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Abstract

In [A. Biró, V.T. Sós, Strong characterizing sequences in simultaneous Diophantine approximation,
J. Number Theory 99 (2003) 405–414] we proved that if Γ is a subgroup of the torus R/Z generated
by finitely many independent irrationals, then there is an infinite subset A ⊆ Z which characterizes Γ in the
sense that for γ ∈ R/Z we have

∑
a∈A ‖aγ ‖ < ∞ if and only if γ ∈ Γ . Here we consider a general compact

metrizable Abelian group G instead of R/Z, and we characterize its finitely generated free subgroups Γ

by subsets A ⊆ G∗, where G∗ is the Pontriagin dual of G. For this case we prove stronger forms of the
analogue of the theorem of the above mentioned work, and we find necessary and sufficient conditions for
a kind of strengthening of this statement to be true.
© 2006 Elsevier Inc. All rights reserved.
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0. Introduction

Let T = R/Z, where R denotes the additive group of the real numbers, Z is the subgroup of
the integers. If x ∈ R, then ‖x‖ denotes its distance to the nearest integer, it is well defined also
on T .
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Denote by χ[a,b] the characteristic function of a real interval [a, b]. If v is a nonnegative
function on [0, 1

2 ], and A ⊆ Z, write

CT,A(v) =
{
γ ∈ T :

∑
a∈A

v
(‖aγ ‖) < ∞

}
.

We now state more precisely the result of [B-S] mentioned in the abstract. We proved the follow-
ing theorem with different notations. In fact we stated a somewhat weaker theorem there, but the
same proof gives this statement.

Theorem. (See [B-S].) Assume that Γ � T is a finitely generated free Abelian group. Then there
is an infinite subset A ⊆ Z such that for γ ∈ T we have

∑
a∈A ‖aγ ‖ < ∞ if and only if γ ∈ Γ ,

moreover, if ‖aγ ‖ < 1/10 for all but finitely many a ∈ A, then we already know γ ∈ Γ . In other
words, writing v1(x) = x and v2(x) = χ[1/10,1/2](x) for 0 � x � 1

2 , we have

CT,A(v1) = CT,A(v2) = Γ. (0.1)

Note that the statement of the theorem in [B-S] contains a misprint: lim inf should be replaced
by lim sup there.

Such a set A was called a strong characterizing sequence of the subgroup Γ . The existence of
strong characterizing sequences for any countable Γ � T was proved in [Be].

We started to study this subject in [B-D-S]. We proved there that for any countable Γ � T

there is an infinite A ⊆ Z such that for γ ∈ T we have ‖aγ ‖ → 0 if and only if γ ∈ Γ , more-
over, if ‖aγ ‖ < 1/10 for all but finitely many a ∈ A, then we already know γ ∈ Γ . Such an A

was called a characterizing sequence, and one can easily see that to be a strong characterizing
sequence is indeed a stronger property.

In the present paper, we deal with generalizations of strong characterizing sequences for
compact metrizable Abelian groups. Our results here are not only generalizations, but also
strengthening of the quoted theorem of [B-S], since, under some assumptions, we give neces-
sary and sufficient conditions for more general pairs (v1, v2) of nonnegative increasing functions
defined on [0, 1

2 ] (in place of the specific functions used in the [B-S] theorem) for which an
analogous theorem is true.

We now describe briefly the results of the paper, but for simplicity, only for the case of T .
The cited theorem of [B-S] essentially means that the elements of the sequence ‖aγ ‖a∈A are

asymptotically small (as |a| → ∞) for γ ∈ Γ , but this is false for γ ∈ T \ Γ . Hence, the goal is
to seek such an A for which the behavior is radically different in Γ and outside Γ . In this paper,
we use the two functions v1 and v2 to measure the order of magnitude of ‖aγ ‖a∈A in the two
parts Γ and T \ Γ , respectively.

Let V be the set of those real-valued, strictly increasing, continuous functions v on [0, 1
2 ]

satisfying v(0) = 0 for which we have v(2x) � v(x). We impose the last condition to ensure that
CT,A(v) is always a subgroup of T .

Our Theorem 1 contains a characterization of functions v1 ∈ V for which there is an infinite
A ⊆ Z satisfying (0.1) with this v1, but maintaining χ[1/10,1/2] as v2.

If there is such a set A, this means that CT,A(v1) = Γ with the stronger property that for
γ ∈ T \ Γ we even have that ‖aγ ‖ does not tend to 0. It turns out in Theorem 1 that if v1(x)

tends to 0 sufficiently slowly as x → 0 (e.g., v1(x) = 1
1 ), then there is no such A. However, it
log
x



326 A. Biró / Journal of Number Theory 121 (2006) 324–354
still may happen that for another function v2 ∈ V , which tends to 0 faster than v1(x) as x → 0,
there is an A satisfying (0.1). If this is the case, then CT,A(v1) = Γ with the stronger property that
for γ ∈ T \Γ we even have

∑
a∈A v2(‖aγ ‖) = ∞. Such possibilities are analyzed in Theorem 2.

See Example 1 in Section 1 for the case of v1(x) = 1
log 1

x

.

In the extremal case when v2 = v1, we simply ask about the possibility of CT,A(v1) = Γ ,
without any stronger, additional property. Our results contain an interesting necessary and suffi-
cient condition for this case, see Example 2 in Section 1.

We will see in Example 2 that CT,A(v) = Γ is impossible for some v ∈ V . However, in
Theorem 3 we show that for any v ∈ V , it is possible to characterize Γ in a certain new sense
with a set A satisfying Γ ⊆ CT,A(v).

It is remarkable that while our main interest lies in the case of T , we could not prove our
statements directly for T . It turned out that it is easier to deal with the case of Z2 (the additive
group of the 2-adic integers). In Section 2, we prove the theorems for this special group and its
infinite cyclic subgroup Γ = Z. Then, we will show in Section 3 that it is possible to extend the
theorems from this seemingly very special case, using a certain transfer principle, to any compact
metrizable Abelian group and its any finitely generated free dense subgroup.

The result from [Be] on countable subgroups of T raises the question whether the results
proved here for finitely generated free dense subgroups could be extended for countable sub-
groups.

On the other hand, it would be nice to characterize the “good” pairs (v1, v2) in more gen-
eral classes of functions. In particular, it would be interesting to prove Theorem 2 without the
assumption v1(x

2) 	 v1(x), especially in the case v1 = v2.
For generalizations of characterizing sequences for subgroups of more general topological

groups, see [D-M-T,D-K,B-S-W]. For characterizations of subgroups of T in a different sense
(with filters on the positive integers instead of subsets of Z) see [W, Theorem 1].

1. Notations and statements of the results

In all of the theorems, G is a compact metrizable Abelian group, G∗ is its character group
(or Pontriagin dual, see, e.g., [R]), i.e., the group of continuous homomorphisms from G to T .
It is well known that the property that G is metrizable is equivalent to the condition that G∗ is
countable (see again [R]). If a ∈ G∗, γ ∈ G, we write aγ for the value of a at γ .

If A ⊆ G∗ is an infinite subset, v is a nonnegative function on [0, 1
2 ], and α1, α2, . . . , αt ∈ G

generate a dense subgroup of G, let

CG,A(v) =
{
γ ∈ G:

∑
a∈A

v
(‖aγ ‖) < ∞

}
, LG,A =

{
γ ∈ G: lim

a∈A
‖aγ ‖ = 0

}
(here lima∈A ‖aγ ‖ = 0 means that for every ε > 0 there are only finitely many a ∈ A with
‖aγ ‖ � ε), and

BG,A(α1, α2, . . . , αt ) =
{
γ ∈ G: sup

a∈A,a 
=0

‖aγ ‖
max(‖aα1‖,‖aα2‖, . . . ,‖aαt‖) < ∞

}
(here the denominator is obviously nonzero for a 
= 0 by the conditions).

To be precise, we repeat that V is the set of those real-valued, strictly increasing, continu-
ous functions v on the interval [0, 1 ] satisfying v(0) = 0 for which there is a positive number
2
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K(v) > 0 such that for every x � 0 we have (writing, for the sake of convenience, v(y) = v( 1
2 ),

if y > 1
2 )

v(2x) � K(v)v(x). (1.1)

Condition (1.1) ensures that CG,A(v) is a subgroup of G. We can now state the results.

Theorem 1.

(i) Assume that Γ � G is a finitely generated free Abelian group, Γ is dense in G, and suppose
that v ∈ V satisfies

∞∑
n=1

v
(
2−n

)
< ∞. (1.2)

Then there is an infinite subset A ⊆ G∗ such that CG,A(v) = CG,A(χ[ 1
4 , 1

2 ]) = Γ .

(ii) If Γ is an infinite cyclic dense subgroup of G, v ∈ V satisfies

∞∑
n=1

v
(
2−n

) = ∞, (1.3)

and A ⊆ G∗ is such an infinite subset that Γ ⊆ CG,A(v), then |LG,A| = 2ℵ0 .

Theorem 1(i) in the case of G = T is a more precise form of [B-S, Theorem]. We mention
that analyzing the proof in [B-S] (which used the Freiman–Ruzsa theorem) we can see that
Theorem 1(i) could be also proved by the method used there. However, Theorems 1(ii), and 2, 3
below are new results, even in the case of G = T .

