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ABSTRACT

Let z;. z;3. ..., z, be complex numbers, and for j > | define
Sj=z]+...+12.

Let

R, = min max ||
eIl < j<an

under the condition that

max |z, = 1.
l<t<n

Improving our earlier result (see [B1]) we prove here that there is a constant ¢ > { such that R, > g
for every n.

1. INTRODUCTION

To find lower bounds for the quantity R, defined in the abstract is a classical
problem of the power sum theory of Turan (see [T]; an account can be found in
[M]). The minimum R, exists by compactness, and it is trivial that the condition
can be replaced by z; = 1.

The history of the problem is discussed in [B1]. We just mention here that the
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1942 conjecture of Turan that R, > ¢ for some ¢ > 0 independent of n was
proved by F.V. Atkinson (see [A]) in 1961. In his book ([T], Problem 12) Turan
posed the problem of finding the best possible constant ¢ for which R, > c. This
problem is still unsolved. The best known lower bound so far was R, > % (see
[BL]). In the present paper we improve this estimate, see our Theorem below.

It is trivial that R, < 1. The best known upper bound so far was that of
Komlos, Sarkozy and Szemerédi ([K-S-Sz]). We will improve their bound in our
forthcoming paper [B2] to

loglogn

R, <1-(1-¢) logn

for large n, with arbitrary € > 0. It is very likely that in fact an estimate of the
form R, < 1 — ¢ with some positive constant independent of » is true. The pa-
per [C-G] also supports this conjecture, where numerical evidence seems to
show that the sequence R, is decreasing and has a limit about 0.7.

Theorem. There is an effectively computable absolute constant q > %such that if
21,22, . .., Zn are complex numbers and z; = 1, then

Sjl > q.
max |S| > ¢

So R, > q foreveryn.

We do not compute a concrete value of ¢, but it would be possible following the
steps of our proof. It would be interesting (and it seems to be rather compli-
cated) to determine the best constant obtainable by the ideas of this proof.

A few words about the proof. We will assume that the numbers z; =
1,z2,...,z, are such that

(1 151 < ¢

for 1 <j < n, here q is a number satisfying

2) -;— <g<go< %
where 1 < gg < lz is a fixed constant (we will need such an auxiliary upper
bound for g). Eventually we will choose g very close to 4, and we will get a con-
tradiction with (1), this contradiction will prove the theorem.

The present proof is in fact the investigation of the possibility of ‘asymptotic
equality’ in the proof of [B1], and we will find that asymptotic equality is im-
possible there. We will use the basic formulas of [B1]:

St+b]St_1+...+bt_]S] =1+b]+...+b[..1 “tbt

(3) (t=1,2,...,n—1);

(4) S, +b5:S,1+...+b, 1 S1=1+b1+...+b,_,

where the numbers by, by, ..., b,_ are defined by
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(Z—2)Z—-23).. (Z—2)=2Z" '+ 01 Z" 2+ ... +b,_\.

Formulas (3) and (4) follow by the Newton-Girard formulas for this poly-
nomial and by z; = 1. The essential new ingredient in the present proof is the
introduction of some new formulas (see (14) below) by summing the formulas
in (3). These new formulas involve the numbers

c=1+b+...+b

(we set ¢o = by = 1), and we will investigate the geometric properties of the
numbers ¢;. Without using new formulas, i.e. just estimating in absolute value
on the basis of formulas (3) and (4), it would be impossible to improve % We
prove a precise theorem confirming this heuristic statement in [B2].

If z # 0 is a complex number, we set its argument in arg(z) in (—, 7). By
K\, K, ... we will denote positive absolute constants, and the constants in-
volved in the O-symbols are also absolute. By m, m;, ... we will denote ‘abso-
lute functions’ in the sense that these functions are independent of the system

Zy,23,...,2Zn, 1.&. if a statement involves a function m,, then it is meant that the
statement is true with a fixed function m, for any system z; = 1,z,,..., z, sa-
tisfying (1).

Finally: besides g, we will have another parameter, 0 < a < %, and eventually
we will fix « close enough to %, and then we fix g close enough to % The functions
f1(g, &), f2(q, @), . .. will also denote absolute functions in the above sense, and
if a function is denoted by f,(g, &) (with an r > 1), then we mean that

(1) 5 (03) 0

and that this function satisfies the condition

q—3

hm (hm sup f,(q, )) =0.

