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ABSTRACT 

Let :I. 22% , i, be complex numbers. and fori 2 I define 

s,=z;+...+4 

Let 

under the condition that 

Improving our earlier result (see [Bl]) we prove here that there is a constant y > ! such that R, > q 
for every n 

I. INTRODUCTION 

To find lower bounds for the quantity R, defined in the abstract is a classical 
problem of the power sum theory of Turk (see [T]; an account can be found in 
[Ml). The minimum R, exists by compactness, and it is trivial that the condition 
can be replaced by zr = 1. 

The history of the problem is discussed in [Bl]. We just mention here that the 
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1942 conjecture of Turan that R, > c for some c > 0 independent of n was 
proved by F.V. Atkinson (see [A]) in 1961. In his book ([T], Problem 12) Turin 
posed the problem of finding the best possible constant c for which R, > c. This 
problem is still unsolved. The best known lower bound so far was R, > $ (see 
[Bl]). In the present paper we improve this estimate, see our Theorem below. 

It is trivial that R, < 1. The best known upper bound so far was that of 
Komlos, Sarkozy and Szemeredi ([K-S-Sz]). We will improve their bound in our 
forthcoming paper [B2] to 

loglogn 
R,<l-(l-E)P 

logn 

for large n, with arbitrary E > 0. It is very likely that in fact an estimate of the 
form R, < 1 - c with some positive constant independent of n is true. The pa- 
per [C-G] also supports this conjecture, where numerical evidence seems to 
show that the sequence R,, is decreasing and has a limit about 0.7. 

Theorem. There is an effectively computable absolute constant q > i such that if 

Zl,Z2,. . , , z, are complex numbers and z1 = 1, then 

max ISj( > q. 

l<j<n 

So R, > qfor every r~ 

We do not compute a concrete value of q, but it would be possible following the 
steps of our proof. It would be interesting (and it seems to be rather compli- 
cated) to determine the best constant obtainable by the ideas of this proof. 

A few words about the proof. We will assume that the numbers zi = 

1,22,. . ., z, are such that 

(1) lsjl 5 4 

for 1 <j 5 n, here q is a number satisfying 

(2) ;<9<90+, 
where i < go < & is a fixed constant (we will need such an auxiliary upper 
bound for q). Eventually we will choose q very close to i, and we will get a con- 
tradiction with (l), this contradiction will prove the theorem. 

The present proof is in fact the investigation of the possibility of ‘asymptotic 
equality’ in the proof of [Bl], and we will find that asymptotic equality is im- 
possible there. We will use the basic formulas of [Bl]: 

(3) 
S,+blS,_, +...+b,_lSl = 1 +b, +...+b,_l - tb, 

(t= 1,2,...,n- 1); 

(4) S,+blS,_, +...+b,_,Sl = l+bi +...+bn_l, 

where the numbers bl , b2,. . . , b, _ 1 are defined by 
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Formulas (3) and (4) follow by the Newton-Girard formulas for this poly- 
nomial and by zt = 1. The essential new ingredient in the present proof is the 
introduction of some new formulas (see (14) below) by summing the formulas 
in (3). These new formulas involve the numbers 

cf = 1 + bi + . . + b, 

(we set CO = bo = l), and we will investigate the geometric properties of the 
numbers cf. Without using new formulas, i.e. just estimating in absolute value 
on the basis of formulas (3) and (4) it would be impossible to improve $ We 
prove a precise theorem confirming this heuristic statement in [B2]. 

If z # 0 is a complex number, we set its argument in arg(z) in (-7r, ~1. By 

6,&r... we will denote positive absolute constants, and the constants in- 
volved in the O-symbols are also absolute. By ml, m2, . . . we will denote ‘abso- 
lute functions’ in the sense that these functions are independent of the system 

Zl,ZZ,. . . , n, z i.e. if a statement involves a function m,, then it is meant that the 
statement is true with a fixed function m, for any system zi = 1, ~2, . . , z, sa- 
tisfying (1). 

Finally: besides q, we will have another parameter, 0 < (*r < a, and eventually 
we will fix CE close enough to 2, and then we fix q close enough to i. The functions 

fi(4, a)&(% o), . * * will also denote absolute functions in the above sense, and 
if a function is denoted byf,(q, a) (with an r 2 l), then we mean that 

fr: ($1) x (0,;) -+ (O,m), 

and that this function satisfies the condition 

The notations introduced above will be freely used in the sequel. 

