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Abstract

In [A. Bir6, V.T. Sés, Strong characterizing sequences in simultaneous Diophantine approximation,
J. Number Theory 99 (2003) 405-414] we proved that if I" is a subgroup of the torus R/Z generated
by finitely many independent irrationals, then there is an infinite subset A C Z which characterizes I” in the
sense that for y € R/Z wehave )", 4 llay || < ocif and only if y € I". Here we consider a general compact
metrizable Abelian group G instead of R/Z, and we characterize its finitely generated free subgroups I
by subsets A € G*, where G* is the Pontriagin dual of G. For this case we prove stronger forms of the
analogue of the theorem of the above mentioned work, and we find necessary and sufficient conditions for
a kind of strengthening of this statement to be true.
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0. Introduction

Let T = R/Z, where R denotes the additive group of the real numbers, Z is the subgroup of
the integers. If x € R, then ||x|| denotes its distance to the nearest integer, it is well defined also
onT.
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Denote by x(q,») the characteristic function of a real interval [a, b]. If v is a nonnegative
function on [0, %], and A C Z, write

Cr.a(v) = {y eT: Zv(”ayll) < oo}.

acA

We now state more precisely the result of [B-S] mentioned in the abstract. We proved the follow-
ing theorem with different notations. In fact we stated a somewhat weaker theorem there, but the
same proof gives this statement.

Theorem. (See [B-S].) Assume that I' < T is a finitely generated free Abelian group. Then there
is an infinite subset A C Z such that for y € T we have ), llay | < oo ifand only if y € T,
moreover, if |lay | < 1/10 for all but finitely many a € A, then we already know y € I'. In other
words, writing v1(x) = x and v2(x) = x[1/10,1/2)(x) for 0 < x < % we have

Cr,a(w1)=Cra(v)=T. 0.1

Note that the statement of the theorem in [B-S] contains a misprint: liminf should be replaced
by limsup there.

Such a set A was called a strong characterizing sequence of the subgroup I". The existence of
strong characterizing sequences for any countable I" < T was proved in [Be].

We started to study this subject in [B-D-S]. We proved there that for any countable I < T
there is an infinite A C Z such that for y € T we have |lay|| — O if and only if y € I", more-
over, if |jay || < 1/10 for all but finitely many a € A, then we already know y € I". Such an A
was called a characterizing sequence, and one can easily see that to be a strong characterizing
sequence is indeed a stronger property.

In the present paper, we deal with generalizations of strong characterizing sequences for
compact metrizable Abelian groups. Our results here are not only generalizations, but also
strengthening of the quoted theorem of [B-S], since, under some assumptions, we give neces-
sary and sufficient conditions for more general pairs (v, v2) of nonnegative increasing functions
defined on [0, %] (in place of the specific functions used in the [B-S] theorem) for which an
analogous theorem is true.

We now describe briefly the results of the paper, but for simplicity, only for the case of T'.

The cited theorem of [B-S] essentially means that the elements of the sequence ||ay |l4ca are
asymptotically small (as |a| — oo) for y € I', but this is false for y € T \ I". Hence, the goal is
to seek such an A for which the behavior is radically different in I" and outside I". In this paper,
we use the two functions v; and vy to measure the order of magnitude of |ay ||ze4 in the two
parts I" and T \ I', respectively.

Let V be the set of those real-valued, strictly increasing, continuous functions v on [0, %]
satisfying v(0) = 0 for which we have v(2x) < v(x). We impose the last condition to ensure that
Cr.4(v) is always a subgroup of T'.

Our Theorem 1 contains a characterization of functions vy € V for which there is an infinite
A C Z satisfying (0.1) with this vy, but maintaining x(1/10,1/2) as va.

If there is such a set A, this means that Cr 4(v1) = I" with the stronger property that for
y € T \ I' we even have that ||ay | does not tend to 0. It turns out in Theorem 1 that if vy (x)

tends to O sufficiently slowly as x — 0 (e.g., vi(x) = 1;)’ then there is no such A. However, it

1
og ¢
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still may happen that for another function v, € V, which tends to O faster than v;(x) as x — O,
there is an A satisfying (0.1). If this is the case, then Cr 4(v1) = I" with the stronger property that
fory € T\ I weevenhave ), _, va(llay||) = oc. Such possibilities are analyzed in Theorem 2.

See Example 1 in Section 1 for the case of v (x) = @ .

In the extremal case when v, = vy, we simply askx about the possibility of Cr a(v1) =T,
without any stronger, additional property. Our results contain an interesting necessary and suffi-
cient condition for this case, see Example 2 in Section 1.

We will see in Example 2 that Cr 4(v) = I' is impossible for some v € V. However, in
Theorem 3 we show that for any v € V, it is possible to characterize I" in a certain new sense
with a set A satisfying I" € Cr 4(v).

It is remarkable that while our main interest lies in the case of T, we could not prove our
statements directly for 7. It turned out that it is easier to deal with the case of Z; (the additive
group of the 2-adic integers). In Section 2, we prove the theorems for this special group and its
infinite cyclic subgroup I = Z. Then, we will show in Section 3 that it is possible to extend the
theorems from this seemingly very special case, using a certain transfer principle, to any compact
metrizable Abelian group and its any finitely generated free dense subgroup.

The result from [Be] on countable subgroups of T raises the question whether the results
proved here for finitely generated free dense subgroups could be extended for countable sub-
groups.

On the other hand, it would be nice to characterize the “good” pairs (v1, v2) in more gen-
eral classes of functions. In particular, it would be interesting to prove Theorem 2 without the
assumption vl(x2) > v1(x), especially in the case v| = vs.

For generalizations of characterizing sequences for subgroups of more general topological
groups, see [D-M-T,D-K,B-S-W]. For characterizations of subgroups of 7 in a different sense
(with filters on the positive integers instead of subsets of Z) see [W, Theorem 1].

1. Notations and statements of the results

In all of the theorems, G is a compact metrizable Abelian group, G* is its character group
(or Pontriagin dual, see, e.g., [R]), i.e., the group of continuous homomorphisms from G to 7.
It is well known that the property that G is metrizable is equivalent to the condition that G* is
countable (see again [R]). If « € G*, y € G, we write ay for the value of a at y.

If A C G* is an infinite subset, v is a nonnegative function on [0, %], and oy, a2, ...,a; € G
generate a dense subgroup of G, let

c _lyea: . Lea=lyecii =0}
G.A(V) {ye gv(uayn)mo} G.A={y €G: lim ay|

(here limyey |lay || = 0 means that for every € > O there are only finitely many a € A with
llay |l =€), and

a
BG,A(Oll,Olz,...,at)z{yeG; sup layll <oo}
aeA, a0 Max([laat |, [lacall, ... [lac||)

(here the denominator is obviously nonzero for a # 0 by the conditions).
To be precise, we repeat that V is the set of those real-valued, strictly increasing, continu-
ous functions v on the interval [0, %] satisfying v(0) = 0 for which there is a positive number
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K (v) > 0 such that for every x > 0 we have (writing, for the sake of convenience, v(y) = v(%),
ify > %)

v(2x) < K(w)v(x). (1.1)
Condition (1.1) ensures that Cg, 4 (v) is a subgroup of G. We can now state the results.

Theorem 1.

