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Let p'2 be a prime, denote by F
p
the "eld with DF

p
D"p, and let F*

p
"F

p
CM0N. We

prove that if f3F
p
[x] and f takes only two values on F*

p
, then (excluding some

exceptional cases) the degree of f is at least 3
4
(p!1). ( 2000 Academic Press
1. INTRODUCTION

The problem of examining the possible degrees of polynomials f3F
p
[X]

taking only two values on F*
p

was raised by AndraH s GaH cs. He was led to this
problem in connection with the problem of determining the possible number
of di!erence quotients of polynomials (see [G]).

It is obvious that the smallest possible value of d"deg f/(p!1) is 1/2, and
it is attained by the Legendre symbol, i.e., f (X)"X(p~1)@2. More generally,
if d'1 is a divisor of p!1, then the polynomial

f (X)"
d~1
+
j/1

Xj (p~1)@d

also takes only two values on F*
p
, so the numbers 1/2, 2/3, 3/4, 4/5,2 are

possible values of d.
We show here that the smallest three values of d are 1/2, 2/3, and 3/4. More

precisely, we prove the following theorem.
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THEOREM. ¸et f3F
p
[X], deg f(p!1, and assume that D f (F*

p
) D"2.

¹hen one of the following three assertions is true:
(i) f(X)"a#bX(p~1)@2, a3F

p
, b3F*

p
;

(ii) p,1(mod 3) and f is a polynomial of X(p~1)@3;
(iii) deg f 53

4
(p!1).

The main point (as we will see) is the constant 3/4 in (iii) (which is best
possible there in view of the above remarks); it would be easier to prove the
theorem with a slightly smaller constant (which is greater than 2/3).

One could think that the next value of d is 4/5 (and a related theorem of T.
Szo? nyi (see [Sz]) also could suggest it). But this is not the case; we will show
by a numerical example (with p"29) that 3/4(d(4/5 is possible. So the
most interesting problem here is to determine the quantities

I"inf
p

M
p,3@4

and ¸"lim inf
p

M
p,3@4

,

where we denote by M
p,3@4

the minimum of d"deg f/(p!1) taken over
polynomials f3F

p
[X] satisfying D f (F*

p
) D"2 and d'3/4. It is not sure that

I"¸ (in particular, our example does not show that ¸(4/5, just that
I(4/5), but I guess that I"¸"3/4 (though there is no evidence for this).

It would be also interesting to describe the polynomials with d"3/4.
Remark that it is easy to determine explicitly the possible polynomials in

(ii); these are

a#b (X(p~1)@3#X2(p~1)@3) and a#b ((1#e)X(p~1)@3!X2(p~1)@3),

where a3F
p
, b, e3F*

p
, and e3"1, eO1.

Remark "nally that the polynomials investigated in this paper are two-
valued on F*

p
, but they are in fact three-valued on F

p
; i.e., <( f )"3 (using the

usual notation <( f )"D f (F
p
) D), and one of the values occurs exactly once.

Classical references concerning the estimation of<( f ) are [C] and [B-SD]. It
is known (see [GC-M]) that &&usually'' f3F

q
(X) has at least 2q/d values

provided that d"deg f is small compared with q. Upper bounds for< ( f ) are
proved in [G-W] by applying group-theoretic methods.

2. PROOF OF THE THEOREM

We may assume that F*
p
"AXB, f (A)"M0N, f (B)"M1N, 14DB D4

(p!1)/2. We have

+
x|B

xk"0 for 14k(p!1!deg f, (1)

because +
x|B

xk"+
x |F*

p
f (x)xk, and +

x |F*
p
xl"0, if 14l(p!1.
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We shall need the following well-known statement.

LEMMA 1. If H
1
, H

2
-F*

p
, DH

1
D"DH

2
D"n, and

+
x |H1

xk" +
x |H2

xk

for 14k4n, then H
1
"H

2
.

Proof. It is an easy consequence of the Newton}Girard formulas that the
equality of the "rst n power sums implies the equality of the elementary
symmetric polynomials (n4p!1), and then the lemma follows. j

The next lemma is basic in our proof.

LEMMA 2. If r3F*
p
, then either rB"B, or

DB D!DBWrB D5p!1!deg f.

Proof. For r3F*
p

and 14k(p!1!deg f we have

+
x |B

xk"0" +
x| rB

xk,

so, omitting the common terms,

+
x |H1

xk" +
x |H2

xk

with H
1
"BC(BWrB), H

2
"rBC(BWrB). Since H

1
WH

2
"H, the lemma

follows by Lemma 1. j

Let G"Mr3F*
p
: rB"BN. It is clear that G is a multiplicative subgroup of

F*
p
, and B is a union of G-cosets. Observe that G is not equal to F*

p
, since

14DB D4(p!1)/2.
Introduce the notations

b"
DB D

p!1
, c"

DG D
p!1

, d"
deg f

p!1
.

We would like to prove that either d53/4 or f is a polynomial of X(p~1)@2

or X(p~1)@3.
We use Lemma 2 and an averaging argument to prove the following

inequality.
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LEMMA 3. One has the inequality

d51#
b2!b
1!c

. (2)

If equality holds in (2), then there is an integer M such that

DBWrBD"M
for every r3F*

p
CG.

