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1 Introduction

Classical Rényi divergences

In 1961 Alfréd Rényi gave an axiomatic description of the quantities that are today known as classical
Rényi α-divergences [Rén61]. These functions are evaluated on pairs of vectors of equal length (ρ, σ)
consisting of positive numbers, both indexed by a finite index set I, as

Dα(ρ∥σ) := 1
α− 1 log

∑
i∈I

ρ(i)ασ(i)1−α

︸ ︷︷ ︸
=:Qα(ρ∥σ)

− 1
α− 1 log

∑
i∈I

ρ(i), (1.1)

where α ∈ (0,+∞) \ {1} is a parameter (for the general definitions see Subsection 2.2.1). For a
probability vector ρ (i.e., in addition, elements of ρ sum up to 1), these functions give the so-called
Rényi α-entropies, the Kullback-Leibler divergence (or classical relative entropy) and the Shannon
entropy as special cases:

Hα(ρ) := −Dα(ρ∥1) = 1
1 − α

log
∑
i∈I

ρ(i)α,

D(ρ∥σ) = D1(ρ∥σ) := lim
α→1

Dα(ρ∥σ) =
∑
i∈I

ρ(i)(log ρ(i) − log σ(i)),

H(ρ) = H1(ρ) := lim
α→1

Hα(ρ) = −D(ρ∥1) = −
∑
i∈I

ρ(i) log ρ(i),

where 1 is the vector with 1(i) = 1 ∀i ∈ I. For the study and applications of the (classical) Rényi
divergences, the relevant quantity is actually Qα =

∑
i∈I ρ(i)ασ(i)1−α. Interestingly, the relative

entropy in itself also determines the whole one-parameter family of Rényi divergences, as for every
α ∈ (0, 1) ∪ (1,+∞),

− logQα(ρ∥σ) = min
ω∈P(I)

{αD(ω∥ρ) + (1 − α)D(ω∥σ)},

where the optimization is over all finitely supported probability distributions ω on I (see [CM03]
and [MO21]).

The Shannon entropy and the classical relative entropy by 1961 had already been playing a dis-
tinguished role in statistical physics, information theory and economics. The Rényi α-divergences and
Rényi α-entropies then turned out to be the unified picture of central information quantities in these
fields. See, for instance, [Csi95] for the role of the Rényi divergences and derived information measures
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(entropy, divergence radius, channel capacity) in classical state discrimination, as well as source- and
channel coding. Coming decades have seen a surge first in digital technology and information theory,
then in quantum technology with the ever-increasing feasibility of nanomanipulation of systems on the
molecular or atomic level. From the viewpoint of applications this surge made it necessary to develop
on the one hand quantum information theory dealing with coding and decoding, hypothesis testing,
compression and decompression and more, all in the quantum framework. On the other hand further
development of governing quantities of quantum physics of bound systems on the atomic level was
needed. From the viewpoint of mathematics, this was the surge of externally motivated and math-
ematically interesting dissimilarity measures in matrix analysis. Brand new possibilities opened in
choosing and axiomatizing the fundamental information quantities and new applications of notions of
matrix analysis meant new approaches in studying them e.g., different relaxations of majorization or
a whole spectrum of different matrix means.

Quantum Rényi divergences

From both the theoretical and practical point of view in quantum information theory the most
important quantum extensions of (1.1) are the Petz-type [Pet86b] and the sandwiched Rényi diver-
gences [MDS+13,WWY14], given by

Dα(ρ∥σ) = 1
α− 1 log Tr ρασ1−α︸ ︷︷ ︸

=:Qα(ρ∥σ)

− 1
α− 1 log Tr ρ, (1.2)

D∗
α(ρ∥σ) = 1

α− 1 log Tr
(
ρ

1
2σ

1−α
α ρ

1
2

)α
︸ ︷︷ ︸

=:Q∗
α(ρ∥σ)

− 1
α− 1 log Tr ρ, (1.3)

for α ∈ (0,∞) \ {1} and for positive definite operators on the same finite dimensional Hilbert space
(for general definitions see Section 2.2.4). For a quantum state ρ of full support (i.e. in addition to
being positive definite, ρ satisfies the condition Tr ρ = 1), the quantum relative entropy or Umegaki
relative entropy is a quantum extension of the classical relative entropy and can be given as a limit of
either (1.2) or (1.3):

DUm(ρ∥σ) := lim
α→1

Dα(ρ∥σ) = lim
α→1

D∗
α(ρ∥σ) = Tr ρ(log ρ− log σ).

Among other usages [HKM+02, JV20, LY22b, LY22c, LY22a, LY23, LYH23, MO21], the Petz-type
Rényi divergences found operational application in determining the direct part of the error exponents
in i.i.d. hypothesis testing (for α ∈ (0, 1)) [ANSV08,Nag06], the sandwiched Rényi divergences found
operational usage in determining the so-called strong converse exponents (for α ∈ (1,∞)) [MO17] and
their meeting point, the Umegaki relative entropy found application in the meeting point of the two
problems, the so-called Stein’s lemma [ON00,Hay07,ANSV08].

In quantum information theory, the quantum framework is a generalization of the classical frame-
work, or in other words, the classical framework is embedded in the quantum framework. To recover
the classical framework one has to fix a basis and require all operators in the quantum framework to
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be diagonalizable in that basis. Or equivalently to require all operators to be commuting with each
other. A quantum extension of the classical Rényi divergences (1.1) is then a function on operators
that reduce to the classical Rényi divergences, when all operators commute. (1.2) or (1.3) are obviously
such extensions but because of noncommutativity there are infinitely many other quantum extensions.

Interestingly, if we pose a further requirement on quantum Rényi divergences, the data processing
inequality (DPI), that is, monotonicity under completely positive trace-preserving maps (CPTP maps),
then the extensions Dmeas

α , Dmax
α can be given that are minimal and maximal [Mat18]. This is to say,

that if Dq
α is a quantum extension of Dα that satisfies the DPI, then

Dmeas
α (ρ∥σ) ≤ Dq

α(ρ∥σ) ≤ Dmax
α (ρ∥σ), (1.4)

for all ρ, σ states over the same Hilbert space and for all α ∈ (0,∞) \ {1} (for the definitions see
Subsection 2.2.4). Another quantum extension of the classical relative entropy that will be of use to
us is the so-called Belavkin-Staszewski entropy Dmax [BS82]. For a quantum state ρ of full support,
Dmax can be given as a limit of the maximal Rényi divergences Dmax

α :

Dmax(ρ∥σ) := Tr ρ log
(
ρ

1
2σ−1ρ

1
2

)
= lim
α→1

Dmax
α (ρ∥σ).

If we require the DPI and additivity on tensor products, then it can be shown that the Umegaki
relative entropy is the minimal and the Belavkin-Staszewski entropy is the maximal extension of the
classical relative entropy that satisfy these two properties similar to the above sense of (1.4) [Mat18].

The Rényi (α, z)-divergences [AD15] unify the Petz-type and sandwiched divergences in a single
family, at least by giving a single formula:

Dα,z(ρ∥σ) := 1
α− 1 log Tr

(
ρ

α
2z σ

1−α
z ρ

α
2z

)z
︸ ︷︷ ︸

=:Qα,z(ρ∥σ)

− log Tr ρ,

with

D∗
α(ρ∥σ) = Dα,α(ρ∥σ), and Dα(ρ∥σ) = Dα,1(ρ∥σ).

The somewhat philosophical question of the basis on which a set of quantum extensions can be called
a family is not closed. Indeed on one hand one could plot any z(α) function on the α−z quarter plane
of the Rényi (α, z)-divergences and get a quantum extension of the classical divergences (and there
are even more extensions, that are not Rényi (α, z)-divergences). It has been already suggested that
one could unify the operational parts (see above) of the Petz-type and sandwiched Rényi divergences
with the Umegaki relative entropy to get “family”. This is further backed by the fact that such a
“family” would consist only of quantum divergences that satisfy the DPI, whereas the sandwiched
Rényi divergences do not satisfy the DPI for α < 1

2 and the Petz-type Rényi divergences do not satisfy
the DPI for α > 2. For this “family” a unified, albeit regularized integral representation has been
given recently in [HT23]. Axiomatic study and research of quantum extensions could therefore help
to unify the perspective on the ever-increasing set of quantum Rényi divergences, as was done for the
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classical information measures in [Rén61].
There are many other quantum extensions of the classical Rényi divergences than the ones already

mentioned. Although their operational interpretations are not as explicit as that of the Petz-type or
sandwiched Rényi divergences, it is often useful to consider and study other extensions as well. Indeed,
apart from their study being interesting from the purely mathematical point of view of matrix analysis,
some of these quantities serve as useful tools in proofs to arrive at the operationally relevant Rényi
information quantities in various problems; see, e.g., the role played by the so-called log-Euclidean
Rényi divergences Dα,+∞ in determining the strong converse exponent in various problems [LY22b,
LY22a,LY23,LYH23,MO17,MO21], or the family of Rényi divergences D#

α introduced in [FF21], where
it was used to determine the strong converse exponent of binary channel discrimination.

From our mathematical point of view, only quantum extensions with good mathematical properties
are interesting. The most important one is the DPI: Dα(Φ(ρ)∥Φ(σ)) ≤ Dα(ρ∥σ) for all Φ CPTP maps.
The DPI, in turn, is strongly connected to joint convexity. Another desirable property is additivity on
tensor products Dα(ρ1 ⊗ρ2∥σ1 ⊗σ2) = Dα(ρ1∥σ1)+Dα(ρ2∥σ2). However, quantum Rényi divergences
without these properties might still be useful; for example Dα,+∞ is additive, but not monotone
for α > 1 (the range of α values for which it was used in [MO17, MO21]), and D#

α is monotone,
but not additive. The study of the mathematical properties of various quantum Rényi divergences
and related information quantities and trace functionals has been the subject of intensive research in
matrix analysis, functional analysis, and operator algebras in the past several decades; see e.g. [And79,
Bei13, CFL16, CL08, FL13, Hia01, Hia13, Hia21, HM23, Jen17, JP06, Kos82, LR73, OP93, Pet86b, Zha20]
and references therein. These quantities have also been extended to the most general von Neumann
algebra setting in [BST18, Jen18, Jen21, Pet85, Pet86a, Hia18, Hia19], however, in this work we only
concern ourselves with the Rényi divergences of operators on finite dimensional Hilbert spaces.

Certain quantum Rényi divergences also found usage in characterizing state transformability ques-
tions. The general question in such a problem is giving necessary and/or sufficient conditions whether
a set of states {ρ}X can be mapped to another set of states {ρ′}X point-by-point. This can be relaxed
to e.g., catalytic or asymptotic transformations and one can also study approximate versions of these,
in hope to arrive more easily to a simpler set of conditions. Quantum Rényi divergences can be used to
give such transformability conditions on pairs of states, e.g., the maximal Rényi α-divergences [Mat18]
with α ∈ [0, 2], and the Rényi (α, z)-divergences [AD15] for certain values of α and z [Zha20] or com-
muting states, as was done in [BHN+15, Jen19, Kli07, MPST21, Tur07]. The sufficient conditions for
pairs of commuting states have been extended very recently in [FFHT24] to a complete characteri-
zation of asymptotic as well as approximate catalytic convertibility between finite sets of commuting
states in terms of the monotonicity of the multivariable Rényi quantities

Qα(ρ1, . . . , ρr) := Tr(ρα1
1 · . . . · ραr

r ),

where α1 + . . .+ αr = 1 and either all of them are nonnegative or exactly one of them is positive. No
sufficient conditions, however, are known in the general noncommutative case.
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Connection to resource theories and the theory of preordered semirings

Rényi divergences have other connections with more distant fields of mathematics as well. Many
problems of quantum physics and quantum information theory, e.g., hypothesis testing or the state-
transformability questions above, can be formulated in a resource theory. In a resource theory a set
of possible states of the setting are given, and the question is the set of achievable states from a given
one, if there are free states and operations, that can be used infinitely, and some or no costly states and
operations. Some resource theories in turn have a natural connection with semiring theory. The states
of such a setting is usually described by positivity (no chance or ratio can be negative), and in the
classical as well as the quantum framework composition of independent scenarios are usually described
by a multiplication (usually the tensor-product), and composition of mutually exclusive scenarios are
usually described by a summation (usually the direct sum). The success chance or distillation ratio
in such a setting then is given by the product or the sum of chances or ratios. This, together with
the achievability question of resource theories which gives rise to a preorder between the possible
states, suggests a generalization of resource theories on a semiring level where the resource theory
is a preordered semiring and the success chance or distillation ratio is a monotone homomorphism
from the semiring into the nonnegative real numbers. This has been recently exploited by using for
example [Fri23] on several accounts.

For example, one could loosen the requirements on state convertibility in a way that the target
operators are only upper or lower bounds with respect to the positive semidefinite preorder. Such a
relation makes it possible to describe resource theories, that otherwise can not be tackled with strict
state convertibility, like hypothesis testing problems (see e.g., [BV21]). In this setting, it is inevitable
to work with unnormalized positive operators instead of states. Further relaxing physical channels
to completely positive trace-nonincreasing maps gives rise to a generalized preorder, the so-called
relative submajorization. In the classical setting a pair of positive vectors (p, q) ∈ Rd≥0 ×Rd≥0 is said to
relatively submajorize another pair (p′, q′) if there exists a substochastic map T such that T (p) ≥ p′

and T (q) ≤ q′ componentwise [Ren16]. This relation can be used to characterize probabilistic and
work-assisted thermal operations between incoherent states, as well as error probabilities in hypothesis
testing.

Quantum majorization is a relation between bipartite quantum states sharing a marginal. A state
ρAB quantum majorizes ρ′

AB′ if there exists a quantum channel T : B(HB) → B(HB′) such that
ρ′
AB′ = (idA ⊗T )(ρAB). In [GJB+18] it was shown that this relation, as well as a G-equivariant

version (for some compact group G) can be characterized using an infinite family of monotones defined
in terms of the conditional min-entropy. For specific classical-quantum states (with system A as
a classical bit), quantum majorization with covariance encodes time-translation symmetric Gibbs-
preserving transformations. These transformations like thermal operations, put constraints on the
evolution of states with coherence between energy eigenstates.

In this work, I will also study transformations between pairs of positive operators by equivariant
maps in a sense similar to relative submajorization: given representations π : G → U(H) and π′ : G →
U(H′), and pairs of positive operators (ρ, σ) on H and (ρ′, σ′) on H′, I say that (π, ρ, σ) equivariantly
relatively submajorizes (π′, ρ′, σ′) if there exists a completely positive trace-nonincreasing map T that
is equivariant, i.e., satisfies T (π(g)Aπ(g)∗) = π′(g)T (A)π′(g)∗ for all g ∈ G and operator A, in addition
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to the inequalities T (ρ) ≥ ρ′ and T (σ) ≤ σ′.
An averaging argument shows that this relation can equivalently be understood as transformations

between families of positive operators parametrized by two copies of G. Somewhat more generally, we
will consider pairs of continuous families of positive operators ρ : X → B(H)>0, σ : Y → B(H)>0,
where X and Y are fixed nonempty compact topological spaces (when studying G-equivariant trans-
formations for a compact group G, one would use X = Y = G). In this case we say that (ρ, σ)
relatively submajorizes (ρ′, σ′) (notation: (ρ, σ) ≽ (ρ′, σ′)) if there exists a completely positive trace-
nonincreasing map T such that T (ρ(x)) ≥ ρ′(x) and T (σ(y)) ≤ σ′(y) for all x ∈ X and y ∈ Y .

Structure of the work and contributions

The structure of this work is as follows. In Chapter 2, I discuss the necessary background from the
literature on divergences as well as some recent results from semiring theory. In Chapter 3, I introduce
a way to derive multivariable quantum divergences, barycentric Rényi divergences, from previously
known relative entropies by computing the relative entropy radius of multiple states. This is one of
the two methods that we introduced in [MBV23]. I discuss some properties of these quantities in
Section 3.2 and in Section 3.3. I argue that the radius computed from the Belavkin-Staszewski entropy
is strictly smaller than the maximal Rényi α-divergence Dmax

α (in the sense of (1.4)) and in fact defines
a new family of Rényi α-divergences in Section 3.4. A similar, albeit simpler argument is also given in
Section 3.4 showing that such radii computed from quantum relative entropies can never be equal to
the minimal Rényi α-divergence Dmeas

α on all pairs of states. It is also shown that none of the Rényi
(α, z)-divergences coincide with any barycentric divergences.

In Chapter 4, I derive axiomatically the quantities governing some further relaxations of relative
submajorization based on the results in [BV23]. This, in turn, also yields the axiomatic definition of
a new 2-parameter family of quantum Rényi divergences that are extensions of the sandwiched Rényi
divergences for α > 1 (much like the (α, z)-divergences [AD15]). I note that this new family does
not have any obvious relation to the (α, z)-divergences and that a specialization of them is the first
axiomatic description of the sandwiched Rényi α divergences for α > 1 [PVW22].

The main result in Chapter 4 is a characterization of an asymptotic relaxation of this relative
submajorization and a sufficient condition for the possibility of a catalytic transformation. We say
that (ρ, σ) asymptotically relatively submajorizes (ρ′, σ′) if (2o(n)ρ⊗n, σ⊗n) ≽ (ρ′⊗n, σ′⊗n). Assuming
that the image of σ and σ′ consist of commuting operators, the characterization is in terms of explicitly
given monotones: (ρ, σ) asymptotically relatively submajorizes (ρ′, σ′) if and only if the inequalities

Q∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)

≥ Q∗
α

(
ρ′(x)

∥∥∥∥exp
∫
Y

log σ′ dγ
)

(1.5)

hold for every α > 1, x ∈ X and probability measure γ on (the Borel σ-algebra of) Y . Note that, the
expression exp

∫
Y

log σ dγ in (1.5) can be viewed as some commutative geometric mean of the operators
in the family σ, that needs to be plugged in the formula of the sandwiched Rényi divergences Q∗

α (see
(1.3)). If the inequalities are strict, then relative submajorization holds after tensoring both pairs with
a suitable catalyst. Without the commutativity assumption, I give generalizations of the conditions
(1.5) that are necessary for asymptotic or catalytic relative submajorization. In these, the second
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argument is replaced with a suitable noncommutative geometric mean. For example,

Q∗
α(ρ(x)∥σ(y1)#σ(y2))

is one of these monotones, where x ∈ X, y1, y2 ∈ Y , and σ(y1)#σ(y2) is the matrix geometric mean
[PW75].

To prove my results in Chapter 4, I use recent results from the theory of preordered semirings to find
conditions in terms of monotone quantities that are additive under direct sums and multiplicative under
the tensor product, following some of the ideas of [PVW22,BV21]. While in general these monotones
are defined only implicitly, under the additional assumption that the image of σ consists of commuting
operators, we obtain a complete classification, identifying them as exponentiated sandwiched Rényi
divergences between one of the ρ operators and a weighted geometric mean of the σ operators. Finding
all the relevant quantum extensions appears to be a difficult problem, although our heuristic approach
reveals a way to systematically construct some of them. Interestingly, these also give new monotones
for pair transformations by specialization: for example, it follows that

(ρ, σ) 7→ D∗
α(ρ∥ρ#σ)

is a quantity that satisfies the data processing inequality (although it is not a monotone under relative
submajorization). This is a special case of the 2-parameter family mentioned above given by the
sandwiched Rényi α-divergence and the matrix geometric mean. These results are also the precursor
and motivation for the second systematic way of deriving Rényi α-divergences presented in our work
in [MBV23] using matrix means. I do not discuss this method in this work in greater depth.

At the end of Chapter 4, I give enticing applications of the axiomatic approach given in the chapter
in terms of composite hypothesis testing, hypothesis testing with group symmetry, asymptotic transfor-
mations by thermal processes and approximate joint transformations. I note here that the application
on the strong converse regime of composite hypothesis testing given in Subsection 4.4.1 is a general-
ization of our results from [BV21] which considered a composite null hypothesis consisting of finitely
many noncommuting positive operators and a simple alternative hypothesis. This result was already
a direct and axiomatic derivation of the strong converse exponents for composite null hypothesis, that
was first derived for simple null and alternative hypotheses in [MO15a]. The application given in Sub-
section 4.4.1 considers composite null and alternative hypotheses consisting of infinitely many positive
operators and requires commutativity only between the operators of the alternative hypothesis.

The first half of this work is mostly based on my work in [MBV23], whereas the second half is
mostly based on my work in [BV23].
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2 Preliminaries

2.1 Quantum framework

For a finite-dimensional Hilbert space H, let B(H) denote the set of all linear operators on H, and
let B(H)sa, B(H)≥0, B(H)⪈0, and B(H)>0 denote the set of self-adjoint, positive semidefinite (PSD),
nonzero positive semidefinite, and positive definite operators, respectively. For an interval J ⊆ R,
let B(H)sa,J := {A ∈ B(H)sa : spec(A) ⊆ J}, i.e., the set of self-adjoint operators on H with all their
eigenvalues in J . Let S(H) :=

{
ρ ∈ B(H)≥0 : Tr ρ = 1

}
denote the set of density operators, or states.

For an operator X ∈ B(H),

∥X∥∞ := max{∥Xψ∥ : ψ ∈ H, ∥ψ∥ = 1}

denotes the operator norm of X (i.e., its largest singular value).
Similarly, for a finite set I, we will use the notation F(I) := CI for the set of complex-valued

functions on I, and F(I)≥0, F(I)⪈0, F(I)>0 for the set of nonnegative, nonnegative and not constant
zero, and strictly positive functions on I. The set of probability density functions on I will be denoted
by P(I). When equipped with the maximum norm, F(I) becomes a commutative C∗-algebra, which
we denote by ℓ∞(I). In the more general case when I is an arbitrary nonempty set, we will also use
the notations Pf (I) for the set of finitely supported probability measures, and P±

f (I) for the set of
finitely supported signed probability measures on I, i.e.,

P±
f (I) :=

{
P ∈ RI : | suppP | < +∞,

∑
i∈I

P (i) = 1
}
, suppP := {i ∈ I : P (i) ̸= 0}.