(i) Assume that I' < G is a finitely generated free Abelian group, I' is dense in G, and suppose
that v € V satisfies

Zv(z—") < oo0. (1.2)

Then there is an infinite subset A € G* such that Cg 4 (v) = CG,A(X[1 %]) =T.
(i) If T is an infinite cyclic dense subgroup of G, v € V satisfies

I

> v(27") = o0, (1.3)

and A C G* is such an infinite subset that I’ € Cg A (v), then |Lg ol = 280,

Theorem 1(i) in the case of G = T is a more precise form of [B-S, Theorem]. We mention
that analyzing the proof in [B-S] (which used the Freiman—Ruzsa theorem) we can see that
Theorem 1(i) could be also proved by the method used there. However, Theorems 1(ii), and 2, 3
below are new results, even in the case of G =T

If v e V, then its inverse function, v—! is defined on the interval [0, v(%)]. We will write

v l(x) = % for x > v(%) (it is not important, but it will be convenient).
Theorem 2. Let vy, vy € V be such that

v(x) < Evi(x) for 0<x < (1.4)

N =

with some constant E > 0, and there is a constant q1 > 0 for which we have for every 0 < x <

1/2 that
vi(x%) = qrvi (). (1.5)

(i) Assume that I' < G is a finitely generated free Abelian group, and I is dense in G. Assume

also that vy and v, satisfy
o0 n
1
> :v1<<v2_1<;)) > < oo. (1.6)

n=1

Then there is an infinite subset A € G* such that Cg 4(v1) = Cg.a(v2) =T .
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(1) If I is an infinite cyclic dense subgroup of G, v and vy satisfy

21}1((1;21(%))") - 1.7

and A C G* is such an infinite subset that I’ C Cg a(v1), then |Cg a(v2)| = 2o,

Example 1. We write log x for log, x. We see that (1.2) is true, if

1

I4+e 1

(1.8)
log™ ™ ¢

v(x) =

with an € > 0. However, if we put € = 0 in (1.8), then (1.3) will be true. So Theorem 1(i) cannot

be applied for v(x) = lol 7. But we can analyze on the basis of Theorem 2 how strong statement

can be proved for this function. We find that condition (1.6) is true, if 0 < A < 1 and

—_

M) = ——,  ux) =271 (1.9)

but (1.7) is valid, if B > 0 and

vi(x) = —— vr(x) =x5. (1.10)

1 b
x

Hence (since the other conditions are obviously true) Theorem 2(i) is applicable for the pair
in (1.9), but Theorem 2(ii) is applicable for the pair in (1.10).

Example 2. We get another very interesting case if in Theorem 2 we take v; = vy = v with a
v € V for which

v(x?) > giv(x)

for0<x < % with some constant ¢; > 0. For such functions Theorem 2 gives a necessary and
sufficient condition for the existence of an infinite A € G* with Cg_a(v) = I": we see that if

gv«v_l(%))n) = (1.11)

then we can always find an A with Cg 4(v) = I', but if the series in (1.11) is divergent, then this
is false. Let us consider the concrete example

v(x) = 2~ (oglog )°

with a constant 0 < C < 1. It is not hard to see that (1.11) is true, if % < C < 1,but(1.11) is
false, if 0 < C < 5.
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Theorem 3. Assume that I’ < G is a finitely generated free Abelian group, I is dense in G, and
let a1, a0, ...,0; be any system of free generators of I'. Let v € V be arbitrary, then there is
an infinite subset A C G* such that on the one hand we have I’ € Cg_4(v), on the other hand,
Bg a(ar,o2,...,00) =T

Remark. If G =T, and I' is generated by an irrational « € T, then it follows from [K-L]
that taking A = {g,: n > 1}, where g, are the continued fraction denominators of «, we have
Bg a(a) = I'. However, if, v(x) tends very slowly to 0 as x tends to 0, then I" C Cg 4 (v) will
be false. Therefore, even in this special case the theorem tells something interesting, but it is of
course more interesting for t > 1.

2. A special case
2.1. Introductory remarks and preliminaries

During this whole section, we consider the special case G = Zy, I' = Z, where Z; is the
additive group of the 2-adic integers; for an introduction to p-adic numbers, see, e.g., [K]. Hence,
if we speak about Theorems 1-3 in Section 2 (e.g., in the title of Sections 2.2 and 2.3), then we
always mean this special case.

We introduce some notations. Let 73 be the subgroup of T defined by

T<2>={21N6T: N>0, 1<a<2V, (a,ZN)zl}.

If k= Z?O:O b.,-2j € Z,, where bj is 0 or 1 for every j, and r = ZLN e T@, then their product is
given by

o
kr=Y abj2i N eT.
j=0

It is meaningful, since 2/~ is 0 in T for j > N. It is well known that T = (Z)*, i.e., every
continuous homomorphism f:Z, — T has the form f(k) = kr with an element r € T® for
every k € Z,; this statement is easy to prove, since continuity implies that there is an integer
N >0 such that f(2Vk) =0 for every k € Z,.

If AC TP, v is a nonnegative function on [0, %], then Cz, 4(v) is abbreviated to C4(v) in
Section 2.

We now prove a basic lemma. Part (i) characterizes the ordinary integers in Z, through their
expansions.

Lemma 2.1.

(1) Let k= Z?io bj2j € 7y, where bj is 0 or 1 for every j. If k ¢ Z, then there are infinitely
many j such thatb; #bjy;.
(ii) Let J be a positive integer, and let x € R be given by

X = Z b.,'zjfj,

0<j<I—1
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where bj is 0 or 1 for every 0 < j < J — 1. If there is a

0<rg<J -2
such that by # byy1, then
lxll > 27
Proof. Statement (i) follows easily from Z?’;O 2/ = —1, which is true in Z. To prove (ii), we

note that since by =1 or by =1,s0x > 2!=J and since b =0o0rb;41 =0, 50

x<1— Z (1—b)2i~7 <1277,
0<j<I -1

This proves the lemma. O

In Section 2.2 we prove all the theorems except Theorem 2(i), which is the hardest statement.
We present its proof in Section 2.3.

2.2. Proofs of Theorems 1, 3 and 2(ii)
We begin with proving the easiest statements, i.e., Theorems 1(i) and 3.

Proof of Theorem 1(i). Define A € T? by

1

Then (1.2) and v € V easily imply Z C C4(v). If k = Z;?O:O b.,‘2j € 73, where b; is 0 or 1 for
every j, and ¢t > 0 is such that b, # b, 1, then by Lemma 2.1(ii), taking J = ¢ + 2 we have

1

Hk
> —.
4

27

In view of Lemma 2.1(i), this proves that if k ¢ Z, then there are infinitely many r € A with
[|kr|| = %. This completes the proof. O

Proof of Theorem 3. Let H be an infinite subset of the positive integers with the property
1
Z v 57 ) <oo 2.1)
JeH
It is clear that there is such a subset H. Define

1
A:{Z—J: JEH}.
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Then (2.1) and v € V easily imply Z C C4(v). If k = Z?OZO bj2f € Z3, where b; is 0 or 1 for
every j, and ¢ > 0 is such that b; # by 1, then by Lemma 2.1(ii), takinga J € H with J > ¢+ 2
we have

k
27

1
27

t
=

In view of Lemma 2.1(i) this proves the theorem. O
For the proof of Theorems 1(ii) and 2(ii) we need two lemmas.

Lemma 2.2. Let v € V, assume that g is a positive, monotonically increasing continuous function
on the real interval [ng, 00) with some positive integer ng, and

o0
Z (278 = 0. (2.2)
n=noq
Assume also that

A={ri,r,....1p,..} S T?

is such that

lrill = lr2ll = - 2 llrpll = -+ and (2.3)
> o(lirl) < oo. (2.4)
reA

Then, for any positive constant K there are infinitely many positive integers n such that with a
suitable positive integer T we have

Trill, 1 Trall, - .o | T || <27 K8KD ang (2.5)

1l < (2.6)

ﬁ.