The notations introduced above will be freely used in the sequel.

2. AUXILIARY LEMMAS

We will repeatedly use the following relations concerning complex numbers.
Observe that each statement is actually an elementary geometric fact.

Lemma 1. Ifw, ;é 0and wz 7é 0 are complex numbers and arg;l = o, then
(@ w1 - Wzl |W1| sin® F(waf = wi|cos p);
(ll) le — W2| |W1| + |W2| — 2|W1||W2|COS§0,
(iii) w1 — wa| > |wy|siny;
(iv) |w1 + wy| = |wi| + |w2| cos .
Furthermore, if w is any complex number, then
@) [Iwl = w|> = 2(w| — Rew)lul.
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Proof. For the proof of statements (i)-(iv) we may assume that w) = 1, and let
wy = rcos ¢ + irsin g, where r > 0. Then (i) and (ii) follow by direct computa-
tion, (i) is a consequence of (i), and we get (iv) from the fact that
Re(l + wy) =1 + rcos .

Statement (v) is also easy, because its left hand side is (|w] — w)(|w| — W), so
the lemma is proved.

Ifand1 <tr<n-—landl1+bh +...4+b,_1 #0,b, #0, then define

b,
G T T T b

otherwise we put «, = 7 (say).
If a, <w/4forl << n-— 1, then we get by repeated application of Lemma
1 (iv) (since cos /4 = 1/+/2) that

1
1+bi+...4+by | >—=0+|bi|+... +|baz1]).
| 1 1 \/5( |61 |6n - 11)
which is impossible in view of (1), (2) and (4).

This means that the following definition is meaningful. Let 1 <k <n—1be
such that

(5) 0, (2, .. Gk Sg:

but

(6) 073 >%.

Lemma 2. We have the inequalities
G) |1+b1+...+b,_1—tb,| <q(1+|by|+...+]b, -1 ]) (t=1,2,...
(i1) [t+b1+...4+ b 1|21+ |bi|cosar+.. .+|b1|cosa, -1 (1=1,2,...
(i) |1+by+...+b_1—th|>[1+b) + ...+ b,_\|siney (t=1,2,..

and oy < 7/2;
(iv) [14b1+. . .+bk 1] < gV2(1+1b1|+. . .+be 1))

Proof. Statement (i) follows from (3) and (1), and (ii) follows from Lemma I
(iv). In case a; > /2 we would have
[T+b 4 ...+ b1 —kbe] 2|1+ b+ ...+ by

e.g. by Lemma 1 (iv), and this would contradict to (i), (ii), (5) and (2). So
o < /2, and (i1i) is a consequence of Lemma 1 (iii). We obtain (iv) from (i),
(iii) and (6).

Lemma 3. There are positive absolute constants K| and K such that

. 11, |
) K, < <Ky (t=1.2..... k)
O N e R eeok);
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146y +...+b]

<K (t=1,2,....k—-1),
and there are functions my.my: {1,2,...} — (1, 0) such that
klgr}x}mi(k) = 00,
and
m (k) <1+ b+ ...+ |be 1] < mylk)

for any system satisfying (1).

Proof. We get (i) by (5), (2), and Lemma 2 (i), (ii). Statement (ii) also follows
(perhaps changing the constants Kjand K3) from these relations and from (i),
which is already proved. The existence of such functions m; and m; can be
easily proved using (1), the choice

k-1 _
mi(k) 1 (1 +{&)
(=1 H
(j = 1,2) will be suitable.

Corollary 1. There is a functionmy: (1/2,1) — (1, 00) such that
q!il}i/zms(Q) = 0o,

and
my(q) <k, m(g)<V+b]+... 4+ b

for any system satisfying (1).
Proof. We know by Lemma 2 (iv), (ii) and (5) that
1
1 +-\-/-—,§(§b1! o o) S V21 + by o+ b)),

and so
1 1 1
l;““fzs (\/5 —mﬁ)(l +hl+- o+ b)) < \/5<4~§)m2(k).

This proves the statement concerning k, and then, taking into account the ex-
istence of m|, we also get the statement (perhaps changing the function »n) for
L+ 1o+ ... 4 b1l

Remember the notation ¢, = 1 -+ by + ... + b, and the convention by = ¢y = 1.