If v ∈ V , then its inverse function, v−1 is defined on the interval [0, v( 1
2 )]. We will write

v−1(x) = 1
2 for x > v( 1

2 ) (it is not important, but it will be convenient).

Theorem 2. Let v1, v2 ∈ V be such that

v2(x) � Ev1(x) for 0 � x � 1

2
(1.4)

with some constant E > 0, and there is a constant q1 > 0 for which we have for every 0 � x �
1/2 that

v1
(
x2) � q1v1(x). (1.5)

(i) Assume that Γ � G is a finitely generated free Abelian group, and Γ is dense in G. Assume
also that v1 and v2 satisfy

∞∑
n=1

v1

((
v−1

2

(
1

n

))n)
< ∞. (1.6)

Then there is an infinite subset A ⊆ G∗ such that CG,A(v1) = CG,A(v2) = Γ .
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(ii) If Γ is an infinite cyclic dense subgroup of G, v1 and v2 satisfy

∞∑
n=1

v1

((
v−1

2

(
1

n

))n)
= ∞, (1.7)

and A ⊆ G∗ is such an infinite subset that Γ ⊆ CG,A(v1), then |CG,A(v2)| = 2ℵ0 .

Example 1. We write logx for log2 x. We see that (1.2) is true, if

v(x) = 1

log1+ε 1
x

(1.8)

with an ε > 0. However, if we put ε = 0 in (1.8), then (1.3) will be true. So Theorem 1(i) cannot
be applied for v(x) = 1

log 1
x

. But we can analyze on the basis of Theorem 2 how strong statement
can be proved for this function. We find that condition (1.6) is true, if 0 < A < 1 and

v1(x) = 1

log 1
x

, v2(x) = 2− logA( 1
x
), (1.9)

but (1.7) is valid, if B > 0 and

v1(x) = 1

log 1
x

, v2(x) = xB. (1.10)

Hence (since the other conditions are obviously true) Theorem 2(i) is applicable for the pair
in (1.9), but Theorem 2(ii) is applicable for the pair in (1.10).

Example 2. We get another very interesting case if in Theorem 2 we take v1 = v2 = v with a
v ∈ V for which

v
(
x2) � q1v(x)

for 0 � x � 1
2 with some constant q1 > 0. For such functions Theorem 2 gives a necessary and

sufficient condition for the existence of an infinite A ⊆ G∗ with CG,A(v) = Γ : we see that if

∞∑
n=1

v

((
v−1

(
1

n

))n)
< ∞, (1.11)

then we can always find an A with CG,A(v) = Γ , but if the series in (1.11) is divergent, then this
is false. Let us consider the concrete example

v(x) = 2−(log log 2
x
)C

with a constant 0 < C � 1. It is not hard to see that (1.11) is true, if 1
2 < C � 1, but (1.11) is

false, if 0 < C � 1
2 .
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Theorem 3. Assume that Γ � G is a finitely generated free Abelian group, Γ is dense in G, and
let α1, α2, . . . , αt be any system of free generators of Γ . Let v ∈ V be arbitrary, then there is
an infinite subset A ⊆ G∗ such that on the one hand we have Γ ⊆ CG,A(v), on the other hand,
BG,A(α1, α2, . . . , αt ) = Γ .

Remark. If G = T , and Γ is generated by an irrational α ∈ T , then it follows from [K-L]
that taking A = {qn: n � 1}, where qn are the continued fraction denominators of α, we have
BG,A(α) = Γ . However, if, v(x) tends very slowly to 0 as x tends to 0, then Γ ⊆ CG,A(v) will
be false. Therefore, even in this special case the theorem tells something interesting, but it is of
course more interesting for t > 1.

2. A special case

2.1. Introductory remarks and preliminaries

During this whole section, we consider the special case G = Z2, Γ = Z, where Z2 is the
additive group of the 2-adic integers; for an introduction to p-adic numbers, see, e.g., [K]. Hence,
if we speak about Theorems 1–3 in Section 2 (e.g., in the title of Sections 2.2 and 2.3), then we
always mean this special case.

We introduce some notations. Let T (2) be the subgroup of T defined by

T (2) =
{

a

2N
∈ T : N � 0, 1 � a � 2N,

(
a,2N

) = 1

}
.

If k = ∑∞
j=0 bj 2j ∈ Z2, where bj is 0 or 1 for every j , and r = a

2N ∈ T (2), then their product is
given by

kr =
∞∑

j=0

abj 2j−N ∈ T .

It is meaningful, since 2j−N is 0 in T for j � N . It is well known that T (2) = (Z2)
∗, i.e., every

continuous homomorphism f : Z2 → T has the form f (k) = kr with an element r ∈ T (2) for
every k ∈ Z2; this statement is easy to prove, since continuity implies that there is an integer
N � 0 such that f (2Nk) = 0 for every k ∈ Z2.

If A ⊆ T (2), v is a nonnegative function on [0, 1
2 ], then CZ2,A(v) is abbreviated to CA(v) in

Section 2.
We now prove a basic lemma. Part (i) characterizes the ordinary integers in Z2, through their

expansions.

Lemma 2.1.

(i) Let k = ∑∞
j=0 bj 2j ∈ Z2, where bj is 0 or 1 for every j . If k /∈ Z, then there are infinitely

many j such that bj 
= bj+1.
(ii) Let J be a positive integer, and let x ∈ R be given by

x =
∑

bj 2j−J ,
0�j�J−1
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where bj is 0 or 1 for every 0 � j � J − 1. If there is a

0 � t � J − 2

such that bt 
= bt+1, then

‖x‖ � 2t−J .

Proof. Statement (i) follows easily from
∑∞

j=0 2j = −1, which is true in Z2. To prove (ii), we

note that since bt = 1 or bt+1 = 1, so x � 2t−J , and since bt = 0 or bt+1 = 0, so

x � 1 −
∑

0�j�J−1

(1 − bj )2
j−J � 1 − 2t−J .

This proves the lemma. �
In Section 2.2 we prove all the theorems except Theorem 2(i), which is the hardest statement.

We present its proof in Section 2.3.

2.2. Proofs of Theorems 1, 3 and 2(ii)

We begin with proving the easiest statements, i.e., Theorems 1(i) and 3.

Proof of Theorem 1(i). Define A ⊆ T (2) by

A =
{

1

2J
: J � 1

}
.

Then (1.2) and v ∈ V easily imply Z ⊆ CA(v). If k = ∑∞
j=0 bj 2j ∈ Z2, where bj is 0 or 1 for

every j , and t � 0 is such that bt 
= bt+1, then by Lemma 2.1(ii), taking J = t + 2 we have∥∥∥∥ k

2J

∥∥∥∥ � 1

4
.

In view of Lemma 2.1(i), this proves that if k /∈ Z, then there are infinitely many r ∈ A with
‖kr‖ � 1

4 . This completes the proof. �
Proof of Theorem 3. Let H be an infinite subset of the positive integers with the property

∑
J∈H

v

(
1

2J

)
< ∞. (2.1)

It is clear that there is such a subset H . Define

A =
{

1
J

: J ∈ H

}
.

2
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Then (2.1) and v ∈ V easily imply Z ⊆ CA(v). If k = ∑∞
j=0 bj 2j ∈ Z2, where bj is 0 or 1 for

every j , and t � 0 is such that bt 
= bt+1, then by Lemma 2.1(ii), taking a J ∈ H with J � t + 2
we have ∥∥∥∥ k

2J

∥∥∥∥ � 2t

∥∥∥∥ 1

2J

∥∥∥∥.

In view of Lemma 2.1(i) this proves the theorem. �
For the proof of Theorems 1(ii) and 2(ii) we need two lemmas.

Lemma 2.2. Let v ∈ V , assume that g is a positive, monotonically increasing continuous function
on the real interval [n0,∞) with some positive integer n0, and

∞∑
n=n0

v
(
2−ng(n)

) = ∞. (2.2)

Assume also that

A = {r1, r2, . . . , rn, . . .} ⊆ T (2)

is such that

‖r1‖ � ‖r2‖ � · · · � ‖rn‖ � · · · and (2.3)∑
r∈A

v
(‖r‖) < ∞. (2.4)

Then, for any positive constant K there are infinitely many positive integers n such that with a
suitable positive integer T we have

‖Tr1‖,‖Tr2‖, . . . ,‖Trn‖ � 2−Kg(Kn) and (2.5)

‖rn+1‖ � 1

T 2
. (2.6)

Proof. Remark first that it is enough to prove the lemma for large enough K . Condition (2.2) is
equivalent to

∞∫
n0

v
(
2−xg(x)

)
dx = ∞,

which is equivalent to

∞∑
v
(
2−4Kng(4Kn)

) = ∞, (2.7)

n=n0
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therefore (2.7) is true. Then (2.4) and (2.7) imply that there are infinitely many integers n such
that

‖rn‖ � 2−4Kng(4Kn). (2.8)

We use Dirichlet’s approximation theorem (pigeon-hole principle) in the form that if M is a
positive integer, we can take an integer 1 � T � Mn such that

‖Tr1‖,‖Tr2‖, . . . ,‖Trn‖ � 1

M
. (2.9)

We apply it with

M = [
22Kg(4Kn)

]
� 2Kg(4Kn)

(integer part), the inequality is true for every n � n0 if K is large enough, and we obtain an
integer

1 � T � 22Kng(4Kn) (2.10)

such that

‖Tr1‖,‖Tr2‖, . . . ,‖Trn‖ � 2−Kg(4Kn) � 2−Kg(Kn).