Proof. Remark first that it is enough to prove the lemma for large enough K. Condition (2.2) is
equivalent to

o
/ v(278W) dx = o0,
no
which is equivalent to

o0
Z U(274Kng(4Kn)) =00, (27)

n=ng
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therefore (2.7) is true. Then (2.4) and (2.7) imply that there are infinitely many integers n such
that

[y || < 27 4Kns@Km) 2.8)

We use Dirichlet’s approximation theorem (pigeon-hole principle) in the form that if M is a
positive integer, we can take an integer 1 < 7' << M" such that

1

IZrell W Tralls oo W Tl < - 2.9

We apply it with

M= [22Kg(4Kn)] > 2Kg(4Kn)

(integer part), the inequality is true for every n > ng if K is large enough, and we obtain an
integer

1 < T < 22Kng@km (2.10)
such that
ITrill N Tral, - ([T || < 27 K8@ED o= KeKm,
This, together with (2.3), (2.8) and (2.10), proves the lemma. O

Lemma 2.3. Ler ¢ be a positive valued function on the positive integers such that

(i) there is a constant K > O with the property that

¢(2m) < Kp(m) 2.11)

for every positive integer m;
(i) for any € > 0, there is a positive integer m such that

¢(m) <e. (2.12)

Then, for any sequence of positive numbers €;, there is a sequence m; of positive integers such
that

d(m;) <e (2.13)
foreveryi > 1, and for every i > 1 there is an integer t; > 1 satisfying

mi <2, 2li|my,. (2.14)
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Moreover, if the integers m; and t; satisfy these conditions, then
0
> bim; (2.15)
i=1

is convergent in 1y for any sequence b;, where b; is 0 or 1 for every i, and if

o o
Zbimi = Zb;"mi (2.16)
i=1 i=1

in Zy, where every b; and b} is 0 or 1, then b; = b for every i > 1.

Proof. We define recursively the sequence m;. We fix m such that (2.13) is true with i =1,
which is possible by (ii). If m, mo, ..., m; are given, then we take an integer #; such that
2% > m;, and we take m; 11 = 2 R with a positive integer R with

€i+1
K’

¢(R) <

This is possible by (ii). Then (2.14) is true, and (2.13) with i 4+ 1 in place of i follows by (2.11).
Now, (2.14) easily implies that #; is strictly increasing, so (2.15) is convergent indeed. If (2.16)
is true, and j is the least integer for which b; # b;f, then

oo
(bj —bTymj= Y (b} —bi)m;. (2.17)
i=j+1

The left-hand side here is an integer, its absolute value is m ;, so by (2.14) we see that it is not
divisible by 2//. However, every term on the right-hand side of (2.17) is divisible by 2%, this
follows from (2.14), since the sequence ¢; is increasing. This is a contradiction, so the lemma is
proved. O

Proof of Theorems 1(ii) and 2(ii). We will apply Lemma 2.3. For positive integers m we put

¢1(m) = sup ||mr|| (2.18)
reA
in the case of Theorem 1(ii), and
$a(m) =Y va(llmrll) (2.19)
reA

in the case of Theorem 2(ii). Then for every m > 1 we have 0 < ¢1(m) < oo (obviously), and
0 < ¢o(m) < oo by (1.4) and Z C C4(v1), using also that v; € V. Moreover, condition (i) of
Lemma 2.3 is obviously satisfied, writing ¢1 or ¢, in place of ¢ in (2.11) (we use vy € V).
Condition (ii) of Lemma 2.3 is also true for ¢; and for ¢,, it will follow from Lemma 2.2. To
prove this, remark first that (2.3) and (2.6) imply

Tl < rllV? for I > n. (2.20)
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Now, to prove (ii) of Lemma 2.3 for ¢, we apply Lemma 2.2 with g identically 1 (it is possible,
since (2.2) is true by (1.3), (2.4) is true by Z € C4(v)), and using (2.3), (2.20) and (2.5), we get

sup | 77|l < max(27X, ruq11'72).

reA

Since we can take K and n to be arbitrarily large, and ||r,+1]| — o0 as n — oo by (2.3) and
2.4), so Lemma 2.3(ii) is proved for ¢1. In the case of ¢, we apply Lemma 2.2 with g(n) =
log _1(1/ % , and v in place of v. It is possible, since (2.2) is true by (1.7), and (2.4) is true by

Z C C4(v1). Then by (2.5) and (2.20) we have

o]

3w (I7rl) < nva(27KEED) 157w (ln)V3). 221
reA I=n+1
Now, if K > 1, then
2—Kg(Kn) < z—g(K”) — U71 L , (2.22)
2 \Kn

so applying (1.4) and (1.5), we get from (2.21) and (2.22) that

o0

> ua(ITwll) < Z (7211).-

reA =n+1

Since we can take K and n to be arbitrarily large, so by Z € C4(vy), Lemma 2.3(ii) is proved

for ¢;.
Hence we can apply Lemma 2.3 for ¢ and for ¢, in place of ¢. If b; is 0 or 1 for every i, and

if » € A is given, then
o0
i=1

and here the sum on the right-hand side is actually finite (since r € TP, (2.14) is true, and (2.14)
implies #; — 00).
We first consider the case of ¢y, i.e., Theorem 1(ii). By (2.23), (2.13) (for ¢1) and (2.18) we

get
o0
i=1

for any r € A, any 0-1 sequence b; and for any integer / > 1. If we take €; such that

oo
E € <00,
i=1

o0
< lmirl, (223)
i=1

(Zm >||r||+ e

i=1+1
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then, fixing [ to be an arbitrarily large constant, using that

lim ]| =0
reA

(Er) -

for any 0-1 sequence b;, so by Lemma 2.3, Theorem 1(ii) is proved.
Consider now the case of ¢, hence Theorem 2(ii). Note that if 0 < x < %, I > 2 is an integer,

0<x < for 1<i<TlTandx < ZI-IZI xi, then (1.1) gives

by Z C C4(v), we get

1-1
(%) < (Z K(vz)fvzm)) + K () o (xp). (2.24)

i=1

Indeed, for I = 2 this follows directly from (1.1), and then we can prove the statement by induc-
tion for 7 > 2. Then, since K (v2) > 1, and we saw that the right-hand side of (2.23) is a finite
sum, by (2.23), (2.24) we see for any r € A and for any 0-1 sequence b; that

(5]

By (2.13) (for ¢») and (2.19) we get

o (5)

reA
Taking €; such that this last series is convergent, and using Lemma 2.3, Theorem 2(ii) is
proved. O

) Z w2) vz ([lmirl).

) <) Kw)'e.
i=1

2.3. Proof of Theorem 2(i)

In this subsection, the notations and assumptions of Theorem 2(i) are valid. Let f(n) and g(n)
be positive integers for every n > 1, and assume that

fn+1) = fn), gn+1)>gn) (2.25)

for large n. Let 0 < Ny < N < --- < N; < --- be a strictly increasing sequence of positive
integers. For large i, define

LU . Pn . .
ANi:{m' Nl<n<N,+]} {m N,§n<Nl+1},
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where v, are integers satisfying
1<, <28™, and v, isoddforeveryn, Nj <n < Niii, (2.26)

pn are primes satisfying

)
2T < pn <27 p,#£v, foreveryn, Ni <n < Njii. 2.27)

We will determine the numbers v,, later. If the integers v,, are already fixed, then we can choose
the primes p, satisfying (2.27). By (2.25), since v, and p, are odd and p, # v,, for large

enough i we have |Ay,| = 2(N;+1 — N;), in other words, the elements written in the defini-
tion of Ay, are indeed different. Similarly, we can see that for large i the sets Ay, are pairwise
disjoint.