We also introduce the following subset of signed probability measures:

P±
f,1(I) :=

{
P ∈ P±

f (I) : ∃i+ ∈ I s.t. P (i+) > 0 and P (i) ≤ 0, i ∈ I \ {i+}
}
,

which plays an important role in the definition of multivariable Rényi divergences.
In Chapter 4, we will make use of some facts on positive functionals on C(X) for compact Hausdorff

X (see e.g., [Fol99, Chapter 7]). On such a space, a Radon measure is a finite regular Borel measure.

Theorem 2.1.1 (Riesz representation theorem, [Fol99, 7.2 Theorem]). Let X be a compact Hausdorff
topological space and L : C(X) → R a positive linear functional. Then there exists a unique Radon
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measure µ on X such that for all ξ ∈ C(X) the equality

L(ξ) =
∫
X

ξ(x) dµ(x) (2.1)

holds. Conversely, every Radon measure gives rise to a positive linear functional via (2.1).

Examples of Radon measures include positive linear combinations of Dirac measures and Haar
measures of locally compact topological groups. On a compact space X, every Radon measure µ is
in the closure (with respect to the vague topology) of the set of positive linear combinations of Dirac
measures with total mass µ(X) [Bou04, III, §2, No. 4, Cor. 3.]. We will use an abuse of notation and
just say that γ is a measure on the Hausdorff topological space Y , it is always implied in such a case
that γ is a Radon measure, in particular it is a measure on the Borel σ-algebra of Y .

For any nonempty set X , let

B(X ,H), B(X ,H)≥0, B(X ,H)⪈0, B(X ,H)>0, S(X ,H),

denote the set of functions mapping from X into B(H), B(H)≥0, B(H)⪈0, B(H)>0, and S(H), respec-
tively. Elements of S(X ,H) are called classical-quantum channels, or cq channels, and we will use the
terminology generalized classical-quantum channels, or gcq channels, for the elements of B(X ,H)⪈0. We
will normally use the notationW = (Wx)x∈X to denote elements of B(X ,H). We say thatW ∈ B(X ,H)
is classical if there exists an orthonormal basis (ei)i∈I in H such that Wx =

∑
i∈I⟨ei,Wxei⟩|ei⟩⟨ei|,

x ∈ X ; we call any such orthonormal basis a W -basis. Equivalently, we may identify W with the
collection of functions ((W̃x(i) := ⟨ei,Wxei⟩)i∈I)x∈X ∈ F(X , I), where we use the notations

F(X , I), F(X , I)≥0, F(X , I)⪈0, F(X , I)>0, P(X , I),

for the sets of functions mapping elements of X into functions fx ∈ F(I), x ∈ X , on the finite set I, such
that the fx are arbitrary/nonnegative/nonnegative and not constant zero/strictly positive/probability
density functions on I.

Operations on elements of B(X ,H) are always meant pointwise; e.g., for any W,W (1),W (2) ∈
B(X ,H), V ∈ B(H,K), and σ ∈ B(K), where K is an arbitrary finite-dimensional Hilbert space

VWV ∗ := (VWxV
∗)x∈X ,

W (1) ⊗W (2) :=
(
W (1)
x ⊗W (2)

x

)
x∈X

,

W ⊗ σ := (Wx ⊗ σ)x∈X . (2.2)

W (1) ⊕W (2) :=
(
W (1)
x ⊕W (2)

x

)
x∈X

,

W ⊕ σ := (Wx ⊕ σ)x∈X .

Note that here we only consider the (pointwise) tensor product of functions defined on the same set,
and that this notion of tensor product is different from the one used to describe the parallel action of
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two cq channels, given by

W (1) ⊗W (2) :=
(
W (1)
x1

⊗W (2)
x2

)
(x1,x2)∈X1×X2

,

where W (i) ∈ B(X (i),H(i)), i = 1, 2, and possibly X (1) ̸= X (2), H(1) ̸= H(2). The tensor product in
(2.2) can be interpreted either in this setting, with X (1) = X , W (1) = W and X (2) = {0}, W (2)

0 = σ,
or as the pointwise tensor product between W (1) = W ∈ B(X ,H) and the constant function W (2) ∈
B(X ,H), W (2)

x = σ, x ∈ X .
The set of orthogonal projections on H is denoted by P(H) :=

{
P ∈ B(H) : P 2 = P = P ∗}. For

P,Q ∈ P(H), the orthogonal projection onto (ranP ) ∩ (ranQ) is denoted by P ∧Q. For a sequence of
orthogonal projections P1, . . . , Pr ∈ B(H) summing to I, the corresponding pinching operation is

B(H) ∋ X 7→
r∑
i=1

PiXPi.

For a self-adjoint operator A, let PAa := 1{a}(A) denote the spectral projection of A corresponding
to the singleton {a} ⊂ R. (Here and henceforth 1H stands for the characteristic (or indicator) function
of a setH.) The projection onto the support of A is

∑
a ̸=0 P

A
a ; in particular, if A is positive semidefinite,

it is equal to limα↘0 A
α =: A0. In general, we follow the convention that real powers of a positive

semidefinite operator A are taken only on its support, i.e., for any x ∈ R, Ax :=
∑
a>0 a

xPAa . In
particular, A−1 :=

∑
a>0 a

−1PAa stands for the generalized inverse of A, and A−1A = AA−1 = A0.
For A ∈ B(H)≥0 and a projection P on H we write A ∈ B(PH)≥0 if A0 ≤ P .

For two PSD operators ρ, σ, we write ρ ⊥ σ if ranρ ⊥ ranσ, which is equivalent to ρσ = 0, and
further to ⟨ρ, σ⟩HS := Tr ρσ = 0, and to ρ0σ0 = 0. In particular, it implies ρ0 ∧ σ0 = 0, but not the
other way around.

For two finite-dimensional Hilbert spaces H,K, we will use the notations PTP(H,K) and
CPTP(H,K) for the set of positive trace-preserving linear maps and the set of completely positive trace-
preserving linear maps, respectively, from B(H) to B(K). We will also use the notation P+(H,K) for
the set of (positive) linear maps from B(H) to B(K) such that Φ(ρ) ∈ B(K)⪈0 for all ρ ∈ B(H)⪈0. We
will also consider (completely) positive maps of the form Φ : B(H) → ℓ∞(I) and Φ : ℓ∞(I) → B(H).

For a finite-dimensional Hilbert space H and a positive integer n, we denote by

POVM(H, [n]) :=
{
M = (Mi)n−1

i=0 ∈ B(H)[n]
≥0 :

n−1∑
i=0

Mi = I

}

the set of n-outcome positive operator valued measures (POVMs) on H, where

[n] := {0, . . . , n− 1}.

Any M ∈ POVM(H, [n]) determines a CPTP map M : B(H) → ℓ∞([n]) by

M(·) :=
n−1∑
i=0

(TrMi(·))1{i}.
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By log we denote the natural logarithm, and we use two different extensions of it to [0,+∞], defined
as

log x :=


−∞, x = 0,

log x, x ∈ (0,+∞),

+∞, x = +∞,

l̂og x :=


0, x = 0,

log x, x ∈ (0,+∞),

+∞, x = +∞.

Throughout this work I use the convention

0 · (±∞) := 0.

For a function f : (0,+∞) → R, the corresponding operator perspective function [ENEG11, Eff09,
HM17] fpp is defined on pairs of positive definite operators ρ, σ ∈ B(H)>0 as

fpp(ρ, σ) := σ1/2f
(
σ−1/2ρσ−1/2

)
σ1/2,

and it is extended to pairs of positive semidefinite operators ρ, σ as fpp(ρ, σ) := limε↘0 f
pp(ρ+ εI, σ+

εI), whenever the limit exists. It is easy to see that for the transpose function f̃(x) := xf(1/x), x > 0,
we have

fpp(ρ, σ) = f̃pp(σ, ρ), (2.3)

whenever both sides are well-defined. For any γ ∈ (0, 1), the choice fγ := idγ[0,+∞) gives the Kubo-Ando
γ-weighted geometric mean, denoted by fppγ (ρ, σ) =: σ#γρ, ρ, σ ∈ B(H) ≥ 0.

2.2 Rényi divergences

In the following subsection, I give a review of 2-variable classical Rényi divergences. Then in sub-
section 2.2.2 I give a possible way to define multivariable Rényi divergences, then extend them to be
multivariable quantum Rényi divergences. In Subsection 2.2.3, I discuss the most important properties
of Rényi divergences, in the most general multivariable quantum setting. Lastly I revisit the zoo of
2-variable quantum Rényi divergences and give a short summary of their most important properties.

2.2.1 Classical Rényi divergences

Theorem 2.2.1 ( [Rén61, Theorem 3.]). Let ∆(·∥·) : F([n])>0 × F([n])>0 → R be a bivariable,
real-valued function, so that the following five properties hold:

(i) ∆ is invariant under permutations, i.e., ∆(P(p)∥P(q)) = ∆(p∥q) for all permutations P and
p, q ∈ F([n])>0;

(ii) If p, q ∈ F([n])>0 are such that pk ≥ qk ∀k ∈ [n], then ∆(p∥q) ≥ 0, and if pk ≤ qk ∀k ∈ [n], then
∆(p∥q) ≤ 0;

(iii) ∆
(
1∥ 1

2
)

= 2;
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(iv) For all p, q ∈ F([n])>0 and p′, q′ ∈ F([n′])>0, ∆(p⊗ p′∥q ⊗ q′) = ∆(p∥q) + ∆(p′∥q′);

(v) If p, q ∈ F([n])>0 and p′, q′ ∈ F([n′])>0 are such that
∑n
k=1 pk +

∑n′

k=1 p
′
k ≤ 1 and

∑n
k=1 qk +∑n′

k=1 q
′
k ≤ 1, then there exists a continuous and strictly increasing function g : R → R so that

the following hold:

∆(p⊕ p′∥q ⊕ q′) = g−1

[∑n
k=1 pkg(∆(p∥q)) +

∑n′

k=1 p
′
kg(∆(p′∥q′))∑n

k=1 pk +
∑n′

k=1 p
′
k

]
.

Then for the function ∆ satisfying (i)-(v) above, the function g is either a linear or an exponential
function. If g is linear, then the function ∆ satisfying the above properties must have the form ∆(p∥q) =
D1(p∥q) for all p, q ∈ F([n])>0, where

D1(p∥q) =
∑n
k=1 pk log2

pk

qk∑n
k=1 pk

, (2.4)

and D1 does satisfy the above properties, whereas if g is exponential, then the function ∆ satisfying
the above properties must have the form ∆(p∥q) = Dα(p∥q) with some α ̸= 1, for all p, q ∈ F([n])>0,
where

Dα(p∥q) = 1
α− 1 log2

∑n
k=1

pα
k

qα−1
k∑n

k=1 pk
, (2.5)

and Dα does satisfy the above properties.

Remark 2.2.2. Requiring the additional property in Theorem 2.2.1 that limε↘0 ∆(p⊕ ε∥p⊕ p) = 0
for some p with 0 < p < 1

2 excludes α ≤ 0 from the solutions making all solutions (α > 0) continuous
in all pk, qk k ∈ [n].

Remark 2.2.3. It is easy to check that for p, q ∈ F([n])>0 limα→1 Dα(p, q) = D1(p, q) confirming the
validity of the subscript of D1.

The quantities in (2.4) and (2.5) for α > 0 are called classical Rényi α-divergences and can be
generalized three-fold: in terms of support, from the classical setting to quantum setting, and to
multivariable Rényi α-divergences. We will first deal with the generalization with regard the support.

Definition 2.2.4. For a finite set I, and ρ, σ ∈ F(I)⪈0 the relative entropy or Kullback-Leibler
divergence of ρ and σ is defined as

D(ρ∥σ) :=


∑
i∈I

[
ρ(i) l̂og ρ(i) − ρ(i) l̂og σ(i)

]
, supp ρ ⊆ suppσ,

+∞, otherwise.
(2.6)

Definition 2.2.5. The classical Rényi α-divergences [Rén61] are defined for ρ, σ ∈ F(I)⪈0 and α ∈
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(0, 1) ∪ (1,+∞) as

Dα(ρ∥σ) := 1
α− 1 logQα(ρ∥σ)︸ ︷︷ ︸

=:ψα(ρ∥σ)

− 1
α− 1 log

∑
i∈I

ρ(i), (2.7)

Qα(ρ∥σ) := lim
ε↘0

∑
i∈I

(ρ(i) + ε)α(σ(i) + ε)1−α

=


∑
i∈I ρ(i)ασ(i)1−α α ∈ (0, 1) or supp ρ ⊆ suppσ,

+∞, otherwise.
(2.8)

For α ∈ {0, 1,+∞}, the Rényi α-divergence is defined by the corresponding limit.

It is easy to see that

D0(ρ∥σ) := lim
α↘0

Dα(ρ∥σ) = − log
∑

i∈supp ρ
σ(i)︸ ︷︷ ︸

=:Q0(ρ∥σ)

+ log
∑
i∈I

ρ(i), (2.9)

D1(ρ∥σ) := lim
α→1

Dα(ρ∥σ) = 1∑
i∈I ρ(i)D(ρ∥σ), (2.10)

D+∞(ρ∥σ) := lim
α→+∞

Dα(ρ∥σ) = log inf{λ > 0 : ρ ≤ λσ}. (2.11)

In particular, the Rényi 1-divergence is the same as the relative entropy up to normalization.
We extend the definitions of the Rényi divergences to the case when the second argument is zero

as

Dα(ρ∥0) := +∞, ρ ⪈ 0, α ∈ [0,+∞), (2.12)

and the definition of the relative entropy to the case when one or both arguments are zero as

D(0∥σ) := 0 σ ≥ 0, D(ρ∥0) := +∞ ρ ⪈ 0. (2.13)

For any fixed ρ, σ ∈ F(I)⪈0, the Rényi divergence is nondecreasing as a function of α, and it is
continuous on the set of α for which it is finite [vH14].

For the study and applications of the (classical) Rényi divergences, the relevant quantity is actually
Qα (equivalently, ψα); the normalizations in (2.7) are somewhat arbitrary, and are mainly relevant
only for the limits in (2.9)–(2.11). The Rényi α-divergences with α ∈ (0, 1) ∪ (1,+∞) can be recovered
from the relative entropy as

− logQα(ρ∥σ) = inf
ω

{αD(ω∥ρ) + (1 − α)D(ω∥σ)}, (2.14)

where the infimum is taken over all ω ∈ P(I) with suppω ⊆ supp ρ, and it is uniquely attained at

ωα(ρ∥σ) :=
∑
i∈S

ρ(i)ασ(i)1−α∑
j∈S ρ(j)ασ(j)1−α1{i}, (2.15)
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where S := supp ρ∩ suppσ, provided that supp ρ ⊆ suppσ, or supp ρ∩ suppσ ̸= ∅ and α ∈ (0, 1). The
case α ∈ (0, 1) was discussed in [CM03] in the more general setting where I is not finite, while the
case α > 1 was discussed in the finite-dimensional quantum case in [MO21]; see also Chapter 3 below.

2.2.2 Multivariable Rényi divergences

We will discuss various ways to define and study multivariable quantum Rényi divergences in Chapters
3 and 4. In this section I lay the foundation to do that, first generalizing to more than two variables.
Formulas (2.8) and (2.14) offer two different approaches to do that. In a very general setting, one may
consider a set X equipped with a σ-algebra A. Then for any measurable w ∈ F(X , I)⪈0 and signed
measure P on A with P (X ) = 1, one may consider

Q̂P (w) := lim
ε↘0

∑
i∈I

exp
(∫

X
log(wx(i) + ε) dP (x)

)
, (2.16)

or

Q̂P (w) := lim
ε↘0

∑
i∈I

exp
(∫

X
log((1 − ε)wx(i) + ε/|I|) dP (x)

)
, (2.17)

where the latter is somewhat more natural when the wx are probability density functions on I. In the
most general case, various issues regarding the existence of the integrals and the limits arise, which
are important from a mathematical, but not particularly relevant from a conceptual point, and hence
for the rest we will restrict our attention to the case where P is finitely supported. In that case the
integrals always exist, and the ε ↘ 0 limit can be easily determined as

Q̂P (w) =
∑
i∈I

( ∏
x:wx(i)>0

wx(i)P (x)

)
·


0, if

∑
x:wx(i)=0 P (x) > 0,

1, if
∑
x:wx(i)=0 P (x) = 0,

+∞, if
∑
x:wx(i)=0 P (x) < 0,


 (2.18)

independently of whether (2.16) or (2.17) is used.
Alternatively, one may define

Q̃b
P (w) := sup

τ∈[0,+∞)I

{∑
i∈I

τ(i) −
∫

X
D(τ∥wx) dP (x)

}
,

which is well-defined at least when P is a probability measure, all the wx are probability density
functions, and X ∋ x 7→ D(τ∥wx) is measurable. Again, we restrict to the case when P is finitely
supported, but allow it to be a signed probability measure, in which case we use a slight modification
of the above to define

Qb
P (w) := sup

τ∈[0,+∞)I

supp τ⊆
⋂

x: P (x)>0
suppwx

{∑
i∈I

τ(i) −
∑
x∈X

P (x)D(τ∥wx)
}
. (2.19)

We will show in Section 3.1 that this is equivalent to (2.14) when X = {0, 1}, P (0) = α ∈ (0, 1) ∪
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(1,+∞). It is not too difficult to see that with the definition in (2.19), we have

Qb
P (w) = +∞ ⇐⇒

⋂
x:P (x)>0

suppwx ̸⊆
⋂

x:P (x)<0

suppwx.

Thus, while (2.18) and (2.19) coincide when P is a probability measure, they may differ when P can
take negative values. The following is easy to verify from (2.18) and (2.19):

Lemma 2.2.6. Let P ∈ P±
f (X ) and w ∈ F(X , I)⪈0, and assume that at least one of the following

holds true:

(i) suppwx = suppwx′ , x, x′ ∈ suppP ;

(ii) P ∈ Pf (X ) ∪ P±
f,1(X ), i.e., either P (x) ≥ 0, x ∈ X , or there exists a unique x+ with P (x+) > 0

and P (x) ≤ 0, x ∈ X \ {x+}.

Then Q̂P (w) = Qb
P (w).

Definition 2.2.7. For any P ∈ P±
f (X ) and any w ∈ F(X , I)⪈0 such that Q̂P (w) = Qb

P (w), we call
this common value the multivariable Rényi QP of w, and denote it by QP (w).

For any P ∈
(

Pf (X ) ∪ P±
f,1(X )

)
\ {1{x} : x ∈ X }, we define the (symmetrically normalized)

classical P -weighted Rényi-divergence of w ∈ F(X , I)⪈0 as

DP (w) := 1∏
x∈X (1 − P (x))

(
− logQP (w) +

∑
x∈X

P (x) log
∑
i∈I

wx(i)
)

= 1∏
x∈X (1 − P (x))

(
− logQP

((
wx∑

i∈I wx(i)

)
x∈X

))
.

In this case we also define

Q̃P (w) := s(P )QP (w),

where

s(P ) :=

−1, P ∈ Pf (X ),

1, P ∈ P±
f,1(X ).

Lemma 2.2.6 and (2.18) yield immediately the following:

Corollary 2.2.8. Let P ∈ Pf (X ) ∪ P±
f,1(X ) and w ∈ F(X , I)⪈0. Then

QP (w) = lim
ε↘0

QP (w + ε) = lim
ε↘0

QP ((1 − ε)w + ε/|I|). (2.20)

Remark 2.2.9. In the case when P is a probability measure, QP (w) was introduced in classical
decision theory, and called the P-weighted Hellinger transform of w; see [Str11]. The case where
P (x) > 0 for exactly one x was very recently considered in [MPST21] in the context of (classical)
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Blackwell dominance of experiments, and in [FFHT24] in the case where all w are strictly positive, in
the context of classical state convertibility.

Note that in the case when X = {0, 1} and α := P (0) ∈ (0, 1) ∪ (1,+∞), condition (ii) in Lemma
2.2.6 is always satisfied, and we have

QP (w) = Qα(w0∥w1).

That is, the multivariable QP give multivariable extensions of the Qα quantities.

Remark 2.2.10. Note that when X = {0, 1} and α := P (0) = 0, neither Q̂P (w) nor Qb
P (w) coincides

with Q0(w0∥w1) in general. The reason for this in the case of Q̂P (w) is that the limits ε ↘ 0 and α ↘ 0
are not interchangeable, while in the case of Qb

P (w), it is clear that it only depends on (wx)x∈suppP ,
while Q0 depends on w0 (or at least its support) even though 0 /∈ suppP = supp(0, 1) = {1}.

Definition 2.2.11. For any P ∈
(

Pf (X ) ∪ P±
f,1(X )

)
\ {1{x} : x ∈ X } let DP be an X -variable

classical Rényi divergence. We say that

Dq
P : ∪d∈NB(X ,Cd)⪈0 → R ∪ {±∞}

is a quantum extension of DP and an X -variable quantum P -Rényi divergence if

(i) it is invariant under isometries, i.e., if V : Cd1 → Cd2 is an isometry, then

Dq
P (VWV ∗) = Dq

P (W ), W ∈ B(X ,Cd1)⪈0;

(ii) for all W ∈ B
(
X ,Cd

)
⪈0 that is jointly diagonalizable, and any orthonormal basis (ei)i∈I jointly

diagonalizing all Wx, the following holds

Dq
P (W ) = DP

((
[⟨ei,Wxei⟩]i∈I

)
x∈X

)
.

Similarly, by a quantum relative entropy we mean a quantum extension of the relative entropy (see
(2.6)) in the above sense.

