On Polynomials over Prime Fields Taking Only Two Values on the Multiplicative Group

András Biró

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, 1053 Budapest, Hungary E-mail: biroand@math-inst.hu

Communicated by Gerhard Turnwald

Received February 26, 1999; revised November 8, 1999; published online August 19, 2000

Let p > 2 be a prime, denote by F_p the field with $|F_p| = p$, and let $F_p^* = F_p \setminus \{0\}$. We prove that if $f \in F_p[x]$ and f takes only two values on F_p^* , then (excluding some exceptional cases) the degree of f is at least $\frac{3}{4}(p-1)$. © 2000 Academic Press

1. INTRODUCTION

The problem of examining the possible degrees of polynomials $f \in F_p[X]$ taking only two values on F_p^* was raised by András Gács. He was led to this problem in connection with the problem of determining the possible number of difference quotients of polynomials (see [G]).

It is obvious that the smallest possible value of $\delta = \text{deg } f/(p-1)$ is 1/2, and it is attained by the Legendre symbol, i.e., $f(X) = X^{(p-1)/2}$. More generally, if d > 1 is a divisor of p - 1, then the polynomial

$$f(X) = \sum_{j=1}^{d-1} X^{j(p-1)/d}$$

also takes only two values on F_p^* , so the numbers 1/2, 2/3, 3/4, 4/5,... are possible values of δ .

We show here that the smallest three values of δ are 1/2, 2/3, and 3/4. More precisely, we prove the following theorem.

THEOREM. Let $f \in F_p[X]$, deg $f , and assume that <math>|f(F_p^*)| = 2$. Then one of the following three assertions is true:

- (i) $f(X) = a + bX^{(p-1)/2}, a \in F_p, b \in F_p^*;$
- (ii) $p \equiv 1 \pmod{3}$ and f is a polynomial of $X^{(p-1)/3}$;
- (iii) $\deg f \ge \frac{3}{4}(p-1)$.

The main point (as we will see) is the constant 3/4 in (iii) (which is best possible there in view of the above remarks); it would be easier to prove the theorem with a slightly smaller constant (which is greater than 2/3).

One could think that the next value of δ is 4/5 (and a related theorem of T. Szőnyi (see [Sz]) also could suggest it). But this is not the case; we will show by a numerical example (with p = 29) that $3/4 < \delta < 4/5$ is possible. So the most interesting problem here is to determine the quantities

$$I = \inf_{p} M_{p, 3/4}$$
 and $L = \liminf_{p} M_{p, 3/4}$

where we denote by $M_{p, 3/4}$ the minimum of $\delta = \deg f/(p-1)$ taken over polynomials $f \in F_p[X]$ satisfying $|f(F_p^*)| = 2$ and $\delta > 3/4$. It is not sure that I = L (in particular, our example does not show that L < 4/5, just that I < 4/5), but I guess that I = L = 3/4 (though there is no evidence for this).

It would be also interesting to describe the polynomials with $\delta = 3/4$.

Remark that it is easy to determine explicitly the possible polynomials in (ii); these are

$$a + b(X^{(p-1)/3} + X^{2(p-1)/3})$$
 and $a + b((1+\varepsilon)X^{(p-1)/3} - X^{2(p-1)/3})$

where $a \in F_p$, $b, \varepsilon \in F_p^*$, and $\varepsilon^3 = 1, \varepsilon \neq 1$.

Remark finally that the polynomials investigated in this paper are twovalued on F_p^* , but they are in fact three-valued on F_p ; i.e., V(f) = 3 (using the usual notation $V(f) = |f(F_p)|$), and one of the values occurs exactly once. Classical references concerning the estimation of V(f) are [C] and [B-SD]. It is known (see [GC-M]) that "usually" $f \in F_q(X)$ has at least 2q/d values provided that $d = \deg f$ is small compared with q. Upper bounds for V(f) are proved in [G-W] by applying group-theoretic methods.

2. PROOF OF THE THEOREM

We may assume that $F_p^* = A \cup B$, $f(A) = \{0\}$, $f(B) = \{1\}$, $1 \le |B| \le (p-1)/2$. We have

$$\sum_{x \in B} x^{k} = 0 \text{ for } 1 \le k$$

because $\sum_{x \in B} x^k = \sum_{x \in F_p^*} f(x) x^k$, and $\sum_{x \in F_p^*} x^l = 0$, if $1 \le l .$

We shall need the following well-known statement.

LEMMA 1. If $H_1, H_2 \subseteq F_p^*, |H_1| = |H_2| = n$, and

$$\sum_{x \in H_1} x^k = \sum_{x \in H_2} x^k$$

for $1 \le k \le n$, then $H_1 = H_2$.