This, together with (2.3), (2.8) and (2.10), proves the lemma. �
Lemma 2.3. Let φ be a positive valued function on the positive integers such that

(i) there is a constant K > 0 with the property that

φ(2m) � Kφ(m) (2.11)

for every positive integer m;
(ii) for any ε > 0, there is a positive integer m such that

φ(m) < ε. (2.12)

Then, for any sequence of positive numbers εi , there is a sequence mi of positive integers such
that

φ(mi) < εi (2.13)

for every i � 1, and for every i � 1 there is an integer ti � 1 satisfying

mi < 2ti , 2ti |mi+1. (2.14)
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Moreover, if the integers mi and ti satisfy these conditions, then

∞∑
i=1

bimi (2.15)

is convergent in Z2 for any sequence bi , where bi is 0 or 1 for every i, and if

∞∑
i=1

bimi =
∞∑
i=1

b∗
i mi (2.16)

in Z2, where every bi and b∗
i is 0 or 1, then bi = b∗

i for every i � 1.

Proof. We define recursively the sequence mi . We fix m1 such that (2.13) is true with i = 1,
which is possible by (ii). If m1,m2, . . . ,mi are given, then we take an integer ti such that
2ti > mi , and we take mi+1 = 2ti R with a positive integer R with

φ(R) <
εi+1

Kti
.

This is possible by (ii). Then (2.14) is true, and (2.13) with i + 1 in place of i follows by (2.11).
Now, (2.14) easily implies that ti is strictly increasing, so (2.15) is convergent indeed. If (2.16)
is true, and j is the least integer for which bj 
= b∗

j , then

(
bj − b∗

j

)
mj =

∞∑
i=j+1

(
b∗
i − bi

)
mi. (2.17)

The left-hand side here is an integer, its absolute value is mj , so by (2.14) we see that it is not
divisible by 2tj . However, every term on the right-hand side of (2.17) is divisible by 2tj , this
follows from (2.14), since the sequence ti is increasing. This is a contradiction, so the lemma is
proved. �
Proof of Theorems 1(ii) and 2(ii). We will apply Lemma 2.3. For positive integers m we put

φ1(m) = sup
r∈A

‖mr‖ (2.18)

in the case of Theorem 1(ii), and

φ2(m) =
∑
r∈A

v2
(‖mr‖) (2.19)

in the case of Theorem 2(ii). Then for every m � 1 we have 0 < φ1(m) < ∞ (obviously), and
0 < φ2(m) < ∞ by (1.4) and Z ⊆ CA(v1), using also that v1 ∈ V . Moreover, condition (i) of
Lemma 2.3 is obviously satisfied, writing φ1 or φ2 in place of φ in (2.11) (we use v2 ∈ V ).
Condition (ii) of Lemma 2.3 is also true for φ1 and for φ2, it will follow from Lemma 2.2. To
prove this, remark first that (2.3) and (2.6) imply

‖Trl‖ � ‖rl‖1/2 for l > n. (2.20)
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Now, to prove (ii) of Lemma 2.3 for φ1, we apply Lemma 2.2 with g identically 1 (it is possible,
since (2.2) is true by (1.3), (2.4) is true by Z ⊆ CA(v)), and using (2.3), (2.20) and (2.5), we get

sup
r∈A

‖Tr‖ � max
(
2−K,‖rn+1‖1/2).

Since we can take K and n to be arbitrarily large, and ‖rn+1‖ → ∞ as n → ∞ by (2.3) and
(2.4), so Lemma 2.3(ii) is proved for φ1. In the case of φ2, we apply Lemma 2.2 with g(n) =
log 1

v−1
2 (1/n)

, and v1 in place of v. It is possible, since (2.2) is true by (1.7), and (2.4) is true by

Z ⊆ CA(v1). Then by (2.5) and (2.20) we have

∑
r∈A

v2
(‖Tr‖) � nv2

(
2−Kg(Kn)

) +
∞∑

l=n+1

v2
(‖rl‖1/2). (2.21)

Now, if K � 1, then

2−Kg(Kn) � 2−g(Kn) = v−1
2

(
1

Kn

)
, (2.22)

so applying (1.4) and (1.5), we get from (2.21) and (2.22) that

∑
r∈A

v2
(‖Tr‖) � 1

K
+ E

q1

∞∑
l=n+1

v1
(‖rl‖).

Since we can take K and n to be arbitrarily large, so by Z ⊆ CA(v1), Lemma 2.3(ii) is proved
for φ2.

Hence we can apply Lemma 2.3 for φ1 and for φ2 in place of φ. If bi is 0 or 1 for every i, and
if r ∈ A is given, then ∥∥∥∥∥

( ∞∑
i=1

bimi

)
r

∥∥∥∥∥ �
∞∑
i=1

‖mir‖, (2.23)

and here the sum on the right-hand side is actually finite (since r ∈ T (2), (2.14) is true, and (2.14)
implies ti → ∞).

We first consider the case of φ1, i.e., Theorem 1(ii). By (2.23), (2.13) (for φ1) and (2.18) we
get ∥∥∥∥∥

( ∞∑
i=1

bimi

)
r

∥∥∥∥∥ �
(

I∑
i=1

mi

)
‖r‖ +

∞∑
i=I+1

εi

for any r ∈ A, any 0-1 sequence bi and for any integer I � 1. If we take εi such that

∞∑
εi < ∞,
i=1
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then, fixing I to be an arbitrarily large constant, using that

lim
r∈A

‖r‖ = 0

by Z ⊆ CA(v), we get

lim
r∈A

∥∥∥∥∥
( ∞∑

i=1

bimi

)
r

∥∥∥∥∥ = 0

for any 0-1 sequence bi , so by Lemma 2.3, Theorem 1(ii) is proved.
Consider now the case of φ2, hence Theorem 2(ii). Note that if 0 � x � 1

2 , I � 2 is an integer,

0 � xi � 1
2 for 1 � i � I and x �

∑I
i=1 xi , then (1.1) gives

v2(x) �
(

I−1∑
i=1

K(v2)
iv2(xi)

)
+ K(v2)

I−1v2(xI ). (2.24)

Indeed, for I = 2 this follows directly from (1.1), and then we can prove the statement by induc-
tion for I > 2. Then, since K(v2) � 1, and we saw that the right-hand side of (2.23) is a finite
sum, by (2.23), (2.24) we see for any r ∈ A and for any 0-1 sequence bi that

v2

(∥∥∥∥∥
( ∞∑

i=1

bimi

)
r

∥∥∥∥∥
)

�
∞∑
i=1

K(v2)
iv2

(‖mir‖
)
.

By (2.13) (for φ2) and (2.19) we get

∑
r∈A

v2

(∥∥∥∥∥
( ∞∑

i=1

bimi

)
r

∥∥∥∥∥
)

�
∞∑
i=1

K(v2)
iεi .

Taking εi such that this last series is convergent, and using Lemma 2.3, Theorem 2(ii) is
proved. �
2.3. Proof of Theorem 2(i)

In this subsection, the notations and assumptions of Theorem 2(i) are valid. Let f (n) and g(n)

be positive integers for every n � 1, and assume that

f (n + 1) � f (n), g(n + 1) > g(n) (2.25)

for large n. Let 0 < N1 < N2 < · · · < Ni < · · · be a strictly increasing sequence of positive
integers. For large i, define

ANi
=

{
vn

g(n)+f (n)
: Ni � n < Ni+1

}
∪

{
pn

g(n)+f (n)
: Ni � n < Ni+1

}
,

2 2
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where vn are integers satisfying

1 � vn � 2g(n), and vn is odd for every n, Ni � n < Ni+1, (2.26)

pn are primes satisfying

2
g(n)

2 � pn � 21+ g(n)
2 , pn 
= vn for every n, Ni � n < Ni+1. (2.27)

We will determine the numbers vn later. If the integers vn are already fixed, then we can choose
the primes pn satisfying (2.27). By (2.25), since vn and pn are odd and pn 
= vn, for large
enough i we have |ANi

| = 2(Ni+1 − Ni), in other words, the elements written in the defini-
tion of ANi

are indeed different. Similarly, we can see that for large i the sets ANi
are pairwise

disjoint.
We now choose the numbers vn. They will be chosen randomly, satisfying (2.26). More pre-

cisely, we will need later the condition for vn stated in the next lemma, and the proof of the
lemma will show that choosing vn randomly, this condition will be true. To state the lemma, we
introduce some notations. For every i � 1, let εi < 1

10 be a positive number to be determined
later, and for positive integers n, S and i, write

Hn,S,i =
{

1 � v � 2g(n):

∥∥∥∥ vS

2g(n)+f (n)

∥∥∥∥ < εi

}
. (2.28)

Lemma 2.4. Let i be large but fixed, and assume that

εi < 2
−25−6

g(Ni+1)+f (Ni+1)

Ni+1−Ni . (2.29)

If i is large enough, there are integers vn for Ni � n < Ni+1 such that (2.26) is true, and if for
an integer S, 1 � S � 21+g(Ni+1)+f (Ni+1) , the inequality

∣∣{Ni � n < Ni+1: |Hn,S,i | � 100εi2
g(n)

}∣∣ � Ni+1 − Ni

2
(2.30)

holds, then

∣∣{Ni � n < Ni+1: vn /∈ Hn,S,i}
∣∣ � Ni+1 − Ni

3
(2.31)

also holds.