Remark 2.2.12. In the 2-variable case of Definition 2.2.11, we understand the extension analogously
in terms of the Qα quantities in Dα and note that for any α ∈ [0, 1) ∪ (1,+∞), there is an obvious
bijection between quantum extensions of Qα and quantum extensions of Dα, given by

Dq
α(ρ∥σ) = 1

α− 1 logQqα(ρ∥σ) − 1
α− 1 Tr ρ,

Qqα(ρ∥σ) = (Tr ρ) exp((α− 1)Dq
α(ρ∥σ)).

Remark 2.2.13. Note that there is a bijection between quantum extensions of the Rényi 1-divergence
and quantum extensions of the relative entropy, given in one direction by Dq(ρ∥σ) := (Tr ρ)Dq

1(ρ∥σ),
and in the other direction by Dq

1(ρ∥σ) := Dq(ρ∥σ)/Tr ρ, for any nonzero ρ.
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2.2.3 Properties of multivariable Rényi divergences

Before further discussing quantum extensions of classical divergences, we review a few important
properties of general divergences. Note that by the identification of classical divergences and quantum
divergences defined on jointly diagonalizable families of operators, the following considerations apply
to classical divergences as well; e.g., the following define monotonicity, joint convexity, etc., also for
classical divergences.

Definition 2.2.14. For two X -variable quantum Rényi divergences DP and D′
P , we write

DP ≤ D′
P if DP (W ) ≤ D′

P (W ), W ∈ B
(
X ,Cd

)
⪈0.

For bivariable quantum Rényi α-divergences on pairs of nonzero PSD operators we also introduce
the following strict ordering that will be useful when comparing quantum relative entropies and Rényi
α-divergences:

Definition 2.2.15. Let Dα, D
′
α be binary quantum Rényi α-divergences. We write

Dα < D′
α if ρ0 ≤ σ0, ρσ ̸= σρ ⇒ Dα(ρ∥σ) < D′

α(ρ∥σ).

Definition 2.2.16. Let DP be an X -variable quantum Rényi divergence. We say that DP is

• nonnegative if DP (W ) ≥ 0 for all collections of density operators W , and it is strictly positive if
it is nonnegative and DP (W ) = 0 if and only if Wx = Wy, ∀x, y ∈ X , again for density operators;

• monotone under a given map Φ : B(H) → B(K) for some finite-dimensional Hilbert spaces H,K,
if

∀W : DP (Φ(W )) ≤ DP (W ),

where Φ(W ) := (Φ(Wx))x∈X ; in particular, it is monotone under CPTP maps i.e., satisfies the
data processing inequality (DPI)/PTP maps/pinchings if monotonicity holds for any map in the
given class for any two finite-dimensional Hilbert spaces H,K, and it is trace-monotone, if

∀W : DP (TrW ) ≤ DP (W ), (2.21)

with TrW := (TrWx)x∈X . We say that DP is strictly trace-monotone, if equality in (2.21)
implies the existence of a state ω and numbers λx, x ∈ X such that Wx = λxω, ∀x ∈ X .

• jointly convex if for all W (k), k ∈ [r], and probability distribution {pk}k∈[r],

DP

∑
k∈[r]

pkW
(k)

 ≤
∑
k∈[r]

pkDP

(
W (k)

)
,

and it is jointly concave if −DP is jointly convex;
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• Additive, if for all
{
W (1),W (2)},

DP

(
W (1) ⊗W (2)

)
= DP

(
W (1)

)
+DP

(
W (2)

)
,

and subadditive (superadditive) if LHS ≤ RHS (LHS ≥ RHS) holds above;

• weakly additive, if for all W ,

DP

(
W⊗n) = nDP (W ), ∀n ∈ N,

and weakly subadditive (superadditive) if LHS ≤ RHS (LHS ≥ RHS) holds above;

• block subadditive, if for any W , and any sequence of orthogonal projections P0, . . . , Pr−1 ∈ B(H)
summing to I,

DP

(
r−1∑
i=0

PiWPi

)
≤

r−1∑
i=0

DP (PiWPi).

Conversely, if the inequality in the above always holds in the opposite direction then DP is called
block superadditive, and if it is always an equality, then DP is block additive.

• (positive) homogeneous, if for every W and t ∈ (0,+∞),

DP ((tWx)x∈X ) = tDP ((Wx)x∈X ).

Remark 2.2.17. Note that z⊗X 7→ zX gives a canonical identification between C⊗B(H) and B(H).
In particular, any additive X -variable quantum Rényi divergence DP satisfies the scaling law:

DP ((txWx)x∈X ) = DP (t) +DP (W ),

where t = (tx)x∈X .

Remark 2.2.18. Note that in the classical case, monotonicity under PTP maps is equivalent to
monotonicity under CPTP maps, and it means that for any stochastic matrix T ∈ Rd1×d2 and for any
w ∈ F(X , [d1]), we have

DP

 ∑
j∈[d2]

∑
i∈[d1]

wx(i)Ti,j1{j}


x∈X

 ≤ DP (w).

Here, the matrix T being stochastic means that Ti,j ≥ 0 for all i, j, and for all i,
∑
j∈[d2] Ti,j = 1.

The following is a lemma to relate the DPI and joint convexity properties of general, multivari-
able Rényi divergences using the well-known idea of relating trace-monotonicity via the Stinespring
representation to the joint convexity property in the case of bivariable Rényi divergences.

Lemma 2.2.19. Assume that an X -variable quantum Rényi divergence DP is block superadditive,
homogeneous, monotone nondecreasing under partial traces. Then DP is jointly concave and jointly
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superadditive. Vice versa, if DP is jointly concave and it is stable under tensoring with the maximally
mixed state, i.e., for any W and any K, DP (W ⊗ (IK/dim K)) = DP (W ), then for any W and any
CPTP map Φ : B(H) → B(K) we have DP (Φ(W )) ≥ DP (W ).

Proof. Suppose that DP is block superadditive and homogeneous. Let (ti)i∈[r] be a probability distri-
bution, and let (ei)i∈[r] be an orthonormal system in some Hilbert space K. Then

DP

((
r−1∑
i=0

tiW
(i)
x

)
x∈X

)
= DP

((
TrK

r−1∑
i=0

tiW
(i)
x ⊗ |ei⟩⟨ei|K

)
x∈X

)

≥ DP

((
r−1∑
i=0

tiW
(i)
x ⊗ |ei⟩⟨ei|K

)
x∈X

)

≥
r−1∑
i=0

DP

((
tiW

(i)
x ⊗ |ei⟩⟨ei|K

)
x∈X

)

=
r−1∑
i=0

tiDP

((
W (i)
x ⊗ |ei⟩⟨ei|K

)
x∈X

)

=
r−1∑
i=0

tiDP

((
W (i)
x

)
x∈X

)
,

where the first equality is obvious, the first inequality is by the assumption that DP is monotone
nondecreasing under partial traces, the second inequality is due to the block superadditivity of DP ,
the second equality follows from homogeneity, and the last equality is due to the isometric invariance
of DP . This proves joint concavity, and joint superadditivity follows from it immediately due to
homogeneity.

Assume now that DP is jointly concave and it is stable under tensoring with the maximally mixed
state. Let W be a generalized classical-quantum channel and Φ : B(H) → B(K) be a CPTP map. Let
Φ(.) = TrE V (.)V ∗ be a Stinespring representation of Φ, where V : H → HE ⊗ K is an isometry. Let
(Uab)dE−1

a,b=0 be the discrete Weyl unitaries in some ONB of HE , so that (1/d2
E)
∑dE−1
a,b=0 Ua,b(.)U∗

a,b =
(1/dE)IE Tr(.) Then

DP (Φ(W )) = DP (TrE VWV ∗)

= DP ((1/dE)IE ⊗ TrE VWV ∗)

= DP

 1
d2
E

dE−1∑
a,b=0

(Ua,b ⊗ IK)VWV ∗(Ua,b ⊗ IK)∗


≥ 1
d2
E

dE−1∑
a,b=0

DP ((Ua,b ⊗ IK)VWV ∗(Ua,b ⊗ IK)∗)

= 1
d2
E

dE−1∑
a,b=0

DP (W ) = DP (W ),

where the second equality is due to stability, the inequality is due to the joint concavity of DP , and
the fourth equality is due to isometric invariance.
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We have seen that classical divergences can be identified with quantum divergences defined on
commuting operators; in particular, monotonicity under (completely) positive trace-preserving maps
makes sense for the former. For the purposes of applications, it is monotone divergences that are
relevant, and monotonicity is closely related to joint convexity. The following is easy to verify; see,
e.g., [MPST21, Lemma 8].

Lemma 2.2.20. Let P be a finitely supported signed probability measure on X . The following are
equivalent:

(i) Q̃P is jointly convex on F(X , I)⪈0 for any/some finite non-empty I;

(ii) Q̃P is jointly convex on F(X , I)>0 for any/some finite non-empty I;

(iii) P ∈ Pf (X ) ∪ P±
f,1(X ).

Proof. The equivalence of (ii) and (iii) is due to [MPST21, Lemma 8], and the equivalence of (ii) and
(i) is immediate from (2.20).

Corollary 2.2.21. For any P ∈ Pf (X ) ∪ P±
f,1(X ), Q̃P (defined in Definition 2.2.7) is jointly con-

vex and monotone under positive trace-preserving maps, and DP is monotone under positive trace-
preserving maps whenever P ∈

(
Pf (X ) ∪ P±

f,1(X )
)

\ {1{x} : x ∈ X }.

Proof. It is straightforward to verify that Q̃P is homogeneous, block additive, and stable under tensor-
ing with an arbitrary state, and hence the assertion follows from Lemma 2.2.20 and Lemma 2.2.19.

We will furthermore consider properties that only concern one variable of a divergence. We formu-
late these only for the case when this is the second variable of a 2-variable divergence; the definitions
in the general case can be obtained by straightforward modifications. In particular, we say that a
2-variable quantum Rényi α-divergence Dα is

• anti-monotone in the second argument (AM), if for all ρ, σ1, σ2 ∈ B(H),

σ1 ≤ σ2 =⇒ Dα(ρ∥σ1) ≥ Dα(ρ∥σ2);

• weakly anti-monotone in the second argument, if for any (ρ, σ), and for some κρ,σ > 0,

[0, κρ,σ) ∋ ε 7→ Dα(ρ∥σ + εI) is decreasing;

• regular, if for any (ρ, σ),

Dα(ρ∥σ) = lim
ε↘0

Dα(ρ∥σ + εI);

• strongly regular, if for any (ρ, σ), and any sequence of operators (σn)n∈N converging decreasingly
to σ such that we have

Dα(ρ∥σ) = lim
n→+∞

Dα(ρ∥σn);
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Remark 2.2.22. Note that

AM + regularity =⇒ strong regularity.

Indeed, assume that Dα is regular and anti-monotone in its second argument. Let (σn)n∈N be a
sequence of operators converging decreasingly to σ. Then for every n ∈ N,

σ ≤ σn = σ + σn − σ ≤ σ + ∥σn − σ∥∞︸ ︷︷ ︸
=:cn

I = σ + cnI,

hence

Dα(ρ∥σ) ≥ Dα(ρ∥σn) ≥ Dα(ρ∥σ + cnI), n ∈ N.

By the regularity assumption, the RHS above tends to Dα(ρ∥σ) as n → +∞, whence also
limn→+∞ Dα(ρ∥σn) = Dα(ρ∥σ). Thus, Dα is strongly regular.

2.2.4 Quantum Rényi divergences

In this section I give a brief review of the (2-variable) quantum Rényi divergences most commonly
used in the literature, which will also play an important role in the rest.

Remark 2.2.23. Since 0 commutes with any other operator, any quantum Rényi α-divergence Dq
α

must satisfy

Dq
α(ρ∥0) = +∞, ρ ⪈ 0,

according to (2.12), and any quantum relative entropy Dq must satisfy

Dq(0∥σ) = 0 σ ≥ 0, Dq(ρ∥0) = +∞ ρ ⪈ 0, (2.22)

according to (2.13).
Since these values are fixed by definition, in the discussion of different quantum Rényi divergences

and relative entropies below, it is sufficient to consider nonzero arguments most of the time.

The following examples of quantum Rényi α-divergences are well studied in the literature. We
review them in some detail for later use.

Example 2.2.24. For any α ∈ [0, 1) ∪ (1,+∞) and z ∈ (0,+∞), the Rényi (α, z)-divergence of
ρ, σ ∈ B(H)⪈0 is defined as [AD15]

Dα,z(ρ∥σ) := 1
α− 1 logQα,z(ρ∥σ) − 1

α− 1 log Tr ρ,

Qα,z(ρ∥σ) :=

Tr
(
ρ

α
2z σ

1−α
z ρ

α
2z

)z
, α ∈ [0, 1) or ρ0 ≤ σ0,

+∞, otherwise.
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It is easy to see that the Rényi (α, z)-divergence defines a quantum Rényi α-divergence in the sense of
Definition 2.2.11. Dα,1(ρ∥σ) is called the Petz-type (or standard) Rényi α-divergence [Pet86b] of ρ and
σ, and D∗

α(ρ∥σ) := Dα,α(ρ∥σ) their sandwiched Rényi α-divergence [MDS+13,WWY14]. The limit

Dα,+∞(ρ∥σ) := lim
z=→+∞

Dα,z(ρ∥σ)

=


1

α−1 log TrPeαP (l̂og ρ)P+(1−α)P (l̂ogσ)P︸ ︷︷ ︸
=:Qα,+∞(ρ∥σ))

− 1
α−1 log Tr ρ, α ∈ (0, 1) or ρ0 ≤ σ0,

+∞, otherwise,
(2.23)

where P := ρ0 ∧σ0, is also a quantum Rényi α-divergence, often referred to as the log-Euclidean Rényi
α-divergence [AD15,HP93,MO15a]. It is known [LT15,MH23a] that for any function z : (1−δ, 1+δ) →
(0,+∞] such that lim infα→1 z(α) > 0, and for any ρ, σ ∈ B(H)⪈0,

lim
α→1

Dα,z(α)(ρ∥σ) = 1
Tr ρDUm(ρ∥σ) =: DUm

1 (ρ∥σ),

where the Umegaki relative entropy DUm(ρ∥σ) is defined as

DUm(ρ∥σ) :=

Tr
(
ρ l̂og ρ− ρ l̂og σ

)
, ρ0 ≤ σ0,

+∞, otherwise.
(2.24)

In particular, for any z ∈ (0,+∞], we define D1,z(ρ∥σ) := DUm
1 (ρ∥σ).

The Rényi (α, z)-divergence is strictly positive for α ∈ (0, 1) and z ≥ max{α, 1 − α}, and for α ≥ 1
and z > 0; see [MO21, Corollary A.31]. The range of (α, z)-values for which Dα,z is monotone under
CPTP maps was studied in a series of works [Bei13,FL13,Hia13,Pet86b], and was finally characterized
completely in [Zha20]. It is clear from their definitions that for every α ∈ (0,+∞) and z ∈ (0,+∞],
the Rényi (α, z)-divergence is additive on tensor products.

Example 2.2.25. For any quantum Rényi α-divergence Dq
α, its regularization on a pair ρ, σ ∈ B(H)⪈0

is defined as

D
q

α(ρ∥σ) := lim
n→+∞

1
n
Dq
α(ρ⊗n∥σ⊗n),

whenever the limit exists. If the limit exists for all ρ, σ ∈ B(H)⪈0, then D
q

α is a quantum Rényi
α-divergence that is weakly additive, and if Dq

α is monotone under CPTP maps then so is Dq

α.

The classical Rényi α-divergences admit two canonical quantum extensions, the minimal and the
maximal ones:

Example 2.2.26. For any α ∈ [0,+∞] and ρ, σ ∈ B(H)⪈0 their measured Rényi α-divergence is
defined as

Dmeas
α (ρ∥σ) := sup

{
D(M(ρ)∥M(σ)) : M ∈ POVM(Cd, [n]), n ∈ N

}
.

It is easy to see thatDmeas
α is a quantum Rényi α-divergence, called the measured, or minimal extension.
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As introduced in [Mat18], a reverse test for ρ, ω ∈ B(H)⪈0 is a pair of vectors p, q ∈ F(X ) together
with Γ : ℓ∞(I) → B(H) a (completely) positive trace-preserving map such that Γ(p) = ρ, Γ(q) = σ.
For a classical Rényi α-divergence D, let

Dmax
α (ρ∥σ) := inf{D(p∥q) : (p, q,Γ) is a reverse test for (ρ, σ)}.

It is easy to see that Dmax
α is a quantum Rényi α-divergence, called the maximal extension.

It is straightforward to verify from their definitions that both Dmeas
α and Dmax

α are monotone under
PTP maps, and for any quantum extension Dq

α of Dα that is monotone under CPTP maps,

Dmeas
α (ρ∥σ) ≤ Dq

α(ρ∥σ) ≤ Dmax
α (ρ∥σ)

holds.
It is also clear that since Dα is additive that Dmax

α is subadditive and Dmeas
α is superadditive, and

the regularized measured and the regularized maximal D-divergences

D
meas
α (ρ∥σ) := sup

n∈N

1
n
Dmeas
α (ρ⊗n∥σ⊗n) = lim

n→+∞

1
n
Dmeas
α (ρ⊗n∥σ⊗n)

D
max
α (ρ∥σ) := inf

n∈N

1
n
Dmax
α (ρ⊗n∥σ⊗n) = lim

n→+∞

1
n
Dmax
α (ρ⊗n∥σ⊗n),

are quantum extensions of Dα that are weakly additive. Obviously, Dmeas
α and D

max
α are monotone

under CPTP maps, and for any quantum extension Dq
α of Dα that is monotone under CPTP maps,

and any ρ, ω ∈ B(H)⪈0, n ∈ N, we have

∃Dq

α(ρ∥σ) := lim
n→+∞

1
n
Dq
α(ρ⊗n∥σ⊗n) =⇒ D

meas
α (ρ∥σ) ≤ D

q

α(ρ∥σ) ≤ D
max
α (ρ∥σ).

In particular, if Dq
α is additive then

D
meas
α (ρ∥σ) ≤ Dq

α(ρ∥σ) ≤ D
max
α (ρ∥σ)

for any (ρ∥σ) ∈ B(H)⪈0.
For any ρ, σ ∈ B(H)⪈0, their measured relative entropy is Dmeas(ρ∥σ) = (Tr ρ)Dmeas

1 (ρ∥σ). We
have Dmeas

0 = D0,1, Dmeas
1/2 = D1/2,1/2 (see [NC10, Chapter 9]) and for any ρ, σ ∈ B(H)⪈0,

Dmeas
+∞ (ρ∥σ) = D∗

+∞(ρ∥σ) := D+∞,+∞(ρ∥σ) := lim
α→+∞

Dα,α(ρ∥σ) = log inf{λ ≥ 0 : ρ ≤ λσ}. (2.25)

We will call the last quantity the max-divergence, it was introduced in [Dat09] under the name max-
relative entropy, and its equality to the limit above has been shown in [MDS+13, Theorem 5]. No
explicit expression is known for Dmeas

α for other α values.
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Surprisingly, Dmeas
α (ρ∥σ) has a closed formula for every α ∈ [0,+∞], given by

D
meas
α (ρ∥σ) =


Dα,α(ρ∥σ), α ∈ [1/2,+∞],
α

1−αD1−α,1−α(σ∥ρ) + 1
α−1 log Tr ρ

Trσ = Dα,1−α(ρ∥σ), α ∈ (0, 1/2),

Dα,1−α(ρ∥σ), α = 0;

(2.26)

see [HP91] for α = 1, [MO15a] for α ∈ (1,+∞), and [HT16] for α = (1/2, 1); the last expression for
α ∈ (0, 1

2 ) above was first observed by Péter Vrana in August 2022, to the best of my knowledge. The
case α = 0 follows from Dmeas

0 = D0,1 and the additivity of the latter.
For every α ∈ (0, 1), strict positivity of Dmeas

α is immediate from the strict positivity of the classical
Rényi α-divergence, which is a straightforward corollary of Hölder’s inequality, and strict positivity of
Dmeas
α for α ∈ [1,+∞] follows from this and the easily verifiable fact that α 7→ Dmeas

α is monotone
increasing. Strict positivity of Dmeas

α follows from Dmeas
α ≤ D

meas
α .

For any α ∈ [0,+∞], the measured Rényi α-divergence is superadditive on tensor products, but not
additive unless α ∈ {0, 1/2,+∞}; see, e.g., [HM17, Remark 4.27] and [MH23b, Proposition III.13] for
the latter. On the other hand, for every α ∈ [0,+∞], the regularized measured Rényi α-divergence is
not only weakly additive but even additive on tensor products, according to (2.26) and Example 2.2.24.

D
meas
α , α ∈ [0,+∞], are monotone under PTP maps, according to [Bei13,Jen21,MR17] and (2.26).

In particular, the Umegaki relative entropy DUm is monotone under PTP maps [MR17].
For any ρ, σ ∈ B(H)⪈0, their maximal relative entropy is Dmax(ρ∥σ) = (Tr ρ)Dmax

1 (ρ∥σ).
Let ρσ,ac := max

{
0 ≤ C ≤ ρ : C0 ≤ σ0} = PρP − Pρ(P⊥ρP⊥)−1ρP be the absolutely continu-

ous part of ρ w.r.t. σ [AT75], where P := σ0, and let λi, i ∈ [r], be the different eigenvalues of
σ−1/2ρσ,acσ

−1/2 with corresponding spectral projections Pi. Let I := [r] ∪ {r + 1}, let τ0 ∈ S(H) be
arbitrary, and

τ1 :=


ρ−ρσ,ac

Tr(ρ−ρσ,ac) , ρ0 ̸≤ σ0,

τ0, otherwise.

