) Γ (1− 2it2)F
−) ,

which, by (6.10), equals

sinπs2
sinπs1

Γ

(
B − 1

2
+ n± it2

)
Γ

(
1

2
+ n± it2

)
Γ (±it1 + S ± it2)P.

Hence both (6.1) and (6.2) are linear combinations of P and Q+. By the equality of

(6.14) and (6.15) we can express P by Q+ and Q−, and by a tedious, but straightforward

calculation we get (6.3) and (6.4), with C+
1 , C+

2 , C−
1 , C−

2 given in the text of the lemma,

and Q+, Q− given by (6.12) and (6.13). During the calculation we need the identity

sinπS sin 2πit2

sinπ
(
1
2 + it2 − S

)
sinπ

(
1
2 + it2 + S

) + sinπs2

sinπ
(
1
2 + it2 − S

) =
sinπs2

sinπ
(
1
2 − it2 − S

) ;
for its proof it is enough to show that the difference of the two sides is a regular function

of S, and it is not hard to see.

By (3.30), (3.23) and (3.24) we get the expressions (6.5) and (6.6) for Q+ and Q−. The

lemma is proved.

LEMMA 6.2. Let ϵ = 1
100 , and let t and S be given such that t is real and ReS = 1

2 − ϵ.

Consider the integrals

1

2πi

∫
(− 1

4−
ϵ
2 )

Γ
(
−1

2 ± it1 + S − s
)
Γ
(
1
2 ± it2 + s

)
Γ (1 + s) Γ

(
S − s− 1

2

) F1(s)ds (6.19)
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and

sinπs2
sinπs1

1

2πi

∫
(− 1

4−
ϵ
2 )

Γ
(
− 1

2 ± it2 + S − s
)
Γ
(
1
2 ± it1 + s

)
Γ (1 + s− S)

Γ (1 + s) Γ (−s) Γ
(
1
2 + s

) F2(s)ds, (6.20)

where F1(s) denotes

1

2πi

∫
(−c)

Γ
(
1
4 ± it+ T

)
Γ (S + T ) Γ (−T ) Γ (1− S + s+ T ) Γ

(
−1

2 − s− T
)

Γ
(
1
2 ± it1 + T

) dT,

and F2(s) denotes

1

2πi

∫
(−c)

Γ
(
1
4 ± it+ T

)
Γ (S + T ) Γ (−T ) Γ (−s+ T ) Γ

(
1
2 − S + s− T

)
Γ
(
1
2 ± it1 + T

) dT

with 1
4 − ϵ

2 < c < 1
4 .

Then (6.19) equals

−Γ

(
1

4
± it

)
Γ

(
1

2
− S

)
Γ (S) Γ (1− S)

(
A+ (S, t) +A− (S, t)

)
sinπs2 (6.21)

with

A+ (S, t) :=
Γ (S ± it1 + it2) Γ

(
1
4 + it2 ± it

)
sinπ (2it2)

ϕ+
i( 1

2−S)
(t) ,

A− (S, t) :=
Γ (S ± it1 − it2) Γ

(
1
4 − it2 ± it

)
sinπ (−2it2)

ϕ−
i( 1

2−S)
(t) ,

and (6.20) equals

−Γ

(
1

4
± it

)
Γ

(
1

2
− S

)
Γ (S) Γ (1− S)

sinπs2
sinπs1

(
B+ (S, t) +B− (S, t)

)
(6.22)

with

B+ (S, t) :=
Γ (S ± it1 + it2) Γ

(
1
4 + it2 ± it

)
sinπ (2it2)

(
sinπ

(
1

2
− it2 − S

))
ϕ+
i( 1

2−S)
(t) ,

B− (S, t) :=
Γ (S ± it1 − it2) Γ

(
1
4 − it2 ± it

)
sinπ (−2it2)

(
sinπ

(
1

2
+ it2 − S

))
ϕ−
i( 1

2−S)
(t) .