2. AUXILIARY LEMMAS 

We will repeatedly use the following relations concerning complex numbers. 
Observe that each statement is actually an elementary geometric fact. 

Lemma 1. If w1 # 0 and w2 # 0 are complex numbers, and arg$ = ‘p, then 

(i) ]wi - w212 = Iwi]2sin2cp+ (Iw2l - IwlIcoscp) , 
2. 

(ii) /WI - w212 = lw112 + lw212 - 2lwlIw2Icos(P; 

(iii) Iwi - w2\ > lwi] sincp; 

(iv) 1~1 + ~21 2 1~1 I + Iw2Icos ‘p. 

Furthermore, if w is any complex number, then 

(v) llwl - w12 = 2(lwl - Rew)(wl. 

345 



Proof. For the proof of statements (i)-(iv) we may assume that WI = 1, and let 

w2 = rcos p + ir sin p, where r > 0. Then (i) and (ii) follow by direct computa- 

tion, (iii) is a consequence of (i), and we get (iv) from the fact that 

Re(1 + ~2) = 1 frcoscp. 

Statement (v) is also easy, because its left hand side is (Iwl - w)(jwl - in), so 

the lemma is proved. 

Ifandl<rin-landl+ht+...+b,_t #O,b,#O,thendefine 

b, 
&’ = arg 1 + 6, + . . . + b,_ , ! 

otherwise we put o, = K (say). 

If a, < n/4 for 1 I t I n - 1, then we get by repeated application of Lemma 

1 (iv) (since COST/~ = l/x@ that 

(1 +b, +... +b.-Il~~(l+lblI+...+lb,_,I). 

which is impossible in view of (I), (2) and (4). 

This means that the following definition is meaningful. Let 1 5 k 5 n - 1 be 

such that 

but 

Lemma 2. We have the inequalities 
(9 )1+61+...+6,-I--rb,l<q(l+Ibl1+...+(6,_ ,I) (1=1:2.. 

(ii) Il+bl+...+b,. IILl+IblIcostrl+...+lb,_ ,Icosu,_~ (1=1:2.. 
(iii) Il+b,+...+b ,-I-tb,)LIl+bl +...+b,_rIsinn, (1=1,2,. 

and Crk < 1i/2 ; 

(iv) /l+b1+...+bk_jI I q&(l+lbll+...+1bk 11). 

Proof. Statement (i) follows from (3) and (1) and (ii) follows from Lemma 1 

(iv). In case ok > n/2 we would have 

11 +b, +...+bk-1 -kbkI 2 11 +bl +...+bk-I( 

e.g. by Lemma 1 (iv), and this would contradict to (i), (ii), (5) and (2). So 

Ok < 7r/2, and (iii) is a consequence of Lemma 1 (iii). We obtain (iv) from (i), 

(iii) and (6). 

Lemma 3. There ure positive absolute constunis KI and K2 such that 

(9 KI I 
l+Ib,(+...+lb,_~l - 

(t = 1.2.. . . ,k); tlhl < K2 
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(ii) Kr <‘l+hlr;h’,“+D”< K2 - (t= 1,2:...,k- l), 
I 

and there are functions ml, m2: { 1,2, . . .} + (1: CC) such that 

~~~rn,{k) = (CO> 
-+\ 

and 

ml(k)<l+Ibll+...+Ibk-~I<mz(k) 

for any system ~~t~sfy~ng (r]. 

Proof. We get (i) by (5), (2), and Lemma 2 (i), (ii). Statement (ii) also follows 
(perhaps changing the constants Krand K2) from these relations and from (i), 
which is already proved. The existence of such functions ml and m2 can be 
easily proved using (i), the choice 

k-l 
~~~j(~) n 

I= 1 ( 1 

1 + 7 

(j = 1.2) will be suitable. 

Corollary 1. There is ~funct~un mj: (l/2,1 > -+ (1 t oc) such that 

lim mj(q) = s, 
4 --+ 1 j2 

and 

ma(q) < k, ml(q) < 1 + PI I + . . . -I- h - I I 

for any swtem satisfying {I). 

Proof. We know by Lemma 2 (iv), (ii) and (5) that 

1*-&! +... + I&-11) I Jz4(1 i- IhI/ + ..I -I- jhk_l/), 

and so 

This proves the statement concerning k, and then, taking into account the ex- 
istence of ml, we also get the statement (perhaps changing the function m3) for 
l+lh,l+...++-II. 