According to [Mat18],

p̂(i) :=

λi TrσPi, i ∈ [r],

Tr(ρ− ρσ,ac), i = r + 1,
q̂(i) :=

TrσPi, i ∈ [r],

0, i = r + 1,
(2.27)

Γ̂(1{i}) :=


σ1/2Piσ

1/2

TrσPi
, i ∈ [r], TrσPi ̸= 0,

τ0, i ∈ [r], TrσPi = 0,

τ1, i = r + 1,
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is a reverse test for (ρ, σ) that is optimal for every Dmax
α (ρ∥σ), α ∈ [0, 2] ∪ {+∞}, and

Qmax
α (ρ∥σ) = Q̂α(ρ∥σ) := Qα(p̂∥q̂) = Tr fppα (ρ∥σ) (2.28)

=


Trσ

(
σ−1/2ρσ,acσ

−1/2)α, α ∈ [0, 1),

Trσ
(
σ−1/2ρσ−1/2)α, α ∈ (1, 2], ρ0 ≤ σ0,

+∞, α ∈ (1, 2], ρ0 ≰ σ0,

(2.29)

Dmax(ρ∥σ) = (Tr ρ)Dmax
1 (ρ∥σ) = D(p̂∥q̂) = Tr ηpp(ρ, σ) (2.30)

=

Trσ1/2ρσ−1/2 l̂og
(
σ−1/2ρσ−1/2) = Tr ρ l̂og

(
ρ1/2σ−1ρ1/2), ρ0 ≤ σ0,

+∞, otherwise,
(2.31)

Dmax
+∞ (ρ∥σ) = D+∞(p̂∥q̂) = D∗

+∞(ρ∥σ),

where fα := idα[0,+∞), η(x) := x log x, x ≥ 0. (For the expressions in terms of the perspective functions,
see also [HM17,Hia19], and for the relation between the Kubo-Ando means and the expressions in (2.29)
see [MBV23].) The expression in (2.31) is called the Belavkin-Staszewski relative entropy [BS82]. Note
that the optimal reverse test above is independent of α; in particular,

Dmax
1 (ρ∥σ) = lim

α→1
Dmax
α (ρ∥σ) = 1

Tr ρD
max(ρ∥σ)

holds for any ρ, σ ∈ B(H)⪈, according to (2.10).
No explicit expression is known for Dmax

α when α ∈ (2,+∞), in which case the above reverse
test is known not to be optimal. Indeed, also for α ∈ (2,+∞), we have Q̂α(ρ∥σ) := Qα(p̂∥q̂) =
Trσ

(
σ−1/2ρσ−1/2)α when ρ0 ≤ σ0, and Q̂α(ρ∥σ) := Qα(p̂∥q̂) = +∞, otherwise. However, since fα is

not operator convex for α > 2, this quantity is not convex in ρ, and therefore not CPTP-monotone,
either, according to Lemma 2.2.19, while Qmax

α is (C)PTP-monotone.
Strict positivity of Dmax

α for all α ∈ (0,+∞] follows from that of Dmeas
α and the inequality Dmeas

α ≤
Dmax
α , which is due to the monotonicity of the classical Rényi divergences under stochastic maps.

For any ρ, σ ∈ B(H)⪈0 and α ∈ (0, 2], we have

Dmax
α (ρ∥σ) = lim

ε↘0
Dmax
α (ρ+ εI∥σ + εI) = lim

ε↘0
Dmax
α (ρ∥σ + εI),

in particular, Dmax
α is regular in its second argument, see e.g., [Hia19,HM17,Mat18].

It is immediate from their definition that Dmax
α , α ∈ [0,+∞], are subadditive on tensor prod-

ucts. For α ∈ [0, 2] ∪ {+∞}, Dmax
α is even additive, as one can easily verify from the representation

Qmax
α (ρ∥σ) = Tr fppα (ρ∥σ), ρ, σ ∈ B(H)⪈0 in (2.28). However, additivity of Dmax

α is not known for
α ∈ (2,+∞). In particular, we have

D
max
α

= Dmax
α , α ∈ [0, 2] ∪ {+∞},

≤ Dmax
α , α ∈ (2,+∞).
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Remark 2.2.27. Note that, with the above notations,

lim
α↘0

Qmax
α (ρ∥σ) = Trσ(σ−1/2ρσ,acσ

−1/2)0 = Trσ
∑
i:λi>0

Pi, (2.32)

while

Qmax
0 (ρ∥σ) = Q0(p̂∥q̂) =

∑
i

p̂(i)0q̂(i) =
∑

i:λi TrσPi>0
TrσPi = Trσ

∑
i:λi TrσPi>0

Pi. (2.33)

Since

Piσ
−1/2ρσ,acσ

−1/2Pi = λiPi,

we see that λi > 0 =⇒ Pi ̸⊥ σ0 ⇐⇒ TrσPi > 0, and hence (2.32) and (2.33) are equal to each
other, i.e.,

lim
α↘0

Dmax
α (ρ∥σ) = Dmax

0 (ρ∥σ), ρ, σ ∈ B(H)⪈0.

Remark 2.2.28. Note that if Dq
1 is an additive quantum Rényi 1-divergence then the corresponding

quantum relative entropy Dq is not additive; instead, it satisfies

Dq(ρ1 ⊗ ρ2∥σ1 ⊗ σ2) = (Tr ρ2)Dq(ρ1∥σ1) + (Tr ρ1)Dq(ρ2∥σ2)

for any ρk, σk ∈ B(Hk)⪈0, k = 1, 2. Thus, the natural notion of regularization for a quantum relative
entropy Dq on a pair ρ, σ ∈ B(H)⪈0 is

D(ρ∥σ) := (Tr ρ)Dq

1(ρ∥σ),

which is well-defined whenever Dq

1(ρ∥σ) is. Clearly, if D(ρ∥σ) is well-defined for all ρ, σ ∈ B(H)⪈0

then it gives a quantum relative entropy that is weakly additive, and if Dq is monotone under CPTP
maps then so is Dq.

Remark 2.2.29. According to Remark 2.2.26, for any given α ∈ [0,+∞], and any quantum Rényi
α-divergence Dq

α that is monotone under CPTP maps,

Dmeas
α ≤ Dq

α ≤ Dmax
α .

If the regularization of Dq
α is well-defined then we further have

D
meas
α ≤ D

q

α ≤ D
max
α ;

in particular, this is the case if Dq
α is additive, when we also have Dq

α = Dq
α.

Likewise, for any quantum relative entropy Dq that is monotone under CPTP maps,

Dmeas ≤ Dq ≤ Dmax, (2.34)
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and if the regularization of Dq is well-defined then we further have

DUm = D
meas ≤ D

q ≤ D
max = Dmax;

in particular, this is the case if Dq
1 is additive, when we also have Dq = Dq.

It is also known that

Dmeas < DUm < Dmax;

see [HM17, Theorem 4.18] for the first inequality (also [BFT17] for a slightly weaker statement),
and [HM17, Theorem 4.3] for the second inequality.

Remark 2.2.30. Note that Dmeas
+∞ = D

meas
+∞ = D

max
+∞ = Dmax

+∞ is the unique quantum extension of D+∞

that is monotone under (completely) positive trace-preserving maps, as it was observed in [Tom16],
and this unique extension also happens to be additive. On the other hand, for any other α ∈ [0,+∞),
there are infinitely many different monotone and additive quantum Rényi α-divergences; see, e.g.,
Example 2.2.24.

Remark 2.2.31. According to Remark 2.2.17, any additive quantum Rényi α-divergence Dq
α satisfies

the scaling law

Dq
α(tρ∥sσ) = Dq

α(ρ∥σ) +Dα(t∥s) = Dq
α(ρ∥σ) + log t− log s. (2.35)

In particular, this holds for Dα,z, α ∈ [0,+∞), z ∈ (0,+∞], and Dmax
α , α ∈ [0, 2]∪{+∞}. It is easy to

verify that Dmax
α also satisfies (2.35) for every α ∈ (2,+∞), where additivity is not known, and Dmeas

α

also satisfies (2.35) for every α ∈ [0,+∞], even though they are not additive unless α ∈ {0, 1/2,+∞}.
Note that a quantum Rényi 1-divergence Dq

1 satisfies the scaling law (2.35) if and only if the
corresponding quantum relative entropy Dq satisfies the scaling law

Dq(tρ∥sσ) = tDq(ρ∥σ) + (Tr ρ)D(t∥s), (2.36)

which in turn equivalent to

Dq(tρ∥σ) = (t log t) Tr ρ+ tDq(ρ∥σ), (2.37)

Dq(ρ∥sσ) = Dq(ρ∥σ) − (log s) Tr ρ. (2.38)

Remark 2.2.32. By definition, a quantum Rényi α-divergence Dq
α is trace-monotone, if

Dq
α(ρ∥σ) ≥ Dα(Tr ρ∥ Trσ) (= log Tr ρ− log Trσ) (2.39)

for any ρ, σ ∈ B(H)⪈0, and it is strictly trace-monotone if equality holds in (2.39) if and only if ρ = σ.
Likewise, a quantum relative entropy Dq is trace-monotone, if

Dq(ρ∥σ) ≥ D(Tr ρ∥ Trσ) (= (Tr ρ) log Tr ρ− (Tr ρ) log Trσ). (2.40)
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for any ρ, σ ∈ B(H)⪈0, and it is strictly trace-monotone if equality holds in (2.40) if and only if ρ = σ.
Obviously, any trace-monotone Rényi α-divergence or relative entropy is nonnegative. Moreover, is
is easy to see that if a quantum Rényi α-divergence Dq

α satisfies the scaling law (2.35) then it is
nonnegative (strictly positive) if and only if it is (strictly) trace-monotone, and similarly, if a quantum
relative entropy Dq satisfies the scaling law (2.36) then it is nonnegative (strictly positive) if and only
if it is (strictly) trace-monotone.

Remark 2.2.33. If a quantum relative entropy Dq satisfies the trace-monotonicity (2.40) then for
any τ, σ ∈ B(H)⪈0,

Dq(τ∥σ) ≥ −(Tr τ) log Trσ
Tr τ ≥ Tr τ

(
1 − Trσ

Tr τ

)
= Tr τ − Trσ, (2.41)

and equality holds everywhere when τ = σ. As an immediate consequence of this, for any σ ∈ B(H)⪈0,

Trσ = max
τ∈B(H)≥0

{Tr τ −Dq(τ∥σ)} = max
τ∈B(σ0H)≥0

{Tr τ −Dq(τ∥σ)}, (2.42)

log Trσ = max
τ∈B(H)⪈0

{
log Tr τ − 1

Tr τ D
q(τ∥σ)

}
= max
τ∈B(σ0H)⪈0

{
log Tr τ − 1

Tr τ D
q(τ∥σ)

}
. (2.43)

Note that τ is a maximizer for (2.42) if and only if Tr τ = Trσ and Dq(τ∥σ) = 0 (since the second
inequality in (2.41) holds as an equality if and only if Tr τ = Trσ), and if Dq also satisfies the scaling
property (2.36) then τ is a maximizer for (2.43) if and only if Dq

(
τ

Tr τ
∥∥ σ

Trσ
)

= 0. If Dq is strictly
trace-monotone then τ = σ is the unique maximizer for all the expressions in (2.42)–(2.43).

The variational formula (2.42) has already been noted in [Tro12, Lemma 6] in the case Dq = DUm.

Remark 2.2.34. It is easy to see from their definitions that Dmeas, DUm, and Dmax are all regular
and anti-monotone in their second argument (due to the operator monotonicity of log and operator
anti-monotonicity of the inverse [Bha97]), i.e.,

Dq(ρ∥σ + εI) ↗ Dq(ρ∥σ) as ε ↘ 0. (2.44)

By Remark 2.2.22, they are also strongly regular. It is clear from (2.24) and (2.31) that for any
fixed ε > 0, B(H)2

⪈0 ∋ (ρ, σ) 7→ Dq(ρ∥σ + εI) is continuous when q = Um or q = max. Hence, by
(2.44), DUm and Dmax are both jointly lower semicontinuous in their arguments. In particular, the
classical relative entropy is jointly lower semicontinuous, whence Dmeas, as the supremum of lower
semicontinuous functions, is also jointly lower semicontinuous.

Remark 2.2.35. It is clear from (2.24) and (2.31) that DUm and Dmax are block additive. For Dmeas

block subadditivity can be proven [MBV23].

Note, that Dmeas
α and Dmax

α extend trivially to the multivariable case.

Definition 2.2.36. For any multivariable classical Rényi divergence DP , let

Dmeas
P (W ) := sup

{
DP (M(W )) : M ∈ POVM(Cd, [m]),m ∈ N

}
,

Dmax
P (W ) := inf{DP (w) : (w,Γ) is a reverse test for W},
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and similarly for Qmeas
P and Qmax

P .

Remark 2.2.37. It is easy to see that Dmeas
P and Dmax

P are monotone under PTP maps, and if DP

is monotone then Dmeas
P and Dmax

P are quantum extensions of DP , called the measured or minimal
extension, and the maximal extension respectively. Indeed they are clearly the smallest and largest
monotone quantum extensions of the classical Rényi divergence DP .

2.3 On preordered semirings

Definition 2.3.1. A preordered semiring (S,+, ·, 0, 1,≼) consists of a set S, two commutative and
associative binary operations +, · : S × S → S that satisfy (x+ y) · z = x · z+ y · z for all x, y, z ∈ S, a
zero element and a unit element 0, 1 ∈ S (i.e., 0 + x = x and 1 · x = x for all x), and a transitive and
reflexive relation (preorder) ≼⊆ S × S. For every x, y, z ∈ S the x ≼ y preorder is required to satisfy
both x+ z ≼ y + z and x · z ≼ y · z.

Remark 2.3.2. Hereinafter I use the same +, ·, 0, 1,≼ symbols for the notation of binary operations,
neutral elements (with the multiplication sign often omitted as usual) and the preorder in the different
cases of different semirings. To emphasize the relationship of the preordered semirings to natural
numbers or nonnegative reals, I use the symbol ≼ instead of ≤ in Chapter 4 and the rest of this section
to denote the preorder in these semirings as well. In accordance with the above, I simply denote the
preordered semiring with the symbol of the underlying set and if otherwise not noted the operations
and the preorder is then clear from the context.

Definition 2.3.3. For all nonzero x ∈ S we define xk to be the k-term product x ·x · . . . ·x and x0 := 1.

Proposition 2.3.4. Let S be a preordered semiring and let x, y, s, t ∈ S, then x ≼ y and s ≼ t imply
both xs ≼ yt and x+ s ≼ y + t.

Proof. The relation x ≼ y implies xs ≼ ys, whereas s ≼ t implies ys ≼ yt. Then xs ≼ yt follows as
claimed. The proof is analogous for +.

Remark 2.3.5. Two preordered semirings will play a distinguished role: the first is the set R≥0

of nonnegative real numbers with its usual addition, multiplication and total order; the second is
the tropical semiring. In the multiplicative picture, as a set, the tropical real semiring is the set of
nonnegative real numbers TR = R≥0, with the sum of x and y being defined as max{x, y}, while ·
is the usual multiplication. Equipped with the usual total order of the real numbers, this set is a
preordered semiring.

Semirings considered in this work have the natural numbers embedded (with the sole exception of
the tropical numbers above). More precisely the canonical map which sends n ∈ N = {n}∞

n=1 to the
n-term sum 1+1+ · · ·+1 should be an order embedding (i.e., injective and m ≼ n as natural numbers
if and only if their images, also denoted by m and n, satisfy m ≼ n in the semiring considered). All
semirings considered are of polynomial growth [Fri23].

Definition 2.3.6. A semiring is of polynomial growth if there exists a u ∈ S power universal element
such that u ≽ 1 and for every nonzero x ∈ S there exists a nonnegative k such that x ≼ uk and
1 ≼ ukx.
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Proposition 2.3.7. Let S be a semiring of polynomial growth and let u be a power universal of S.
Then for all nonzero x, y ∈ S there exists a nonnegative k such that ukx ≽ y.

Proof. Follows directly from Definition 2.3.6 and Proposition 2.3.4.

The power universal element is usually not unique, but it can be shown that the subsequent
definition of the asymptotic preorder does not depend on a particular choice [Vra22, Lemma 1].

Definition 2.3.8. Let S be a preordered semiring of polynomial growth and u ∈ S a power universal
element. The asymptotic preorder is defined by x ≿ y if there exists a sequence {kn}∞

n=1 of nonnegative
integers such that limn→∞ kn/n = 0 (i.e., the sequence is sublinear) and for all n ∈ N the inequality
uknxn ≽ yn holds.

Definition 2.3.9. Let S be a preordered semiring of polynomial growth and u ∈ S a power universal
element. Let Ku be a map from (S \{0})× (S \{0}) to the nonnegative integers defined as Ku(x, y) :=
min

{
k ∈ N : ukx ≽ y

}
. By Proposition 2.3.7, Ku is well-defined and finite for all nonzero x, y ∈ S.

Proposition 2.3.10. Let S be a preordered semiring of polynomial growth and u ∈ S a power universal
element. For all nonzero x, y ∈ S the sequence {Ku(xn, yn)}∞

n=1 has the following properties:

(i) it enjoys subadditivity,

(ii) Ku(x, y) := limn→+∞
1
nKu(xn, yn) exists and Ku(x, y) = inf 1

nKu(xn, yn) ≥ 0,

(iii) if Ku(x, y) = 0, then the condition of x ≿ y in Definition 2.3.8 is satisfied by kn = Ku(xn, yn).

Proof. i) is immediate from Definition 2.3.9 and Proposition 2.3.4, (ii) then follows from Fekete’s
lemma, (iii) follows from Definition 2.3.8 and Definition 2.3.9.

Proposition 2.3.11. Let S be a preordered semiring of polynomial growth and u ∈ S a power universal
element. For all nonzero x, y ∈ S the following are equivalent:

(i) there exists a sublinear sequence of nonnegative integers {kn}∞
n=1 such that uknxn ≽ yn holds for

infinitely many n ∈ N;

(ii) Ku(x, y) = 0;

(iii) x ≿ y.

Proof. (i) ⇒ (ii) : by the definition of Ku, Ku(xn, yn) ≤ kn holds infinitely many times, thus
Ku(x, y) ≤ limn→+∞

1
nkn = 0. (ii) ⇒ (iii) : follows by Proposition 2.3.10. (iii) ⇒ (i) : follows

by Definition 2.3.8.

Corollary 2.3.12. Let S be a preordered semiring of polynomial growth and u ∈ S a power universal
element. For all nonzero x, y ∈ S the following are equivalent:

(i) for all sublinear sequences of nonnegative integers {kn}∞
n=1, the inequality uknxn ≽ yn holds for

at most finitely many n ∈ N;

(ii) Ku(x, y) > 0;
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(iii) x ̸≿ y.

Proof. Immediate from Proposition 2.3.11.

Definition 2.3.13. Let S be a preordered semiring and let x, y ∈ S. If ∃a ∈ S \ {0}) such that
ax ≽ ay then x is catalytically larger than y, in notation x ≽c y. If such an a exists, it is in turn called
a catalyst.

Proposition 2.3.14. Let S be a preordered semiring and let a, x, y ∈ S, then ax ≽ ay implies
axn ≽ ayn, for all n ∈ N.

Proof. Suppose that ax ≽ ay and axk ≽ ayk hold for a natural number k, then axk+1 ≽ axyk ≽ ayk+1,
where the first inequality follows from multiplying axk ≽ ayk by x and the second inequality follows
from multiplying ax ≽ ay by yk. The proposition then follows from induction.

Remark 2.3.15. The above proposition underlines the reason to call the element realizing ≽c a
catalyst in accordance with the notion of the same name in chemistry.

Proposition 2.3.16. x ≽ y =⇒ x ≽c y =⇒ x ≿ y.

Proof. The first implication is obvious. For the second implication consider ax ≽ ay. Then by
Proposition 2.3.14, axn ≽ ayn for all n ∈ N. There exist nonnegative integers k1, k2 such that uk1 ≽ a

and uk2a ≽ 1. Thus, for all n ∈ N, we have uk1+k2xn ≽ uk2axn ≽ uk2ayn ≽ yn. In fact there exists a
constant power realizing the asymptotic ordering.

Remark 2.3.17. Note that while in the case of some simple semirings (e.g., the nonnegative reals
or the tropical reals) all the above preorders are equivalent, generally the catalytic preorder can be
strictly weaker than the preorder and the asymptotic preorder can be strictly weaker than the catalytic
preorder. The catalytic and the asymptotic preorders are called relaxations of the preorder of the
semiring.

Definition 2.3.18. A map φ : S1 → S2 is a homomorphism between the semirings (S1,≼1) and
(S2,≼2) if φ(0) = 0, φ(1) = 1, φ(x + y) = φ(x) + φ(y), φ(xy) = φ(x)φ(y) and x ≼1 y =⇒ φ(x) ≼2

φ(y) ∀x, y ∈ S1. In notation φ ∈ Hom(S1, S2).

Remark 2.3.19. A homomorphism is a structure-preserving map between two algebraic structures
of the same type. Since in this work we are interested in homomorphisms from various preordered
semirings into the real and tropical semirings and their real orderings, the definition above includes
the preservation of the preorder in the notion of homomorphisms. The Reader may, however, come
across in the literature the term ’monotone semiring homomorphisms’ denoting the same notion as the
definition above.

Proposition 2.3.20 (Positive definiteness of homomorphisms). Let S be a preordered semiring of
polynomial growth and u ∈ S a power universal element. Then for every homomorphism f from S

into either R or TR and for every nonzero x ∈ S we have that f(x) > 0.

Proof. Since u is power universal, u ≽ 1 and thus f(u) ≽ f(1) = 1 > 0. Then for every nonzero
x ∈ S there exists a nonnegative integer k such that 1 ≼ ukx. This yields f(u)kf(x) ≽ f(1) = 1 and
f(x) ≽ f(1)f(u)−k > 0.

33



Proposition 2.3.21 (The trivial homomorphism). Let S be a preordered semiring of polynomial
growth and u ∈ S a power universal element. If f ∈ Hom(S,TR) ∪ Hom(S,R≥0) and f(u) = 1 then
f ∈ Hom(S,TR) and f(x) ≡ 1 for x ∈ S \ {0}.