We now choose the numbers v,. They will be chosen randomly, satisfying (2.26). More pre-
cisely, we will need later the condition for v, stated in the next lemma, and the proof of the
lemma will show that choosing v,, randomly, this condition will be true. To state the lemma, we
introduce some notations. For every i > 1, let ¢; < 11—0 be a positive number to be determined
later, and for positive integers n, S and i, write

_ O ) .
Hy 5= {1 <o 28 Sswarm | < } (2.28)
Lemma 2.4. Let i be large but fixed, and assume that
e 8WNip DN 1)
G <2 T NN (2.29)

If i is large enough, there are integers v, for N; < n < Nj41 such that (2.26) is true, and if for
an integer S, 1 < § < 21H8WixD+fNivwy the inequality

Niy1 — N;
> -

[{Ni <n < Nig1: |Hysi] < 100625} .

(2.30)

holds, then

Nit1 —N;
[{N; <n<Nigi: vg ¢ Hosid| > % (2.31)

also holds.

Proof. Let us fix an 1 < § < 21H8Wir)+/ Wikt gych that (2.30) is true for S. If for an integer
vector

(s Vns oo INj<n<Nigy» 1<0p < 280 for every n, N;i <n < Nji1, (2.32)

formula (2.31) is not true, then

Niy1 — N;

[{Ni <n < Nij1: [Hysil < 1006257, v, € Hy 5| > G
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Hence for this fixed S, the number of integer vectors (2.32) for which (2.31) is not true, is at most
l_[ 2g(n)>(IOOEi)(N[+1—Ni)/6.

Ni<n<Niti

Then the number of vectors (2.32) for which there is an 1 < § < 2!T8WirD+FNit1) guch that
(2.30) is true but (2.31) is not, is at most

l_[ 2g(ﬂ)> (1006,’)<Ni+1 —Ni)/651+8(Nit1)+f (Nig1)
Ni<n<Njti

And the number of vectors (2.32) with v, odd for every n, N; <n < Nj41, s
l_[ 28("))2—(Ni+1—Ni)_
Ni<n<Ni1
So the lemma will be proved, if we can show that

(looei)(Ni+l—Ni)/621+g(Ni+l)+f(Ni+]) < 2~ WNig1=Ni)—1 (2.33)
It is not hard to see, using (2.29), that (2.33) will be true for large i. The lemma is proved. O

From now on, we assume that (2.29) is true for large i, and in Ay, we always take numbers v,
with the properties stated in Lemma 2.4.

For the proof of the next lemma we will need the following well-known general lemma. For
the sake of completeness, we present a proof.

Lemma2.5.Let6 € R, 0 <€ < -~ andlet N > 1 be an integer. Then at least one of the following

10’
two conditions is satisfied:

) {I<n<N: nf] <e€}| < 100eN;
(i) |9—%|S%foranléqé%and(a,q):l.

Proof. Let Q) and Q> be positive integers satisfying
0:=2N, —<Qi+1<+ (2.34)

and for real ¢ consider the well-known Fourier series

01 )
= o dml N gy sIT((Q1 4 Drr)
f(t)_m;&(l 01 +1)€ (01 + Vsin®(rr)]

(0.¢]
F(t)z Z Cnezﬂinl:

n=—0oo

3 1
{1—Q2I|tll, if 7]l < g5
if L 1
0, if g5 <1l <3,
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where ¢, = QQW Remark that the formulas mean f(t) = Q; + 1 for t € Z, and
2

;x<smx <xisvalidfor0<x < Z 7580

or+1 0> 1
enf@) 2 ( > Q2 ) 1f|"|<73nd|t|<m~

o= é Since

Hence, since c,, f(¢) > 0 for every n and ¢, so if (i) is false, by (2.34) we get

9]

2\* 1 2\* 1
> c,,f(ne)><—> Q1+ [{1<n<N: ||n9||<e}|><—) —100Ne > 1.
ey T [ w) 6Ne

On the other hand, we have

) 01 00 01
| | Timn | |
Y afni)= Y (1 - Q1m+1> Y it = 3 (1 - Q1m+1>F(m6?).

n=—oo m=—0Q n=—o0o m=—0Q

Therefore, using F(0) =1 and F(t) = F(—t), we conclude that there is an integer m with 1 <
m < Q1 such that F(m6) # 0, which implies ||m0 || < . Hence, using (2.34), (ii) is true. O

Lemma 2.6. Let i be large but fixed, and assume that

8(N;)

227720 < ¢ (2.35)

Ifi is large, then for every 1 < § < 21H8WNixD+fWNivt) g least one of the following two conditions
is satisfied:

. N

i) l{reAy;: IrSI =5} > —’“

.. . S 1
(ii) thereisan N; <n < N,+1f0r whlch I 57 | < 2

Proof. Let 1 < § < 2!T8Wis)+fWNith) be fixed. Let N; <n < Nj 41, and

_ S
T~ 2gm+fn)”
Then by Lemma 2.5, either
<< 28, s Al < 1000 22 ]
Isvs2 2emtrm || €[]S 100€;2°,  or (2.36)
; /| < f 1<q< - and(@.q) =1 237
W—g S g orang, \q\e—i, and (a,q) = (2.37)

is true. If for our fix S there is at least one N; < n < N;y for which (2.37) is true with g =1,
then we get (ii) of the lemma. So we may assume that (2.37) is never true with g = 1. If (2.37)
holds for an n, N; < n < N4, with some g > 1, then if i is large enough, using (2.27), (2.35),
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n > N; and the monotonicity of g, we get

S (n) i 1
q q
o 1
=27 > —>q (2.39)
i

Since p, is a prime, so (g, ppa) = 1 by (2.37) and (2.39), hence (2.38) and ¢ > 1 gives

_paS G pa) 116
28+ () q 2 27 2
This shows that if for our fix S (2.37) holds for at least Nz =Ni 1ntegers n with N; <n < N4,

then (i) of the lemma is true. Hence we may assume that thls is not the case, but then (2.36) is
valid for at least M integers n with N; <n < N;y1. The definition of H,, s ; in (2.28) shows
that this means that (2.30) is true for our fixed S, and then Lemma 2.4 (and (2.28) again) shows
that (i) of the present lemma is true. This completes the proof of the lemma. O

From now on we assume also that (2.35) is true for large i. Let iy be large and

A=Ay,

iZip
Lemma 2.7. Assume that
liminf(N; 1 — Np)va(e;) > 0, (2.40)
1—> 00
o0
> 0 (277™) < o0, (2.41)
n=1
and for large i we have
gN) > max  f(n). (2.42)

Niy1<n<Niy2

Then we have

> vi(lIrl) < oo, (2.43)

reA

and ifk € Zy, but k ¢ Z, then

> v (Jlkr|l) = oo. (2.44)

reA
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Proof. Since vy, p, < 28 for large n by (2.26) and (2.27), so

You(r<2d Y w(@e™),

reA iZip Ni<n<Njy|

which, in view of (2.41), proves (2.43). Let k = Z?io bj21 € Z,, where b is 0 or 1 for every j,
and assume that k ¢ Z. Let i be large, and

S; = Z b2/ (2.45)

0< /< f(Nit1)+8(Niv1)

Then 1 < §; < 2!/ Wit +8WNiv)) "and for every r € Ay, we have |[kr| = ||Sir|| by (2.25) and
the definition of Ay, . If Lemma 2.6(i) is true for this i and § = §;, then

Nit1—Ni (€ (Nit1 — Npva(e;)
Y va(lkrl)= Y vz(||sir||)>%vz(5) > “3K(U2)2

reANl. reAN,.

