On Polynomials over Prime Fields Taking Only Two Values on the Multiplicative Group

András Biró
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, 1053 Budapest, Hungary
E-mail: biroand@math-inst.hu
Communicated by Gerhard Turnwald

Received February 26, 1999; revised November 8, 1999; published online August 19, 2000

Let $p>2$ be a prime, denote by F_{p} the field with $\left|F_{p}\right|=p$, and let $F_{p}^{*}=F_{p} \backslash\{0\}$. We prove that if $f \in F_{p}[x]$ and f takes only two values on F_{p}^{*}, then (excluding some exceptional cases) the degree of f is at least $\frac{3}{4}(p-1)$. © 2000 Academic Press

1. INTRODUCTION

The problem of examining the possible degrees of polynomials $f \in F_{p}[X]$ taking only two values on F_{p}^{*} was raised by András Gács. He was led to this problem in connection with the problem of determining the possible number of difference quotients of polynomials (see [G]).

It is obvious that the smallest possible value of $\delta=\operatorname{deg} f /(p-1)$ is $1 / 2$, and it is attained by the Legendre symbol, i.e., $f(X)=X^{(p-1) / 2}$. More generally, if $d>1$ is a divisor of $p-1$, then the polynomial

$$
f(X)=\sum_{j=1}^{d-1} X^{j(p-1) / d}
$$

also takes only two values on F_{p}^{*}, so the numbers $1 / 2,2 / 3,3 / 4,4 / 5, \ldots$ are possible values of δ.

We show here that the smallest three values of δ are $1 / 2,2 / 3$, and $3 / 4$. More precisely, we prove the following theorem.

Theorem. Let $f \in F_{p}[X], \operatorname{deg} f<p-1$, and assume that $\left|f\left(F_{p}^{*}\right)\right|=2$. Then one of the following three assertions is true:
(i) $f(X)=a+b X^{(p-1) / 2}, a \in F_{p}, b \in F_{p}^{*}$;
(ii) $p \equiv 1(\bmod 3)$ and f is a polynomial of $X^{(p-1) / 3}$;
(iii) $\operatorname{deg} f \geq \frac{3}{4}(\mathrm{p}-1)$.

The main point (as we will see) is the constant $3 / 4$ in (iii) (which is best possible there in view of the above remarks); it would be easier to prove the theorem with a slightly smaller constant (which is greater than $2 / 3$).

One could think that the next value of δ is $4 / 5$ (and a related theorem of T. Szőnyi (see [Sz]) also could suggest it). But this is not the case; we will show by a numerical example (with $p=29$) that $3 / 4<\delta<4 / 5$ is possible. So the most interesting problem here is to determine the quantities

$$
I=\inf _{p} M_{p, 3 / 4} \text { and } L=\liminf _{p} M_{p, 3 / 4}
$$

where we denote by $M_{p, 3 / 4}$ the minimum of $\delta=\operatorname{deg} f /(p-1)$ taken over polynomials $f \in F_{p}[X]$ satisfying $\left|f\left(F_{p}^{*}\right)\right|=2$ and $\delta>3 / 4$. It is not sure that $I=L$ (in particular, our example does not show that $L<4 / 5$, just that $I<4 / 5$), but I guess that $I=L=3 / 4$ (though there is no evidence for this).

It would be also interesting to describe the polynomials with $\delta=3 / 4$.
Remark that it is easy to determine explicitly the possible polynomials in (ii); these are

$$
a+b\left(X^{(p-1) / 3}+X^{2(p-1) / 3}\right) \text { and } a+b\left((1+\varepsilon) X^{(p-1) / 3}-X^{2(p-1) / 3}\right)
$$

where $a \in F_{p}, b, \varepsilon \in F_{p}^{*}$, and $\varepsilon^{3}=1, \varepsilon \neq 1$.
Remark finally that the polynomials investigated in this paper are twovalued on F_{p}^{*}, but they are in fact three-valued on F_{p}; i.e., $V(f)=3$ (using the usual notation $V(f)=\left|f\left(F_{p}\right)\right|$, and one of the values occurs exactly once. Classical references concerning the estimation of $V(f)$ are [C] and [B-SD]. It is known (see [GC-M]) that "usually" $f \in F_{q}(X)$ has at least $2 q / d$ values provided that $d=\operatorname{deg} f$ is small compared with q. Upper bounds for $V(f)$ are proved in [G-W] by applying group-theoretic methods.