Proof. Let us fix an 1 � S � 21+g(Ni+1)+f (Ni+1) such that (2.30) is true for S. If for an integer
vector

(. . . , vn, . . .)Ni�n<Ni+1 , 1 � vn � 2g(n) for every n, Ni � n < Ni+1, (2.32)

formula (2.31) is not true, then

∣∣{Ni � n < Ni+1: |Hn,S,i | � 100εi2
g(n), vn ∈ Hn,S,i

}∣∣ � Ni+1 − Ni
.

6
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Hence for this fixed S, the number of integer vectors (2.32) for which (2.31) is not true, is at most( ∏
Ni�n<Ni+1

2g(n)

)
(100εi)

(Ni+1−Ni)/6.

Then the number of vectors (2.32) for which there is an 1 � S � 21+g(Ni+1)+f (Ni+1) such that
(2.30) is true but (2.31) is not, is at most( ∏

Ni�n<Ni+1

2g(n)

)
(100εi)

(Ni+1−Ni)/621+g(Ni+1)+f (Ni+1) .

And the number of vectors (2.32) with vn odd for every n, Ni � n < Ni+1, is( ∏
Ni�n<Ni+1

2g(n)

)
2−(Ni+1−Ni).

So the lemma will be proved, if we can show that

(100εi)
(Ni+1−Ni)/621+g(Ni+1)+f (Ni+1) < 2−(Ni+1−Ni)−1. (2.33)

It is not hard to see, using (2.29), that (2.33) will be true for large i. The lemma is proved. �
From now on, we assume that (2.29) is true for large i, and in ANi

we always take numbers vn

with the properties stated in Lemma 2.4.
For the proof of the next lemma we will need the following well-known general lemma. For

the sake of completeness, we present a proof.

Lemma 2.5. Let θ ∈ R, 0 < ε < 1
10 , and let N � 1 be an integer. Then at least one of the following

two conditions is satisfied:

(i) |{1 � n � N : ‖nθ‖ < ε}| � 100εN ;
(ii) |θ − a

q
| � 1

N
for an 1 � q � 1

ε
and (a, q) = 1.

Proof. Let Q1 and Q2 be positive integers satisfying

Q2 = 2N,
1

3ε
� Q1 + 1 � 1

2ε
, (2.34)

and for real t consider the well-known Fourier series

f (t) =
Q1∑

m=−Q1

(
1 − |m|

Q1 + 1

)
e2πimt = sin2((Q1 + 1)πt)

(Q1 + 1) sin2(πt)
,

F (t) =
∞∑

cne
2πint =

{
1 − Q2‖t‖, if ‖t‖ � 1

Q2
,

0, if 1 � ‖t‖ � 1 ,

n=−∞ Q2 2
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where cn = Q2
sin2 (πn/Q2)

π2n2 . Remark that the formulas mean f (t) = Q1 + 1 for t ∈ Z, and

c0 = 1
Q2

. Since 2
π
x � sinx � x is valid for 0 � x � π

2 , so

cnf (t) �
(

2

π

)4
Q1 + 1

Q2
, if |n| � Q2

2
and |t | � 1

2(Q1 + 1)
.

Hence, since cn, f (t) � 0 for every n and t , so if (i) is false, by (2.34) we get

∞∑
n=−∞

cnf (nθ) �
(

2

π

)4
Q1 + 1

Q2

∣∣{1 � n � N : ‖nθ‖ < ε
}∣∣ �

(
2

π

)4 1

6Nε
100Nε > 1.

On the other hand, we have

∞∑
n=−∞

cnf (nθ) =
Q1∑

m=−Q1

(
1 − |m|

Q1 + 1

) ∞∑
n=−∞

cne
2πimnθ =

Q1∑
m=−Q1

(
1 − |m|

Q1 + 1

)
F(mθ).

Therefore, using F(0) = 1 and F(t) = F(−t), we conclude that there is an integer m with 1 �
m � Q1 such that F(mθ) 
= 0, which implies ‖mθ‖ � 1

Q2
. Hence, using (2.34), (ii) is true. �

Lemma 2.6. Let i be large but fixed, and assume that

22− g(Ni )

2 < εi. (2.35)

If i is large, then for every 1 � S � 21+g(Ni+1)+f (Ni+1) at least one of the following two conditions
is satisfied:

(i) |{r ∈ ANi
: ‖rS‖ � εi

2 }| � Ni+1−Ni

3 ;
(ii) there is an Ni � n < Ni+1 for which ‖ S

2f (n)+g(n) ‖ � 1
2g(n) .

Proof. Let 1 � S � 21+g(Ni+1)+f (Ni+1) be fixed. Let Ni � n < Ni+1, and

θ = S

2g(n)+f (n)
.

Then by Lemma 2.5, either∣∣∣∣{1 � v � 2g(n):

∥∥∥∥ vS

2g(n)+f (n)

∥∥∥∥ < εi

}∣∣∣∣ � 100εi2
g(n), or (2.36)∣∣∣∣ S

2g(n)+f (n)
− a

q

∣∣∣∣ � 1

2g(n)
for an q, 1 � q � 1

εi

, and (a, q) = 1 (2.37)

is true. If for our fix S there is at least one Ni � n < Ni+1 for which (2.37) is true with q = 1,
then we get (ii) of the lemma. So we may assume that (2.37) is never true with q = 1. If (2.37)
holds for an n, Ni � n < Ni+1, with some q > 1, then if i is large enough, using (2.27), (2.35),
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n � Ni and the monotonicity of g, we get

∣∣∣∣ pnS

2g(n)+f (n)
− pna

q

∣∣∣∣ � 21− g(n)
2 <

εi

2
� 1

2q
and (2.38)

pn � 2
g(n)

2 >
1

εi

� q. (2.39)

Since pn is a prime, so (q,pna) = 1 by (2.37) and (2.39), hence (2.38) and q > 1 gives∥∥∥∥ pnS

2g(n)+f (n)

∥∥∥∥ �
∥∥∥∥pna

q

∥∥∥∥ − 1

2q
� 1

2q
� εi

2
.

This shows that if for our fix S (2.37) holds for at least Ni+1−Ni

3 integers n with Ni � n < Ni+1,
then (i) of the lemma is true. Hence we may assume that this is not the case, but then (2.36) is
valid for at least Ni+1−Ni

2 integers n with Ni � n < Ni+1. The definition of Hn,S,i in (2.28) shows
that this means that (2.30) is true for our fixed S, and then Lemma 2.4 (and (2.28) again) shows
that (i) of the present lemma is true. This completes the proof of the lemma. �

From now on we assume also that (2.35) is true for large i. Let i0 be large and

A =
⋃
i�i0

ANi
.

Lemma 2.7. Assume that

lim inf
i→∞ (Ni+1 − Ni)v2(εi) > 0, (2.40)

∞∑
n=1

v1
(
2−f (n)

)
< ∞, (2.41)

and for large i we have

g(Ni) � max
Ni+1�n<Ni+2

f (n). (2.42)

Then we have ∑
r∈A

v1
(‖r‖) < ∞, (2.43)

and if k ∈ Z2, but k /∈ Z, then ∑
r∈A

v2
(‖kr‖) = ∞. (2.44)
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Proof. Since vn,pn � 2g(n) for large n by (2.26) and (2.27), so∑
r∈A

v1
(‖r‖) � 2

∑
i�i0

∑
Ni�n<Ni+1

v1
(
2−f (n)

)
,

which, in view of (2.41), proves (2.43). Let k = ∑∞
j=0 bj 2j ∈ Z2, where bj is 0 or 1 for every j ,

and assume that k /∈ Z. Let i be large, and

Si =
∑

0�j�f (Ni+1)+g(Ni+1)

bj 2j . (2.45)

Then 1 � Si � 21+f (Ni+1)+g(Ni+1), and for every r ∈ ANi
we have ‖kr‖ = ‖Sir‖ by (2.25) and

the definition of ANi
. If Lemma 2.6(i) is true for this i and S = Si , then

∑
r∈ANi

v2
(‖kr‖) =

∑
r∈ANi

v2
(‖Sir‖

)
� Ni+1 − Ni

3
v2

(
εi

2

)
� (Ni+1 − Ni)v2(εi)

3K(v2)

by (1.1). If this would happen for infinitely many i, then, in view of (2.40), we would get (2.44).
Therefore, we may assume that if i is large enough, then Lemma 2.6(ii) is valid for i and for
S = Si defined in (2.45). Hence for some Ni � n < Ni+1, writing θ = Si

2g(n)+f (n) , we have

‖θ‖ � 1

2g(n)
.

On the other hand, writing

x =
∑

0�j�f (n)+g(n)−1

bj 2j−f (n)−g(n),

we have

‖θ‖ = ‖x‖.