Corollary 2. There is a function mg : (0,1} — (0, 1] such that

lim my(y) =0
y=0
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and the following assertion holds for any system satisfying (1): if HC
0,1,... k—1},

and

N D lal <yU+lal+. .+ e,

teH

then

(8) S b <ma@)(1+ bif .+ (Bl

teH

Proof. It is easy to see from Lemma 3 that if y is small enough, and (7) is true
with some nonempty H, then k is large. So we may assume that k is arbitrarily
large. Let € > 0 be fixed, then by Lemma 3, we have

lek] P X, -
(Z !b:) (1 . (1 ”*”T)) < ; 1Byl.

For a fixed (but small enough) £ one has for large & that

m0=9)=0
1+ -},
::{g‘gvl( t €

and so (using also Lemma 3 (i1))

rk} k-1
. . 1 x
Z!b1§<(2fb;g)+ > §b1{§aR3Z§b,§+W Yo el
iICH te Hi>ek =0 CRRY ek
Since | + |1l + ...+ lck—1] k(14 1b1] + ... + |bc-1]), we have by (7) that
k-1 P y
bl < ( xb,x) (e -*+—),

and this proves the corollary.
Lemmad. If1 <t <k, then

1
T+ 4+ byl ==+ b +...+1b_
| ! -1l \,/’f( 101} 1be_1l)

+0((q—%>(1 +|b1|+...+]bkﬁ,|)>.

Proof. On the one hand, by Lemma 2 (ii) and (5),

Hdby+ . b | 2=+ b+ + b)),

\/"

on the other hand, by Lemma 1 (iv) and (5) we have
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M+bi+...+ba| 21 +b 4+ +b | +—=(lb] +... 4 |bk-1])

f

This inequality and Lemma 2 (iv) give
H4b +...+b_1| <gV2(1+|bi|+ ...+ b1 ])

+(av2—— )bl + o+ [Be-al),
+(+2-35)

and this proves the lemma.

Now let 0 < a < 7/4 be fixed (but we will choose it close to 7/4), and let
H,={1<t<k-1la <a}.

Remember what was told about the functions f, in the Introduction.

Lemma 5. There are functions f1(q, ) and f2(q, «) such that
@ > 1ol < filg, )1+ [bu] + oo+ b -1 ]);

re H,

(i) f1<t<k-—1landt ¢ H,, then
1
b = 301+ bl B D] <l Il i)

and

1
$(1+|bl|¢...+|b,_l|)—|l+bl +...+b,_,|‘
<flg )1+ 1br] + ...+ b))

Proof. By Lemma 2 (ii) and (iv), (5), and the definition of H, we get

gV2(1 + b)) + ...+ be-1]) —1+|bl|+ o lbe-al)

g

1
+ [cosa — — b,
\/i),}::,.| |

and this proves (i).
For the proof of (i1) observe that Lemma 2 (i) and Lemma 1 (i) give for
1 <t<k—1that

(9) G+ 4.+ b >N +b 4. +b_ | sin’a,
+ |(elbe] = |1 + by 4 ...+ b_ 1| cos )|,

and by (9), Lemma 2 (ii) and (5) we have
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10) L (bl B b+ by

Sin oy
1
>— 1+ |bi|+...+|bi=1])-
\/i( [61] be-11)
This proves the second formula in (ii), because for | <1 < k — 1, ¢ ¢ H, one has
a<a <7/4.

By (9) and the right-hand inequality of (10),

<

1
tlbtl_ﬁll+b1++bt—1|

(

This proves the first formula in (ii), using also the second formula of (ii) (and
perhaps changing f>), which is already proved.

1 sin’ oy
cosay, — —| +1/¢* — 14 by +...+|b.1]).
R 2)<_|l| 1)

Lemma 6. For 1 <t < kwe have

ted 3y o(fs(q, a)

_ 1+|b1|+...+|bk_1l>
L+ e+ + e '

1+ b1 +...4+|b]

Proof. First we assume that 1 <t <k - 1.
The relations

{

‘o 1
(11) 2 Jlbil= 5 2 (A4 1bil+ .. +lbj-1])
j=1 j=1

< tf3(g, ) (A +1by |+ . .. +[bk 1))

and

! N 1 !
(12) o l+bi+...+bjioi| ——=> (+|bi|+...+|bj-1])
j=1 V251

tilg, )1+ [br] + ... + |br_1])

<

are easily obtained by considering separately the cases j € H, and j ¢ H,, and
using Lemma 5 (i), (ii) and Lemma 3 (i). Since