Proof. We see by (3.26) and (3.27) that F1(s) equals

Γ

(
1

4
± it

)
Γ

(
−1

4
− s± it

)
Γ (S) Γ (1 + s− S) Γ

(
1

2
− S

)
Γ

(
S − s− 1

2

)
49



times

ϕi( 1+s
2 −S)

(
t;
1

4
,
1

4
+ it1,

1

4
− it1,

5

4
+ s

)
. (6.23)

Similarly, we see that

1

2πi

∫
(− ϵ

4 )

Γ
(
1
4 ± it1 +A

)
Γ
(
1
4 +A

)
Γ
(
− 1

4 +A− s
)
Γ (−A± it)

Γ
(
3
4 +A− S

)
Γ
(
− 1

4 +A+ S − s
) dA (6.24)

equals

Γ

(
1

4
± it± it1

)
Γ

(
1

4
± it

)
Γ

(
−1

4
± it− s

)
times

ϕi( 1
4+

s
2 )

(
t1;

1

4
+ it,

1

2
− S,−1

2
+ S − s,

3

4
+ it

)
. (6.25)

We see by (3.25) and by the symmetry of the Wilson function in its parameters (see the

sentence above (3.25)) that (6.23) equals (6.25). Hence F1(s) equals

Γ (S) Γ (1 + s− S) Γ
(
1
2 − S

)
Γ
(
S − s− 1

2

)
Γ
(
1
4 ± it± it1

)
times (6.24). This means that (6.19) equals

1

2πi

Γ (S) Γ
(
1
2 − S

)
Γ
(
1
4 ± it± it1

) ∫
(− ϵ

4 )

Γ
(
1
4 ± it1 +A

)
Γ
(
1
4 +A

)
Γ (−A± it)

Γ
(
3
4 +A− S

) L1(A)dA, (6.26)

where L1(A) denotes

1

2πi

∫
(− 1

4−
ϵ
2 )

Γ
(
−1

2 ± it1 + S − s
)
Γ
(
1
2 ± it2 + s

)
Γ (1 + s− S) Γ

(
−1

4 +A− s
)

Γ (1 + s) Γ
(
−1

4 +A− s+ S
) ds.

We see by (3.26) and (3.27) that F2(s) equals

Γ

(
1

4
± it

)
Γ

(
3

4
− S + s± it

)
Γ (S) Γ (−s) Γ

(
1

2
+ s

)
Γ

(
1

2
− S

)
times

ϕi( s+S
2 )

(
t;
1

4
,
1

4
+ it1,

1

4
− it1,

1

4
+ S − s

)
. (6.27)

Similarly, we see that

1

2πi

∫
(− ϵ

4 )

Γ
(
1
4 ± it1 +A

)
Γ
(
1
4 +A

)
Γ
(
3
4 +A− S + s

)
Γ (−A± it)

Γ
(
3
4 +A− S

)
Γ
(
3
4 +A+ s

) dA (6.28)
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equals

Γ

(
1

4
± it± it1

)
Γ

(
1

4
± it

)
Γ

(
3

4
± it+ s− S

)
times

ϕi( 1
4+

s−S
2 )

(
t1;

1

4
+ it,

1

2
− S,

1

2
+ s,

3

4
+ it

)
. (6.29)

We see again by (3.25) and by the symmetry of the Wilson function in its parameters that

(6.27) equals (6.29). Hence F2(s) equals

Γ (S) Γ (−s) Γ
(
1
2 + s

)
Γ
(
1
2 − S

)
Γ
(
1
4 ± it± it1

)
times (6.28). This means that (6.20) equals

1

2πi

sinπs2
sinπs1

Γ (S) Γ
(
1
2 − S

)
Γ
(
1
4 ± it± it1

) ∫
(− ϵ

4 )

Γ
(
1
4 ± it1 +A

)
Γ
(
1
4 +A

)
Γ (−A± it)

Γ
(
3
4 +A− S

) L2(A)dA, (6.30)

where L2(A) denotes

1

2πi

∫
(− 1

4−
ϵ
2 )

Γ
(
− 1

2 ± it2 + S − s
)
Γ
(
1
2 ± it1 + s

)
Γ (1 + s− S) Γ

(
3
4 +A− S + s

)
Γ
(
3
4 +A+ s

)
Γ (1 + s)

ds.