In view of Lemma 2.1(ii), we then see that if

bt 
= bt+1 (2.46)

for an integer

0 � t � f (n) + g(n) − 2,

then

2t−f (n)−g(n) � ‖x‖ � 1

2g(n)
,

hence

t � f (n).
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Therefore, since Ni � n < Ni+1, using (2.25) we see that if we can choose i and t in such a way
that they are large, (2.46) holds for t , and

max
Ni�n<Ni+1

f (n) + 1 � t � f (Ni) + g(Ni) − 2, (2.47)

then we will get a contradiction, which will prove (2.44).
Since k /∈ Z, there are infinitely many t satisfying (2.46), in view of Lemma 2.1(i). Since

f (Ni) tends to infinity as i tends to infinity by (2.41), we see that

f (Ni) + g(Ni) − 2 � max
Ni+1�n<Ni+2

f (n) + 1

for large i. This shows that if t is large enough, we can choose i in such a way that (2.47) holds.
This proves the lemma. �

To conclude the proof of Theorem 2(i), we have to prove that we can choose the positive
integers f (n) and g(n) for every n � 1, the integer sequence 0 < N1 < N2 < · · · < Ni < · · ·, and
the numbers 0 < εi < 1

10 for every i � 1 in such a way that (2.25) holds for large n, (2.29), (2.35)
and (2.42) are true for large i, and (2.40) and (2.41) are also true.

Introduce the notation Di = Ni+1 − Ni , and write

ti = v1

(
v−1

2

(
1

Di

)Di
)

. (2.48)

Assume first that the integer sequence 0 < N1 < N2 < · · · < Ni < · · ·, and for every i � 1 posi-
tive numbers εi and positive integers f (Ni), g(Ni) are given in such a way that

lim
i→∞Diti−1 = 0, (2.49)

∞∑
i=3

Diti−2 < ∞, (2.50)

and for large enough i we have the following conditions:

εi = 2
−30−6

g(Ni+1)+f (Ni+1)

Di , (2.51)

g(Ni) = f (Ni+1), (2.52)

v−1
2

(
1

Di

)Di

� 2−12g(Ni+1) < v−1
2

(
1

Di

)Di/4

, (2.53)

g(Ni+1) � 2g(Ni). (2.54)

We show that we can then choose the positive integers f (n) and g(n) for every n � 1 in such a
way that the required conditions are true. Indeed, since g(Ni+1) → ∞ by (2.54), it is clear from
the right inequality of (2.53) that

lim
g(Ni+1) = ∞. (2.55)
i→∞ Di
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For every i � 1 we take

f (n) = f (Ni), (2.56)

if Ni < n < Ni+1. On the other hand, if i is large enough, we choose the integers g(n) for
Ni < n < Ni+1 in such a way that

g(Ni) < g(Ni + 1) < g(Ni + 2) < · · · < g(Ni+1 − 1) < g(Ni+1),

which is possible by (2.54) and (2.55). Then (2.25) is true for large n. It is trivial from (2.51) that
(2.29) is true for large i (and we see from (2.55) and (2.51) that εi < 1

10 is true for large i). It is
also clear by (2.56) and (2.52) that (2.42) is true for large i. Formulas (2.52) and (2.54) imply
that g(Ni+1) � f (Ni+1) for large i. Using this, (2.51) and the left inequality of (2.53), we see
for large i that

εi � 2−30v−1
2

(
1

Di

)
. (2.57)

This shows at once by (1.1) that (2.40) is true. Observe that by (2.53), using (1.5), we have

ti � v1
(
2−12g(Ni+1)

)
� 1

q2
1

ti (2.58)

for large i. For the validity of (2.35), by (2.57) and the monotonicity of v1, it is enough to prove
that

v1
(
232− g(Ni )

2
)
< v1

(
v−1

2

(
1

Di

))
. (2.59)

Here the right-hand side is at least 1
EDi

by (1.4), so by (1.1), (1.5), and (2.58) we see that (2.59)

(and so (2.35) for large i) follows by (2.49). To prove (2.41), we remark that by (2.56) and (2.52),
for large i we have

Ni+1−1∑
n=Ni

v1
(
2−f (n)

) = Div1
(
2−f (Ni)

) = Div1
(
2−g(Ni−1)

)
.

Using again (1.5) and (2.58), we see that (2.41) follows from (2.50).
Hence we have proved that it is enough to achieve that (2.49), (2.50) are true, and (2.51)–

(2.54) hold for large i. At the end of Section 2, we will prove the following lemma.

Lemma 2.8. Let {a(n)}∞n=1 be a sequence of positive real numbers, and assume that

∞∑
a(n) < ∞. (2.60)
n=1
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Let 0 < c < 1 be a fixed constant. Then there is a strictly increasing sequence {ni}∞i=1 of positive
integers such that

∞∑
i=2

nia(ni−1) < ∞, (2.61)

and for every i � 1 we have

a(ni+1)

a(ni)
< c. (2.62)

Using this statement, we now complete the proof of Theorem 2(i). Apply Lemma 2.8 with
some 0 < c < 1 to be determined later, and with

a(n) = v1

(
v−1

2

(
1

n

)n)
. (2.63)

Then (2.60) follows from (1.6). Let {ni}∞i=1 be the sequence given by Lemma 2.8, and define the
positive integers Di for i � 1 in such a way that

D2j = nj , D2j+1 = D2j (2.64)

for j � 1. Then define the sequence Ni such that Di = Ni+1 − Ni for large i, and define the
integers g(Ni) such that for large j we have

2−12v−1
2

(
1

D2j

)D2j /4

� 2−12g(N2j+1) < v−1
2

(
1

D2j

)D2j /4

, (2.65)

v−1
2

(
1

D2j−1

)D2j−1

� 2−12g(N2j ) < 212v−1
2

(
1

D2j−1

)D2j−1

, (2.66)

finally, define f (Ni) and εi in such a way that (2.52) and (2.51) hold for large i. Then (2.50)
follows from (2.64), (2.63) and (2.61) (see (2.48)). Condition (2.49) is a consequence of (2.50),
since ti is a decreasing sequence, because ni is increasing, and so by (2.64), Di is also increasing.
Since (2.53) follows at once from (2.65) and (2.66) for large i, it is enough to prove that (2.54)
holds for large i.

Now, it is clear from (2.65), (2.66) and (2.64) that g(N2j+2) > 2g(N2j+1) for large j . Assume
that

g(N2j+1) � 2g(Nj ) (2.67)

for a large j . Remember that (2.58) follows from (2.53) for large i. Since we have already proved
(2.53), we can use (2.58). Then, by (1.5), (2.58) and (2.67) we have

1

q2
t2j � v1

(
2−12g(N2j+1)

)
� q1v1

(
2−12g(N2j )

)
� q1t2j−1. (2.68)
1
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Now, by (2.48), (2.63) and (2.64) we have t2j = a(nj ) and t2j−1 = a(nj−1). Therefore, (2.68)
and (2.62) imply

q3
1a(nj−1) � a(nj ) < ca(nj−1).

Hence, if we choose c < q3
1 , then this is a contradiction, so (2.67) is false. So we have proved

(2.54) for large i.
So, the proof of Theorem 2(i) will be complete, if we prove Lemma 2.8.

Proof of Lemma 2.8. Let n1 = 1, and if n1 < n2 < · · · < ni are given, let ni+1 > ni be the least
integer satisfying (2.62). We have to prove (2.61). If ni � n < ni+1, then

a(n)

a(ni)
� c.

Therefore,

1

c

ni+1−1∑
n=ni

a(n) � (ni+1 − ni)a(ni).

Then (2.60) implies

∞∑
i=1

(ni+1 − ni)a(ni) < ∞. (2.69)

But for any integer I � 1, we have

I∑
i=1

(ni+1 − ni)a(ni) = −n1a(n1) + nI+1a(nI ) +
I∑

i=2

ni

(
a(ni−1) − a(ni)

)
. (2.70)

Since

a(ni−1) − a(ni) � (1 − c)a(ni−1)

by (2.62), so (2.69) and (2.70) imply (2.61). The lemma is proved. �
3. The general case

3.1. Conditional proof of the theorems

In Section 2 we proved that Theorems 1–3 are true if we write G = Z2, Γ = Z. We will
prove the theorems for the general case from this special case, using Lemma 3.1 below. In this
subsection we assume Lemma 3.1 and prove the theorems, and then we prove Lemma 3.1 in the
rest of the paper.

If α1, α2, . . . , αt generate a group Γ , we say that they freely generate Γ , if Γ is a free Abelian
group, and α1, α2, . . . , αt is a system of free generators of Γ .
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Lemma 3.1. Let G1 and G2 be compact metrizable Abelian groups. Assume that α1, α2, . . . ,

αt ∈ G1 freely generate a dense subgroup Γ1 of G1, and β ∈ G2 freely generates a dense
subgroup Γ2 of G2. Let v1, v2 ∈ V . Assume that A ⊆ G∗

2 is such an infinite subset that
Γ2 ⊆ CG2,A(v1). Then there is an infinite subset H ⊆ G∗

1 such that Γ1 ⊆ CG1,H (v1), and

(i) if CG2,A(χ[1/4,1/2]) ⊆ Γ2, then CG1,H (χ[1/10,1/2]) ⊆ Γ1,
(ii) if CG2,A(v2) ⊆ Γ2, then CG1,H (v2) ⊆ Γ1,

(iii) if |CG2,A(v2)| < 2ℵ0 , then |CG1,H (v2)| < 2ℵ0 ,
(iv) if |LG2,A| < 2ℵ0 , then |LG1,H | < 2ℵ0 ,
(v) if BG2,A(β) ⊆ Γ2, then BG1,H (α1, α2, . . . , αt ) ⊆ Γ1.