(13) __}tjlj|b,-| + thl A+ b +...+ b)) =1+ i + ...+ |b]),

so from this, (11) and (12) we infer thatfor 1 <t <k —1
3 t
3 btk byl = 1+ bl + )
~

+ O(tfa(g, )1 + [b1] + - .. + |be 1))

Applying Lemma 4 (for ¢ + 1) and the fact that
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!
Z |1+b1+...+bj—1| 2K4t(1+|b1|+...+lbt|)
i=1

(which follows by Lemma 3 and (13)) we obtain the desired estimate for
1<t<k-1

But Lemma 3 and its Corollary 1 show (since |ck| = |ck—1]| + O(|bx|)) that this
proves the lemma (perhaps changing f5), including the case 1 = k.

3. NEW FORMULAS
Now we introduce the important new formulas
(14) Si+erSi—1+. Ao 1Si=2(1+e+.. . +e)—te, (t=1,2,... k).

These formulas are obtained from (3) by induction (k < n — 1): (14) fort = 1 is
just (3) for ¢t = 1, and the difference of (14) for ¢ and ¢ —~ 1 is exactly (3) for ¢,
because for t > 2 one has

(2(1+Cl+...+C,_1)ﬂtc,)—(2(l+6’1+...+C,_2)—(t—l)c,_1)
=14+b1+...+b_1—1th,.

We define the angles 3; similarlytoa,. If 1 <t < k,and 1 +c;+ ... +¢-1 #0,
¢; # 0, then define

Ct

= |ar ,
B e+, +a

otherwise we put 3, = 7 (say).
We will need a crude auxiliary bound.

Lemma 7. We have
T
< =
B < g
fort <t <k

Proof. Let 8= n/8 and assume that 1 <7<k is such that 5, > 3, but
/Bla/BZa"'aﬁt—l SB

Then, by repeated application of Lemma 1 (iv) we get

(15) N+e+...+e_1| >0 +e|+...+]e-1])cosB.

On the other hand, 3; > 8. If 3, < /2, then by Lemma 1 (iii) one has

(16) ROA+e+...4+¢-1)—tc| =211+ e+ ...+ ¢_1|sing,

but this is also true in the case 8, > 7/2, moreover, then
RA+e+...4+e¢-1)—te| 22|l +e1+ ... +c-il,

e.g. by Lemma 1 (iv). So in any case, (15) and (16) imply that
R+ +...4er)—te] > A+ |al+...+ e —1])(2cos Bsin 3),
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and this means (by (14) and (1)) that
2cosGsin3 < gq.
But this contradicts to (2), since
2cos3sin3 =sin23 = sinz = L,
4 2
so the lemma is proved.

The following lemma is very important in the proof of the theorem.

Lemma 8. We have
. |1+C1+...+Ck_]|
(1)
1+|c,|+...+lck_1|
and

(i) cos Bk = 1+ O(fi0(g, @))

=1+ 0(f5(g, @)

Proof. Introduce the notation

M+ a+...+el

h = .
"Tlta ]

Using Lemma 7 and Lemma 1 (iv) it is clear that
) h > cosg

for 1 <t < k. Itis also clear by Lemma | (iv) that

|ei
1+|ei|+. . .+]el”

iT+ci+...4¢—1|+]|ei| cos 3

h >
T e+ e+l

= h,+(cos 3,—h,)

Hence, sincefor 1 <t <k —1byLemma 3
ey ﬁ

sofor1 <t <k -1 wehave that

cosB3, —h, .
—ﬂ;—' ,ifcos 3, > h,.

(18) hyoy > h+ Ks
We would like to estimate cos 3, — A, from below. For this we apply Lemma 1
(ii) with the choice wy = (2(1+ ¢+ ...+ ¢ 1))/(1+jar| + ...+ |e,—1]) and
wy = (te))/(1 + || + ...+ |e;—1]) with any 1 < ¢ < k. Using Lemma 6 and the
fact that |w) — wy| < ¢ by (14) and (1), we obtain by Lemma 1 (ii) that

9 T+ b+ + e 1) 2
4h[2+z—6h,00551+0<f6(q’a)( l+||lb|1|+ *|'|kbl]|)>gqh
... !

whence (since ¢° — }‘ = f2(q, ), and using also (17))
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W+ 1 L+ bi] + ..o+ b\
> !
(19) cos 3, > 3, +0(f3(q’0‘)( L+ b+ ...+ b )

forl <r<k.