by (1.1). If this would happen for infinitely many i, then, in view of (2.40), we would get (2.44).
Therefore, we may assume that if i is large enough, then Lemma 2.6(ii) is valid for i and for
S = §; defined in (2.45). Hence for some N; < n < N1, writing 6 = W, we have

< -
161 < 3755

On the other hand, writing

= 3 b;2i = f =g,
0<j<F(m)+gm—1

we have
01= llxll.
In view of Lemma 2.1(ii), we then see that if
by # b1 (2.46)
for an integer
0<t<f(n)+gm) -2,

then

- 1
1—f(n)—g(n)
2 <l < 555

hence

1< f(n).
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Therefore, since N; < n < N1, using (2.25) we see that if we can choose i and ¢ in such a way
that they are large, (2.46) holds for ¢, and

max f(n)+ 1<t < f(NV;)+g(N;) -2, (2.47)
N;i<n<Njt

then we will get a contradiction, which will prove (2.44).
Since k ¢ Z, there are infinitely many ¢ satisfying (2.46), in view of Lemma 2.1(i). Since
f(NV;) tends to infinity as i tends to infinity by (2.41), we see that

J(N)+gNi)—2>  max  f(n)+1

i+1<n<Nito

for large i. This shows that if ¢ is large enough, we can choose i in such a way that (2.47) holds.
This proves the lemma. O

To conclude the proof of Theorem 2(i), we have to prove that we can choose the positive
integers f(n) and g(n) for every n > 1, the integer sequence 0 < Ny < Np <--- < N; <---,and
the numbers 0 < ¢; < % for every i > 1 in such a way that (2.25) holds for large n, (2.29), (2.35)
and (2.42) are true for large i, and (2.40) and (2.41) are also true.

Introduce the notation D; = N;4+1 — Nj, and write

i TP
tl~=v1(v2 (3) ) (2.48)

Assume first that the integer sequence 0 < N < N» <--- < N; < ---, and for every i > 1 posi-
tive numbers ¢; and positive integers f(N;), g(N;) are given in such a way that

_lim D;t;_1=0, (2.49)
1—> 00

o0

Y Diti 3 < oo, (2.50)
=3

and for large enough i we have the following conditions:

B 2.51)
g(Ni) = f(Nit1), (2.52)

1\P2 1\ Dir4
g(Nit1) = 2g(Ny). (2.54)

We show that we can then choose the positive integers f(n) and g(n) for every n > 1 in such a
way that the required conditions are true. Indeed, since g(N;+1) — oo by (2.54), it is clear from
the right inequality of (2.53) that

i g(Nit1)
m —— =&

i—»oo  Dj

(2.55)
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For every i > 1 we take

fn)=f(Ni), (2.56)

if N; <n < N;j4+1. On the other hand, if i is large enough, we choose the integers g(n) for
N; <n < Nj11 in such a way that

gN)) <g(N; +1) <g(Ni +2) <--- < g(Niy1 — 1) < g(Nig1),

which is possible by (2.54) and (2.55). Then (2.25) is true for large n. It is trivial from (2.51) that
(2.29) is true for large i (and we see from (2.55) and (2.51) that ¢; < 11—0 is true for large 7). It is
also clear by (2.56) and (2.52) that (2.42) is true for large i. Formulas (2.52) and (2.54) imply
that g(N;4+1) 2 f(Nj41) for large i. Using this, (2.51) and the left inequality of (2.53), we see
for large i that

1
6 =>270! (5). (2.57)
1

This shows at once by (1.1) that (2.40) is true. Observe that by (2.53), using (1.5), we have

1
t <y (27128 WD) < ;rl- (2.58)
1

for large i. For the validity of (2.35), by (2.57) and the monotonicity of vy, it is enough to prove

that
(V) 1
v1(2327g 2 ) <V (vz_l <3)> (2.59)
i

Here the right-hand side is at least ﬁ by (1.4), so by (1.1), (1.5), and (2.58) we see that (2.59)

(and so (2.35) for large i) follows by (2.49). To prove (2.41), we remark that by (2.56) and (2.52),
for large i we have

Niyi—1
Z Ul(z_‘f(n)) = Dj;v; (2_-f(N")) = D;v; (Z—g(N,'_l))_
n=Nj

Using again (1.5) and (2.58), we see that (2.41) follows from (2.50).
Hence we have proved that it is enough to achieve that (2.49), (2.50) are true, and (2.51)—
(2.54) hold for large i. At the end of Section 2, we will prove the following lemma.

Lemma 2.8. Let {a(n)},2 | be a sequence of positive real numbers, and assume that

[e¢]

Z a(n) < 0o. (2.60)

n=1
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Let 0 < ¢ < 1 be a fixed constant. Then there is a strictly increasing sequence {n;}7° of positive
integers such that

o0
> nia(ni—y) < oo, (2.61)
i=2
and for every i > 1 we have
atir) (2.62)
a(n;)

Using this statement, we now complete the proof of Theorem 2(i). Apply Lemma 2.8 with
some 0 < ¢ < 1 to be determined later, and with

a(n) = v1<v21 G) > (2.63)

Then (2.60) follows from (1.6). Let {n;}72, be the sequence given by Lemma 2.8, and define the
positive integers D; for i > 1 in such a way that

Dyj=nj, D3jy1=Dyj (2.64)

for j > 1. Then define the sequence N; such that D; = N;4+1 — N; for large i, and define the
integers g(N;) such that for large j we have

1 Dsj/4 1 Dsj/4
21%;1(—) < 27128 M2j) o uz—l(—) : (2.65)
Ds; D;
1 Dy 1 Dyj—y
v2_1< ) <2128 _ 2‘%2—1( _) , (2.66)
Dyj—1 Dyj—1

finally, define f(N;) and €; in such a way that (2.52) and (2.51) hold for large i. Then (2.50)
follows from (2.64), (2.63) and (2.61) (see (2.48)). Condition (2.49) is a consequence of (2.50),
since t; is a decreasing sequence, because n; is increasing, and so by (2.64), D; is also increasing.
Since (2.53) follows at once from (2.65) and (2.66) for large i, it is enough to prove that (2.54)
holds for large i.

Now, it is clear from (2.65), (2.66) and (2.64) that g(N2;4+2) > 2g(N2;+1) for large j. Assume
that

g(N2j+1) <2g(Nj) (2.67)

for a large j. Remember that (2.58) follows from (2.53) for large i. Since we have already proved
(2.53), we can use (2.58). Then, by (1.5), (2.58) and (2.67) we have

1

—hj = vy (27128MN2j510) > gy (27128W20)) > g1y (2.68)

qi
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Now, by (2.48), (2.63) and (2.64) we have t;; = a(n;) and t;_1 = a(n;_1). Therefore, (2.68)
and (2.62) imply

gia(nj_1) <a(n;) <ca(n;_y).

Hence, if we choose ¢ < q13 , then this is a contradiction, so (2.67) is false. So we have proved
(2.54) for large i.
So, the proof of Theorem 2(i) will be complete, if we prove Lemma 2.8.