Proof. It is an easy consequence of the Newton–Girard formulas that the equality of the first *n* power sums implies the equality of the elementary symmetric polynomials ($n \le p - 1$), and then the lemma follows.

The next lemma is basic in our proof.

LEMMA 2. If $r \in F_n^*$, then either rB = B, or

$$|B| - |B \cap rB| \ge p - 1 - \deg f.$$

Proof. For $r \in F_p^*$ and $1 \le k we have$

$$\sum_{x \in B} x^k = 0 = \sum_{x \in rB} x^k,$$

so, omitting the common terms,

$$\sum_{x \in H_1} x^k = \sum_{x \in H_2} x^k$$

with $H_1 = B \setminus (B \cap rB)$, $H_2 = rB \setminus (B \cap rB)$. Since $H_1 \cap H_2 = \emptyset$, the lemma follows by Lemma 1.

Let $G = \{r \in F_p^* : rB = B\}$. It is clear that G is a multiplicative subgroup of F_p^* , and B is a union of G-cosets. Observe that G is not equal to F_p^* , since $1 \le |B| \le (p-1)/2$.

Introduce the notations

$$\beta = \frac{|B|}{p-1}, \quad \gamma = \frac{|G|}{p-1}, \quad \delta = \frac{\deg f}{p-1}.$$

We would like to prove that either $\delta \ge 3/4$ or *f* is a polynomial of $X^{(p-1)/2}$ or $X^{(p-1)/3}$.

We use Lemma 2 and an averaging argument to prove the following inequality.

LEMMA 3. One has the inequality

$$\delta \ge 1 + \frac{\beta^2 - \beta}{1 - \gamma}.$$
(2)

If equality holds in (2), then there is an integer M such that

$$|B \cap rB| = M$$

for every $r \in F_p^* \setminus G$.

Proof. Let \overline{B} and $\overline{1}$ be the image of B and 1 in F_p^*/G , respectively. Then, computing in two different ways the number of ordered pairs of different elements of B, we get

$$\sum_{\bar{r}\in F_p^*/G,\,\bar{r}\neq\,\bar{1}}|\bar{B}\cap\bar{r}\bar{B}|=|\bar{B}|(|\bar{B}|-1).$$

The sum on the left-hand side has (p-1)/|G| - 1 terms, so, since $|B| = |\overline{B}||G|$, we obtain that

$$\max_{\bar{r}\in F_p^*/G, \bar{r}\neq \bar{1}} |\bar{B}\cap \bar{r}\bar{B}| \ge |B| \frac{|\bar{B}|-1}{p-1-|G|},$$

and multiplying by |G|,

$$\max_{r \in F_*^* \setminus G} |B \cap rB| \ge |B| \frac{\beta - \gamma}{1 - \gamma}.$$
(3)

If equality holds in (3) then $|B \cap rB| = |B|(\beta - \gamma)/(1 - \gamma)$ for every $r \in F_p^* \setminus G$. By this remark, (3), and Lemma 2 (choosing *r* to maximize $|B \cap rB|$ there), we get the assertions of the lemma.

Since G is a subgroup of F_p^* , we have

$$\gamma = \frac{1}{t}$$

with an integer t > 1. The quotient β/γ is also an integer, since B is a union of G-cosets.

If $r \in G$, then f(X) = f(rX) (we have f(x) = f(rx) for $x \in F_p^*$ by the definition of G, and since deg f , this implies that <math>f(X) = f(rX) as polynomials), and G is a cyclic group (because F_p^* is cyclic), so the order of r may

ANDRÁS BIRÓ

be |G|, consequently f is a polynomial of $X^{|G|}$. In particular, |G| divides deg f, so δ/γ is also an integer.

We may assume that $\delta < 3/4$, and we may also assume that $\gamma < 1/2$ (using the preceding paragraph). The inequality (2) can be written in the form

$$\delta \ge \frac{3}{4} + \frac{(\beta - 1/2)^2}{1 - \gamma} - \frac{\gamma}{4(1 - \gamma)} \ge \frac{3}{4} - \frac{\gamma}{4(1 - \gamma)}.$$
(4)

We get by (4) and our assumptions that

$$3t - 2 < 4\frac{\delta}{\gamma} < 3t.$$

 $\frac{3}{4} - \frac{\gamma}{2} < \delta < \frac{3}{4};$

Since δ/γ and t are integers, we obtain that $4\delta/\gamma = 3t - 1$, which means that $t \equiv 3 \pmod{4}$ and

$$\delta = \frac{3}{4} - \frac{\gamma}{4}.$$
 (5)

Inserting this into (4), using also $\beta \leq 1/2$, we get

$$\frac{1}{2} - \frac{\gamma}{2} \le \beta \le \frac{1}{2};$$
$$t - 1 \le 2\frac{\beta}{\gamma} \le t.$$

i.e.,

Since
$$\beta/\gamma$$
 is an integer and t is an odd integer, we obtain $2\beta/\gamma = t - 1$, or

$$\beta = \frac{1}{2} - \frac{\gamma}{2}.\tag{6}$$

Using (5) and (6) in (2), we see that (2) hold with equality.