The case t = k of (19) shows that (ii) is a consequence of (i), so it is enough to
prove (i). We would like to define the function fo(q, a). If fs(gq,a) > 1 (trivial
case), let fo(q, «) = 1. So we may assume that f3(q, @) < 1.

Assume that we have
hr Z 1 __/;)(qsa)

for some ¢ (we will determine the function f5(q, o) later), and let H=1—f5(q. ).
Since the function F(h) = (2% 4+ 1)/(3h) is increasing for 1/v2 < h < 1, s0if
H> l/\/f, then

1 — H? 4 1-H
3H ~ 300

since H < 1. This means (taking into account (19)) that for 1 <r <k -1, if

h > 1= fo(q.«) > 1/v/2, then

2
(21) cos 3 > 1—f5(q, @) +f9(_‘§0‘_) +0<fs(q, a)<1Tl+b|1b|1+|++lb|1;):|l|) )

(20) F(h)>F(H)=H+

On the other hand, since the function F(h) — h =-(1 — h*)/(3h) is decreasing
for 0 < A < 1, so from (19), using again the right-hand side inequality in (20),
wegetforl <1< k- 1ifh <1 - f5(q, ), the inequality

Jfolgq. @) 1+ |by| + ...+ bkl 2
— > -
(22) cos i —hi 2 3 + 0| fslg. ) 1+ by +...+ b '

We will choose an integer 1 < tp < k — 1, and let

1+ 161+ ...+ bk -1
23 = .
(23) 0 L+ |by| + ...+ |yl

If we assume that

(24)  folg, ) > Ko fu(g, @) Q?

with a large enough constant K¢, then by (21), (22) and (23) we infer that if
to<t<k-1,and h >1—- f4(q. @), then

(25) cos 3 > 1 - fo(g, @)

(of course this is also true in the case 1 — fo(g. o) < 1/v/2. by Lemma 7), and if
ty<t<k-1,and i, <1 - f5(q. ), then

(26) cos 3, — hy > K7 fo(q, «).

It follows from (25) and Lemma 1 (iv) that if 4, > 1 — fo(q, @) for some

to <t<k-1,then h | > 1 —fo(q.a), so it > 1 — fo(q, @) by induction, and
we are done.
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Hence we may assume that 4, < 1 — fo(q, a) for 1 < t < k — 1, so that (26) is
true for every 7y < ¢t < k — 1. But then we get from (18) that

N|-—‘

he > hyy + Kz fo(g, Z

so (since iy < 1 and A, > 0)
k=11
(27) Solg, @) 3 7 < K.

=1

On the other hand, Lemma 3 (1) gives us

S (B, (+5))

k-1
)y
t=1+1

whence

—~ | —

> Kjolog Q,

and, combining with (27),
(28)  fo(q.a)log Q < Ky

Remember that (28) holds if the assumption (24) is satisfied.

We would like to define the function fo(q, ). If f3(g, @) > 1 (trivial case), let
Jfo(gq, &) = 1. So we may assume that fz(q,a) < L.

In preparation to the definition of f5(q, ), we firstly define the number ro. If

(29)  falg. @) P(1+bi]+ .+ 1Bk 1) <L,
let tp = 1, and if

(30)  falg.@)' P14 b+ 4 [be ) > 1
let 1 <ty < k — 1 be the least integer for which

1+ b1+ ...+ bk -1
1+ 16|+ ...+ by,

(31) filg,0)'? <1,

i.e. we have

1+ b+ ...+ |be—1]
L+ b+ .o+ |be 1]

(32) filg.a)' P> 1

Such a 1 exists because fg(g, @) < 1, and (30) is true.

In view of (23), (29) and (31), if the inequality

(33)  fo(g.0) > Kefs(g. )/’

holds, then (24) will be true. On the other hand, observe that in the case (29)

(34) Q2>ms(q),
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where ms: (1/2,1) — (1,00) is a function with

(35) qllrlr}z ms(q) = oo

(we use Lemma 3 and its Corollary 1 for this); and in the case (30),

(36) 0> Kifilg,0)
by (31), (32) and Lemma 3 (i).

We now define fy(q, a) for the case fs(q,a) < 1. Let K;; be a large enough
constant, and

1 1
(37)  folg, @) = Ki3zmax I ’logms(q)

g )

It is clear by (35) that f3(g, «) has the desired property (see the Introduction) of
the functions f,(g, a).