Proof of Lemma 2.8. Letn; =1,andif n] <ny < --- < n; are given, let n; | > n; be the least
integer satisfying (2.62). We have to prove (2.61). If n; <n < n;11, then

>c
a(n;)
Therefore,
niy1—1
= Z a(n) z (nj+1 —ni)a@n;).
¢ n=n;
Then (2.60) implies
o
> (i1 —npan) < oo. (2.69)

i=1
But for any integer / > 1, we have
I I

Z(”H—l —nj)a(n;) =—nja(ny) +nyya(ng) + Zni(a(ni—l) —a(ny)).  (2.70)

i=1 i=2
Since

a(ni—1) —a(n;) = (1 —c)a(ni-)

by (2.62), so (2.69) and (2.70) imply (2.61). The lemma is proved. O
3. The general case
3.1. Conditional proof of the theorems

In Section 2 we proved that Theorems 1-3 are true if we write G = Z, I = Z. We will
prove the theorems for the general case from this special case, using Lemma 3.1 below. In this
subsection we assume Lemma 3.1 and prove the theorems, and then we prove Lemma 3.1 in the
rest of the paper.

Ifay, o, ..., generate a group I”, we say that they freely generate I", if I is a free Abelian
group, and a1, a2, ..., o is a system of free generators of I".
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Lemma 3.1. Let G| and G, be compact metrizable Abelian groups. Assume that o1, oz, ...,
ar € G freely generate a dense subgroup I of G1, and B € Gy freely generates a dense
subgroup Iy of Ga. Let vi,v; € V. Assume that A C G} is such an infinite subset that
I € Cg,, A(v1). Then there is an infinite subset H C GT such that It € Cg,,q(v1), and

(1) if Cg,,a(x11/4,1/2)) € I, then Cg, m(x11/10,1/2) € I,
(i) if Cg,,a(v2) C I, then Cg, u(v2) C I,
(iii) if CG,.a(02)] < 2%, then |Cgy 1 (v2)| < 2%,
(iv) if|Lg,,al < 2% then LG, H| < 280,
(V) if Bg,,a(B) C I, then Bg, g(ay,az,...,04) S 17.

We now prove the theorems assuming this lemma, and using the special cases of the theorems
proved in Section 2. The most complicated proof is that of Theorem 1(i), so we start with the
other proofs.

Proof of Theorems 2(i) and 3. Wetake G| =G, 1 =1I",letay,a,...,a; be a system of free
generators of I, andlet G, =75, [, =7Z,8=1.

In the case of Theorem 2(i), by the special case already proved, there is an infinite A C G}
such that Cg, 4(v1) = Cg,,4(v2) = I>. Then by Lemma 3.1(ii) there is an infinite H C G7
such that I € Cg,, g (v1) and Cg, g (v2) € I'l. By the definitions and (1.4), Cg, n(v1) =
Cg,.H(v2) = I follows, so Theorem 2(i) is proved.

In the case of Theorem 3 we take vy = v. Then by the special case already proved, there
is an infinite A C G such that I3 € Cg, 4(v) and Bg, a(B8) = I>. By Lemma 3.1(v) there
is an infinite H C G’l‘ such that I'T1 € Cg, g (v) and Bg, m(ay, o2, ...,0:) € I7. Since I'1 €
Bg, H(a1, @z, ..., ;) is trivial, Theorem 3 follows. O

Proof of Theorems 1(ii) and 2(ii). Wetake G, =G, L =1,G1 =723, 1 =Z1.

In the case of Theorem 1(ii) we take vi = v. Let A C G; be such an infinite subset that
Iy € Cg,,a(v), and assume that [Lg, Al < 2% Then by Lemma 3.1(iv), there is an infinite
subset H C G’f suchthat It € Cg, g (v),and |Lg, gl < 280 This contradicts the special case of
Theorem 1(ii) already proved. Therefore |Lg, a| > 2™, and since |G,| < 2™ is trivial (because
G2 = (G})*, and G} is countable), so |Lg, a| = 2%, Theorem 1(ii) follows.

In the case of Theorem 2(ii), let A C G; be such an infinite subset that I3 € Cg,, a(v1),
and assume that |Cg, 4 (v2)| < 2% Then by Lemma 3.1(iii), there is an infinite H C G7 such
that I1 € Cg,, 7 (v1), and |Cg, n(v2)| < 2%0_ This contradicts the special case of Theorem 2(ii)
already proved. Then, using again that |G2| < 2%, we get |Cg,. 4 (v2)] = 20, so Theorem 2(ii)
isproved. O

Proof of Theorem 1(i). As in the proof of Theorems 2(i) and 3,let G =G, 1 =1, G, =7,
Ib = 7. Define v = v. By the special case of Theorem 1(i) already proved there is an infinite
A C G such that Cg, o (v) = Cg,,a(X[1/4,1/21) = I>. Then by Lemma 3.1(i) there is an infinite
H C G7 such that I't € Cg,,z(v) and Cg, g (x[1/10,1/21) S I'1. Now, let HcC G7 be defined by

H={2h heH 0<r<2}.
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We claim that CGl,ﬁ(Xll/‘H/zJ) C Cq,,m(X11/10,1/2])- Indeed, assume that y € CGl,f}(XU/‘H/zJ)
is such that ||hy| > % for every h € Hp, where Hy C H is an infinite subset. Let & € Hy. If
lhy |l € [§. 1. then |2h)y || > %, and if |hy |l € [{5. &1, then [[(4h)y|| > §. This means that
there is an integer 0 < r9 < 2 and an infinite subset H; € Hy such that ||[(2h)y | > % for every
h € Hy.Butthen y € CGl,ﬁ(X[1/4>l/2]) implies that

{2%: he Hy)
is a finite set. Since H; C GT is infinite, this shows that
{heG}: 2°n =0}

is an infinite set. But this is false. Indeed, on the one hand, G is topologically generated by

a system of free generators oy, o, ...,a; of I', so every h € GT is determined by its values
on ap,as, ..., «; on the other hand, if 20k = 0, then there are only finitely many possibilities
for the z-tuple (hay, hoy, ..., hay). This is a contradiction, so we proved Ccl,ﬁ(X[l/4,l/2]) C

Cey,u(X11/10,1/2])-

Consequently, we have CGl’g(X[1/4,1/2]) C TI7. On the other hand, it is clear by v € V that
Cg,,u() C CGlﬁ(v), hence (since I} € Cg,, y(v)) we have I C CGl,ﬁ(v), SO CGl,ﬁ(U) =
CGl ’ 7 (x11/4,1/21) = I follows, and this completes the proof of Theorem 1(i). O

In the rest of the paper, our aim is to prove Lemma 3.1.
3.2. Preliminary lemmas
In this short subsection we present two easy, but important lemmas.

Lemma3.2. I[fw e T, k > 1 is an integer, and

1

loll, 120l 1o, ..., [2*o| < § < o
then ||| < %.
Proof. This is proved as in [B-S, Lemma 3]. O
Lemma 3.3. Let G be a compact Abelian group. Assume that o1, a2, ..., o € G freely generate

a dense subgroup of G. Then
(1) the subgroup
{(uar, poa, ..., pay): e G*J

is dense in T';
(i) if u € G* is such that

nap = pay =---= oy =0,

then u=0;
(iii) if B € G is such that up = 0 for every u € G*, then g =0.
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Proof. Since o1, a3, ..., a; are independent, part (i) is a particular case of the well-known fact
that discontinuous characters of G can be approximated by continuous ones (cf. [H-R]). Part (ii)
is trivial from the fact that a1, a2, ..., oy generate a dense subgroup of G. Part (iii) follows from
Pontriagin’s duality theorem (see [R]). O

3.3. Proof of Lemma 3.1

In this subsection, we use the notations of Lemma 3.1. The set H C G’l‘ we produce will have

the form H = U;::l Hy., we define the subsets Hy successively, and we show the impact of each
step on the final proof. The first three subsets, Hy, H, and H3 will not depend on the set A C G’z‘,
but H must depend on A, so we will use A in the definition of the last subset Hj.