We now prove the theorems assuming this lemma, and using the special cases of the theorems
proved in Section 2. The most complicated proof is that of Theorem 1(i), so we start with the
other proofs.

Proof of Theorems 2(i) and 3. We take G1 = G, Γ1 = Γ , let α1, α2, . . . , αt be a system of free
generators of Γ , and let G2 = Z2, Γ2 = Z, β = 1.

In the case of Theorem 2(i), by the special case already proved, there is an infinite A ⊆ G∗
2

such that CG2,A(v1) = CG2,A(v2) = Γ2. Then by Lemma 3.1(ii) there is an infinite H ⊆ G∗
1

such that Γ1 ⊆ CG1,H (v1) and CG1,H (v2) ⊆ Γ1. By the definitions and (1.4), CG1,H (v1) =
CG1,H (v2) = Γ1 follows, so Theorem 2(i) is proved.

In the case of Theorem 3 we take v1 = v. Then by the special case already proved, there
is an infinite A ⊆ G∗

2 such that Γ2 ⊆ CG2,A(v) and BG2,A(β) = Γ2. By Lemma 3.1(v) there
is an infinite H ⊆ G∗

1 such that Γ1 ⊆ CG1,H (v) and BG1,H (α1, α2, . . . , αt ) ⊆ Γ1. Since Γ1 ⊆
BG1,H (α1, α2, . . . , αt ) is trivial, Theorem 3 follows. �
Proof of Theorems 1(ii) and 2(ii). We take G2 = G, Γ2 = Γ , G1 = Z2, Γ1 = Z.

In the case of Theorem 1(ii) we take v1 = v. Let A ⊆ G∗
2 be such an infinite subset that

Γ2 ⊆ CG2,A(v), and assume that |LG2,A| < 2ℵ0 . Then by Lemma 3.1(iv), there is an infinite
subset H ⊆ G∗

1 such that Γ1 ⊆ CG1,H (v), and |LG1,H | < 2ℵ0 . This contradicts the special case of
Theorem 1(ii) already proved. Therefore |LG2,A| � 2ℵ0, and since |G2| � 2ℵ0 is trivial (because
G2 = (G∗

2)
∗, and G∗

2 is countable), so |LG2,A| = 2ℵ0 , Theorem 1(ii) follows.
In the case of Theorem 2(ii), let A ⊆ G∗

2 be such an infinite subset that Γ2 ⊆ CG2,A(v1),
and assume that |CG2,A(v2)| < 2ℵ0 . Then by Lemma 3.1(iii), there is an infinite H ⊆ G∗

1 such
that Γ1 ⊆ CG1,H (v1), and |CG1,H (v2)| < 2ℵ0 . This contradicts the special case of Theorem 2(ii)
already proved. Then, using again that |G2| � 2ℵ0 , we get |CG2,A(v2)| = 2ℵ0 , so Theorem 2(ii)
is proved. �
Proof of Theorem 1(i). As in the proof of Theorems 2(i) and 3, let G1 = G, Γ1 = Γ , G2 = Z2,
Γ2 = Z. Define v1 = v. By the special case of Theorem 1(i) already proved there is an infinite
A ⊆ G∗

2 such that CG2,A(v) = CG2,A(χ[1/4,1/2]) = Γ2. Then by Lemma 3.1(i) there is an infinite
H ⊆ G∗

1 such that Γ1 ⊆ CG1,H (v) and CG1,H (χ[1/10,1/2]) ⊆ Γ1. Now, let Ĥ ⊆ G∗
1 be defined by

Ĥ = {
2rh: h ∈ H, 0 � r � 2

}
.
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We claim that C
G1,Ĥ

(χ[1/4,1/2]) ⊆ CG1,H (χ[1/10,1/2]). Indeed, assume that γ ∈ C
G1,Ĥ

(χ[1/4,1/2])
is such that ‖hγ ‖ � 1

10 for every h ∈ H0, where H0 ⊆ H is an infinite subset. Let h ∈ H0. If
‖hγ ‖ ∈ [ 1

8 , 1
4 ], then ‖(2h)γ ‖ � 1

4 , and if ‖hγ ‖ ∈ [ 1
10 , 1

8 ], then ‖(4h)γ ‖ � 1
4 . This means that

there is an integer 0 � r0 � 2 and an infinite subset H1 ⊆ H0 such that ‖(2r0h)γ ‖ � 1
4 for every

h ∈ H1. But then γ ∈ C
G1,Ĥ

(χ[1/4,1/2]) implies that{
2r0h: h ∈ H1

}
is a finite set. Since H1 ⊆ G∗

1 is infinite, this shows that{
h ∈ G∗

1: 2r0h = 0
}

is an infinite set. But this is false. Indeed, on the one hand, G1 is topologically generated by
a system of free generators α1, α2, . . . , αt of Γ , so every h ∈ G∗

1 is determined by its values
on α1, α2, . . . , αt ; on the other hand, if 2r0h = 0, then there are only finitely many possibilities
for the t-tuple (hα1, hα2, . . . , hαt ). This is a contradiction, so we proved CG1,Ĥ

(χ[1/4,1/2]) ⊆
CG1,H (χ[1/10,1/2]).

Consequently, we have CG1,Ĥ
(χ[1/4,1/2]) ⊆ Γ1. On the other hand, it is clear by v ∈ V that

CG1,H (v) ⊆ CG1,Ĥ
(v), hence (since Γ1 ⊆ CG1,H (v)) we have Γ1 ⊆ CG1,Ĥ

(v), so CG1,Ĥ
(v) =

CG1,Ĥ
(χ[1/4,1/2]) = Γ1 follows, and this completes the proof of Theorem 1(i). �

In the rest of the paper, our aim is to prove Lemma 3.1.

3.2. Preliminary lemmas

In this short subsection we present two easy, but important lemmas.

Lemma 3.2. If ω ∈ T , k � 1 is an integer, and

‖ω‖,‖2ω‖,‖4ω‖, . . . ,∥∥2kω
∥∥ � δ <

1

10
,

then ‖ω‖ � δ
2k .

Proof. This is proved as in [B-S, Lemma 3]. �
Lemma 3.3. Let G be a compact Abelian group. Assume that α1, α2, . . . , αt ∈ G freely generate
a dense subgroup of G. Then

(i) the subgroup {
(μα1,μα2, . . . ,μαt ): μ ∈ G∗}

is dense in T t ;
(ii) if μ ∈ G∗ is such that

μα1 = μα2 = · · · = μαt = 0,

then μ = 0;
(iii) if β ∈ G is such that μβ = 0 for every μ ∈ G∗, then β = 0.
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Proof. Since α1, α2, . . . , αt are independent, part (i) is a particular case of the well-known fact
that discontinuous characters of G can be approximated by continuous ones (cf. [H-R]). Part (ii)
is trivial from the fact that α1, α2, . . . , αt generate a dense subgroup of G. Part (iii) follows from
Pontriagin’s duality theorem (see [R]). �
3.3. Proof of Lemma 3.1

In this subsection, we use the notations of Lemma 3.1. The set H ⊆ G∗
1 we produce will have

the form H = ⋃4
k=1 Hk , we define the subsets Hk successively, and we show the impact of each

step on the final proof. The first three subsets, H1,H2 and H3 will not depend on the set A ⊆ G∗
2,

but H must depend on A, so we will use A in the definition of the last subset H4.
At each step, on the one hand, we need Γ1 ⊆ CG1,Hk

(v1) (which will finally imply Γ1 ⊆
CG1,H (v1)). This means essentially that ‖hαi‖ is small, when h ∈ Hk and 1 � i � t . On the
other hand, we need restrictions on γ , if γ ∈ G1 and ‖hγ ‖ is small for h ∈ Hk (because in each
case we have to force such elements γ into a countable set).

We now start the formal proof. Our basic tools will be Lemmas 3.4 and 3.5 below. We first
introduce a notation: by identification of the groups (G∗

2)
t and (Gt

2)
∗, for a general element

λ ∈ (Gt
2)

∗ we write

λ = (
λ(1), λ(2), . . . , λ(t)

)
,

where λ(i) ∈ G∗
2 for 1 � i � t .