Remember the notation cI = 1 + ht + . . . + 6, and the convention be = CO = 1. 

Coroliary 2. There is fffunctiun rnq : (Cl,1 J --+ (0, I] such that 

Jiyom4(A = 0 
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and the folkowing assertion holds for any system satisfying (‘I): if H C 

{O:l,...,k- I}, 

and 

then 

Proof. It is easy to see from Lemma 3 that if y is small enough, and (7) is true 
with some nonempty H, then k is large. So we may assume that k is arbitrarily 
large. Let E > 0 be fixed, then by Lemma 3, we have 

For a fixed (but small enough) t: one has for large k that 

and so (using also Lemma 3 (ii)) 

Since 1 + Jet/ + . . , -t- IQ - I 1 I k(l + lb11 + . . . + jhk _ I I), we have by (7) that 

and this proves the corollary. 

Lemma 4. Z’l 2 I < k, then 

jl +br +... +ht-Il=~(l+lhli+...i-~h,_I/) 

+o 
cc > 

Y-i (l-i-pl+...+p&,l) . 
> 

Proof. On the one hand, by Lemma 2 (ii) and (5), 

jl +b, +... +bt-lj >-$I +jb,)+...+lb,-,I), 

on the other hand, by Lemma 1 (iv) and (5) we have 
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This inequality and Lemma 2 (iv) give 

+ (4Ji-~)(lbil+...+Ih*-,l). 

and this proves the lemma. 

Now let 0 < cr < 7r/4 be fixed (but we will choose it close to 7r/4), and let 

H,, = (1 < I 5 k - l:a, 5 0). 

Remember what was told about the functionsj; in the Introduction. 

Lemma 5. There arefunctionsfl (q. u) andfi(q: O) such that 

(9 I, lb Ifi(9,cr)(l+Ih1l+...+lbk-~l)l 
n 

(ii) if1 <t<k-landt@H,,,then 

rlh,+;(l+lhll+.. .+Ih II) ISz(q,~)(l+lhll+...+lh,-lI)? 

and 

Proof. By Lemma 2 (ii) and (iv), (5), and the definition of H, we get 

qJz( 1 + 161 I + . . .+lb,-l1)~~~l+lbll+...+lh,--lI) 

+ (co,, - -& Ihtl? 

and this proves (i). 

For the proof of (ii) observe that Lemma 2 (i) and Lemma 1 (i) give for 

1 < t < k - 1 that 

(9) q2(l+lh,(+... + Ih, I 1)’ 2 11 + hl + . . . + h,_ 1 I2 sin’ Q, 

+ I(tlb,l - I1 +b, + . ..+h._,Icos*,)12, 

and by (9) Lemma 2 (ii) and (5) we have 
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(10) -ql + lb*\ +...+lbt-,I) 2 11 +b, +...+&tI 
sin ot 

This proves the second formula in (ii), because for 1 5 t 5 k - 1, t c$ H, one has 
o < at < lr/4. 
By (9) and the right-hand inequality of (lo), 

This proves the first formula in (ii), using also the second formula of (ii) (and 
perhaps changingfz), which is already proved. 

Lemma 6. For 1 5 t 5 k we have 

tlctl = 3 + 0 _f5(4, a) 
( 

1 + lbll +. . . + Ibk-11 

l+Ic1I+..*+jct-11 2 1 l+lhl+...+(btl 

Proof. First we assume that 1 5 t 5 k - 1. 
The relations 

+Ibj-11) Ltf(q,a)(l+lbll+...+lbk-lI) 

and 

(12) 
j=l 

.+h,-l~-~j~l(l+~~ll+--+~~j-l~) 5 

tf(q,a)(l+Ibll+...+lbk-l1) 

are easily obtained by considering separately the cases j E H, and j $ H,, and 
using Lemma 5 (i), (ii) and Lemma 3 (i). Since 

(13) j~li~~j~+j~l(~+~~i~+...+lh,-ll)~~(~+l~ll+~~~+l~tl)~ 

so from this, (11) and (12) we infer that for 1 5 t L k - f 

$,$ l1+b,+... +bj-lI=t(l+Ibll+...+Ibtl) 

J 1 

+ o(ti(% a)(1 + Ih 1 + . . . + Ibk- 11)). 