At each step, on the one hand, we need Iy € Cg,, g, (v1) (which will finally imply Iy €
Cg,,H(v1)). This means essentially that ||hc; || is small, when h € Hy and 1 <i < t. On the
other hand, we need restrictions on y, if y € G1 and ||hy | is small for & € Hj (because in each
case we have to force such elements y into a countable set).

We now start the formal proof. Our basic tools will be Lemmas 3.4 and 3.5 below. We first
introduce a notation: by identification of the groups (G3)" and (G )*, for a general element
L € (G5)* we write

A= ()»(1),)»(2),---,)»(0),
where A(i) € G5 for 1 <i <t

Lemma 3.4. For every integer j > 1 and for every % € (G5)* let 6(] A) be a given positive
number. Then for every such pair (j, 1) we can choose a character i€ G7 (in other words, for

every A we can choose a sequence /Ljf) with the following properties:

|28 — wiei | <€ n) 3.1
forevery 1 <i <t, and
A 2* . *
WrE Ry, ifA#E (32)

Proof. Since (G )* is countable, by Lemma 3.3(i) we can choose recursively the characters y,
in such a way that (3.1) and (3.2) will be true. O

Lemma 3.5. For every integer n > 1 and for every T € G let 8(n T) be a given positive number.
Then for every such pair (n,t) we can choose a character Ky € (G )* (in other words, for
every T we can choose a sequence k. ) with the following properties:

[kr@)B —tai| <8(n, 1) (3.3)

forevery 1 <i <t, and

KT A, if(n,T) # (0%, ). (3.4)
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If the numbers §(n, t) are small enough, then for every 1 <i <t and t € G} we have
lim «; ()B = ta;. 3.5
n— o0

Proof. Since G7 is countable, by Lemma 3.3(i) (applied for G and ) we can choose recursively
the elements «,; in such a way that (3.3) and (3.4) will be true. The last statement is trivial
from (3.3). O

We apply these lemmas with some positive numbers €(j,A) (j > 1, L € (G’z)*) and 8(n, 1)
(n > 1, T € GY) to be determined later, and we choose characters ;L? € G,k € (G’z)* satisfying
the conditions of Lemmas 3.4 and 3.5.

For every A € (G5)* let R(%) be a positive integer, to be determined later. If j > 1 is an
integer, A € (G5)*, let R(j, ) = j + R(%). Define

Hy = {2 (W} — 1) 2e(GY)", j =1, 0<r <R3, M}

Lemma 3.6. Let R()\) be given for every X € (G;)*. If the numbers €(j, A) are small enough,
then the set Hy C G7 defined above satisfies the following conditions:

(i) We have
In € Cg,,m (v1). (3.6)
(ii) Ify € Gy is such that ||hy | < ll—ofor all but finitely many h € Hy, then

Fy ()= lim uhy (3.7)
Jj—>0oo Y

exists for every A € (Gtz)*, and
|Fy ) — uiy| <278® (3.8)
holds for all but finitely many X\ € (G’z)*.
Proof. If 1 <i<t, A€ (G’z)*, j =1, then by (3.1) we have
(0 — )i Gy +ei+ 1,0,

It is clear by vy € V that for arbitrary fixed positive integers R(j, A) we can choose the numbers
€(j, A) so small that

Yo > w@ (G +e(+1.1)) <00

re(Gh)* j21 0Sr<R(j.A)

will hold. Therefore,

Yy Y w2 - #)al) <o (3.9)

2e(Ghy* i1 0Kr<R(j.A)

will be true for every 1 <i < t. This gives (3.6) at once.
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Let y € G be such that ||hy || < 1—10 for all but finitely many & € H;. Let 0 £ h € Hj be fixed.
We see by (3.9) and Lemma 3.3(ii) that there may be only finitely many pairs A € (G’z)*, j=1
such that there is a 0 < r < R(j, A) satisfying

A A
2 (uig —nj) =h
Hence, by the property of y, using Lemma 3.2 and R(j, X) = j + R(A), we obtain

1/10
| (W = i)y ] < 5/+RG) (3.10)

for all but finitely many pairs A € (G5)*, j > 1. Then (3.10) shows that /L;f)/ is a Cauchy sequence
in T for every A € (G’z)*, so (3.7) exists, and (3.10) shows also (3.8). Lemma 3.6 is proved. O

From now on, we assume that the numbers €(j, 1) are as small as Lemma 3.6 requires. Hence,
we will fix first the parameters R(A), and then we will choose the numbers €(j, A) small enough.
So (i) and (ii) of Lemma 3.6 will be true, in particular, we may use the notation F, (A).

To motivate the next lemma, observe that if €(j, A) are small enough, then Fy, (1) = L()B
by (3.1), so the map Fy, :(G’z)* — T is a group homomorphism. By taking a new set Hp, we
extend this property for general y.

Lemma 3.7. [f the numbers €(j, )) are small enough, then there is a subset Hy C GT such that
I € Cg, 1, (v1), (3.11)

and if y € G satisfies ||hy | < %for all but finitely many h € Hy U Hy, then for 1 <i <t there
are elements ¢;(y) € G such that
!
Fy() =Y a)$i(y) (3.12)
i=1

for every & € (G5)*.

Proof. Let us choose for every pair A1, Ay € (G’z)* an infinite subset (to be determined later)
Ji.1.x, of the positive integers. Then define

Hy= {2 (1} + =1 772): hida € (GY)" J € Ty 0<r <

If 1 <i<t,A1, k2 € (Gh)*, j € Jx, 1y, then by (3.1) we have

| (5 + 15 = 1) | <€) + € ha) + €, Ar + 22), (3.13)

It is clear that we can choose the numbers €(j, 1) so small that

Jim 37 w2 (€ € A) € +4)) =0
0<r<j
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will be true for every fixed pair A1, As € (G )*. If this is true, then we can choose the infinite
subsets J;,, ,\2 of the positive integers in such a way that (the first summation below is over every
pair from (G )*)

DD D i (G M) €, k) + €, A+ 4))) < o0

iAo JE€D 2, 0K

will hold. Therefore, using (3.13), we get (the first summation is again over every pair
from (G )*)

oY 3T w2 (W + e = n T )e]) < o0 (3.14)

Aida jedh o, 0SS

will be true for every 1 <i < ¢. This gives (3.11) at once.

Let y € G| be such that || hy | < 15 for all but finitely many h € Hy U Hy. Let 0 £ h € H, be
fixed. We see by (3.14) and Lemma 3 3(ii) that for any fixed pair A1, Ay € (G )* there may be
only finitely many j € J;, 1, such that there is a 0 < r < j satisfying

2 (W + - ) =h (3.15)

Using (3.15) and the property of y, by Lemma 3.2 we obtain

1/10

A A A +A
(' + 157 = 52y | < =~ (3.16)

for every pair A1, Ay € (G )* and for large enough j € Ji1.0,- Since every Jy, », is an infinite set,
so F: (G )* — T is a group homomorphism by (3.7) and (3.16). Therefore, there are elements
o1(y), ¢2(y) ,®:(y) € G, such that (3.12) holds for every X € (G )*. Indeed, it is implied
by basic facts from the duality theory of locally compact Abelian groups (see [R]): the dual

group of a compact group is discrete, therefore, using Pontriagin’s duality theorem, any algebraic
homomorphism F : (G )* — T has the form (3.12). Lemma 3.7 is proved. 0O

We assume in the sequel that the €(j, A) are small enough, so Lemma 3.7 is true, and we may
use the notations H and ¢; (y).

The role of the next part H3 is that we will be able to reconstruct y from the elements ¢; (y).
For this purpose we start to use the characters «; .