2. PROOF OF THE THEOREM

We may assume that $F_{p}^{*}=A \cup B, f(A)=\{0\}, f(B)=\{1\}, 1 \leq|B| \leq$ $(p-1) / 2$. We have

$$
\begin{equation*}
\sum_{x \in B} x^{k}=0 \text { for } 1 \leq k<p-1-\operatorname{deg} f \tag{1}
\end{equation*}
$$

because $\sum_{x \in B} x^{k}=\sum_{x \in F_{p}^{*}} f(x) x^{k}$, and $\sum_{x \in F_{p}^{*}} x^{l}=0$, if $1 \leq l<p-1$.

We shall need the following well-known statement.
Lemma 1. If $H_{1}, H_{2} \subseteq F_{p}^{*},\left|H_{1}\right|=\left|H_{2}\right|=n$, and

$$
\sum_{x \in H_{1}} x^{k}=\sum_{x \in H_{2}} x^{k}
$$

for $1 \leq k \leq n$, then $H_{1}=H_{2}$.
Proof. It is an easy consequence of the Newton-Girard formulas that the equality of the first n power sums implies the equality of the elementary symmetric polynomials ($n \leq p-1$), and then the lemma follows.

The next lemma is basic in our proof.
Lemma 2. If $r \in F_{p}^{*}$, then either $r B=B$, or

$$
|B|-|B \cap r B| \geq p-1-\operatorname{deg} f
$$

Proof. For $r \in F_{p}^{*}$ and $1 \leq k<p-1-\operatorname{deg} f$ we have

$$
\sum_{x \in B} x^{k}=0=\sum_{x \in r \boldsymbol{B}} x^{k},
$$

so, omitting the common terms,

$$
\sum_{x \in H_{1}} x^{k}=\sum_{x \in H_{2}} x^{k}
$$

with $H_{1}=B \backslash(B \cap r B), H_{2}=r B \backslash(B \cap r B)$. Since $H_{1} \cap H_{2}=\varnothing$, the lemma follows by Lemma 1.

Let $G=\left\{r \in F_{p}^{*}: r B=B\right\}$. It is clear that G is a multiplicative subgroup of F_{p}^{*}, and B is a union of G-cosets. Observe that G is not equal to F_{p}^{*}, since $1 \leq|B| \leq(p-1) / 2$.

Introduce the notations

$$
\beta=\frac{|B|}{p-1}, \quad \gamma=\frac{|G|}{p-1}, \quad \delta=\frac{\operatorname{deg} f}{p-1} .
$$

We would like to prove that either $\delta \geq 3 / 4$ or f is a polynomial of $X^{(p-1) / 2}$ or $X^{(p-1) / 3}$.

We use Lemma 2 and an averaging argument to prove the following inequality.

Lemma 3. One has the inequality

$$
\begin{equation*}
\delta \geq 1+\frac{\beta^{2}-\beta}{1-\gamma} \tag{2}
\end{equation*}
$$

If equality holds in (2), then there is an integer M such that

$$
|B \cap r B|=M
$$

for every $r \in F_{p}^{*} \backslash G$.
Proof. Let \bar{B} and $\overline{1}$ be the image of B and 1 in F_{p}^{*} / G, respectively. Then, computing in two different ways the number of ordered pairs of different elements of B, we get

$$
\sum_{\bar{r} \in F_{p}^{*} / G, \bar{r} \neq \overline{1}}|\bar{B} \cap \bar{r} \bar{B}|=|\bar{B}|(|\bar{B}|-1) .
$$