Applying Lemma 6.1 with n = 0, B = A + 3
4 we see for ReA = − ϵ

4 that L1(A) equals

(6.3), and sinπs2
sinπs1

L2(A) equals (6.4) with n = 0, B = A+ 3
4 there.

We see by (6.5), (3.26) and (3.27) (using again that the Wilson function is symmetric in

the parameters a, b, c and 1− d) that if n = 0, B = A+ 3
4 , ReA = − ϵ

4 , then Q
+ equals

1

Γ
(
1
2 ± ix

)
Γ
(
1
2 ± ix− it1 + it2

)
Γ
(
1
2 + it1

)
Γ
(
1
2 + it2

)
Γ
(
1
4 +A+ it1

)
Γ
(
1
4 +A+ it2

)
times

1

2πi

∫
(d)

Γ
(
1
2 ± ix+R

)
Γ
(
1
2 + it1 +R

)
Γ
(
1
4 +A+ it1 +R

)
Γ (−R) Γ (it2 − it1 −R)

Γ
(
3
4 +A+R

)
Γ (1 + it1 + it2 +R)

dR

with d = −1/8, where we write S = 1
2 + ix.

Observe that

1

2πi

∫
(− ϵ

4 )

Γ
(
1
4 − it1 +A

)
Γ
(
1
4 +A

)
Γ (−A± it) Γ

(
1
4 +A+ it1 +R

)
Γ
(
3
4 +A+R

) dA (6.31)
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equals
Γ
(
1
4 − it1 ± it

)
Γ
(
1
4 ± it

)
Γ
(
1
4 + it1 +R± it

)
Γ
(
1
2 +R

)
Γ
(
1
2 + it1 +R

)
Γ
(
1
2 − it1

) (6.32)

by (3.16) and (3.17).

We claim that (6.19) equals

−
Γ (S + it1 + it2) Γ

(
1
4 ± it

)
Γ
(
1
2 − S

)
Γ (1− S − it1 + it2) sinπ (2it2) Γ

(
1
4 ± it+ it1

) sinπs2 (6.33)

times

1

2πi

∫
(− 1

8 )

Γ (S +R) Γ (1− S +R) Γ
(
1
4 + it1 +R± it

)
Γ (−R) Γ (−it1 + it2 −R)

Γ (1 + it1 + it2 +R) Γ
(
1
2 +R

) dR

(6.34)

plus the similar product obtained by writing −t2 in place of t2 in (6.33) and (6.34). Indeed,

we can see it by (6.26), (6.31), (6.32), by the above-mentioned fact that L1(A) equals (6.3)

writing n = 0, B = A+ 3
4 there, by the above expression for Q+, and by the fact that Q−

and C−
1 are obtained from Q+ and C+

1 by writing −t2 in place of t2.

Similarly, but using (6.30) in place of (6.26), we see that (6.20) equals

−
Γ (S + it1 + it2) Γ

(
1
4 ± it

)
Γ
(
1
2 − S

)
Γ (1− S − it1 + it2) sinπ (2it2) Γ

(
1
4 ± it+ it1

) sinπs2
sinπs1

sinπ

(
1

2
− it2 − S

)
(6.35)

times (6.34) plus the similar product obtained by writing −t2 in place of t2 in (6.35) and

(6.34).

By (3.26) and (3.27) we see that (6.34) equals

Γ (S) Γ (1− S) Γ (S − it1 + it2) Γ (1− S − it1 + it2) Γ

(
1

4
+ it1 ± it

)
Γ

(
1

4
+ it2 ± it

)
times

ϕi( 1
2−S)

(
t;
3

4
+ it2,

1

4
+ it1,

1

4
− it1,

3

4
− it2

)
.

This proves the lemma.

6.2. An estimation for Hχ (S). During the proof of Theorem 1.1 we need an upper

bound forHχ (S) defined in Theorem 1.1 not only for an individual χ but also for a function

series χn, assuming a universal upper bound for every |χn|. The most important aspect of

the lemma below is that the estimate (6.36) depends only on the upper bound M for |χ|.
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LEMMA 6.3. (i) Recall the notations ϕ+λ (x), ϕ−λ (x) from Section 1.2. There is an

absolute constant C > 0 such that we have∣∣∣∣ϕ+i( 1
2−S)

(t)

∣∣∣∣+ ∣∣∣∣ϕ−i( 1
2−S)

(t)

∣∣∣∣≪ eπ(|S|+|t|) (1 + |S|)C (1 + |t|)C

with an implied absolute constant for every S with −1 ≤ ReS ≤ 2 and for every real t.