Applying Lemma 4 (for t + 1) and the fact that 
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f: l1+b,+.. . + bj- 11 2 &t(l + lb1 1 + . . . + lbtl) 

j=l 

(which follows by Lemma 3 and (13)) we obtain the desired estimate for 
l<t<k-1. 

But Lemma 3 and its Corollary 1 show (since lckl = Iq- 1 I + O( lbk I)) that this 
proves the lemma (perhaps changingfs), including the case t = k. 

3. NEW FORMULAS 

Now we introduce the important new formulas 

(14) s,+cis,_ I+. . .+c,_iS1=2(1+ci+...+c,_i)-tct (t=1,2 ,..., k). 

These formulas are obtained from (3) by induction (k 2 n - 1): (14) for t = 1 is 
just (3) for t = 1, and the difference of (14) for t and t - 1 is exactly (3) for t, 

because for t 2 2 one has 

(2(1+c~+...+c,_,)-tc,)-(2(1+cl+...+c,_~)-(t-l)c,_,) 

=l+bl+...+b,_,-tb,. 

We define the angles ,@ similarly to CQ. If 1 5 t 5 k, and 1 + ci + . . . + ct- i # 0, 
cI # 0, then define 

Pt = arg 
ct 

1+ci+...+ct_1 ’ 

otherwise we put ,$ = 7r (say). 
We will need a crude auxiliary bound. 

Lemma 7. We have 

Proof. Let ,B = r/8 and assume that 1 < t 5 k is such that pt > /3, but 

P1,P2,...,Pt-1 <P. 

Then, by repeated application of Lemma 1 (iv) we get 

(15) ~l+cl+...+c,-,~>(l+~C~~+...+~cr-,~)COS~. 

On the other hand, pt > p. If pt 5 7r/2, then by Lemma 1 (iii) one has 

(16) 12(1 + ci + . . . +c,-i)-tctl>211+ci+...+ct_iIsinp, 

but this is also true in the case pt > r/2, moreover, then 

~2(1+cI+...+ct_~)-tcr~>2~l+c~+...+c,_~~, 

e.g. by Lemma 1 (iv). So in any case, (15) and (16) imply that 

)2(1 + cl + . . . + +I) - tc,( >_ (1 + (CI( + . . + (c,-1()(2cospsinP), 
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and this means (by (14) and (I)) that 

2cos,Osin,O 5 q. 

But this contradicts to (2) since 

2cos,C?sin$ = sin20 = sin? = i 
4 A! 

so the lemma is proved. 

The following lemma is very important in the proof of the theorem. 

Lemma 8. We have 

(i) ‘l+c’+“‘+ck-l’ = l+O(fs(q,~_r))! 
1+‘cl’+...+‘ck-,’ 

and 

(ii) cash = 1 + o(flO(q,a)) 

Proof. Introduce the notation 

h 
I 

= 11 +c1 +...+c,-,I 

l+lc1l+...+lc,_,I’ 

Using Lemma 7 and Lemma 1 (iv) it is clear that 

(17) h, 2 co,; 

for 1 2 t 5 k. It is also clear by Lemma 1 (iv) that 

I1 
il+q+. . 

r+lZ 
.fC,-,‘+‘C,‘cOSLJ, 

= h,+(cosd,-h,) IGI 

l+lcll+...+'c,-,'+'c,' l+‘c,‘+...+‘c,” 

Hence, since for 1 5 I 2 k - 1 by Lemma 3 

ICll KS 
1 i Ic,l + . . . + lc,l 2 7’ 

SO for 1 5 t 5 k - 1 we have that 

(18) h,_, 2 h,+ Kscos’; --” :ifcosB, 2 h,. 

We would like to estimate cos,$ - h, from below. For this we apply Lemma 1 

(ii) with the choice M~I = (2( 1 + ci + . . . +c, l))/(l+lc~l+...+Ic,-II) and 
~2 = (tc,)/( 1 + ICI) + . . + Ic,_ 1 I) with any 1 5 I 5 k. Using Lemma 6 and the 

fact that I~vi - 1~21 5 q by (14) and (I), we obtain by Lemma 1 (ii) that 

‘# + ; - 6hcosPt + 0 
l+‘h,‘+...+‘hk_ ,I 

1 + Ih,I + . . . + lb,l I (I2 

whence (since q’ - f = 1; (q: u), and using also (17)) 
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(19) 
cos3,22~;;1 ; o h(y,cr) 2 ~+lhl+~~~+l~~-Il 

f ( ( 1 + Ih,I + . . + lb,/ 
0 

The case t = k of (19) shows that (ii) is a consequence of(i), so it is enough to 

prove (i). We would like to define the functionfg(q, u.). Iffs(q? o) > 1 (trivial 

case), letfg(q, o) = 1. So we may assume that.l;c(q, a) < 1. 