Lemma 3.8. If the numbers R()\) are large enough, but €(j, A) and §(n, t) are small enough,
then there is a subset Hy C G7 with the following conditions:

I'n € Cg,,u;(v1), 3.17)

and if y € G satisfies ||hy || < I]—Ofor all but finitely many h € H U H, U H3, then

t
lim Y el (i () =Ty (3.18)

i=1

k
for every T € G7.
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Proof. Let
H3={2r(u'l(’f—r): nz1, te€Gf, 0<r<nj.

Ifil<i<t,n>landte GT, then by (3.1) and (3.3) we have

[ = 2| < 11y i = w5 B + iy )8 = veu | < (1) + 801, 7).

It is clear (using (3.4)) that we can choose the numbers §(n, 7) and €(1, ;7 ) to be small enough
that

Z Z Z vi(27(8(n, 1) +€(1,x))) < o0

nzl teGy 0<r<n

will hold. Therefore,

Y3 Y w2 - oal) <o (3.19)

nzl teGy 0<r<n

will be true for every 1 <i < ¢. This gives (3.17) at once.

Lety € G1 besuchthat |hy| < % for all but finitely many h € HHUH, U Hz. Let0#£ h € H3
be fixed. Formula (3.19) and Lemma 3.3(ii) give that for any fixed 7 € GT there may be only
finitely many n > 1 for which there is a 0 < r < n satisfying

T

2" (,u'l(" — r) =h.
Then, using the property of y, by Lemma 3.2 we obtain

1/10
2n

[(1y = 7)r | <

for every 7 € G7 and for large enough 7. It follows that

T

lim )"y =ty (3.20)

for every T € G7. If we have R(x;) — oo as n — oo for every T € G}, which we may assume
in view of (3.4), then (3.8) and (3.20) imply

lim Fy(/c,f) =1y (3.21)

n—oo

for every € G7. Formulas (3.12) and (3.21) give (3.18). Lemma 3.8 is proved. O

Again, we assume in the sequel that the parameters satisfy the conditions needed in
Lemma 3.8.

Now, since y € G is determined by the elements ¢; (y) € G2, it is enough to force ¢; (y) into
a small set. This is the point where we use the set A C G;.
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Lemma 3.9. Assume that the numbers R (L) are large enough, but €(j, A) and §(n, ) are small
enough. There is an infinite subset Hy C G such that by taking H = U;::l Hy, on the one hand
we have

I € Cg,,u(v), (3.22)

on the other hand, the following statements hold (we mean in each case that the condition implies
that y satisfies | hy| < % for all but finitely many h € H| U H», so ¢;(y) are defined):

() ify € Cay,m(X[1/10,1/21), then ¢ (v) € Cg,,a(X[1/4,1/2)) for 1 <i <,
(i) if y € Cg,,m(v2), then ¢;(y) € Cg,,a(v2) for 1 <i <1t,
(iii) if y € Lg,,H, then ¢;(y) € Lg,,a for 1 <i <t,
(iv) if y € B, m (a1, 00,...,0;), then ¢;(y) € Bg, a(B) for 1 <i <t.

Proof. If a € A and 1 <i <1,let m,; € (G})* be defined by

7ai(i)=a, 1<i<t, and (3.23)
Taiy (i) =0€ G5 1<iy,ir<t, i1 #ia. (3.24)

Now, fora € A and 1 <i <1, define
fil@) = pi"". (3.25)

It is clear by (3.2) that f; : A — G7 is an injection for every i, 1 <i <t. Let

t
Hi = fiA),

i=1

it is clearly an infinite set. We have by (3.1), (3.25), (3.23) and (3.24) for every a € A that

| fi@ei —ap| <e(l,ma), 1<i<t, and (3.26)
| fiy@ei|| <€(l,ma;), 1<iri<t, iy #i. (3.27)

We get for any fixed 1 <i < ¢ that

Zvl(nha,-n)<Z(v1(||aﬁ||+e<1,na,,~>)+ > vl(ea,na,il))).

heHy acA 1<i <, i #i

We then see, using vi € V and B € Cg,, 4(v1) that if we choose the numbers €(1, 7, ;) small
enough, which is possible, then (3.22) follows (using also (3.6), (3.11), (3.17)).

We now prove statements (i)—(iv). Remark first that in each case it is clear that y € G is such
that ||hy | < % for all but finitely many 2 € H (in case (iv) it follows from (3.22)), so ¢; (y) are
defined indeed. By (3.8) and (3.25), we see that

|Fy (rai) = fila)y | <27 REad (3.28)
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for all but finitely many a € A and for every i, 1 <i <. And, by (3.12), (3.23) and (3.24) we
have

Fy (70q,i) = agi(y)

forevery a € A and 1 <i < ¢, so for all but finitely many a € A by (3.28) we obtain

lagi ()| <278 1| fi(@)y

|, 1<i<t. (3.29)
Take the numbers R (7, ;) so large that we have

D w27 Ry <00, lim2 R0t = 0
acA

acA

for every i, 1 <i <t (in fact, the second formula follows from the first one here). Then, using
(3.29), v € V and that f;: A — H is an injection for every i, statements (i)—(iii) follow.
For the proof of (iv), take R(r, ;) so large and €(1, 7, ;) so small that

2R < apll,  e(l,ma0) < llapl (3.30)

for every 0 #£ a € A, and for every i, 1 <i < t. Itis possible, since af # 0 for 0 # a € G;. We
note that (3.30), (3.26) and (3.27) imply

max (|| fi @a1 |, || fi@ez|..... | fi(@e]|) < 2laBll

)

for any 0 #2a € A and 1 <i < ¢, and then (3.29) and (3.30) give (iv), so Lemma 3.9 is
proved. O

Conclusion of the proof of Lemma 3.1. We fix first the numbers R()) large enough, then we
fix €(j, A) small enough. We also choose é(n, 7) small enough. Then we can apply Lemmas 3.8,
3.9, and the last statement of Lemma 3.5 is also applicable.

We take the set H of Lemma 3.9. In view of (3.22), it is enough to prove statements (i)—(v) of
Lemma 3.1. We take

Y € Cg,,u(X11/10,1/21) to prove (i) of Lemma 3.1,
y € Cg,,n(v2) to prove (ii) and (iii) of Lemma 3.1,
y € Lg,,y toprove (iv) of Lemma 3.1, and
y € BG, (a1, a2,...,0;) toprove (v) of Lemma 3.1.
In (i), (i1) and (v) of Lemma 3.1 by Lemma 3.9 and the conditions of Lemma 3.1 we have

¢i(y) € I», so ¢; (y) = k; B with some integers k; for 1 <i <t. Hence, by (3.5) and (3.18), we
have

t
r(y — Zk,-a,) =0
i=1
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for every T € G¥, which implies by Lemma 3.3(iii) that

t
szki“i eI,

i=1

so (1), (ii) and (v) of Lemma 3.1 are proved.
In (iii) and (iv) of Lemma 3.1, by Lemma 3.9 and the conditions of Lemma 3.1 we have,
writing S = Cg,,y(v2) in (iil) and § = L, , g in (iv) that

{(@1,¢2.....81): ¢i € G2 and ¢; = ¢; (y) with some y € S for 1 <i <1} < 2%,

By (3.18), this implies that the cardinality of the set of those functions f:G} — T for which
thereis a y € S such that f(r) =ty forevery t € G7 is less than 2% (Indeed, since the charac-
ters k. are fixed, (3.18) shows that Ty depends only on the ¢-tuple (¢1(y), $2(¥), ..., ¢:(¥)).)
This implies by Lemma 3.3(iii) that |S| < 2%0, and the lemma is proved. O
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