The sum on the left-hand side has $(p-1) /|G|-1$ terms, so, since $|B|=|\bar{B} \| G|$, we obtain that

$$
\max _{\bar{r} \in F_{p}^{*} / G, \bar{r} \neq \overline{1}}|\bar{B} \cap \bar{r} \bar{B}| \geq|B| \frac{|\bar{B}|-1}{p-1-|G|},
$$

and multiplying by $|G|$,

$$
\begin{equation*}
\max _{r \in F_{p}^{*} \backslash G}|B \cap r B| \geq|B| \frac{\beta-\gamma}{1-\gamma} . \tag{3}
\end{equation*}
$$

If equality holds in (3) then $|B \cap r B|=|B|(\beta-\gamma) /(1-\gamma)$ for every $r \in F_{p}^{*} \backslash G$. By this remark, (3), and Lemma 2 (choosing r to maximize $|B \cap r B|$ there), we get the assertions of the lemma.

Since G is a subgroup of F_{p}^{*}, we have

$$
\gamma=\frac{1}{t}
$$

with an integer $t>1$. The quotient β / γ is also an integer, since B is a union of G-cosets.

If $r \in G$, then $f(X)=f(r X)$ (we have $f(x)=f(r x)$ for $x \in F_{p}^{*}$ by the definition of G, and since $\operatorname{deg} f<p-1$, this implies that $f(X)=f(r X)$ as polynomials), and G is a cyclic group (because F_{p}^{*} is cyclic), so the order of r may
be $|G|$, consequently f is a polynomial of $X^{|G|}$. In particular, $|G|$ divides $\operatorname{deg} f$, so δ / γ is also an integer.

We may assume that $\delta<3 / 4$, and we may also assume that $\gamma<1 / 2$ (using the preceding paragraph). The inequality (2) can be written in the form

$$
\begin{equation*}
\delta \geq \frac{3}{4}+\frac{(\beta-1 / 2)^{2}}{1-\gamma}-\frac{\gamma}{4(1-\gamma)} \geq \frac{3}{4}-\frac{\gamma}{4(1-\gamma)} \tag{4}
\end{equation*}
$$

We get by (4) and our assumptions that

$$
\frac{3}{4}-\frac{\gamma}{2}<\delta<\frac{3}{4}
$$

i.e.,

$$
3 t-2<4 \frac{\delta}{\gamma}<3 t
$$

Since δ / γ and t are integers, we obtain that $4 \delta / \gamma=3 t-1$, which means that $t \equiv 3(\bmod 4)$ and

$$
\begin{equation*}
\delta=\frac{3}{4}-\frac{\gamma}{4} \tag{5}
\end{equation*}
$$

Inserting this into (4), using also $\beta \leq 1 / 2$, we get

$$
\frac{1}{2}-\frac{\gamma}{2} \leq \beta \leq \frac{1}{2}
$$

i.e.,

$$
t-1 \leq 2 \frac{\beta}{\gamma} \leq t
$$

Since β / γ is an integer and t is an odd integer, we obtain $2 \beta / \gamma=t-1$, or

$$
\begin{equation*}
\beta=\frac{1}{2}-\frac{\gamma}{2} . \tag{6}
\end{equation*}
$$

Using (5) and (6) in (2), we see that (2) hold with equality.
The equality in (2) means by Lemma 3 that $|B \cap r B|=M$ for every $r \in F_{p}^{*} \backslash G$ with an integer M, and of course $|B \cap r B|=|B|$ for $r \in G$. We combine these facts with (1), writing $k=|G|$ there. This is possible if $|G|<p-1-\operatorname{deg} f$, or what is the same, if $\gamma<1-\delta$. This is true by (5)
if $\gamma<1 / 3$, and we may assume that this is the case, because f is a polynomial of $X^{(p-1) / 3}$ for $\gamma=1 / 3$. So we can use (1) with $k=|G|$, and this gives