Proof. Let f ∈ Hom(S,TR) ∪ Hom(S,R≥0) and suppose that f(u) = 1. Let x ∈ S \ {0} then there
exists a nonnegative integer k such that 1 ≼ ukx and uk ≽ x. Applying f and rearranging yields

1 = f(1) ≼ f(u)kf(x) = f(x) ≼ f(u)k = 1,

showing that f(x) = 1 for any x ∈ S \ {0}. Now

1 = f(1 + 1) = f(1) + f(1) = 1 + 1

yields a contradiction if f ∈ Hom(S,R≥0).

The tool to explore the relaxed preorders of a semiring by exploiting its real and tropical homo-
morphisms is the following result from [Fri23].

Theorem 2.3.22 ( [Fri23, second part of 7.15. Theorem]). Let S be a preordered semiring of polyno-
mial growth with a power universal element u and with 0 ≼ 1. Suppose that x, y ∈ S \ {0} such that
for all f ∈ Hom(S,TR) with f(u) > 1 and for all f ∈ Hom(S,R≥0) the strict inequality f(x) > f(y)
holds. Then also the following hold:

(i) there exists a nonnegative integer k such that ukxn ≽ ukyn for every sufficiently large n,

(ii) if in addition x is power universal then xn ≽ yn for every sufficiently large n,

(iii) there exists a nonzero a ∈ S such that ax ≽ ay.

Moreover, if (i) holds, then (iii) holds and there exists a nonnegative integer k such that the catalyst
in (iii) can be chosen as a := uk

∑n
j=0 x

jyn−j for any sufficiently large n.

Corollary 2.3.23. Let S be a preordered semiring of polynomial growth with a power universal u ∈ S

and with 0 ≼ 1. Then x ≿ y if and only if for all f ∈ Hom(S,TR) with f(u) > 1 and for all
f ∈ Hom(S,R≥0) the non-strict inequality f(x) ≽ f(y) holds.

Proof. The only if direction is clear: uknxn ≽ yn implies f(u)kn/nf(x) ≽ f(y), and by taking the limit
as n → ∞, also f(x) ≽ f(y). For the if direction, assuming f(x) ≽ f(y) for all such f implies that
for all n ∈ N and such f we have the strict inequalities f(uxn) > f(yn), since by Proposition 2.3.21
f(u) > 1. By Theorem 2.3.22, there exists nonzero an ∈ S, such that anuxn ≽ any

n, i.e., uxn ≽c y
n.

By Proposition 2.3.16 this implies uxn ≿ yn for all n, which in turn by [Vra22, Lemma 3] implies
x ≿ y.

Remark 2.3.24. The conditions in Theorem 2.3.22 and Corollary 2.3.23 are redundant. Indeed,
since exponentiation by any positive real acts as an automorphism on TR and since for a power
universal u one has u ≽ 1 ⇒ f(u) ≽ 1 under any homomorphism f , it is sufficient to take into ac-
count only a normalized part {f ∈ Hom(S,TR) : f(u) = 2} of the non-trivial tropical homomorphisms
{f ∈ Hom(S,TR) : f(u) > 1} in Theorem 2.3.22 and Corollary 2.3.23 (see also [Fri23, Section 7.]).
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Definition 2.3.25. We will call TSper1(S,≼) := Hom(S,R≥0) ∪ {f ∈ Hom(S,TR) : f(u) = 2} the
1-test spectrum [Fri23] of S.

Now we are ready to reformulate Theorem 2.3.22 and Corollary 2.3.23.

Theorem 2.3.26 (Theorem 2.3.22 and Corollary 2.3.23). Let S be a preordered semiring of polynomial
growth with a power universal u and with 0 ≼ 1. Suppose that x, y ∈ S \ {0}. Then we have (i) ⇒ all
of the conditions in (ii), any one of the conditions in (ii) ⇒ (iii) and (iii) ⇔ (iv) in the following:

(i) For all f ∈ TSper1(S,≼) : f(x) > f(y).

(ii) (a) There exists a nonnegative integer k such that ukxn ≽ ukyn for every sufficiently large n.

(b) If in addition x is power universal then xn ≽ yn for every sufficiently large n.

(c) There exists a nonzero a ∈ S such that ax ≽ ay (i.e., x ≽c y).

(iii) For all f ∈ TSper1(S,≼) : f(x) ≽ f(y).

(iv) x ≿ y.

Moreover, if (ii)/(a) holds, then (ii)/(c) holds and there exists a nonnegative integer k such that the
catalyst in (ii)/(c) can be chosen as a := uk

∑n
j=0 x

jyn−j for any sufficiently large n.

Remark 2.3.27. If in addition to the requirements in Theorem 2.3.26 the power universal u is invert-
ible, then the conditions (ii)/(a) and (ii)/(b) can be switched with the simpler condition of xn ≽ yn

for every sufficiently large n.
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3 Barycentric Rényi divergences

3.1 Definitions

In this chapter we use the term “quantum relative entropy” in a more restrictive (though still very
general) sense than in the previous chapter. Namely, a quantum divergence Dq will be called a
quantum relative entropy if, on top of being a quantum extension of the classical relative entropy, it
is also nonnegative, it satisfies the scaling law (2.36), and the following support condition:

Dq(ρ∥σ) < +∞ ⇐⇒ ρ0 ≤ σ0. (3.1)

Note that by Remark 2.2.32, any quantum relative entropy in the above sense is also trace-monotone.
In particular, no quantum relative entropy can take the value −∞.

Example 3.1.1. It is easy to verify that that DUm, Dmeas and Dmax are all quantum relative entropies
in the above more restrictive sense.

Definition 3.1.2. Let W ∈ B(X ,H)⪈0 be a gcq channel, let P ∈ P±
f (X ) and

S+ :=
∧

x:P (x)>0

W 0
x , S− :=

∧
x:P (x)<0

W 0
x ,

and for every x ∈ X , let Dqx be a quantum relative entropy. We define

Qb,q
P (W ) := sup

τ∈B(S+H)≥0

{
Tr τ −

∑
x∈X

P (x)Dqx(τ∥Wx)
}
, (3.2)

ψb,q
P (W ) := logQb,q

P (W ), (3.3)

RDq,left(W,P ) := inf
ω∈S(S+H)

∑
x∈X

P (x)Dqx(ω∥Wx). (3.4)

Here, q := (qx)x∈X , Dq := (Dqx)x∈X , and RDq,left(W,P ) is the P -weighted left Dq-radius of W . We
call any ω attaining the infimum in (3.4) a P -weighted left Dq-center for W .

When P /∈
{

1{x} : x ∈ X
}

, we also define the P -weighted barycentric Rényi-divergence of W cor-
responding to Dq as

Db,q
P (W ) := 1∏

x∈X (1 − P (x))

(
− logQb,q

P

((
Wx

TrWx

)
x∈X

))
.

Remark 3.1.3. Since I almost exclusively consider only left divergence radii and left divergence
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centers in this work, I will normally omit “left” from the terminology.

Remark 3.1.4. Note that by definition,

P (x) ≥ 0, x ∈ X =⇒ S− = I, P (x) ≤ 0, x ∈ X =⇒ S+ = I.

Definition 3.1.5. Let Dq = (Dq0 , Dq1) be quantum relative entropies. For any two nonzero PSD
operators ρ, σ ∈ B(H)⪈0, and any α ∈ [0,+∞), let

Qb,q
α (ρ∥σ) := sup

τ∈B(ρ0H)≥0

{Tr τ − αDq0(τ∥ρ) − (1 − α)Dq1(τ∥σ)}, (3.5)

ψb,q
α (ρ∥σ) := logQb,q

α (ρ∥σ), (3.6)

Db,q
α (ρ∥σ) := 1

α− 1 logQb,q
α (ρ∥σ) − 1

α− 1 log Tr ρ, (3.7)

where we define the last quantity only for α ∈ [0, 1) ∪ (1,+∞). Db,q
α (ρ∥σ) is called the barycentric

Rényi α-divergence of ρ and σ corresponding to Dq.

Remark 3.1.6. When Dq0 = Dq1 = Dq, we will use the simpler notation Db,q
α instead of Db,(q0,q1)

α .

Remark 3.1.7. Note that with the choice X = {0, 1}, W0 = ρ, W1 = σ, P (0) = α, and P (1) = 1 − α

(3.5) and (3.6) are special cases of (3.2) and (3.3), respectively, when α ∈ (0, 1), and we will show
in Lemma 3.1.10 that also (3.7) is a special case of (3.4) in this case. When α = 0, the restriction
τ0 ≤ S+ in (3.2) would give τ0 ≤ σ0, while we use τ0 ≤ ρ0 in (3.5). The reason for this is to guarantee
the continuity of Db,q

α at 0; see [MBV23, Proposition V.35.].

Remark 3.1.8. It is easy to see that when P is a probability measure, the supremum in (3.2) and
the infimum in (3.4) can be equivalently taken over B(H)≥0 and S(H), respectively, i.e.,

Qb,q
P (W ) = sup

τ∈B(H)≥0

{
Tr τ −

∑
x∈X

P (x)Dqx(τ∥Wx)
}
, (3.8)

RDq,left(W,P ) = inf
ω∈S(H)

∑
x∈X

P (x)Dqx(ω∥Wx),

and in the 2-variable case we have

Qb,q
α (ρ∥σ) = sup

τ∈B(H)≥0

{Tr τ − αDq0(τ∥ρ) − (1 − α)Dq1(τ∥σ)}

= sup
τ∈B((ρ0∧σ0)H)≥0

{Tr τ − αDq0(τ∥ρ) − (1 − α)Dq1(τ∥σ)}, α ∈ (0, 1). (3.9)

In the general case, the restriction τ0 ≤ S+ is introduced to avoid the appearance of infinities of
opposite signs in

∑
x∈X P (x)Dqx(τ∥Wx). In the 2-variable case (3.5), the restriction τ0 ≤ ρ0 also

serves to guarantee that Qb,q
α is a quantum extension of Qα for α > 1, which would not be true, for

instance, if it was replaced by τ0 ≤ ρ0 ∧ σ0; see, e.g., [MBV23, Corollary 5.40.].
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Remark 3.1.9. Note that (3.5) can be seen as a 2-variable extension of the variational formula (2.42).
In particular, we have

Qb,q
1 (ρ∥σ) = max

τ∈B(ρ0H)≥0
{Tr τ −Dq0(τ∥ρ)} = Tr ρ, (3.10)

where the first equality is by definition (3.5), and the second equality is due to (2.42). Thus,

ψb,q
1 (ρ∥σ) = log Tr ρ,

and for every α ∈ [0, 1) ∪ (1,+∞),

Db,q
α (ρ∥σ) = 1

α− 1 logQb,q
α (ρ∥σ) − 1

α− 1 log Tr ρ =

= ψb,q
α (ρ∥σ) − ψb,q

1 (ρ∥σ)
α− 1 .

By Remark 2.2.33, the maximum in (3.10) is attained at τ if and only if Tr τ = Tr ρ and Dq0(τ∥ρ) = 0;
in particular, τ = ρ is the unique maximizer in (3.10) when Dq0 is strictly positive.

At α = 0, (3.5) and (2.42) give

σ0 ≤ ρ0 =⇒ Qb,q
0 (ρ∥σ) = Trσ =⇒ Db,q

0 (ρ∥σ) = log Tr ρ− log Trσ.

Lemma 3.1.10. (i) In the setting of Definition 3.1.2,

− logQb,q
P (W ) = RDq,left(W,P ) (3.11)

Moreover, if S+ ≤ S− then a τ ∈ B(S+H)≥0 is optimal in (3.2) if and only if

Qb,q
P (W ) = Tr τ and

∑
x∈X

P (x)Dqx(τ∥Wx) = 0, (3.12)

and if τ ̸= 0 is optimal in (3.2) then ω := τ/Tr τ is optimal in (3.4). Conversely, for any ω that is
optimal in (3.4) τ := e−RDq,left(W,P )ω is optimal in (3.2).

(ii) In the setting of Definition 3.1.5,

− logQb,q
α (ρ∥σ) = inf

ω∈S(ρ0H)
{αDq0(ω∥ρ) + (1 − α)Dq1(ω∥σ)}, α ∈ [0,+∞). (3.13)

Assume for the rest that α ∈ [0, 1] or ρ0 ≤ σ0. Then τ is optimal in (3.5) if and only if

Qb,q
α (ρ∥σ) = Tr τ and αDq0(τ∥ρ) + (1 − α)Dq1(τ∥σ) = 0, (3.14)

and if τ ̸= 0 is optimal in (3.5) then ω := τ/Tr τ is optimal in (3.13). Conversely, for any ω that is
optimal in (3.13), τ := eψ

b,q
α (ρ∥σ)ω optimal in (3.5).

Proof. (i) Assume first that S+ = 0. Then the only admissible τ ∈ B(S+H)≥0 in (3.2) is τ = 0, whence
Qb,q
P (W ) = 0, according to (2.22), and thus ψb,q

P (W ) = −∞. On the other hand, the infimum in (3.4)
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is taken over the empty set, and hence it is equal to +∞. Thus, (3.11) and (3.12) hold.
Assume next that S+ ̸= 0. If there exists an x ∈ X such that P (x) < 0 and S+ ≰W 0

x then taking
τ := ω := S+/TrS+ yields

Qb,q
P (W ) ≥ Tr τ −

∑
x:P (x)>0

P (x)Dqx(τ∥Wx)

︸ ︷︷ ︸
∈R

−
∑

x:P (x)<0

P (x)Dqx(τ∥Wx)

︸ ︷︷ ︸
=−∞

= +∞,

and

RDq,left(W,P ) ≤
∑

x:P (x)>0

P (x)Dqx(ω∥Wx)

︸ ︷︷ ︸
∈R

+
∑

x:P (x)<0

P (x)Dqx(ω∥Wx)

︸ ︷︷ ︸
=−∞

= −∞,

(where we used that Dqx does not take the value −∞), whence (3.11) holds.
Finally, if 0 ̸= S+ ≤ S− then the proof follows easily from representing a positive semidefinite

operator τ ∈ B(S+H)≥0 as a pair (ω, t) ∈ S(S+H) × [0,+∞). Indeed, we have

Qb,q
P (W ) = sup

ω∈S(S+H)
sup

t∈[0,+∞)

{
Tr tω −

∑
x∈X

P (x)Dqx(tω∥Wx)
}

= sup
ω∈S(S+H)

sup
t∈[0,+∞)

t− t log t− t
∑
x∈X

P (x)Dqx(ω∥Wx)︸ ︷︷ ︸
=:c(ω)

, (3.15)

where the first equality is by definition, and the second equality follows from the scaling property
(2.37). Note that c(ω) ̸= ±∞ by assumption, and the inner supremum in (3.15) is equal to e−c(ω),
attained at t = e−c(ω), as for the function [0,+∞) ∋ t 7→ t − t log t − tc =: f(t) we have f ′(t) =
− log t− c = 0 ⇐⇒ t = e−c, f ′′(t) = −1/t < 0, t ∈ (0,+∞). From these, all the remaining assertions
in (i) follow immediately.

The assertions in (ii) are special cases of the corresponding ones in (i) when α ∈ (0,+∞) (also
taking into account (3.9) when α ∈ (0, 1)). The case α = 0 can be verified analogously to the above;
we omit the easy details.

Remark 3.1.11. Clearly, when α > 1 and ρ0 ≰ σ0 then the set of optimal τ operators in (3.5) is exactly{
τ ∈ B(ρ0H)⪈0 : τ0 ≰ σ0}, and the set of optimal ω states in (3.13) is exactly

{
ω ∈ S(ρ0H) : ω0 ≰ σ0}.

Corollary 3.1.12. Assume that S+ ≤ S−. Then

Qb,q
P (W ) = max

{
Tr τ : τ ∈ B(S+H)≥0,

∑
x∈X

P (x)Dqx(τ∥Wx) = 0
}
.

Likewise, if α ∈ [0, 1] or ρ0 ≤ σ0, then

Qb,q
α (ρ∥σ) = max

{
Tr τ : τ ∈ B(ρ0H)≥0, αD

q0(τ∥ρ) + (1 − α)Dq1(τ∥σ) = 0
}
.
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Proof. Immediate from the characterizations of the optimal τ in (3.12) and (3.14).

Remark 3.1.13. Note that in the case S+ ≤ S−, the condition
∑
x∈X P (x)Dqx(τ∥Wx) = 0 is nec-

essary for the optimality of τ , but not sufficient. Indeed, it is easy to see from the scaling property
(2.37) that {

τ ∈ B(S+H) :
∑
x∈X

P (x)Dqx(τ∥Wx) = 0
}

=
{

exp
(

−
∑
x∈X

P (x)Dqx(τ∥Wx)
)
ω : ω ∈ S(S+H)

}
∪ {0}.

On the other hand, each τ ∈ B(S+H) \ {0} with
∑
x∈X P (x)Dqx(τ∥Wx) = 0 has the extremality

property

Tr(λτ) −
∑
x∈X

P (x)Dqx(λτ∥Wx) = (λ− λ log λ) Tr τ

< Tr τ = Tr(τ) −
∑
x∈X

P (x)Dqx(τ∥Wx)

for every λ ∈ (0, 1) ∪ (1,+∞), where the first equality is again due to the scaling property (2.37).

Remark 3.1.14. Under the conditions given in Lemma 3.1.10, for the supremum in (3.2) to be a
maximum, it is sufficient if the infimum in (3.4) is a minimum. For the latter, a natural sufficient
condition is that each Dqx with x ∈ suppP is lower semicontinuous in its first argument (when P is a
probability measure), or continuous in its first argument with its support dominated by the support of
a fixed second argument (when P can take negative values), since the domain of optimization, namely,
S(S+H), is a compact set.

Examples of quantum relative entropies that are lower semicontinuous in their first argument (in
fact, in both of their arguments), include Dmeas, DUm, and their γ-weighted versions introduced
in [MBV23, Section IV.], as well Dmax, and obviously, all possible convex combinations of these. DUm

and Dmax are also clearly continuous in their first argument when its support is dominated by the
support of a fixed second argument.

Remark 3.1.15. Using Lemma 3.1.10 we get that for every α ∈ [0, 1) ∪ (1,+∞),

Db,q
α (ρ∥σ) = 1

α− 1 logQb,q
α (ρ∥σ) − 1

α− 1 log Tr ρ

= 1
1 − α

inf
ω∈S(ρ0H)

{αDq0(ω∥ρ) + (1 − α)Dq1(ω∥σ)} − 1
α− 1 log Tr ρ (3.16)

= 1
1 − α

inf
ω∈S(ρ0H)

{
αDq0

(
ω
∥∥∥ ρ

Tr ρ

)
+ (1 − α)Dq1(ω∥σ)

}
+ log Tr ρ

= 1
1 − α

inf
ω∈S(ρ0H)

{
αDq0

(
ω
∥∥∥ ρ

Tr ρ

)
+ (1 − α)Dq1

(
ω
∥∥∥ σ

Trσ

)}
+ log Tr ρ− log Trσ, (3.17)

where the first equality is by definition, the second equality follows from (3.13), and the third and the
fourth equalities from the scaling law (2.38). Moreover, for α ∈ (0, 1), the infimum can be taken over
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S(H), i.e.,

Db,q
α (ρ∥σ) = 1

1 − α
inf

ω∈S(H)
{αDq0(ω∥ρ) + (1 − α)Dq1(ω∥σ)} − 1

α− 1 log Tr ρ

= 1
1 − α

inf
ω∈S(H)

{
αDq0

(
ω
∥∥∥ ρ

Tr ρ

)
+ (1 − α)Dq1

(
ω
∥∥∥ σ

Trσ

)}
+ log Tr ρ− log Trσ,

because if ω0 ≰ ρ0 then Dq0(ω∥ρ) = Dq0
(
ω
∥∥∥ ρ

Tr ρ

)
= +∞. The above formulas explain the term

“barycentric Rényi divergence”.

Definition 3.1.16. For α ∈ (0, 1), any ω attaining the infimum in (3.16) will be called an α-weighted
(left) Dq-center for (ρ, σ).

3.2 Barycentric Rényi divergences are quantum Rényi divergences

In this section we show that the barycentric Rényi α-divergences are quantum Rényi divergences for
every α ∈ (0, 1), provided that the defining quantum relative entropies are monotone under pinchings.
This latter condition does not pose a serious restriction; indeed, all the concrete quantum relative
entropies that we consider in this work (e.g., measured, Umegaki, maximal, and the γ-weighted versions
of these [MBV23, Section IV.]) are monotone under PTP maps, and hence also under pinchings.

Isometric invariance holds even without this mild restriction, and also for α > 1:

Lemma 3.2.1. All the quantities in (3.2)–(3.7) are invariant under isometries.

Proof. We prove the statement only for Qb,q
P , as for the other quantities it either follows from that,

or the proof goes the same way. Let W ∈ B(X ,H)⪈0 be a gcq channel, P ∈ P±
f (X ), and V : H → K

be an isometry. Obviously, S̃+ :=
∧
x:P (x)>0(VWxV

∗)0 = V (
∧
x:P (x)>0 W

0
x )V ∗ = V S+V

∗, and for any
τ ∈ B(S̃+K)≥0 there exists a unique τ̂ ∈ B(S+H)≥0 such that τ = V τ̂V ∗. Thus,

Qb,q
P (VWV ∗) = sup

τ∈B(S̃+K)≥0

{
Tr τ −

∑
x∈X

P (x)Dqx(τ∥VWxV
∗)
}

= sup
τ̂∈B(S+H)≥0

{
TrV τ̂V ∗ −

∑
x∈X

P (x)Dqx(V τ̂V ∗∥VWxV
∗)
}

= sup
τ̂∈B(S+H)≥0

{
Tr τ̂ −

∑
x∈X

P (x)Dqx(τ̂∥Wx)
}

= Qb,q
P (W ),

where the third equality follows by the isometric invariance of the relative entropies.