(ii) Let β > 0 be a given number and let M be a given nonnegative function on [0,∞)

satisfying that for every fixedK > 0 the functionM(R)e−πR (1 +R)
K

is bounded on [0,∞).

Then, if χ is any even holomorphic function on the strip |Im z| < β with |χ (z)| ≤M (|z|)

on this strip, then for every 0 < B < 1
2 + 2β we have that Hχ (S) is regular in the strip

1
2 − 1

100 ≤ ReS ≤ 1
2 , and for every S in this strip we have

Γ2 (1− S)Hχ (S) ≪B,M (1 + |S|)−B
. (6.36)

Proof. To show (i) note that for every fixed real t the functions ϕ+
i( 1

2−S)
(t) and ϕ−

i( 1
2−S)

(t)

are entire in S. Combining this fact with (3.26) and (3.27) we get (i) by trivial estimates.

The regularity statement in (ii) follows then at once from (i) and from the definition.

By the definition of N+ (S, t) in Section 1, and by (3.26), (3.27) we see for any real t and

for any S with 1
2 − 1

100 ≤ ReS ≤ 1
2 that

Γ (S) Γ (1− S)N+ (S, t)

Γ (S + it1 ± it2)

equals
sinπ (S + it1 − it2)

π sinπ (2it2) Γ
(
1
4 + it1 ± it

) (sinπs1 + sinπ

(
1

2
− it2 − S

))
(6.37)

times

1

2πi

∫
(−1/8)

Γ (S +R) Γ (1− S +R) Γ
(
1
4 + it1 +R± it

)
Γ (−R) Γ (−it1 + it2 −R)

Γ (1 + it1 + it2 +R) Γ
(
1
2 +R

) dR.

(6.38)

We get
Γ (S) Γ (1− S)N− (S, t)

Γ (S + it1 ± it2)

by writing −t2 in place of t2 in (6.37) and (6.38).
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We now show (6.36). It is clear that taking the term sinπs1 from the bracket in (6.37) we

get expressions acceptable in (6.36). On the other hand, we have that

sinπ (S + it1 − it2) sinπ

(
1

2
− it2 − S

)
=

cosπ
(
2S + it1 − 1

2

)
2

−
cosπ

(
−2it2 + it1 +

1
2

)
2

by [G-R], p. 29, 1.313.5. Taking the second term from here in (6.37) gives again an

acceptable contribution in (6.36); the first term is independent of t2. So defining

G(R) :=

∫ ∞

−∞

Γ
(
1
4 ± it

)
Γ
(
1
4 − it1 ± it

)
Γ
(
1
4 + it1 +R± it

)
Γ (±2it)

χ(t)dt, (6.39)

it is enough to prove for 1
2 − 1

100 ≤ ReS ≤ 1
2 that the difference of

1

2πi

∫
(−1/8)

Γ (S +R) Γ (1− S +R)G (R) Γ (−R) Γ (−it1 + it2 −R)

Γ (1 + it1 + it2 +R) Γ
(
1
2 +R

) dR

and the same integral with −t2 in place of t2 is ≪B,M e−π|S| (1 + |S|)−B
. We claim that

Γ (−it1 + it2 −R) Γ (1 + it1 − it2 +R)

Γ (1 + it1 + it2 +R) Γ (−it1 − it2 −R)
− 1

equals
Γ (−it1 + it2 −R) Γ (1 + it1 − it2 +R) Γ

(
1
2 + it2

)
Γ
(
1
2 − it2

)
Γ
(
1
2 + it1 +R

)
Γ
(
1
2 − it1 −R

)
Γ (1 + 2it2) Γ (−2it2)

.