Lemma 3.4. For every integer j � 1 and for every λ ∈ (Gt
2)

∗ let ε(j, λ) be a given positive
number. Then for every such pair (j, λ) we can choose a character μλ

j ∈ G∗
1 (in other words, for

every λ we can choose a sequence μλ
j ) with the following properties:

∥∥λ(i)β − μλ
jαi

∥∥ < ε(j,λ) (3.1)

for every 1 � i � t , and

μλ
1 
= μλ�

1 , if λ 
= λ�. (3.2)

Proof. Since (Gt
2)

∗ is countable, by Lemma 3.3(i) we can choose recursively the characters μλ
j

in such a way that (3.1) and (3.2) will be true. �
Lemma 3.5. For every integer n � 1 and for every τ ∈ G∗

1 let δ(n, τ ) be a given positive number.
Then for every such pair (n, τ ) we can choose a character κτ

n ∈ (Gt
2)

∗ (in other words, for
every τ we can choose a sequence κτ

n ) with the following properties:∥∥κτ
n (i)β − ταi

∥∥ < δ(n, τ) (3.3)

for every 1 � i � t , and

κτ
n 
= κτ�

n� , if (n, τ ) 
= (n�, τ �). (3.4)



348 A. Biró / Journal of Number Theory 121 (2006) 324–354
If the numbers δ(n, τ ) are small enough, then for every 1 � i � t and τ ∈ G∗
1 we have

lim
n→∞κτ

n (i)β = ταi. (3.5)

Proof. Since G∗
1 is countable, by Lemma 3.3(i) (applied for G2 and β) we can choose recursively

the elements κτ
n in such a way that (3.3) and (3.4) will be true. The last statement is trivial

from (3.3). �
We apply these lemmas with some positive numbers ε(j, λ) (j � 1, λ ∈ (Gt

2)
∗) and δ(n, τ )

(n � 1, τ ∈ G∗
1) to be determined later, and we choose characters μλ

j ∈ G∗
1, κτ

n ∈ (Gt
2)

∗ satisfying
the conditions of Lemmas 3.4 and 3.5.

For every λ ∈ (Gt
2)

∗ let R(λ) be a positive integer, to be determined later. If j � 1 is an
integer, λ ∈ (Gt

2)
∗, let R(j,λ) = j + R(λ). Define

H1 = {
2r

(
μλ

j+1 − μλ
j

)
: λ ∈ (

Gt
2

)∗
, j � 1, 0 � r � R(j,λ)

}
.

Lemma 3.6. Let R(λ) be given for every λ ∈ (Gt
2)

∗. If the numbers ε(j, λ) are small enough,
then the set H1 ⊆ G∗

1 defined above satisfies the following conditions:

(i) We have

Γ1 ⊆ CG1,H1(v1). (3.6)

(ii) If γ ∈ G1 is such that ‖hγ ‖ < 1
10 for all but finitely many h ∈ H1, then

Fγ (λ) := lim
j→∞μλ

jγ (3.7)

exists for every λ ∈ (Gt
2)

∗, and ∥∥Fγ (λ) − μλ
1γ

∥∥ < 2−R(λ) (3.8)

holds for all but finitely many λ ∈ (Gt
2)

∗.

Proof. If 1 � i � t , λ ∈ (Gt
2)

∗, j � 1, then by (3.1) we have∥∥(
μλ

j+1 − μλ
j

)
αi

∥∥ � ε(j, λ) + ε(j + 1, λ).

It is clear by v1 ∈ V that for arbitrary fixed positive integers R(j,λ) we can choose the numbers
ε(j, λ) so small that ∑

λ∈(Gt
2)

∗

∑
j�1

∑
0�r�R(j,λ)

v1
(
2r

(
ε(j, λ) + ε(j + 1, λ)

))
< ∞

will hold. Therefore, ∑
λ∈(Gt

2)
∗

∑
j�1

∑
0�r�R(j,λ)

v1
(∥∥2r

(
μλ

j+1 − μλ
j

)
αi

∥∥)
< ∞ (3.9)

will be true for every 1 � i � t . This gives (3.6) at once.
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Let γ ∈ G1 be such that ‖hγ ‖ < 1
10 for all but finitely many h ∈ H1. Let 0 
= h ∈ H1 be fixed.

We see by (3.9) and Lemma 3.3(ii) that there may be only finitely many pairs λ ∈ (Gt
2)

∗, j � 1
such that there is a 0 � r � R(j,λ) satisfying

2r
(
μλ

j+1 − μλ
j

) = h.

Hence, by the property of γ , using Lemma 3.2 and R(j,λ) = j + R(λ), we obtain

∥∥(
μλ

j+1 − μλ
j

)
γ
∥∥ <

1/10

2j+R(λ)
(3.10)

for all but finitely many pairs λ ∈ (Gt
2)

∗, j � 1. Then (3.10) shows that μλ
jγ is a Cauchy sequence

in T for every λ ∈ (Gt
2)

∗, so (3.7) exists, and (3.10) shows also (3.8). Lemma 3.6 is proved. �
From now on, we assume that the numbers ε(j, λ) are as small as Lemma 3.6 requires. Hence,

we will fix first the parameters R(λ), and then we will choose the numbers ε(j, λ) small enough.
So (i) and (ii) of Lemma 3.6 will be true, in particular, we may use the notation Fγ (λ).

To motivate the next lemma, observe that if ε(j, λ) are small enough, then Fαi
(λ) = λ(i)β

by (3.1), so the map Fαi
: (Gt

2)
∗ → T is a group homomorphism. By taking a new set H2, we

extend this property for general γ .

Lemma 3.7. If the numbers ε(j, λ) are small enough, then there is a subset H2 ⊆ G∗
1 such that

Γ1 ⊆ CG1,H2(v1), (3.11)

and if γ ∈ G1 satisfies ‖hγ ‖ < 1
10 for all but finitely many h ∈ H1 ∪ H2, then for 1 � i � t there

are elements φi(γ ) ∈ G2 such that

Fγ (λ) =
t∑

i=1

λ(i)φi(γ ) (3.12)

for every λ ∈ (Gt
2)

∗.

Proof. Let us choose for every pair λ1, λ2 ∈ (Gt
2)

∗ an infinite subset (to be determined later)
Jλ1,λ2 of the positive integers. Then define

H2 = {
2r

(
μ

λ1
j + μ

λ2
j − μ

λ1+λ2
j

)
: λ1, λ2 ∈ (

Gt
2

)∗
, j ∈ Jλ1,λ2 , 0 � r � j

}
.

If 1 � i � t , λ1, λ2 ∈ (Gt
2)

∗, j ∈ Jλ1,λ2 , then by (3.1) we have∥∥(
μ

λ1
j + μ

λ2
j − μ

λ1+λ2
j

)
αi

∥∥ � ε(j, λ1) + ε(j, λ2) + ε(j, λ1 + λ2). (3.13)

It is clear that we can choose the numbers ε(j, λ) so small that

lim
j→∞

∑
v1

(
2r

(
ε(j, λ1) + ε(j, λ2) + ε(j, λ1 + λ2)

)) = 0

0�r�j
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will be true for every fixed pair λ1, λ2 ∈ (Gt
2)

∗. If this is true, then we can choose the infinite
subsets Jλ1,λ2 of the positive integers in such a way that (the first summation below is over every
pair from (Gt

2)
∗)∑

λ1,λ2

∑
j∈Jλ1,λ2

∑
0�r�j

v1
(
2r

(
ε(j, λ1) + ε(j, λ2) + ε(j, λ1 + λ2)

))
< ∞

will hold. Therefore, using (3.13), we get (the first summation is again over every pair
from (Gt

2)
∗) ∑

λ1,λ2

∑
j∈Jλ1,λ2

∑
0�r�j

v1
(∥∥2r

(
μ

λ1
j + μ

λ2
j − μ

λ1+λ2
j

)
αi

∥∥)
< ∞ (3.14)

will be true for every 1 � i � t . This gives (3.11) at once.
Let γ ∈ G1 be such that ‖hγ ‖ < 1

10 for all but finitely many h ∈ H1 ∪ H2. Let 0 
= h ∈ H2 be
fixed. We see by (3.14) and Lemma 3.3(ii) that for any fixed pair λ1, λ2 ∈ (Gt

2)
∗ there may be

only finitely many j ∈ Jλ1,λ2 such that there is a 0 � r � j satisfying

2r
(
μ

λ1
j + μ

λ2
j − μ

λ1+λ2
j

) = h. (3.15)

Using (3.15) and the property of γ , by Lemma 3.2 we obtain∥∥(
μ

λ1
j + μ

λ2
j − μ

λ1+λ2
j

)
γ
∥∥ <

1/10

2j
(3.16)

for every pair λ1, λ2 ∈ (Gt
2)

∗ and for large enough j ∈ Jλ1,λ2 . Since every Jλ1,λ2 is an infinite set,
so Fγ : (Gt

2)
∗ → T is a group homomorphism by (3.7) and (3.16). Therefore, there are elements

φ1(γ ),φ2(γ ), . . . , φt (γ ) ∈ G2 such that (3.12) holds for every λ ∈ (Gt
2)

∗. Indeed, it is implied
by basic facts from the duality theory of locally compact Abelian groups (see [R]): the dual
group of a compact group is discrete, therefore, using Pontriagin’s duality theorem, any algebraic
homomorphism F : (Gt

2)
∗ → T has the form (3.12). Lemma 3.7 is proved. �

We assume in the sequel that the ε(j, λ) are small enough, so Lemma 3.7 is true, and we may
use the notations H2 and φi(γ ).

The role of the next part H3 is that we will be able to reconstruct γ from the elements φi(γ ).
For this purpose we start to use the characters κτ

n .

Lemma 3.8. If the numbers R(λ) are large enough, but ε(j, λ) and δ(n, τ ) are small enough,
then there is a subset H3 ⊆ G∗

1 with the following conditions:

Γ1 ⊆ CG1,H3(v1), (3.17)

and if γ ∈ G1 satisfies ‖hγ ‖ < 1
10 for all but finitely many h ∈ H1 ∪ H2 ∪ H3, then

lim
n→∞

t∑
i=1

κτ
n (i)φi(γ ) = τγ (3.18)

for every τ ∈ G∗.
1
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Proof. Let

H3 = {
2r

(
μ

κτ
n

1 − τ
)
: n � 1, τ ∈ G∗

1, 0 � r � n
}
.