Recall that Dq is said to be monotone under pinchings if

Dq

(
r∑
i=1

PiρPi

∥∥∥ r∑
i=1

PiσPi

)
≤ Dq(ρ∥σ)

for any ρ, σ ∈ B(H)⪈0 and P1, . . . , Pr ∈ P(H) such that
∑r
i=1 Pi = I.
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Lemma 3.2.2. Let W ∈ B(X ,H)⪈0 be a gcq channel that is classical on the support of some P ∈
Pf (X ), i.e., there exists an ONB (ei)d−1

i=0 in H such that Wx =
∑d−1
i=0 W̃x(i)|ei⟩⟨ei|, where W̃x(i) :=

⟨ei,Wxei⟩, i ∈ [d], x ∈ suppP . If all Dqx , x ∈ suppP , are monotone under pinchings then

Qb,q
P (W ) =

∑
i∈S̃

∏
x∈suppP

W̃x(i)P (x), (3.18)

where S̃ := ∩x∈suppP supp W̃x and supp W̃x =
{
i ∈ [d] : W̃x(i) > 0

}
; moreover, there exists a unique

optimal τ in (3.2), given by

τq
P (W ) := τP (W̃ ) :=

∑
i∈S̃

|ei⟩⟨ei|
∏

x∈suppP
W̃x(i)P (x) . (3.19)

Proof. If S+ = 0 then Qb,q
P (W ) = 0, and the RHS of (3.18) is an empty sum, whence the equality in

(3.18) holds trivially.
Thus, for the rest we assume that S+ ̸= 0. Let E(·) :=

∑d−1
i=0 |ei⟩⟨ei|(·)|ei⟩⟨ei| be the pinching

corresponding to the joint eigenbasis of the Wx, x ∈ suppP , guaranteed by the classicality assumption.
For any τ ∈ B(S+H)≥0,

Tr τ −
∑
x∈X

P (x) Dqx(τ∥Wx)︸ ︷︷ ︸
≥Dqx (E(τ)∥E(Wx))

≤ Tr τ︸︷︷︸
=Tr E(τ)

−
∑
x∈X

P (x)Dqx(E(τ)∥ E(Wx)︸ ︷︷ ︸
=Wx

)

= Tr E(τ) −
∑
x∈X

P (x)Dqx(E(τ)∥Wx)),

where the inequality follows from the monotonicity of the Dqx under pinchings. Thus, the supremum
in (3.2) can be restricted to τ operators that can be written as τ =

∑d
i=1 τ̃(i)|ei⟩⟨ei| with some

τ̃(i) ∈ [0,+∞), i ∈ [d]. Clearly, τ0 ≤ S+ is equivalent to supp τ̃ ⊆ S̃. For any such τ ,

Tr τ −
∑
x∈X

P (x)Dqx(τ∥Wx) = Tr τ −
∑
x∈X

P (x)
∑
i∈S̃

[τ̃(i) log τ̃(i) − τ̃(i) logWx(i)]

=
∑
i∈S̃

[
τ̃(i) − τ̃(i) log τ̃(i) + τ̃(i)

∑
x∈suppP

P (x) log W̃x(i)
]
.

The supremum of this over all such τ is

∑
i∈S̃

e

∑
x∈supp P

P (x) log W̃x(i) =
∑
i∈S̃

∏
x∈suppP

W̃x(i)P (x),

which is uniquely attained at the τ = τq
P (W ) given in (3.19), as for the function [0,+∞) ∋ t 7→

t − t log t − tc =: f(t) we have f ′(t) = − log t − c = 0 ⇐⇒ t = e−c, f ′′(t) = −1/t < 0, t ∈ (0,+∞).
This proves (3.18).

Corollary 3.2.3. In the setting of Lemma 3.2.2, the P -weighted left Dq-radius of W can be given
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explicitly as

RDq,left(W,P ) = − log
∑
i∈S̃

∏
x∈suppP

W̃x(i)P (x),

and if S̃ ̸= ∅ then there exists a unique P -weighted left Dq-center for W , given by

ωq
P (W ) := τq(W,P )

Tr τq(W,P ) =
∑
i∈S̃

|ei⟩⟨ei|
∏
x∈suppP W̃x(i)P (x)∑

j∈S̃
∏
x∈suppP W̃x(j)P (x)

=: ωP (W̃ ). (3.20)

Proof. Immediate from Lemmas 3.1.10 and 3.2.2.

Lemma 3.2.2 yields immediately the following:

Corollary 3.2.4. Assume that ρ, σ ∈ B(H)⪈0 commute, and hence can be written as
ρ =

∑d
i=1 ρ̃(i)|ei⟩⟨ei|, σ =

∑d
i=1 σ̃(i)|ei⟩⟨ei|, in some ONB (ei)di=1. If Dq0 and Dq1 are monotone under

pinchings then

Qb,q
α (ρ∥σ) = Qα(ρ̃∥σ̃) =

d∑
i=1

ρ̃(i)ασ̃(i)1−α, α ∈ (0, 1),

and there exists a unique optimal τ in (3.5), given by

τq
α (ρ∥σ) := τα(ρ̃∥σ̃) :=

d∑
i=1

|ei⟩⟨ei|ρ̃(i)ασ̃(i)1−α. (3.21)

As a special case of Corollary 3.2.3, we get the following:

Corollary 3.2.5. In the setting of Corollary 3.2.4, if ρ0 ∧σ0 ̸= 0 then for every α ∈ (0, 1) there exists
a unique α-weighted Dq-center for (ρ, σ), given by

ωq
α(ρ∥σ) := τq

α (ρ∥σ)
Tr τq

α (ρ∥σ) =
d∑
i=1

|ei⟩⟨ei|
ρ̃(i)ασ̃(i)1−α∑d
j=1 ρ̃(j)ασ̃(j)1−α

=: ωα(ρ̃∥σ̃). (3.22)

Proof. Immediate from Corollary 3.2.4 and Lemma 3.1.10.

Remark 3.2.6. Note that τq
P (W ) in (3.19) and ωq

P (W ) in (3.20) are independent of Dq, as long as
all Dqx , x ∈ suppP , are monotone under pinchings. Likewise, τq

α (ρ∥σ) in (3.21) and ωq
α(ρ∥σ) in (3.22)

are independent of Dq0 and Dq1 , as long as both of them are monotone under pinchings.

Lemma 3.2.1 and Lemma 3.2.2 together give the following:

Proposition 3.2.7. If Dqx , x ∈ suppP , are quantum relative entropies that are monotone under
pinchings then Qb,q

P is a quantum extension (in the sense of Definition 2.2.11) of the classical QP given
in Definition 2.2.7. Likewise, if Dq0 and Dq1 are two quantum relative entropies that are monotone
under pinchings then for every α ∈ (0, 1) the corresponding barycentric Rényi α-divergence Db,q

α is a
quantum Rényi α-divergence (in the sense of Definition 2.2.11).
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Remark 3.2.8. Note that in the classical case the barycentric Rényi α-divergence is equal to the
unique classical Rényi α-divergence also for α > 1; see (2.14). On the other hand, if Dq0 ̸= Dq1 then
it may happen that Db,q

α is not a quantum Rényi α-divergence for some α > 1.

Note that for a fixed i ∈ ∩x∈suppP supp W̃x, the expression
∏
x∈suppP W̃x(i)P (x) in (3.18) is the

weighted geometric mean of (W̃x(i))x∈suppP with weights (P (x))x∈suppP . This motivates the following:

Definition 3.2.9. If Dq, W ∈ B(X ,H)⪈0, and P ∈ P±
f (X ) are such that there exists a unique

optimizer τ =: τq
P (W ) in (3.2) then this τ is called the P -weighted Dq-geometric mean of W , and is

also denoted by GDq

P (W ) := τq
P (W ).

Similarly, if there exists a unique optimizer τ =: τq
α (ρ∥σ) in (3.5) then it is called the α-weighted

Dq-geometric mean of ρ and σ, and it is also denoted by GDq

α (ρ∥σ) := τq
α (ρ∥σ).

Remark 3.2.10. Note that the quantity GDq

P (W ) is the weighted geometric mean on classical oper-
ators and thus is a quantum extension of that. Furthermore if GDq

P (W ) exists, then by Lemma 3.1.10

Q
GDq

P

P (W ) := TrGD
q

P (W ) = Qb,q
P (W ).

In particular if GDq

P (ρ∥σ) exists, then Qb,q
P (ρ∥σ) = TrGDq

P (ρ∥σ).

In classical statistics, the family of states (ωα(ρ̃∥σ̃))α∈(0,1) given in (3.22) is called the Hellinger arc.
(Note that if ρ̃ and σ̃ are probability distributions with equal supports then the Hellinger arc connects
them in the sense that limα↘0 ωα(ρ̃∥σ̃) = ρ̃, limα↗1 ωα(ρ̃∥σ̃) = σ̃.) This motivates the following:

Definition 3.2.11. Assume that ρ, σ ∈ B(H)⪈0 and Dq0 , Dq1 are such that for every α ∈ (0, 1)
there exists a unique α-weighted Dq-center ωq

α(ρ∥σ) for (ρ, σ). Then (ωq
α(ρ∥σ))α∈(0,1) is called the

Dq-Hellinger arc for ρ and σ.
More generally, if W and Dq are such that for every P ∈ Pf (X ) there exists a unique P -weighted

Dq-center ωq
P (W ) for W then we call (ωq

P (W ))P∈Pf (X ) the Dq-Hellinger body for W .

Remark 3.2.12. Note that by Lemma 3.1.10, for given P ∈ P±
f (X ), W ∈ B(X ,H)⪈0, and Dq, there

exists a unique nonzero P -weighted Dq-geometric mean GD
q

P (W ) = τq
P (W ) if and only if there exists

a unique P -weighted Dq-center ωq
P (W ) for W , and in this case we have

ωq
P (W ) = GD

q

P (W )
TrGDq

P (W )
,

Qb,q
P (W ) = TrGD

q

P (W ),

0 =
∑
x∈X

P (x)Dqx(GD
q

P (W )∥Wx),

− logQb,q
P (W ) =

∑
x∈X

P (x)Dqx(ωq
P (W )∥Wx).

The following is a multivariable generalization of [MO17, Theorem 3.6] :
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Proposition 3.2.13. Let P ∈ P±
f (X ), W ∈ B(X ,H)⪈0, and for every x ∈ suppP , let Dqx = DUm.

Assume that 0 ̸= S+ ≤ S−. Then there exist a unique P -weighted DUm-geometric mean GDUm

P (W ) :=
τUm
P (W ) of W and a unique P -weighted DUm-center ωUm

P for W , given by

GDUm

P (W ) = τUm
P (W ) = S+e

∑
x∈supp P

P (x)S+(l̂ogWx)S+ ,

ωUm
P (W ) = GDUm

P (W )
TrGDUm

P (W )
= S+e

∑
x∈supp P

P (x)S+(l̂ogWx)S+

TrS+e

∑
x∈supp P

P (x)S+(l̂ogWx)S+
,

respectively, and

− logQb,Um
P (W ) = − log TrGDUm

P (W ) =
∑
x∈X

DUm(ωUm
P (W )∥Wx).

Proof. Note that for σ := S+e

∑
x∈supp P

P (x)S+(logWx)S+ and any τ ∈ B(S+H)≥0, we have

DUm(τ∥σ) = Tr τ l̂og τ − Tr τ l̂og
(
S+e

∑
x∈supp P

P (x)S+(l̂ogWx)S+

)
= Tr τ l̂og τ − Tr τ

∑
x∈suppP

P (x) l̂ogWx

=
∑

x∈suppP
P (x)

(
Tr τ l̂og τ − Tr τ l̂ogWx

)
︸ ︷︷ ︸

=DUm(τ∥Wx)

(3.23)

Thus,

Qb,Um
P (W ) = sup

τ∈B(S+H)≥0

Tr τ −
∑

x∈suppP
P (x)DUm(τ∥Wx)


= max
τ∈B(S+H)≥0

{
Tr τ − DUm(τ∥σ)

}
(3.24)

= Trσ,

where the first equality is by definition, the second equality is by (3.23), and last equality is due
to (2.42). Moreover, since DUm is strictly trace-monotone (see, e.g., [HMPB11, Proposition A.4]),
Remark 2.2.33 yields that τ = σ is the unique state attaining the maximum in (3.24). This proves the
assertion about the P -weighted DUm-geometric mean, and the rest of the assertions follow from this
according to Remark 3.2.12.

Corollary 3.2.14. Let Dqx = DUm, x ∈ X , and let W ∈ B(X ,H)⪈0 be such that ∧x∈X0W
0
x ̸= 0 for

any finite subset W0 ⊆ W . Then the DUm-Hellinger body for W exists.

Remark 3.2.15. Note that for P ∈ Pf (X ) and for W ∈ B(X ,H)⪈0, such that Wx share the same
support, x ∈ X , i.e., W 0

x = S, x ∈ X ,

GDUm

P (W ) = ĜP,+∞(W ) := Se
∑

x
P (x)l̂ogWx .
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Remark 3.2.16. Note that in the 2-variable case,

Db,Um
α (ρ∥σ) = Dα,+∞(ρ∥σ), α ∈ (0, 1) ∪ (1,+∞),

where the latter was given in (2.23). This was already proved in [MO17, Theorem 3.6].

3.3 Properties

One of the most important properties of quantum divergences is monotonicity under quantum oper-
ations (i.e., CPTP maps). Many of the important quantum divergences are monotone under more
general trace-preserving maps, e.g., dual Schwarz maps in the case of Petz-type Rényi divergences
for α ∈ [0, 2] [Pet86b], or PTP maps in the case of the sandwiched Rényi divergences for α ≥ 1/2
[Bei13,Jen21,MR17], and the measured as well as the maximal Rényi divergences for α ∈ [0,+∞], by
definition. It is easy to see that for α ∈ [0, 1], the barycentric Rényi α-divergences are monotone under
the same class of PTP maps as their generating quantum relative entropies. More generally, we have
the following:

Proposition 3.3.1. If all Dqx , x ∈ X , are monotone nonincreasing under a trace-nondecreasing posi-
tive map Φ ∈ P+(H,K) then Qb,q

P is monotone nondecreasing, and RDq,left is monotone nonincreasing
under Φ, i.e., for every gcq channel W ∈ B(X ,H)⪈0 and every P ∈ Pf (X ),

Qb,q
P (Φ(W )) ≥ Qb,q

P (W ), (3.25)

RDq,left(Φ(W ), P ) ≤ RDq,left(W,P ). (3.26)

Proof. We have

Qb,q
P (Φ(W )) = sup

τ∈B(K)≥0

{
Tr τ −

∑
x∈X

P (x)Dqx(τ∥Φ(Wx))
}

≥ sup
τ̃∈B(H)≥0

Tr Φ(τ̃)︸ ︷︷ ︸
≥Tr τ̃

−
∑
x∈X

P (x)Dqx(Φ(τ̃)∥Φ(Wx))︸ ︷︷ ︸
≤Dqx (τ̃∥Wx)


≥ sup
τ̃∈B(H)≥0

{
Tr τ̃ −

∑
x∈X

P (x)Dqx(τ̃∥Wx)
}

= Qb,q
P (W ),

where the equalities are by definition (3.2) and by (3.8), the first inequality is due to constraining the
supremum to a (possibly) smaller domain, and the second one follows from the assumptions. This
proves (3.25), and (3.26) follows immediately by Lemma 3.1.10.

Note that the normalized relative entropies Dq0
1 and Dq1

1 satisfy the scaling property (2.35) by
assumption. This property is inherited by all the corresponding barycentric Rényi divergences Dq

α.
More generally, we have the following:
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Lemma 3.3.2. For any P ∈ P±
f (X ), any gcq channel W ∈ B(X ,H)⪈0 and any t ∈ (0,+∞)X ,

Qb,q
P ((txWx)x∈X ) =

 ∏
x∈suppP

tP (x)
x

Qb,q
P (W ), (3.27)

− logQb,q
P ((txWx)x∈X ) = − logQb,q

P (W ) −
∑
x

P (x) log tx. (3.28)

In particular, Qb,q
α is homogeneous.

Proof. (3.28) is straightforward to verify from (3.11), and the scaling law (2.38), and (3.27) follows
immediately from it.

Corollary 3.3.3. The barycentric Rényi divergences satisfy the scaling law (2.35), i.e.,

Db,q
α (tρ∥sσ) = Db,q

α (ρ∥σ) + log t− log s,

for every ρ, σ ∈ B(H)⪈0, t, s ∈ (0,+∞), α ∈ [0,+∞].

Proof. Immediate from Lemma 3.3.2, or alternatively, from (3.17).

Proposition 3.3.4. For all α ∈ (0, 1) we have

Db,q
α (ρ∥σ) = +∞ ⇐⇒ ρ0 ∧ σ0 = 0.

Proof. By (3.7), Db,q
α (ρ∥σ) = +∞ ⇐⇒ Qb,q

α (ρ∥σ) = 0. By (3.5) and the support condition (3.1), for
all α ∈ (0, 1), Qb,q

α (ρ∥σ) = 0 ⇐⇒ ρ0 ∧ σ0 = 0.

This characterization of the finiteness of the 2-variable barycentric Rényi divergences gives an easily
verifiable condition for a quantum Rényi α-divergence not being a barycentric Rényi α-divergence, as
follows:

Proposition 3.3.5. Let Dq
α be a quantum Rényi α-divergence for some α ∈ (0, 1) with the property

that Dq
α(ρ∥σ) = +∞ ⇐⇒ ρ ⊥ σ. Then there exist no quantum relative entropies Dq0 and Dq1 with

which Dq
α = Db,q

α .

Proof. Let ρ, σ ∈ B(H)⪈0 be such that ρ0 ∧ σ0 = 0 and ρ ̸⊥ σ. Then

Db,q
α (ρ∥σ) = +∞ > Dq

α(ρ∥σ)

for any quantum relative entropies Dq0 and Dq1 , according to Proposition 3.3.4. Since such pairs exist
in any dimension larger than 1, we get that Db,q

α ̸= Dq
α.

Corollary 3.3.6. Dα,z is not a barycentric Rényi α-divergence for any α ∈ (0, 1) and z ∈ (0,+∞).

Proof. It is obvious by definition that for any α ∈ (0, 1) and z ∈ (0,+∞), and any ρ, σ ∈ B(H)⪈0,
Dα,z(ρ∥σ) = +∞ ⇐⇒ ρ ⊥ σ, and hence the assertion follows immediately from Proposition 3.3.5.
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Corollary 3.3.7. The measured Rényi α-divergence Dmeas
α is not a barycentric Rényi α-divergence

for any α ∈ (0, 1).

Proof. According to Proposition 3.3.5 we only need to prove that for any α ∈ (0, 1) and any ρ, σ ∈
B(H)⪈0, Dmeas

α (ρ∥σ) = +∞ ⇐⇒ ρ ⊥ σ. This is well known and easy to verify, but we give the
details for the readers’ convenience. If ρ ⊥ σ then the measurement M0 := ρ0, M1 := I − ρ0 gives
Dmeas
α (ρ∥σ) ≥ Dα(M(ρ)∥M(σ)) = +∞. If ρ ̸⊥ σ then we have Dmeas

α (ρ∥σ) ≤ Dα,1(ρ∥σ) < +∞, where
the first inequality is due to the monotonicity of the Petz-type Rényi α-divergence under measurements
[Pet86b].

Remark 3.3.8. Apart from our papers [MBV23, BV23], multivariable Rényi divergences have been
defined before in [FLO23]. These are (n + 1)-variable Rényi divergences defined as extensions of the
(α, z)-divergences given in Example 2.2.24 and are defined as

DP (0),z

(
W0

∥∥∥∥∥
(
W

P (1)
zκ1

1 #γ1

(
W

P (2)
zκ2

2 #γ2 . . .

(
W

P (n−1)
zκn−1
n−1 #γn−1W

P (n)
zκn
n

))) z
1−P (0)

)
, (3.29)

where P ∈ P([n+1]) is a probability distribution, γi ∈ (0, 1), i ∈ {1, . . . , n−1} are arbitrary parameters,
γn := 0, and κi := γ1 . . . γi−1 · (1 − γi), i = 1, . . . , n. These multivariable divergences are proven to
be monotone under CPTP maps, if z ≥ 1 [FLO23] and they inherit the additivity property from the
(α, z)-divergences.

Note that the barycentric Rényi divergences are defined for general positive definite operators and
do not differentiate between the input operators. The extension of the quantities in (3.29) to states
Wi, ∀i of not necessarily full support is not clear from [FLO23] and (3.29) does have W0 in a specific
role compared to the other arguments. This property distinguishes the quantity in (3.29) from the
barycentric divergences. Indeed if Wi,∀i have identical support and suppW0 is not perpendicular to
it, then (3.29) takes a finite value, but the barycentric divergences may take +∞ even in this case as
discussed in Proposition 3.3.5 and Corollary 3.3.6. It should be also noted that while the quantity in
(3.29) inherits additivity the same property is not proved or disproved for barycentric divergences.

In the case when the sates Wi,∀i have identical support and we let P (0) = 0, the quantity (3.29)
is well-defined, finite, does not have any of the remaining Wi in a designated role and takes the form

− log Tr
(
W

P (1)
zκ1

1 #γ1

(
W

P (2)
zκ2

2 #γ2 . . .

(
W

P (n−1)
zκn−1
n−1 #γn−1W

P (n)
zκn
n

)))z
. (3.30)

Whether the quantity (3.30) has any connection to (3.11) is an open question.

3.4 Maximal Rényi divergences vs. the barycentric maximal Rényi divergences

The following lemma is trivial from the definitions.

Lemma 3.4.1. If P ∈ Pf (X ) and Dqx ≤ Dq̃x , x ∈ suppP , then

− logQb,q
P ≤ − logQb,q̃

P . (3.31)
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In particular, if X = {0, 1} then

Dq0 ≤ Dq̃0 , Dq1 ≤ Dq̃1 =⇒ Db,q
α ≤ Db,q̃

α , α ∈ [0, 1].

