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Let p > 2 be a prime, denote by F, the field with |F,| = p, and let Fj = F,\{0}. We
prove that if fe F,[x] and f takes only two values on F}, then (excluding some
exceptional cases) the degree of fis at least 3(p — 1).  © 2000 Academic Press

1. INTRODUCTION

The problem of examining the possible degrees of polynomials fe F,[X]
taking only two values on F} was raised by Andras Gacs. He was led to this
problem in connection with the problem of determining the possible number
of difference quotients of polynomials (see [G]).

It is obvious that the smallest possible value of 6 = deg f/(p — 1)is 1/2, and
it is attained by the Legendre symbol, i.e., f(X) = X?~ 12, More generally,
if d > 1 is a divisor of p — 1, then the polynomial

d—1

f(X)= Z Xi(p=1)d

j=1

also takes only two values on F}, so the numbers 1/2, 2/3, 3/4, 4/5, ... are
possible values of 9.

We show here that the smallest three values of ¢ are 1/2, 2/3, and 3/4. More
precisely, we prove the following theorem.
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THEOREM. Let fe F,[X], degf<p — 1, and assume that |f(F})| =2.
Then one of the following three assertions is true:
(i) (X)=a+bX? V2 aeF, beF};
(ii) p = 1(mod3) and fis a polynomial of X'?~1/3;
(iii) degf =2(p —1).

The main point (as we will see) is the constant 3/4 in (iii) (which is best
possible there in view of the above remarks); it would be easier to prove the
theorem with a slightly smaller constant (which is greater than 2/3).

One could think that the next value of § is 4/5 (and a related theorem of T.
Szdnyi (see [Sz]) also could suggest it). But this is not the case; we will show
by a numerical example (with p = 29) that 3/4 < 6 < 4/5 is possible. So the
most interesting problem here is to determine the quantities

I = infMp’3/4 and L = hm infMp’3/4,
p p

where we denote by M, 3,4 the minimum of 6 = degf/(p — 1) taken over
polynomials f'€ F,[X] satisfying | f(F})| = 2 and ¢ > 3/4. It is not sure that
I = L (in particular, our example does not show that L < 4/5, just that
I < 4/5), but I guess that I = L = 3/4 (though there is no evidence for this).
It would be also interesting to describe the polynomials with § = 3/4.
Remark that it is easy to determine explicitly the possible polynomials in
(i1); these are

a+ b(X(pfl)/S + XZ(pfl)/3) and a + b((l + 8)X(pfl)/3 _ XZ(pfl)/3)

where ae F,, b,ee Fi,and &* =1, ¢ # 1.

Remark finally that the polynomials investigated in this paper are two-
valued on F}, but they are in fact three-valued on F,;i.e., V(f) = 3 (using the
usual notation V(f) =|f(F,)|), and one of the values occurs exactly once.
Classical references concerning the estimation of V' ( f) are [C] and [ B-SD]. It
is known (see [GC-M]) that “usually” f'e F,(X) has at least 2q/d values
provided that d = deg fis small compared with g. Upper bounds for V() are
proved in [G-W] by applying group-theoretic methods.

2. PROOF OF THE THEOREM

We may assume that Fj = AUB, f(4)= {0}, f(B)={l}, 1 <|B| <
(p — 1)/2. We have

Y xf=0for1<k<p—1—degf, 1)

xeB

because Y, 5 X" = Y, ops f(0)x", and ¥ _pux! = 0,if 1 <l <p — 1.
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We shall need the following well-known statement.

LEMMA 1. Ile,Hng;k,|H1|:|H2|:n, and

Y=y

xeH, xeH,

for 1 <k <n, then H; = H,.

Proof. Itis an easy consequence of the Newton-Girard formulas that the
equality of the first n power sums implies the equality of the elementary
symmetric polynomials (n < p — 1), and then the lemma follows. ®

The next lemma is basic in our proof.

LeMMA 2. If'r € F%, then either rB = B, or
|[B| — |BnrB| = p — 1 —degf.
Proof. ForreFjand 1<k <p—1—degfwe have

Y xb=0= Y x

xeB xerB

so, omitting the common terms,

y =y

xeH, xeH,

with H; = B\(BnrB), H, =rB\(BnrB). Since HinH, = (&, the lemma
follows by Lemma 1. =

Let G = {r € F}:rB = B}. It is clear that G is a multiplicative subgroup of
F}, and B is a union of G-cosets. Observe that G is not equal to F}, since
1 <|BI<(p—1)2.

Introduce the notations

|B| |G
B= s ¥ =
p—1 p—1

_degf

0 .
b p_l

We would like to prove that either 6 > 3/4 or f'is a polynomial of X7~ 1/2
or X(P~VI3

We use Lemma 2 and an averaging argument to prove the following
inequality.
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LeEMMA 3. One has the inequality

p*—pB

o0>1 .
>1+ T

2

If equality holds in (2), then there is an integer M such that

IBArB| = M
for every r e F}\G.