We may assume that fi(g,a) < Kj4 with an arbitrarily small constant
Ky 4 > 0, since otherwise fy(q, ) > K5, and the assertion of the lemma is tri-
vial. But then (33) is true, and so (24) is satisfied, hence (28) also holds. Thisis a
contradiction if K3 is large enough, in view of (34), (36) and (37). Remember
that this contradiction means that (26) can not be true forevery tp <t <k -1,
but then (25) is true with some 7y < ¢ < k — 1, and as we have seen, this proves
the lemma.

Remark that our proof above actually depends on the fact that 1 is an at-
tractive fixed point of the transformation h — (2h% 4+ 1)/3h.

4. PROOF OF THE THEOREM

Using Lemma 8 (i) and (ii), Lemma 6 and (14) for t = k we have
1
(38) Sk+C]Sk_|+...+Ck_|S|=§(1+C1+...+Ck.1)
+ O(fm(g, )1 + || + ... + |ex -1]))-

Define
¢

39 t =
(39) T e+ 4k

G=01,....k-1)

(Remember that ¢ =1, and 1 +¢; +... + k-1 # 0, e.g. by Lemma 7.) Then
we know that

(40) Lo+ +...+4_1=1, and |10|+|11|+...+ltk_1|= 1 +0(f12(q,a)).

This means in particular that
k-1 k-1
> Gl = 22 4= O(fia(g, @),
j=0 j=0

and so
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k=1 k=1
2 Iyl - .ZO Ret; = O(fi2(g, a)).
s

j=0

By Lemma 1 (v) and the Cauchy-Schwarz inequality this implies that

k-1 k—1 k-1
@) X gl =4l < V2 T (5] = Re)y [ 3 [g] = O(fis(g, ))-
j=0 j=0 j=0

Then (38), (39), (40), (41) and (1) give
t0|Sk + |61)Sk—1 + - + [ta1]S1 = é + O(f14(q, @),

and taking real parts,

(42) |to|ReSk + |t1|ReSg -1 + ... + |t -1|ReS] = %Jr O(f14(q, @)).

Let ¢ < 1/2 be an arbitrary number, and

H.={0<j<k-1:ReS_; <c}.

Then by (1) we have
[to|ReSy + |t1|ReSk—1 + ...+ |t —1|ReST < q(|to] + |1 + .- + |tk ~1])
—(g—0) 2 lgl;
jeH,

and so (40) and (42) show that

G_ c) T 4l < fis(g, ).

J€H,

(We used also that g > 1/2.) Hence, if we choose
1
= 5 _.flﬁ(qa a)v

WhereflG(qa a) = VflS(qa a)’ then
> 14l < fis(g, @)

j € HL‘
In view of (39), this implies

> el £ fislg, )1+ et + ...+ ek 1)),
jEHc

and Corollary 2 of Lemma 3 then gives

(43) Z;I 161 < fir(g, @) (1 + || + ... + |bic—1])-
JeH,
Ifj ¢ H., then (since ReSy_; > 1/2 — fis(g, o) and Sk _; < ¢) we have
1
Sk-j = 5+ O(fis(g, @)).
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Therefore, from (43) we obtain (considering separately the summation over H,
and over the complement of H,) that
Sk +b1Sk_1 + ...+ b 151 =

LAyt b))+ Ofisla, )1+ il + .+ (i)

Hence, applying the case ¢ = k of (3) (remember thatk <n - 1)

1
(44) -2—(1+b1+...+bk_1)=
14+b14+...+bc_1 —kbk+0(f19(q,a)(1+[b1| +...+|bk_1[))

holds. But (6) and Lemma 2 (iii) give

|1+b1+ +bk_]—kbk|> +b+.. +bk_1|,

1
\/—l
hence from (44) it follows that
(45) 14561 +...+be_1] <frolg, )1+ |b1] + ...+ |br 1)
On the other hand, because of (5) and Lemma 2 (ii),

(46)  [1+bi+...+bal2—=1+ ] +... +|be-1)

\/_
The inequalities (45) and (46) imply that

(47) % < f(g, ).

But we know that
lim (lim sup f20(q, a)) =
a— g 1
U'indls)

hence if we fix o < 7/4 close enough to /4, and then fix ¢ > 1/2 close enough
to 1/2, (47) will be a contradiction. This means that (1) can not hold, and so the
theorem is proved.
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