Proposition 3.4.2. Let P ∈ Pf (X ), and let Dqx , x ∈ suppP , be monotone under CPTP maps. Then

− logQmeas
P ≤ − logQb,meas

P ≤ − logQb,q
P ≤ − logQb,max

P ≤ − logQmax
P . (3.32)

In particular, if Dq0 and Dq1 are quantum relative entropies that are monotone under CPTP maps
then

Dmeas
α ≤ Db,meas

α ≤ Db,q
α ≤ Db,max

α ≤ Dmax
α , α ∈ [0, 1]. (3.33)

Proof. The second and the third inequalities in (3.32) are immediate from (3.31) and (2.34). Since
Dmeas and Dmax are monotone under CPTP maps, so are − logQb,meas

P and − logQb,max
P as well,

according to Proposition 3.3.1. Hence, the first and the last inequalities in (3.32) follow immediately
from Remark 2.2.37 and Proposition 3.2.7. The inequalities in (3.33) follow the same way.

By Proposition 3.4.2, for every α ∈ (0, 1), Dmeas
α ≤ Db,meas

α , but we have already seen in Corol-
lary 3.3.7 that in fact Dmeas

α cannot be a barycentric Rényi α-divergence, or in other words that all
barycentric Rényi α-divergences can be strictly larger on some pair of operators than the minimal
Rényi α-divergence for a given α ∈ (0, 1).

Also by Proposition 3.4.2, for every α ∈ (0, 1), Db,max
α ≤ Dmax

α . Our aim in this section is to
show that equality does not hold. In fact, we conjecture the stronger relation that for noncommuting
invertible PSD operators ρ, σ, Db,max

α (ρ∥σ) < Dmax
α (ρ∥σ), α ∈ (0, 1), which is supported by numerical

examples. We will prove this below in the special case where the inputs are 2-dimensional. Of course,
this already gives at least that

Db,max
α ⪇ Dmax

α , α ∈ (0, 1).

Let ρ, σ ∈ B(H)>0. Recall the definition of the maximal Rényi α-divergence and the optimal reverse
test (p̂, q̂, Γ̂) from Example 2.2.26. Let

ωα := ωα(p̂∥q̂) = 1
Qα(p̂∥q̂)

r∑
i∈i=1

p̂(i)αq̂(i)1−α1{i}
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be as in (3.22). Then for any α ∈ (0, 1),

1
α− 1 log Tr ρ+Dmax

α (ρ∥σ) = 1
α− 1 log Tr p̂+Dα(p̂∥q̂)

= α

1 − α
D(ωα∥p̂) +D(ωα∥q̂)

≥ α

1 − α
Dmax(Γ̂(ωα)∥ Γ̂(p̂)︸︷︷︸

=ρ

) +Dmax(Γ̂(ωα)∥ Γ̂(q̂)︸︷︷︸
=σ

) (3.34)

= α

1 − α
Dmax(Γ̂(ωα)∥ρ) +Dmax(Γ̂(ωα)∥σ),

where the first two equalities follow from Example 2.2.26 and (2.14)–(2.15), the inequality is due to the
monotonicity of Dmax under positive trace-preserving maps, and the third equality is by the definition
of Γ̂. By (2.15) and (2.27)–(2.29),

ωα =
r∑
i=1

λαi TrσPi
Qmax
α (ρ∥σ)1{i},

Qmax
α (ρ∥σ) = Qα(p̂∥q̂) =

r∑
i=1

λαi TrσPi = Trσ(σ−1/2ρσ−1/2)α = Trσ#αρ,

Γ̂(ωα) = 1
Qmax
α (ρ∥σ)

∑
i

λαi σ
1/2Piσ

1/2 = 1
Qmax
α (ρ∥σ) σ

1/2(σ−1/2ρσ−1/2)ασ1/2︸ ︷︷ ︸
=σ#αρ

=: σ̂#αρ, (3.35)

where σ#αρ is the α-weighted Kubo-Ando geometric mean of ρ and σ (see Example 4.3.9 and the
discussion before it).

The inequality in (3.34) is in fact an equality, according to the following:

Lemma 3.4.3. Let ρ, σ ∈ B(H)>0, and assume that α ∈ (0, 2] \ {1}. Then

Dmax
α (ρ∥σ) = α

1 − α
Dmax

(
σ#αρ

Qmax
α (ρ∥σ)

∥∥∥ρ)+Dmax
(

σ#αρ

Qmax
α (ρ∥σ)

∥∥∥σ)− 1
α− 1 log Tr ρ. (3.36)

Proof. Let Qmax
α := Qmax

α (ρ∥σ). Since ρ and σ are invertible,

σ#αρ = ρ#1−ασ = ρ1/2(ρ−1/2σρ−1/2)1−αρ1/2. (3.37)

Thus, by (2.30),

Dmax
(

σ#αρ

Qmax
α (ρ∥σ)

∥∥∥ρ) = 1
Qmax
α

Tr ρ(ρ−1/2σρ−1/2)1−α log (ρ−1/2σρ−1/2)1−α

Qmax
α

= − logQmax
α

Qmax
α

Tr ρ(ρ−1/2σρ−1/2)1−α︸ ︷︷ ︸
=Trσ#αρ=Qmax

α

+ 1 − α

Qmax
α

Tr ρ(ρ−1/2σρ−1/2)1−α log
(
ρ−1/2σρ−1/2

)
= − logQmax

α − 1 − α

Qmax
α

Trσ(σ−1/2ρσ−1/2)α log
(
σ−1/2ρσ−1/2

)
, (3.38)
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where in the last equality we used that the transpose function of f(·) := (·)1−α log(·) is f̃(·) :=
−(·)α log(·), whence

Tr ρ(ρ−1/2σρ−1/2)1−α log
(
ρ−1/2σρ−1/2

)
= − Trσ(σ−1/2ρσ−1/2)α log

(
σ−1/2ρσ−1/2

)
, (3.39)

according to the connection between the transpose function and the operator perspective function, see
(2.3). Similarly,

Dmax
(

σ#αρ

Qmax
α (ρ∥σ)

∥∥∥σ) = 1
Qmax
α

Trσ(σ−1/2ρσ−1/2)α log (σ−1/2ρσ−1/2)α
Qmax
α

= − logQmax
α

Qmax
α

Trσ(σ−1/2ρσ−1/2)α︸ ︷︷ ︸
=Qmax

α

+ α

Qmax
α

Trσ(σ−1/2ρσ−1/2)α log
(
σ−1/2ρσ−1/2

)
. (3.40)

From (3.38) and (3.40) we obtain that the RHS of (3.36) is

1
α− 1 logQmax

α − 1
α− 1 log Tr ρ = Dmax

α (ρ∥σ),

where the equality is by definition.

Remark 3.4.4. Using (3.38)–(3.40), for invertible ρ and ω a straightforward computation gives

Dmax(Γ̂(ωα)∥ρ) = D(ωα∥p̂) = − logQmax
α (ρ∥σ) + (1 − α)

∑
i

ωα(i) log q̂(i)
p̂(i) ,

Dmax(Γ̂(ωα)∥σ) = D(ωα∥q̂) = − logQmax
α (ρ∥σ) − α

∑
i

ωα(i) log q̂(i)
p̂(i) .

From these, the equality in (3.34) can also be verified directly.

Our aim now is to prove that σ̂#αρ is not an optimal ω in the variational formula (3.16) for Db,max
α

when α ∈ (0, 1). We prove this (at least in the 2-dimensional case) by showing that any state ω on
the line segment connecting σ̂#αρ and the maximally mixed state πH := I/d, d := dim H, that is
close enough to σ̂#αρ but is not equal to it, gives a strictly lower value than the RHS of (3.36) when
substituted into α

1−αD
max(·∥ρ) +Dmax(·∥σ) − 1

α−1 log Tr ρ.

Lemma 3.4.5. Let ρ, σ ∈ B(H)>0, and let P1, . . . , Pr ∈ P(H) and λ1, . . . , λr ∈ R, be such that∑r
i=1 Pi = I, and

σ−1/2ρσ−1/2 =
r∑
i=1

λiPi.
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Then

∂πH := d

dt

[
αDmax

(
(1 − t)σ̂#αρ+ tπH

∥∥ρ)+ (1 − α)Dmax
(

(1 − t)σ̂#αρ+ tπH
∥∥σ)]∣∣∣∣∣

t=0

= −1 + 1
d

∑
i,j

TrPiσPjσ−1
[
α log[1](λα−1

i , λα−1
j

)
λα−1
i + (1 − α) log[1](λαi , λαj )λαi ]︸ ︷︷ ︸

=:Λα,i,j

, (3.41)

where

Λα,i,j =

α(1 − α)(log λi − log λj) (λi−λj)
(λα

i
−λα

j
)(λ1−α

i
−λ1−α

j
) , λi ̸= λj ,

1, λi = λj .
(3.42)

Proof. Let us introduce the notation

(ρ/σ) := σ−1/2ρσ−1/2 =
∑
i

λiPi.

Let

X := ρ1/2σ−1/2, and X = U |X| = U
∑
i

λ
1/2
i Pi (3.43)

be its polar decomposition. Then

ρ−1/2σρ−1/2 = (X−1)∗(X−1) = U

(∑
i

λ−1
i Pi

)
U∗ =

∑
i

λ−1
i UPiU

∗︸ ︷︷ ︸
=:Ri

(3.44)

is a spectral decomposition of ρ−1/2σρ−1/2. Recall from (3.35) that

σ̂#αρ := 1
Qmax
α

σ#αρ = 1
Qmax
α

ρ#1−ασ,

where Qmax
α := Qmax

α (ρ∥σ), and note the following identities:

σ−1/2σ̂#αρ σ
−1/2 = 1

Qmax
α

(σ−1/2ρσ−1/2)α =
∑
i

λαi
Qmax
α

Pi,

ρ−1/2σ̂#αρ ρ
−1/2 = 1

Qmax
α

(ρ−1/2σρ−1/2)1−α =
∑
i

λα−1
i

Qmax
α

Ri,

where in the last line we used (3.37).
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Recall that πH = I/d denotes the maximally mixed state on H. We have

d

dt
Dmax

(
(1 − t)σ̂#αρ+ tπH

∥∥σ)∣∣∣
t=0

= Tr σ1/2
(
πH − σ̂#αρ

)
σ−1/2︸ ︷︷ ︸

=I/d− 1
Qmax

α
σ(σ−1/2ρσ−1/2)α

log σ−1/2σ̂#αρ σ
−1/2︸ ︷︷ ︸

= 1
Qmax

α
(σ−1/2ρσ−1/2)α

+ Tr σ1/2σ̂#αρ σ
−1/2︸ ︷︷ ︸

= 1
Qmax

α
σ(σ−1/2ρσ−1/2)α

∑
i,j

log[1]
(

λαi
Qmax
α

,
λαj
Qmax
α

)
Piσ

−1/2
(
πH − σ̂#αρ

)
σ−1/2Pj︸ ︷︷ ︸

=d−1Piσ−1Pj− 1
Qmax

α
δi,jλα

i
Pi

= − logQmax
α + α

d
Tr log

(
σ−1/2ρσ−1/2

)
+ 1
Qmax
α

(logQmax
α ) Trσ(σ−1/2ρσ−1/2)α︸ ︷︷ ︸

=Qmax
α

− α

Qmax
α

Trσ(σ−1/2ρσ−1/2)α log
(
σ−1/2ρσ−1/2

)

+ 1
dQmax

α

∑
i,j

log[1]
(

λαi
Qmax
α

,
λαj
Qmax
α

)
Trσ (σ−1/2ρσ−1/2)αPiσ−1Pj︸ ︷︷ ︸

=λα
i
Piσ−1Pj

− 1
Qmax
α

Trσ(σ−1/2ρσ−1/2)α
∑
i

log[1]
(

λαi
Qmax
α

,
λαi
Qmax
α

)
λαi
Qmax
α︸ ︷︷ ︸

=1

Pi

= α

d
Tr log

(
σ−1/2ρσ−1/2

)
− α

Qmax
α

Trσ(σ−1/2ρσ−1/2)α log
(
σ−1/2ρσ−1/2

)
+ 1
dQmax

α

∑
i,j

log[1]
(

λαi
Qmax
α

,
λαj
Qmax
α

)
λαi TrσPiσ−1Pj − 1

Qmax
α

Trσ(σ−1/2ρσ−1/2)α︸ ︷︷ ︸
=Qmax

α

An exactly analogous calculation yields (by exchanging ρ and σ and replacing α with 1−α, and noting
(3.44))

d

dt
Dmax

(
(1 − t)σ̂#αρ+ tπH

∥∥ρ)∣∣∣
t=0

= 1 − α

d
Tr log

(
ρ−1/2σρ−1/2

)
− 1 − α

Qmax
α

Tr ρ(ρ−1/2σρ−1/2)1−α log
(
ρ−1/2σρ−1/2

)
+ 1
dQmax

α

∑
i,j

log[1]

(
λα−1
i

Qmax
α

,
λα−1
j

Qmax
α

)
λα−1
i Tr ρRiρ−1Rj − 1.
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Thus,

∂πH = d

dt

[
αDmax

(
(1 − t)σ̂#αρ+ tπH

∥∥ρ)+ (1 − α)Dmax
(

(1 − t)σ̂#αρ+ tπH
∥∥σ)]∣∣∣∣∣

t=0

= α(1 − α)
d

[
Tr log

(
ρ−1/2σρ−1/2

)
︸ ︷︷ ︸

=
∑

i
logλ−1

i

+ Tr log
(
σ−1/2ρσ−1/2

)
︸ ︷︷ ︸

=
∑

i
logλi

]
︸ ︷︷ ︸

=0

− α(1 − α)
Qmax
α

[
Tr ρ(ρ−1/2σρ−1/2)1−α log

(
ρ−1/2σρ−1/2

)
+ Trσ(σ−1/2ρσ−1/2)α log

(
σ−1/2ρσ−1/2

)]
︸ ︷︷ ︸

=0

+ α

d

∑
i,j

log[1](λα−1
i , λα−1

j

)
λα−1
i Tr ρRiρ−1Rj + 1 − α

d

∑
i,j

log[1](λαi , λαj )λαi TrσPiσ−1Pj − 1

= α

d

∑
i,j

log[1](λα−1
i , λα−1

j

)
λα−1
i Tr ρRiρ−1Rj + 1 − α

d

∑
i,j

log[1](λαi , λαj )λαi TrσPiσ−1Pj − 1,(3.45)

where the first expression above is equal to 0 due to (3.44), and the second expression is equal to 0
according to (3.39).

Note that by (3.43),

U = X|X|−1 = ρ1/2σ−1/2(ρ/σ)−1/2,

hence

U∗ = (ρ/σ)−1/2σ−1/2ρ1/2

=

U−1 = (ρ/σ)1/2σ1/2ρ−1/2,

which in turn yields

U = (U−1)∗ = ρ−1/2σ1/2(ρ/σ)1/2.

Thus,

Tr ρRiρ−1Rj

= Tr ρ(UPiU∗)ρ−1(UPjU∗)

= Tr ρ ρ−1/2σ1/2(ρ/σ)1/2︸ ︷︷ ︸
=U

Pi (ρ/σ)−1/2σ−1/2ρ1/2︸ ︷︷ ︸
=U∗

ρ−1 ρ1/2σ−1/2(ρ/σ)−1/2︸ ︷︷ ︸
=U

Pj (ρ/σ)1/2σ1/2ρ−1/2︸ ︷︷ ︸
=U∗

= Trσ1/2 (ρ/σ)1/2Pi(ρ/σ)−1/2︸ ︷︷ ︸
=Pi

σ−1 (ρ/σ)−1/2Pj(ρ/σ)1/2︸ ︷︷ ︸
=Pj

σ1/2

= TrσPiσ−1Pj .
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Writing this back into (3.45), we get

∂πH = −1 + 1
d

∑
i,j

TrσPiσ−1Pj

[
α log[1](λα−1

i , λα−1
j

)
λα−1
i + (1 − α) log[1](λαi , λαj )λαi ]︸ ︷︷ ︸

=:Λα,i,j

. (3.46)

It follows by a straightforward computation that Λα,i,j can be written as in (3.42). Note that Λα is
symmetric, i.e., Λα,i,j = Λα,j,i. Exchanging the indices i and j in (3.46) yields (3.41).

Our aim is therefore to prove that ∂πH < 0. For this, we will need the following:

Lemma 3.4.6. The following equivalent inequalities are true: for every α ∈ (0, 1),

log λ− log η
λ− η

>
1
α

λα − ηα

λ− η
· 1

1 − α

λ1−α − η1−α

λ− η
, λ, η ∈ (0,+∞), λ ̸= η,(3.47)

log x
x− 1 >

1
α

xα − 1
x− 1

1
1 − α

x1−α − 1
x− 1 , x ∈ (0,+∞) \ {1},∫ 1

0

1
tx+ 1 − t

dt >

∫ 1

0

1
(tx+ 1 − t)α dt

∫ 1

0

1
(tx+ 1 − t)1−α dt, x ∈ (0,+∞) \ {1}.(3.48)

Proof. It is straightforward to verify that the above inequalities are equivalent to each other. The
inequality in (3.48) follows from the strict concavity of the power functions, as∫ 1

0

1
(tx+ 1 − t)γ dt <

(∫ 1

0

1
tx+ 1 − t

dt

)γ
, γ ∈ (0, 1).

Corollary 3.4.7. In the setting of Lemma 3.4.5,

Λα,i,j > 1, i ̸= j.

Proof. Immediate from (3.47).

Note that we may take the Pi in Lemma 3.4.5 to be rank 1, i.e., Pi = |ei⟩⟨ei|, i = 1, . . . , d, for some
orthonormal eigenbasis of σ−1/2ρσ−1/2. Then (3.41) can be rewritten as

∂πH = −1 + 1
d

∑
i,j

⟨ei, σej⟩︸ ︷︷ ︸
=:Si,j

⟨ej , σ−1ei⟩︸ ︷︷ ︸
=(S−1)T

i,j

·Λα,i,j (3.49)

= −1 + ⟨u, (S ⋆ (S−1)T ⋆ Λα)u⟩,

where u = 1√
d
(1, 1, . . . , 1) and A ⋆ B denotes the component-wise (also called Hadamard, or Schur)

product of two matrices A and B.
Next, note that

(S−1)j,i = (−1)i+j det([S]i,j)
detS ,
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where [S]i,j is the matrix that we get by omitting the i-th row and j-th column of S. Thus, (3.49) can
be rewritten as

∂πH = −1 + 1
d

d∑
i=1

1
detS

d∑
j=1

(−1)i+jSi,j det([S]i,j)Λα,i,j .

Note that for every i,

1
detS

d∑
j=1

(−1)i+jSi,j det([S]i,j) = (SS−1)i,i = 1.

Theorem 3.4.8. Let ρ, σ ∈ B(H)>0, where dim H = 2, and assume that ρσ ̸= σρ. Then

Db,max
α (ρ∥σ) < Dmax

α (ρ∥σ), α ∈ (0, 1).

Proof. By Corollary 3.3.3, we may assume that Tr ρ = Trσ = 1. By the above, it is sufficient to prove
that ∂πH < 0. Let (e1, e2) be an orthonormal eigenbasis of σ−1/2ρσ−1/2 with corresponding eigenvalues
λ1, λ2. By assumption, ρσ ̸= σρ, which implies that λ1 ̸= λ2. (In fact, λ1 = λ2 ⇐⇒ ρ = cσ for some
c > 0, in which case c = λ1 = λ2.) Writing out everything in the ONB (e1, e2), we have

S = 1
2

[
1 + z x− iy

x+ iy 1 − z

]

with some r := (x, y, z) ∈ R3 such that ∥r∥2 = x2 + y2 + z2 < 1, and

(S−1)T = 4
1 − ∥r∥2 · 1

2

[
1 − z −x− iy

−x+ iy 1 + z

]
,

whence

S ⋆ (S−1)T = 1
1 − ∥r∥2

[
1 − z2 −(x2 + y2)

−(x2 + y2) 1 − z2

]
.

Hence, by (3.49) and the symmetry Λα,1,2 = Λα,2,1,

∂πH = −1 + 1
1 − ∥r∥2

[
1 − z2 − (x2 + y2)Λα,1,2

]
.

Since σ is not diagonal in the given ONB (otherwise it would commute with ρ), we have (x2 +y2) > 0.
Combining this with Corollary 3.4.7, we get ∂πH < 0, as required.
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4 An axiomatic derivation of quantum Rényi divergences

In this chapter we turn to the study of relative submajorization of pairs of families (ρ, σ). We rely on
Section 2.3 and in particular on Theorem 2.3.26 to characterize relaxations of relative submajorization
by monotone functions. To use Theorem 2.3.26, we first define the precise setup and show that the
preorder of relative submajorization on the semiring of pairs of families satisfies the required technical
conditions outlined in Section 2.3. Then we provide a classification of the relevant monotones when
restricted to classical families, to then extend the classification to arbitrary ρ and commuting σ, and
construct some monotones for general pairs.

In the last section of this chapter we discuss some application of the results of this chapter. Relative
submajorization between (ρ, σ) and the continuous error functions (1−α), β on X and Y , respectively,
will translate to (α, β) being achievable as a pair of collections of individual type I and type II errors in
a composite hypothesis testing problem, with ρ and σ as composite hypotheses of states of full support
(following the idea of [Ren16]). This in turn means that asymptotic relative submajorization is an
adequate way to characterize achievable exponents in the strong converse regime. In Subsection 4.4.1
we give necessary and sufficient conditions for pairs of error exponents being achievable for the strong
converse regime of hypothesis testing with composite hypotheses as above, with the additional re-
quirement, that the operators in σ commute with each other. These conditions are given in terms of
pair-wise sandwiched Rényi divergences between states from ρ and naive geometric means of the states
from σ.