$$
\left(\sum_{x \in B} x^{|G|}\right)\left(\sum_{y \in B} y^{-|G|}\right)=0,
$$

since the first factor is 0 . Then

$$
\begin{gathered}
\sum_{r \in F_{p}^{*}}|B \cap r B| r^{|G|}=0, \\
0=|B| \sum_{r \in G} r^{|G|}+M \sum_{r \in F_{p}^{*} \backslash G} r^{|G|}=(|B|-M) \sum_{r \in G} r^{|G|}=(|B|-M)|G|,
\end{gathered}
$$

where we used $1 \leq|G|<p-1$. These inequalities and the fact that p divides $(|B|-M)|G|$ imply that $M=|B|$ (as integers). But then $B=r B$ for all $r \in F_{p}^{*}$, which is impossible. So $\delta<3 / 4$ and $\gamma<1 / 3$ cannot hold simultaneously, which proves the theorem.

3. AN EXAMPLE

Let $p=29$, and assume that $B \subseteq F_{29}^{*}$ satisfies $-B=B, 1 \leq|B| \leq 14$, and

$$
\begin{equation*}
\sum_{x \in B^{2}} x=\sum_{x \in B^{2}} x^{2}=0 \tag{7}
\end{equation*}
$$

where

$$
B^{2}=\left\{x \in F_{29}^{*}: x=y^{2} \text { for some } y \in B\right\} .
$$

The condition $-B=B$ implies that each odd power sum of the elements of B is 0 , so the first five power sums of B vanish by (7). Let $f \in F_{29}[X]$ be the unique polynomial with $\operatorname{deg} f \leq 27$ and with the property that f and the characteristic function of B are equal as functions on F_{29}^{*} (we get f by Lagrange interpolation). The vanishing of the power sums implies that in fact $\operatorname{deg} f \leq 22$. If $\operatorname{deg} f<22$, then $\operatorname{deg} f \leq 20$ (since $\operatorname{deg} f$ is even by $-B=B$), so $\operatorname{deg} f<3 / 4(p-1)=21$. Hence $f(X)=a+b X^{14}$ by our theorem, and then $|B|=14$, because f vanishes on $F_{29}^{*} \backslash B$, so it has at least $28-|B|$ distinct roots, and $1 \leq|B| \leq 14$.

Summing up: if $1 \leq|B|<14,-B=B$, and (7) is true, then $\operatorname{deg} f=22$, and

$$
\frac{3}{4}<\delta=\frac{\operatorname{deg} f}{p-1}=\frac{11}{14}<\frac{4}{5}
$$

We now give the set explicitly. Let

$$
B=\{ \pm 1, \pm 3, \pm 4, \pm 6, \pm 7, \pm 11\}
$$

Then $|B|=12$, and

$$
B^{2}=\{1,5,7,9,16,20\}
$$

It is easy to verify that (7) is valid, so each condition is satisfied.
Remark (just to determine all quantities occurring in the above proof) that one has $G=\{ \pm 1\}$, since $|G|$ divides both $p-1=28$ and $\operatorname{deg} f=22$, so

$$
\beta=3 / 7, \quad \gamma=1 / 14, \quad \delta=11 / 14
$$

in this special case.

REFERENCES

[B-SD] B. J. Birch and H. P. F. Swinnerton-Dyer, Note on a problem of Chowla, Acta Arithm. 5 (1959), 417-423.
[C] S. Chowla, The Riemann zeta and allied functions, Bull. Amer. Math. Soc. 58 (1952), 287-305.
[G] A. Gács, On the size of the smallest non-classical blocking set in $P G(2, p)$, J. Combin. Theory Ser. A, to appear.
[GC-M] J. Gomez-Calderon and D. J. Madden, Polynomials with small value set over finite fields, J. Number Theory 28 (1988), 167-188.
[G-W] R. Guralnick, D. Wan, Bounds for fixed point free elements in a transitive group and applications to curves over finite fields, Israel J. Math. 101 (1997), 255-287.
[Sz] Szőnyi, T. Combinatorial problems for Abelian groups arising from geometry, in "Proc. of the Second International Mathematical Miniconference, Part II, Budapest, 1988," Period. Polytech. Transportation Engrg. 19 No. 1-2 (1991), 91-100.