Assume that we have 

h, 2 1 -.f9(9.~) 

for some t (we will determine the functionfg(q, cr) later), and let H = 1 -fs(q. 0). 
Since the function F(h) = (2h2 + 1)/(3/z) is increasing for l/d 5 h 5 1, so if 

H 2 l/d, then 

(20) 
1 - HZ 1-H 

F(h,) 2F(H) = H+3H> H+T. 

since H 5 1. This means (taking into account (19)) that for 1 < I 5 k - 1, if 

h, > 1 -fg(q?cr) 2 l/d, then 

On the other hand, since the function F(h) - h =.( 1 - h2)/(3h) is decreasing 

for 0 < h < 1, so from (19) using again the right-hand side inequality in (20) 

we get for 1 5 t 5 k - I, if h, 5 1 -fg(q, a), the inequality 

(22) costs,- j, @p+(J fx(q,c-u) l + I611 +...+ b-11 2 ( ( 1 + !b, 1 + . . . i lb,1 0 . 
We will choose an integer 1 5 to 2 k - 1, and let 

(23) Q= 
l+lb,l+...+l!J-,I 

1 + lh,l +. + lb,,I . 

If we assume that 

(24) _Mq, 0) L Gf8(q, 4Q’ 

with a large enough constant K6, then by (21) (22) and (23) we infer that if 

10 5 t 5 k - 1, and h, 2 1 -1;(q. N), then 

(25) cos4r > 1 -.f;(Y:fi) 

(of course this is also true in the case I -fb(q. a) 5 I/v’?, by Lemma 7). and if 

to < t 5 k - 1, and It, 5 1 -fg(q, cl), then 

(26) cos4, - h, 2 K,f9(q. a). 

It follows from (25) and Lemma 1 (iv) that if h, > 1 -fi(q,cr) for some 
to 5 t 5 k- 1, then h , , I 2 1 -.fg(q.cu), so hk 2 1 -fg(q,a) by induction, and 

we are done. 
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Hence we may assume that h, 5 1 -fb(q: a) for ro 2 t < k - 1, so that (26) is 
true for every 10 I t 5 k - 1. But then we get from (18) that 

so (since hk 5 1 and h,, 2 0) 

(27) Mq, &‘; f < Kg. 

On the other hand, Lemma 3 (i) gives us 

whence 

k-l 1 

C r L KIO~Q: 
t-fiJ+l 

and, combining with (27), 

(28) f9(q. *) log Q I KI I 

Remember that (28) holds if the assumption (24) is satisfied. 
We would like to define the functionfs(q, a). IfJs(q? a) 2 1 (trivial case), let 

fi(q: cr) = 1. So we may assume thatfs(q, a) < 1. 
In preparation to the definition offg(q, cr , we firstly define the number 10. If ) 

(29) fR(q:a)“3(1+Ihll+...tlhk II) 5 1, 

letto=l,andif 

(30) fk(q: (w)“3( 1 + jh] 1 + . . . + Ihk ] I) > 1 

let I 5 to 5 k - 1 be the least integer for which 

(31) 
1+16,1+...+lbk_,l 

1+1611+...+ph,I 
_m,ay < 1, 

i.e. we have 

Such a 10 exists becausefs(q, (1) < I, and (30) is true. 
In view of (23) (29) and (31), if the inequality 

(33) MY, fi) > K6h(Yl e3 

holds, then (24) will be true. On the other hand, observe that in the case (29) 

(34) Q 2 m(y), 
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where ms: (l/2,1) + (1, cm) is a function with 

(we use Lemma 3 and its Corollary 1 for this); and in the case (30), 

(36) Q 2 &zSs(q, +1’3 
by (31) (32) and Lemma 3 (i). 

We now definefg(q, a) for the caseJs(q, a) < 1. Let K13 be a large enough 
constant, and 

(37) f9(4, *) = JG3 max 

(!og~~~og~5iii)~ 

It is clear by (35) thatfg(q, a) has the desired property (see the Introduction) of 
the functionsf,(q, 0). 