This is true because the difference of these two functions is a bounded entire function of

R which vanishes at R = 1
2 − it1. Using this identity we see that it is enough to prove for

1
2 − 1

100 ≤ ReS ≤ 1
2 that

1

2πi

∫
(−1/8)

Γ (S +R) Γ (1− S +R)G (R) Γ (−R) Γ (−it1 ± it2 −R)

Γ
(
1
2 + it1 +R

)
Γ
(
1
2 − it1 −R

)
Γ
(
1
2 +R

) dR

is ≪B,M e−π|S| (1 + |S|)−B
. By shifting the R-integration to the left, we see then that it

is enough to prove that

H (R) :=
G (R)

Γ
(
1
2 + it1 +R

)
Γ
(
1
2 +R

)
is holomorphic for ReR > −1

4 − β and satisfies

G (R)

Γ
(
1
2 + it1 +R

)
Γ
(
1
2 +R

) ≪K,ρ,M eπ|R| (1 + |R|)−K

54



for every K > 0 and 0 ≤ ρ < β on the strip − 1
4 − ρ ≤ ReR ≤ 1. We now prove this

statement. It is clear that we may assume that 1
4 + ρ and 1

4 − ρ are not integers.

Let b be a large positive integer. There are constants ca,b such that

Γ (z)

Γ (z + b)
=

b−1∑
a=0

ca,b (z + a)
−1
.

Applying it for z = 1
4 + it1 +R± it, we see that Γ

(
1
4 + it1 +R± it

)
equals

Γ

(
1

4
+ it1 +R± it+ b

) ∑
0≤a1,a2≤b−1

ca1,bca2,b(
1
4 + it1 +R+ it+ a1

) (
1
4 + it1 +R− it+ a2

) .
We use that

−2it+ a2 − a1(
1
4 + it1 +R+ it+ a1

) (
1
4 + it1 +R− it+ a2

)
equals

1
1
4 + it1 +R+ it+ a1

− 1
1
4 + it1 +R− it+ a2

, (6.40)

and because of the presence of the factor 1
Γ(±2it) , shifting the line of integration in (6.39) to

Im t = ±ρ (the minus sign is used in the case of the first term in (6.40), and the plus sign

in the case of the second term), we get such an expression for G(R) which proves the above

statement for the function H (R). We cross some poles when we shift the t-integration, but

the residues also give holomorphic expressions for H (R) in the required strip, because of

the factor Γ
(
1
2 + it1 +R

)
Γ
(
1
2 +R

)
in the denominator of H (R). The lemma is proved.

Important notations

(a)n p. 10
arg z p. 2
B0(z) p. 2
Bn(z) p. 15

ConditionCβ p. 5
ConditionD p. 12

D1 p. 1, p. 15
D4 p. 2, p. 15
dµz p. 1
∆l p. 2

δu1,u2 p. 5
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Ea

(
z, s, 12

)
p. 16

e(x) p. 2
(f1, f2)1 p. 1
(f1, f2)4 p. 2

q+1Fq p. 17
F (α, β, γ; z) p. 17
ϕλ (x; a, b, c, d) p. 24
ϕ+λ (x) , ϕ−λ (x) p. 4

gk,j p. 10
γj p. 16

Γ (X ± Y ) ,Γ (X ± Y ± Z) p. 4
Γ0(4) p. 2
Γ∞ p. 17
H p. 1

H(z, w) p. 16
Hχ (S) p. 6
jγ(z) p. 3
Kk p. 10

(κ(u)) (z) p. 5
(κn(u)) (z) p. 10

L (S) = L (S, u1 ⊗ u2) p. 4
L2
l (D4) p. 4
Lk p. 10

N (S, t) p. 4
ν(γ) p. 2

ψ (A;B,C,D,E, F ) p. 25
Rl(D4) p. 16
ρf,a(m) p. 13

ρu1(m), ρu2(m) p. 3
ShimF p. 8
S2k+ 1

2
p. 10

σa p. 13
Sn

(
x2; a, b, c

)
p. 18

t1, t2 p. 3
Tj p. 5
Tz p. 14
θ (z) p. 2
u1, u2 p. 3
uj,1/2 p. 5

wa,b,c (x) p. 18
W (A;B,C,D,E, F ) p. 24

Wα,β (y) p. 26
ζ (S) p. 5
ζa(f, r) p. 5
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