Proof. Let B and 1 be the image of B and 1 in F}/G, respectively. Then,
computing in two different ways the number of ordered pairs of different
elements of B, we get

|BA7B| = |BI(|B| — 1)

FeF}/G,F+#1

The sum on the left-hand side has (p — 1)/|G] — 1 terms, so, since
|B| = | B||G|, we obtain that

_ |B| — 1
max |erB|2|B|7,
FeF:/G,F+ 1 p—1—1G|

and multiplying by |G|,

max |BrrB) = 1|1 6
reFi\G -

If equality holds in (3) then |[BnrB| = |B|(f — 7)/(1 — y) for every r € F}\G.
By this remark, (3), and Lemma 2 (choosing r to maximize | BnrB| there), we
get the assertions of the lemma. ®

Since G is a subgroup of F}, we have

1
T
with an integer t > 1. The quotient f/y is also an integer, since B is a union of
G-cosets.
If r € G, then f(X) = f(rX) (we have f(x) = f (rx) for x € F} by the defini-
tion of G, and since deg f < p — 1, this implies that f(X) = f(rX) as poly-
nomials), and G is a cyclic group (because F} is cyclic), so the order of r may
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be | G|, consequently fis a polynomial of X'¢!. In particular, | G| divides deg f,
so d/y is also an integer.

We may assume that é < 3/4, and we may also assume that y < 1/2 (using
the preceding paragraph). The inequality (2) can be written in the form

B-12° 3

l—y 40—y "4 40—y

3
5ZZ+ 4)

We get by (4) and our assumptions that

1e.,

3t—2<4§<3t.

Since d/y and t are integers, we obtain that 40/y = 3t — 1, which means that
t = 3(mod4) and

0= ©)

_7
T

1w

Inserting this into (4), using also f§ < 1/2, we get

Y 1
— < < —:
2_ﬁ_2’

N =

1e.,

t—1<2 b <t
Y
Since f8/y is an integer and t is an odd integer, we obtain 2f/y =t — 1, or

(6)

N =
N[~

Using (5) and (6) in (2), we see that (2) hold with equality.

The equality in (2) means by Lemma 3 that |[BnrB| = M for every
re Fi\G with an integer M, and of course |BnrB| = |B| for re G. We
combine these facts with (1), writing k = |G| there. This is possible
if |G| < p—1—degf, or what is the same, if y < 1 — ¢. This is true by (5)
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if y < 1/3, and we may assume that this is the case, because fis a polynomial
of X»~ 173 for y = 1/3. So we can use (1) with k = |G|, and this gives

(Z)(g)-o

since the first factor is 0. Then

Y |BArB[r¢ =0,

*
reFy

0=[B| Y ¥+ M ¥ r%=(B|—M) ¥ = (Bl - M)Gl,

reG reFi\G reG

where we used 1 < |G| < p — 1. These inequalities and the fact that p divides
(|1B| — M)| G| imply that M = | B| (as integers). But then B = rB for all r € F},
which is impossible. So é < 3/4 and y < 1/3 cannot hold simultaneously,
which proves the theorem. H

3. AN EXAMPLE

Let p = 29, and assume that B < F%, satisfies —B = B, 1 < |B| < 14, and

Y x=) x*=0, (7
xeB? xeB?

where
B? = {x € F%o:x = y* for some y € B}.

The condition — B = B implies that each odd power sum of the elements of
B is 0, so the first five power sums of B vanish by (7). Let fe F,o[ X ] be the
unique polynomial with degf < 27 and with the property that f and the
characteristic function of B are equal as functions on F%, (we get f by
Lagrange interpolation). The vanishing of the power sums implies that in fact
deg f < 22. If deg f < 22, then deg f < 20 (since deg f is even by — B = B), so
degf < 3/4(p — 1) = 21. Hence f(X) = a + bX'* by our theorem, and then
|B| = 14, because f vanishes on F%,\B, so it has at least 28 — | B| distinct
roots, and 1 < |B| < 14.

Summing up:if 1 <|B| < 14, —B = B, and (7) is true, then deg f = 22, and

3
_<6=degf=11 4'
4 p—1 14 5
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We now give the set explicitly. Let
B={+1, +3, +4, +6, +7, +11}.
Then |B| = 12, and
B*={1,5,7,9,16,20}.
It is easy to verify that (7) is valid, so each condition is satisfied.
Remark (just to determine all quantities occurring in the above proof) that
one has G = { +1}, since |G| divides both p — 1 = 28 and deg f = 22, so
p=3/1, y=1/14, o6=11/14

in this special case.
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