We may assume that fN(q*a) < K14 with an arbitrarily small constant 
K14 > 0, since otherwisefg(q, u) > Kl5, and the assertion of the lemma is tri- 
vial. But then (33) is true, and so (24) is satisfied, hence (28) also holds. This is a 
contradiction if K13 is large enough, in view of (34) (36) and (37). Remember 
that this contradiction means that (26) can not be true for every to < t 5 k - 1, 
but then (25) is true with some 10 I t 5 k - 1, and as we have seen, this proves 
the lemma. 

Remark that our proof above actually depends on the fa_ct that 1 is an at- 
tractive fixed point of the transformation h --+ (2h2 + 1)/3h. 

4. PROOF OF THE THEOREM 

Using Lemma 8 (i) and (ii), Lemma 6 and (14) for t = k we have 

(38) &+c,&_, +...+ck_,S, =;(l +c1+... +Ck 1) 

+~(fil(4,~)(l+ICll+...+ICk-II)). 

Define 

(39) 
Cj 

G=l+cl+... +ck-] 
(j=O.l....!k- 1) 

(Remember that CO = 1, and 1 + CI + . . . + Ck_ I # 0, e.g. by Lemma 7.) Then 
we know that 

(40) fo+rl+... +lk-l = 1: and IloI+llll+...+lIk_II= 1 +O(&(q:a)). 

This means in particular that 

and so 

k-l k-l 
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k-l k-l 

C ItiI - j:O W = O(h(q, a)). 
j=O 

By Lemma 1 (v) and the Cauchy-Schwarz inequality this implies that 
k-l 

(41) jFo IItjI - tjI 5 Jz 

Then (38), (39), (40), (41) and (1) give 

ItOlsk + ItI Isk- 1 + . . . + ifk-lIS1 =;+ o(_h(q,a)), 

and taking real parts, 

(42) [toIRe& + ItijRe&i +. . . + I&- 1 IReSi = k + o(fia(q, a)). 

Let c < l/2 be an arbitrary number, and 

H, = (0 <J’ < k - l:Re&j 5 c}. 

Then by (1) we have 

/toIRe& + ItilRe& 1 + . . . + Itk-lIRe& 5 q(ltol + Ih( + . . . + It/c-11) 

ItilT 

and so (40) and (42) show that 

( > i-C jpH ltjl Ifi5(4,c-u). 
c 

(We used also that q > l/2.) Hence, if we choose 

c=;-fi&;n)> 

where&(q, a) = dfm, then 

In view of (39), this implies 

C lcjl <.fl6(qr a)(1 + ICI I + * 1 * + Ick- 1 I)> 
jell 

and Corollary 2 of Lemma 3 then gives 

(43) 1 lbjl IfiT(q,Q)(l + IblI +. . . + Ibk-11). 
jEHc 

Ifj $! H,, then (since Resk_j 1 l/2 -fic(q, a) and Sk-j < q) we have 

1 
Sk-j = 2 + o(fl8(q, a)). 
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Therefore, from (43) we obtain (considering separately the summation over H, 
and over the complement of I&) that 

&+b,&, +...+bk_l& = 

;(l+bl+...+bk-l)+O(f&,a)(1+Ibl~+...+~bk-1l)). 

Hence, applying the case t = k of (3) (remember that k 5 n - 1) 

(44) ;(l+bl+...+bk_L)= 

l+b,+... + bk- 1 - kbk + Ocfis(q, a)(1 + Ih I + . . . + lb- 11)) 

holds. But (6) and Lemma 2 (iii) give 

)l+bl+... +bk-1 -k&I >-$l+bt +...+&]I, 

hence from (44) it follows that 

(45) ll+bl+... +bk-11 If2o(q,a)(l+Ibll+...+lbk-ll). 

On the other hand, because of (5) and Lemma 2 (ii), 

(46) ll+br+... +bk-,I P~(l+lbll+...+lbk-I/). 

The inequalities (45) and (46) imply that 

(47) i < f20(9> a). 
Jz- 

But we know that 

!F: (liy~yfi0b 4) = 0, 

hence if we fix (Y < 7r/4 close enough to 7r/4, and then fix q > l/2 close enough 
to l/2, (47) will be a contradiction. This means that (1) can not hold, and so the 
theorem is proved. 
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