If 1 � i � t , n � 1 and τ ∈ G∗
1, then by (3.1) and (3.3) we have

∥∥(
μ

κτ
n

1 − τ
)
αi

∥∥ �
∥∥μ

κτ
n

1 αi − κτ
n (i)β

∥∥ + ∥∥κτ
n (i)β − ταi

∥∥ � ε
(
1, κτ

n

) + δ(n, τ ).

It is clear (using (3.4)) that we can choose the numbers δ(n, τ ) and ε(1, κτ
n ) to be small enough

that ∑
n�1

∑
τ∈G∗

1

∑
0�r�n

v1
(
2r

(
δ(n, τ ) + ε

(
1, κτ

n

)))
< ∞

will hold. Therefore, ∑
n�1

∑
τ∈G∗

1

∑
0�r�n

v1
(∥∥2r

(
μ

κτ
n

1 − τ
)
αi

∥∥)
< ∞ (3.19)

will be true for every 1 � i � t . This gives (3.17) at once.
Let γ ∈ G1 be such that ‖hγ ‖ < 1

10 for all but finitely many h ∈ H1 ∪H2 ∪H3. Let 0 
= h ∈ H3
be fixed. Formula (3.19) and Lemma 3.3(ii) give that for any fixed τ ∈ G∗

1 there may be only
finitely many n � 1 for which there is a 0 � r � n satisfying

2r
(
μ

κτ
n

1 − τ
) = h.

Then, using the property of γ , by Lemma 3.2 we obtain

∥∥(
μ

κτ
n

1 − τ
)
γ
∥∥ <

1/10

2n

for every τ ∈ G∗
1 and for large enough n. It follows that

lim
n→∞μ

κτ
n

1 γ = τγ (3.20)

for every τ ∈ G∗
1. If we have R(κτ

n ) → ∞ as n → ∞ for every τ ∈ G∗
1, which we may assume

in view of (3.4), then (3.8) and (3.20) imply

lim
n→∞Fγ

(
κτ
n

) = τγ (3.21)

for every τ ∈ G∗
1. Formulas (3.12) and (3.21) give (3.18). Lemma 3.8 is proved. �

Again, we assume in the sequel that the parameters satisfy the conditions needed in
Lemma 3.8.

Now, since γ ∈ G1 is determined by the elements φi(γ ) ∈ G2, it is enough to force φi(γ ) into
a small set. This is the point where we use the set A ⊆ G∗.
2
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Lemma 3.9. Assume that the numbers R(λ) are large enough, but ε(j, λ) and δ(n, τ ) are small
enough. There is an infinite subset H4 ⊆ G∗

1 such that by taking H = ⋃4
k=1 Hk , on the one hand

we have

Γ1 ⊆ CG1,H (v1), (3.22)

on the other hand, the following statements hold (we mean in each case that the condition implies
that γ satisfies ‖hγ ‖ < 1

10 for all but finitely many h ∈ H1 ∪ H2, so φi(γ ) are defined):

(i) if γ ∈ CG1,H (χ[1/10,1/2]), then φi(γ ) ∈ CG2,A(χ[1/4,1/2]) for 1 � i � t ,
(ii) if γ ∈ CG1,H (v2), then φi(γ ) ∈ CG2,A(v2) for 1 � i � t ,

(iii) if γ ∈ LG1,H , then φi(γ ) ∈ LG2,A for 1 � i � t ,
(iv) if γ ∈ BG1,H (α1, α2, . . . , αt ), then φi(γ ) ∈ BG2,A(β) for 1 � i � t .

Proof. If a ∈ A and 1 � i � t , let πa.i ∈ (Gt
2)

∗ be defined by

πa,i(i) = a, 1 � i � t, and (3.23)

πa,i1(i2) = 0 ∈ G∗
2 1 � i1, i2 � t, i1 
= i2. (3.24)

Now, for a ∈ A and 1 � i � t , define

fi(a) = μ
πa,i

1 . (3.25)

It is clear by (3.2) that fi :A → G∗
1 is an injection for every i, 1 � i � t . Let

H4 =
t⋃

i=1

fi(A),

it is clearly an infinite set. We have by (3.1), (3.25), (3.23) and (3.24) for every a ∈ A that∥∥fi(a)αi − aβ
∥∥ < ε(1,πa,i), 1 � i � t, and (3.26)∥∥fi1(a)αi

∥∥ < ε(1,πa,i1), 1 � i1, i � t, i1 
= i. (3.27)

We get for any fixed 1 � i � t that

∑
h∈H4

v1
(‖hαi‖

)
�

∑
a∈A

(
v1

(‖aβ‖ + ε(1,πa,i)
) +

∑
1�i1�t, i1 
=i

v1
(
ε(1,πa,i1)

))
.

We then see, using v1 ∈ V and β ∈ CG2,A(v1) that if we choose the numbers ε(1,πa,i) small
enough, which is possible, then (3.22) follows (using also (3.6), (3.11), (3.17)).

We now prove statements (i)–(iv). Remark first that in each case it is clear that γ ∈ G1 is such
that ‖hγ ‖ < 1

10 for all but finitely many h ∈ H (in case (iv) it follows from (3.22)), so φi(γ ) are
defined indeed. By (3.8) and (3.25), we see that∥∥Fγ (πa.i) − fi(a)γ

∥∥ < 2−R(πa.i ) (3.28)
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for all but finitely many a ∈ A and for every i, 1 � i � t . And, by (3.12), (3.23) and (3.24) we
have

Fγ (πa,i) = aφi(γ )

for every a ∈ A and 1 � i � t , so for all but finitely many a ∈ A by (3.28) we obtain∥∥aφi(γ )
∥∥ < 2−R(πa.i ) + ∥∥fi(a)γ

∥∥, 1 � i � t. (3.29)

Take the numbers R(πa.i) so large that we have∑
a∈A

v2
(
2−R(πa.i )

)
< ∞, lim

a∈A
2−R(πa.i ) = 0

for every i, 1 � i � t (in fact, the second formula follows from the first one here). Then, using
(3.29), v2 ∈ V and that fi :A → H is an injection for every i, statements (i)–(iii) follow.

For the proof of (iv), take R(πa.i) so large and ε(1,πa,i) so small that

2−R(πa.i ) < ‖aβ‖, ε(1,πa,i) < ‖aβ‖ (3.30)

for every 0 
= a ∈ A, and for every i, 1 � i � t . It is possible, since aβ 
= 0 for 0 
= a ∈ G∗
2. We

note that (3.30), (3.26) and (3.27) imply

max
(∥∥fi(a)α1

∥∥,
∥∥fi(a)α2

∥∥, . . . ,
∥∥fi(a)αt

∥∥)
� 2‖aβ‖

for any 0 
= a ∈ A and 1 � i � t , and then (3.29) and (3.30) give (iv), so Lemma 3.9 is
proved. �
Conclusion of the proof of Lemma 3.1. We fix first the numbers R(λ) large enough, then we
fix ε(j, λ) small enough. We also choose δ(n, τ ) small enough. Then we can apply Lemmas 3.8,
3.9, and the last statement of Lemma 3.5 is also applicable.

We take the set H of Lemma 3.9. In view of (3.22), it is enough to prove statements (i)–(v) of
Lemma 3.1. We take

γ ∈ CG1,H (χ[1/10,1/2]) to prove (i) of Lemma 3.1,

γ ∈ CG1,H (v2) to prove (ii) and (iii) of Lemma 3.1,

γ ∈ LG1,H to prove (iv) of Lemma 3.1, and

γ ∈ BG1,H (α1, α2, . . . , αt ) to prove (v) of Lemma 3.1.

In (i), (ii) and (v) of Lemma 3.1 by Lemma 3.9 and the conditions of Lemma 3.1 we have
φi(γ ) ∈ Γ2, so φi(γ ) = kiβ with some integers ki for 1 � i � t . Hence, by (3.5) and (3.18), we
have

τ

(
γ −

t∑
kiαi

)
= 0
i=1
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for every τ ∈ G∗
1, which implies by Lemma 3.3(iii) that

γ =
t∑

i=1

kiαi ∈ Γ1,

so (i), (ii) and (v) of Lemma 3.1 are proved.
In (iii) and (iv) of Lemma 3.1, by Lemma 3.9 and the conditions of Lemma 3.1 we have,

writing S = CG1,H (v2) in (iii) and S = LG1,H in (iv) that∣∣{(φ1, φ2, . . . , φt ): φi ∈ G2 and φi = φi(γ ) with some γ ∈ S for 1 � i � t
}∣∣ < 2ℵ0 .

By (3.18), this implies that the cardinality of the set of those functions f :G∗
1 → T for which

there is a γ ∈ S such that f (τ) = τγ for every τ ∈ G∗
1 is less than 2ℵ0 . (Indeed, since the charac-

ters κτ
n are fixed, (3.18) shows that τγ depends only on the t-tuple (φ1(γ ),φ2(γ ), . . . , φt (γ )).)

This implies by Lemma 3.3(iii) that |S| < 2ℵ0 , and the lemma is proved. �
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