Proof. Let BM and 11 be the image of B and 1 in F*
p
/G, respectively. Then,

computing in two di!erent ways the number of ordered pairs of di!erent
elements of B, we get

+
r6 |F*

p @G, r6 O1
6
DBM WrNBM D"DBM D ( DBM D!1).

The sum on the left-hand side has (p!1)/DG D!1 terms, so, since
DB D"DBM DDG D, we obtain that

max
r6 |F*

p @G, r6 O1
6
DBM WrNBM D5DB D

DBM D!1

p!1!DG D
,

and multiplying by DG D,

max
r |F*

p
CG

DBWrB D5DB D
b!c
1!c

. (3)

If equality holds in (3) then DBWrB D"DB D(b!c)/(1!c) for every r3F*
p
CG.

By this remark, (3), and Lemma 2 (choosing r to maximize DBWrB D there), we
get the assertions of the lemma. j

Since G is a subgroup of F*
p
, we have

c"
1

t

with an integer t'1. The quotient b/c is also an integer, since B is a union of
G-cosets.

If r3G, then f (X )"f (rX) (we have f (x)"f (rx) for x3F*
p

by the de"ni-
tion of G, and since deg f(p!1, this implies that f (X)"f (rX) as poly-
nomials), and G is a cyclic group (because F*

p
is cyclic), so the order of r may
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be DG D, consequently f is a polynomial of X DGD. In particular, DG D divides deg f,
so d/c is also an integer.

We may assume that d(3/4, and we may also assume that c(1/2 (using
the preceding paragraph). The inequality (2) can be written in the form

d5
3

4
#

(b!1/2)2

1!c
!

c
4(1!c)

5

3

4
!

c
4(1!c)

. (4)

We get by (4) and our assumptions that

3

4
!

c
2
(d(

3

4
;

i.e.,

3t!2(4
d
c
(3t.

Since d/c and t are integers, we obtain that 4d/c"3t!1, which means that
t,3(mod4) and

d"
3

4
!

c
4
. (5)

Inserting this into (4), using also b41/2, we get

1

2
!

c
2
4b4

1

2
;

i.e.,

t!142
b
c
4t.

Since b/c is an integer and t is an odd integer, we obtain 2b/c"t!1, or

b"
1

2
!

c
2
. (6)

Using (5) and (6) in (2), we see that (2) hold with equality.
The equality in (2) means by Lemma 3 that DBWrBD"M for every

r3F*
p
CG with an integer M, and of course DBWrB D"DB D for r3G. We

combine these facts with (1), writing k"DG D there. This is possible
if DG D(p!1!deg f, or what is the same, if c(1!d. This is true by (5)
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if c(1/3, and we may assume that this is the case, because f is a polynomial
of X (p~1)@3 for c"1/3. So we can use (1) with k"DG D, and this gives

A +
x|B

xDG DBA+
y|B

y~DGDB"0,

since the "rst factor is 0. Then

+
r |F*

p

DBWrB DrDG D
"0,

0"DB D +
r |G

rDGD
#M +

r |F*
p
CG

rDGD
"( DB D!M) +

r |G

rDGD
"( DB D!M) DG D,

where we used 14DG D(p!1. These inequalities and the fact that p divides
(DB D!M) DG D imply that M"DB D (as integers). But then B"rB for all r3F*

p
,

which is impossible. So d(3/4 and c(1/3 cannot hold simultaneously,
which proves the theorem. j

3. AN EXAMPLE

Let p"29, and assume that B-F*
29

satis"es !B"B, 14DB D414, and

+
x|B2

x" +
x |B2

x2"0, (7)

where
B2"Mx3F*

29
: x"y2 for some y3BN.

The condition !B"B implies that each odd power sum of the elements of
B is 0, so the "rst "ve power sums of B vanish by (7). Let f3F

29
[X] be the

unique polynomial with deg f427 and with the property that f and the
characteristic function of B are equal as functions on F*

29
(we get f by

Lagrange interpolation). The vanishing of the power sums implies that in fact
deg f422. If deg f(22, then deg f420 (since deg f is even by !B"B), so
deg f(3/4(p!1)"21. Hence f (X)"a#bX14 by our theorem, and then
DB D"14, because f vanishes on F*

29
CB, so it has at least 28!DB D distinct

roots, and 14DB D414.
Summing up: if 14DB D(14, !B"B, and (7) is true, then deg f"22, and

3

4
(d"

deg f

p!1
"

11

14
(

4

5
.
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We now give the set explicitly. Let

B"M$1, $3, $4, $6, $7, $11N.

Then DB D"12, and

B2"M1, 5, 7, 9, 16, 20N.

It is easy to verify that (7) is valid, so each condition is satis"ed.
Remark ( just to determine all quantities occurring in the above proof ) that

one has G"M$1N, since DG D divides both p!1"28 and deg f"22, so

b"3/7, c"1/14, d"11/14

in this special case.
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