The equality in (2) means by Lemma 3 that $|B \cap rB| = M$ for every $r \in F_p^* \setminus G$ with an integer M, and of course $|B \cap rB| = |B|$ for $r \in G$. We combine these facts with (1), writing k = |G| there. This is possible if $|G| , or what is the same, if <math>\gamma < 1 - \delta$. This is true by (5)

306

if $\gamma < 1/3$, and we may assume that this is the case, because f is a polynomial of $X^{(p-1)/3}$ for $\gamma = 1/3$. So we can use (1) with k = |G|, and this gives

$$\left(\sum_{x \in B} x^{|G|}\right) \left(\sum_{y \in B} y^{-|G|}\right) = 0,$$

since the first factor is 0. Then

$$\sum_{r\in F_p^*}|B\cap rB|r^{|G|}=0,$$

$$0 = |B| \sum_{r \in G} r^{|G|} + M \sum_{r \in F_p^* \setminus G} r^{|G|} = (|B| - M) \sum_{r \in G} r^{|G|} = (|B| - M)|G|,$$

where we used $1 \le |G| . These inequalities and the fact that$ *p*divides <math>(|B| - M)|G| imply that M = |B| (as integers). But then B = rB for all $r \in F_p^*$, which is impossible. So $\delta < 3/4$ and $\gamma < 1/3$ cannot hold simultaneously, which proves the theorem.

3. AN EXAMPLE

Let p = 29, and assume that $B \subseteq F_{29}^*$ satisfies $-B = B, 1 \le |B| \le 14$, and

$$\sum_{x \in B^2} x = \sum_{x \in B^2} x^2 = 0,$$
(7)

where

$$B^{2} = \{ x \in F_{29}^{*} : x = y^{2} \text{ for some } y \in B \}.$$

The condition -B = B implies that each odd power sum of the elements of B is 0, so the first five power sums of B vanish by (7). Let $f \in F_{29}[X]$ be the unique polynomial with deg $f \le 27$ and with the property that f and the characteristic function of B are equal as functions on F_{29}^* (we get f by Lagrange interpolation). The vanishing of the power sums implies that in fact deg $f \le 22$. If deg f < 22, then deg $f \le 20$ (since deg f is even by -B = B), so deg f < 3/4(p-1) = 21. Hence $f(X) = a + bX^{14}$ by our theorem, and then |B| = 14, because f vanishes on $F_{29}^* \setminus B$, so it has at least 28 - |B| distinct roots, and $1 \le |B| \le 14$.

Summing up: if $1 \le |B| < 14$, -B = B, and (7) is true, then deg f = 22, and

$$\frac{3}{4} < \delta = \frac{\deg f}{p-1} = \frac{11}{14} < \frac{4}{5}.$$

We now give the set explicitly. Let

$$B = \{\pm 1, \pm 3, \pm 4, \pm 6, \pm 7, \pm 11\}.$$

Then |B| = 12, and

$$B^2 = \{1, 5, 7, 9, 16, 20\}.$$

It is easy to verify that (7) is valid, so each condition is satisfied.

Remark (just to determine all quantities occurring in the above proof) that one has $G = \{\pm 1\}$, since |G| divides both p - 1 = 28 and deg f = 22, so

$$\beta = 3/7, \quad \gamma = 1/14, \quad \delta = 11/14$$

in this special case.

REFERENCES

- [B-SD] B. J. Birch and H. P. F. Swinnerton-Dyer, Note on a problem of Chowla, Acta Arithm. 5 (1959), 417–423.
- [C] S. Chowla, The Riemann zeta and allied functions, Bull. Amer. Math. Soc. 58 (1952), 287–305.
- [G] A. Gács, On the size of the smallest non-classical blocking set in PG(2, p), J. Combin. Theory Ser. A, to appear.
- [GC-M] J. Gomez-Calderon and D. J. Madden, Polynomials with small value set over finite fields, J. Number Theory 28 (1988), 167–188.
- [G-W] R. Guralnick, D. Wan, Bounds for fixed point free elements in a transitive group and applications to curves over finite fields, *Israel J. Math.* **101** (1997), 255–287.
- [Sz] Szőnyi, T. Combinatorial problems for Abelian groups arising from geometry, in "Proc. of the Second International Mathematical Miniconference, Part II, Budapest, 1988," Period. Polytech. Transportation Engrg. 19 No. 1–2 (1991), 91–100.

308