In the rest of the last section of this chapter we describe in more detail how equivariant relative
submajorization (including non-compact groups) can be encoded as the relative submajorization of
certain families, with applications to timetranslation symmetric Gibbs-preserving maps and to group-
symmetric hypothesis testing. We relate a type of approximate asymptotic transformation to asymptotic
relative submajorization. Then using the monotones in the fully quantum case, we find a new family
of monotone quantum Rényi divergences.

4.1 The preordered semiring of pairs of families

Let X,Y be nonempty compact Hausdorff topological spaces. Let (ρ, σ) be a pair of continuous
maps, where ρ : X → B(H)>0 and σ : Y → B(H)>0 for some finite dimensional Hilbert space
H. Two pairs (ρ, σ) and (ρ′, σ′) are equivalent if there exists a unitary U : H → H′ such that
∀x ∈ X : Uρ(x)U∗ = ρ′(x) and ∀y ∈ Y : Uσ(y)U∗ = σ′(y). Let SX,Y,H denote the set of equivalence
classes of pairs of such families for a given finite dimensional Hilbert space H. Let SX,Y = ∪HSX,Y,H.

Definition 4.1.1. We will call elements of SX,Y pairs of families (of positive operators).
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The pointwise direct sum and tensor product operations are well-defined on equivalence classes,
and turn SX,Y into a commutative semiring. The zero element is represented by the unique pair over
a zero dimensional Hilbert space, while 1 is represented by the pair consisting of constant functions
with value I over C.

X,Y will be the index sets for the families. I adopt the convention that if any map ρ : X → B(H)>0
and σ : Y → B(H)>0 appear outside of brackets, then any operations or relations they appear in, are
to be understood pointwise, including sum, product, direct sum, tensor product or image under a
linear super operator, usually notated by T . More precisely, given any map T : B(H)>0 → B(H′)>0
the composition is to be understood as T (ρ) : x 7→ T (ρ(x)) and T (σ) : y 7→ T (σ(y)).

Definition 4.1.2. (ρ, σ) relatively submajorizes (ρ′, σ′), in notation (ρ, σ) ≽ (ρ′, σ′), if there exists
a completely positive trace-nonincreasing map T : B(H)>0 → B(H′)>0 such that T (ρ) ≥ ρ′ and
T (σ) ≤ σ′.

Remark 4.1.3. For the relative submajorization or any relaxations of it, I will note the completely
positive trace-nonincreasing map explicitly if it needs to be emphasized: (ρ, σ) ≽T (ρ′, σ′).

Lemma 4.1.4. Let T : B(H)>0 → B(H′)>0 be a trace-nonincreasing map and suppose that ∃ρ ∈
B(H)>0 such that TrT (ρ) = Tr ρ, then T is trace-preserving.

Proof. Let τ ∈ B(H)>0 and suppose that TrT (τ) < Tr τ . Then ∃ϵ > 0, such that ρ− ϵτ > 0 and

TrT (ρ) = TrT (ϵτ) + TrT (ρ− ϵτ) < Tr ϵτ + Tr(ρ− ϵτ) = Tr ρ,

yielding a contradiction.

Proposition 4.1.5.

(i) If (ρ, σ) ≽ (ρ′, σ′), then Tr ρ ≥ TrT (ρ) ≥ Tr ρ′.

(ii) If (ρ, σ) ≽T (ρ′, σ′) and ∃x ∈ X such that ρ(x) = ρ′(x), then T is trace-preservng.

(iii) If (ρ, σ) ≽T (ρ′, σ′) and T is trace-preserving, then for all x ∈ X and y ∈ Y , Tr ρ(x) =
Tr ρ′(x) ⇐⇒ T (ρ(x)) = ρ′(x) and Trσ(y) = Trσ′(y) ⇐⇒ T (σ(y)) = σ′(y).

Proof.

(i) Follows from the trace-nonincreasing property and the definition of relative submajorization.

(ii) By (i), Tr ρ(x) = TrT (ρ(x)) = Tr ρ′(x), the assertion then follows from Lemma 4.1.4.

(iii) ∀x ∈ X if Tr ρ(x) = Tr ρ′(x), then T (ρ(x)) − ρ′(x) is a positive semidefinite operator with zero
trace, thus T (ρ(x)) = ρ′(x). Similarly, for all y ∈ Y , if Trσ(y) = Trσ′(y), then T (σ(y)) − σ′(y)
is a negative semidefinite operator with zero trace therefore T (σ(y)) = σ′(y).
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Proposition 4.1.6. Let X be an arbitrary compact Hausdorff topological space and Y be a one-point
space. Let (ρ, σ), (ρ′, σ′) ∈ SX,Y be elements of the semiring, such that (ρ, σ) ≽T (ρ′, σ′) holds for
some trace-nonincreasing completely positive T : B(H)>0 → B(H′)>0. Then there exists a completely
positive trace-nonincreasing map T̃ : B(H)>0 → B(H′)>0 such that (ρ, σ) ≽T̃ (ρ′, σ′), and in addition

(i) if Trσ ≥ Trσ′ then T̃ (σ) = σ′;

(ii) if Trσ = Trσ′ then T̃ is trace-preserving.

Proof. Let T : B(H)>0 → B(H′)>0 be a completely positive trace-nonincreasing map, such that
(ρ, σ) ≽T (ρ′, σ′). Define the map T̃ as

T̃ (X) = T (X) + [TrX − TrT (X)]τ (4.1)

for some τ ≥ 0 with Tr τ ≤ 1 to be specified later. Then T̃ is a sum of completely positive maps,
therefore it is also completely positive. It is also trace-nonincreasing since

Tr T̃ (X) = TrT (X) + [TrX − TrT (X)] Tr τ ≤ TrT (X) + [TrX − TrT (X)] = TrX,

which also shows that T̃ is trace-preserving if and only if Tr τ = 1. The inequality involving ρ is still
satisfied because τ ≥ 0:

T̃ (ρ) = T (ρ) + [Tr ρ− TrT (ρ)]τ ≥ T (ρ) ≥ ρ′.

It remains to choose τ in (4.1) in such a way that the implied statements in (i)-(ii) and T̃ (σ) ≤ σ′ are
satisfied. If Trσ = TrT (σ), then for any τ ≥ 0 with Tr τ = 1, T̃ is trace-preserving, T̃ (σ) = T (σ) ≤ σ′

and by Trσ = TrT (σ) ≤ Trσ′, we have that Trσ ≥ Trσ′ ⇔ Trσ = Trσ′ and so we have the implication
in (i) by (iii) of Proposition 4.1.6. Otherwise TrT (σ) < Trσ, since T is trace-nonincreasing and we
can choose

τ := σ′ − T (σ)
Trσ − TrT (σ) .

This choice ensures

T̃ (σ) = T (σ) + [Trσ − TrT (σ)] σ′ − T (σ)
Trσ − TrT (σ) = T (σ) + σ′ − T (σ) = σ′,

and in addition if Trσ = Trσ′, then Tr τ = 1 and T̃ is trace-preserving.

Definition 4.1.7. (ρ, σ) relatively majorizes (ρ′, σ′), in notation (ρ, σ) ≽1 (ρ′, σ′), if there exists a
completely positive trace-preserving map T : B(H)>0 → B(H′)>0 such that T (ρ) = ρ′ and T (σ) = σ′.

Proposition 4.1.8. If (ρ, σ) ≽T1 (ρ′, σ′), then (ρ, σ) ≽T (ρ′, σ′) as well.

Proof. Follows from the definitions. Indeed the preorder of relative majorization is stricter in every
regard than the preorder of relative submajorization.

Definition 4.1.9. We call normalized elements of SX,Y pairs of families of states and use the notation
S1
X,Y for the set of them. That is (ρ, σ) ∈ S1

X,Y if (ρ, σ) ∈ SX,Y and Tr ρ = 1X and Trσ = 1Y .
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Remark 4.1.10. S1
X,Y is not closed under addition. Nevertheless

{
S1
X,Y , ·, 1

}
is a monoid.

Proposition 4.1.11. Let X,Y be compact Hausdorff topological spaces. Let (ρ, σ), (ρ′, σ′) ∈ SX,Y

be elements of the semiring, such that Tr ρ = Tr ρ′, Trσ = Trσ′, then (ρ, σ) ≽ (ρ′, σ′) if and only if
(ρ, σ) ≽1 (ρ′, σ′). In particular for any (ρ, σ), (ρ′, σ′) ∈ S1

X,Y , (ρ, σ) ≽ (ρ′, σ′) if and only if (ρ, σ) ≽1

(ρ′, σ′). By choosing σ = σ′ to be the same family of states on both sides, for any such (ρ, σ), (ρ′, σ) ∈
S1
X,Y , (ρ, σ) ≽ (ρ′, σ) translates to the existence of a σ-preserving CPTP map mapping the compact

family of states ρ of full support to ρ′.

Proof. Follows from Proposition 4.1.8 and Proposition 4.1.5.

Remark 4.1.12. Any homomorphism of {SX,Y ,+, ·, 0, 1,≼} is monotone under ≼ and thus, by Propo-
sition 4.1.8, needs to be monotone under ≼1. Hence, any homomorphism of {SX,Y ,+, ·, 0, 1,≼} into
the real or tropical numbers must be monotone under quantum channels (CPTP maps), i.e. must
satisfy the data processing inequality.

Remark 4.1.13. The common way to define relative majorization and relative submajorization is
without the semiring structure of SX,Y that we need here. The common way is to define the former
between pairs of states and the latter between pairs of unnormalized positive semidefinite operators.

Example 4.1.14. Let X and Y be one-point spaces and let ρ, σ be states of full support over some
Hilbert space H and let ρ′, σ′ be states of full support over some Hilbert space H′. Then by Proposi-
tion 4.1.11 (ρ, σ) ≽ (ρ′, σ′) translates to relative majorization between the pairs of states.

(i) If we further specify H = H′ and σ = σ′ = IH
dim H , then (ρ, σ) ≽ (ρ′, σ′) translates to the so-called

majorization preorder between ρ and ρ′, meaning that there exists a unital channel mapping ρ
to ρ′.

(ii) If we specify instead σ = σ′ = e−βH

Tr e−βH to be Gibbs states for the Hamiltonian H, then (ρ, σ) ≽

(ρ′, σ′) translates to the so-called thermomajorization preorder [HO13] between ρ and ρ′, meaning
that there exists a Gibbs-preserving channel mapping ρ to ρ′.

Example 4.1.15. We will see in Proposition 4.4.4 that for the continuous error functions (1 − α), β
on X and Y , respectively, (ρ, σ) ≽ ((1 − α), β) will translate to (α, β) being achievable as a pair of
collections of individual type I and type II errors in a composite hypothesis testing problem.

Proposition 4.1.16. SX,Y is a preordered semiring with relative submajorization.

Proof. Identity and the composition of two completely positive trace-nonincreasing maps are once
again completely positive trace-nonincreasing maps for which the conditions in Definition 4.1.2 are
met and thus ≽ is a reflexive and transitive relation, i.e., a preorder. We need to verify that the
preorder is compatible with the semiring operations. Suppose that (ρ, σ) ≽ (ρ′, σ′) and let T be a
completely positive trace-nonincreasing map as in Definition 4.1.2. Let (ω, τ) ∈ SX,Y be a pair of
families on K, i.e., ω : X → B(K)>0 and τ : Y → B(K)>0. Then

(T ⊗ idB(K))(ρ⊗ ω) = T (ρ) ⊗ ω ≥ ρ′ ⊗ ω

(T ⊗ idB(K))(σ ⊗ τ) = T (σ) ⊗ τ ≤ σ′ ⊗ τ,
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therefore (ρ, σ)(ω, τ) ≽ (ρ′, σ′)(ω, τ).
The map T̃ : B(H ⊕ K)>0 → B(H′ ⊕ K)>0 defined as

T̃

([
A B

C D

])
=
[
T (A) 0

0 D

]

is also completely positive and trace-nonincreasing, and satisfies

T̃ (ρ⊕ ω) = T (ρ) ⊕ ω ≥ ρ′ ⊕ ω

T̃ (σ ⊕ τ) = T (σ) ⊕ τ ≤ σ′ ⊕ τ,

therefore (ρ, σ) + (ω, τ) ≽ (ρ′, σ′) + (ω, τ).

Proposition 4.1.17. SX,Y , is of polynomial growth and u = (bX , 1Y ) is power universal for any
constant b > 1.

Proof. Recall the definition of the power universal element from Definition 2.3.6. For the pair of fami-
lies (ρ, σ) let us choose the substochastic map T (.) := c1 Tr(.), with c1 = min

{
1, [maxy∈Y Trσ(y)]−1}.

Then we have c1 Trσ ≤ 1 and T (uk(ρ, σ)) = (T (bkρ), T (σ)) = (c1b
k Tr ρ, c1 Trσ). Choosing a

large enough k will ensure c1b
k Tr ρ ≥ 1, since Tr ρ is bounded away from 0 on X and so ∃k ∈

N : uk(ρ, σ) ≽ (1, 1). For d := dim H, let us choose now T (.) := c2(.) ⊗ 1
dICd , where we set

c2 = min{1, d[miny∈Y min(spec(σ(y))]}. Then we have σ ≥ c2
d ICd and T (uk) = (T (bk), T (1)) =

( b
kc2
d ICd , c2

d ICd). Choosing a large enough k will ensure bkc2
d ICd ≥ ρ, since max spec(ρ) is bounded on

X and so ∃k ∈ N : uk ≽ (ρ, σ).

SX,Y is then a semiring of polynomial growth and in SX,Y we have 0 ≼ 1 and thus Theorem 2.3.22
and Corollary 2.3.23 are applicable.

Remark 4.1.18. Recall from Definition 2.3.6 and the subsequent discussion that, even if the power
universal element is not unique the definition of the asymptotic preorder, given in Definition 2.3.8 is
independent of a particular choice. With a few, explicitly stated exceptions we will use u = (2X , 1Y ).

It will be useful to consider two subsemiring of SX,Y , which we will call classical and semiclassical
subsemiring.

Definition 4.1.19. The subsemiring generated by the pairs of families of one-dimensional positive
operators is called the subsemiring of classical families, in notation Sc

X,Y . It is easy to see that
(ρ, σ) ∈ Sc

X,Y if and only if [ρ(x), ρ(x′)] = [ρ(x), σ(y)] = [σ(y), σ(y′)] = 0, ∀x, x′ ∈ X, ∀y, y′ ∈ Y .

Definition 4.1.20. The elements (ρ, σ) ∈ SX,Y satisfying [σ(y), σ(y′)] = 0 ∀y, y′ ∈ Y form a sub-
semiring of SX,Y , which I will call the semiclassical subsemiring and denote with Ssc

X,Y .

Remark 4.1.21. It is easy to check that Sc
X,Y and Ssc

X,Y equipped with the relative submajorization
are indeed preordered semirings, they are subsemirings of SX,Y and since u = (2X , 1Y ) ∈ Sc

X,Y it is a
power universal element of both subsemirings as well.
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4.2 Classical families

We turn to the classification of the 1-test spectrum (see Definition 2.3.25), which is practically the real
and tropical real valued homomorphisms, on the subsemiring of classical families. By definition every
element in Sc

X,Y is a sum of one-dimensional elements. A one-dimensional element of the semiring
on the other hand can be identified by a pair of strictly positive continuous functions on X and Y .
Suppose that f is a multiplicative map from the one-dimensional pairs into either the real or the tropical
numbers. Then the extension of f to multidimensional pairs via additivity also enjoys multiplicativity.
Since Sc

X,Y is generated by the one-dimensional pairs, the value of every f ∈ TSper1(S,≼) is determined
by its behavior on one-dimensional pairs.

Proposition 4.2.1. If f ∈ TSper1(Sc
X,Y ) then there exists unique, nonnegative Radon measures µ and

ν on X and Y such that for every multidimensional classical pair (
⊕d

i=1 pi,
⊕d

i=1 qi) (pi ∈ C(X), qi ∈
C(Y )), if f is real valued, it admits the form

d∑
i=1

exp
(∫

X

log pi dµ−
∫
Y

log qi dν
)
, µ(X) − ν(Y ) = 1, (4.2)

while if f is tropical valued it admits the form

max
i∈[d]

exp
(∫

X

log pi dµ−
∫
Y

log qi dν
)
, µ(X) − ν(Y ) = 0. (4.3)

Proof. Let f ∈ TSper1(Sc
X,Y ) be an element of the spectrum. For every ξ, η > 0 one has (eξ, 1Y ) ≽

(1X , 1Y ) and (1X , e−η) ≽ (1X , 1Y ), thus the maps ξ 7→ log f(eξ, 1Y ), from C(X) to R and η 7→
log f(1X , e−η), from C(Y ) to R are well defined positive linear functionals on C(X) and C(Y ). Thus by
Theorem 2.1.1, log f(eξ, 1Y ) =

∫
X
ξ(x) dµ(x) and log f(1Y , e−η) =

∫
Y
η(y) dν(y) for some unique µ, ν

Radon measures on X and Y . Since f is multiplicative log f(eξ, e−η) = log f(eξ, 1Y )+log f(1X , e−η) =∫
X
ξ dµ+

∫
Y
η dν. From this f(p, q) = exp

(∫
X

log p dµ−
∫
Y

log q dν
)
. We used only the multiplicative

property of f but not the additive property, thus this part of the proof works for either real or tropical
valued elements of the spectrum. Consider now f(1X + 1X , 1Y + 1Y ) = f(1X , 1Y ) + f(1X , 1Y ). In the
real case this translates to f(1X+1X , 1Y +1Y ) = 2, in the tropical case to f(1X+1X , 1Y +1Y ) = 1. Then
t 7→ log f(et1X , et1Y ) is additive, normalized and monotone, therefore satisfies Cauchy’s functional
equation and admits the form log f(et1X , et1Y ) = t in the real case and the form log f(et1X , et1Y ) = 0
in the tropical case. This leads to 1 = log f(e1X , e1Y ) = µ(X) − ν(Y ) in the real case and 0 =
log f(e1X , e1Y ) = µ(X) − ν(Y ) in the tropical case.

Now from additivity any real or tropical valued element of the spectrum admits the forms (4.2)
and (4.3).

Remark 4.2.2. Functions of the form (4.2) are homogeneous of degree 1 and functions of the form
(4.3) are homogeneous of degree 0. From the previous proposition it follows that in particular this is
true for elements of the spectrum going to the real and tropical numbers respectively.

Proposition 4.2.3. Functions of the form (4.2) and (4.3) are elements of the spectrum if and only if
they satisfy the data-processing inequality.

62



Proof. By Remark 4.1.12, elements of the spectrum need to be monotone under relative majorization,
showing that satisfying the data-processing inequality is a necessary condition. Let us assume that
f(p, q) is of the form of (4.2) or (4.3) and that f is monotone under CPTP maps (by Remark 2.2.18,
stochastic matrices acting on the diagonal in the classical subsemiring). Let us assume that (p′, q′) ∈
Sc
X,Y and (p′, q′) ≼T (p, q). We need to show that f(p′, q′) ≤ f(p, q). Now if T : B(H)>0 → B(H′)>0 is

not already trace-preserving, then let us complete T into a (completely positive) trace-preserving map
T̃ : B(H)>0 → B(H′′)>0 by adding an extra dimension to H′ (otherwise let T̃ := T ). We arrive to

(p, q) ≽T̃ (T̃ (p), T̃ (q)) ≽ (T (p), T (q)) ≽id (p′, q′),

where the first ordering is by definition, the second ordering is realized by the map that erases the
(possible) extra dimension (this is a completely positive trace-nonincreasing map) and the last ordering
is by assumption. Let us apply f,

f(p, q) ≥ f(T̃ (p), T̃ (q)) ≥ f(T (p), T (q)) ≥ f(p′, q′),

where the first inequality is by assumption of f satisfying the data-processing inequality, the second
and last inequality follows from the forms (4.2) and (4.3), since these functions are monotone decreasing
under (possible) deletion of an index and increase of any of the qi or decrease of any of the pi.

We will use the following lemma to relate the DPI to the joint convexity property of elements
of the spectrum. This lemma is stated in a more specialized way than the quite generally stated
Lemma 2.2.19, however it also treats functions going to the tropical numbers, an aspect that we need.

Lemma 4.2.4. Let f be an additive function from SX,Y into either the real or tropical numbers. Then

(i) if f is homogeneous of degree 1 and f goes into the real numbers, then it satisfies the data-
processing inequality if and only if it is jointly convex;

(ii) if f is homogeneous of degree 0 and f goes into the tropical numbers, then it satisfies the data-
processing inequality if and only if it is jointly quasiconvex.

Proof. Let f be an additive function from SX,Y into either the real or tropical numbers and let
f be homogeneous of degree k. Whenever the

∑
symbol is outside of f let it stand as summing

with respect to the semiring: usual summing in the real case and maximum in the tropical case.
Suppose f is monotone under quantum channels. Applying monotonicity to ρ̂ :=

∑
i pi|i⟩⟨i|E ⊗ ρi and

σ̂ :=
∑
i pi|i⟩⟨i|E ⊗ σi under the partial trace TrE , where (|i⟩)ri=1 is an ONS in HE yields

∑
i

pki f(ρi, σi) = f

(∑
i

pi|i⟩⟨i|E ⊗ ρi,
∑
i

pi|i⟩⟨i|E ⊗ σi

)
≥ f

(∑
i

piρi,
∑
i

piσi

)
,

which translates to joint convexity when k = 1 and f goes into the real numbers and joint quasicon-
vexity, when k = 0 and f goes into the tropical numbers. Suppose now that f is homogeneous of
degree k and it is jointly convex in the real case or jointly quasiconvex in the tropical case. Using
Stinespring dilation Φ(.) = TrE V (.)V ∗ with an isometry V : H → K ⊗ HE , and writing the partial
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trace multiplied by the maximally mixed state as a convex combination of unitary conjugations (e.g.,
by the discrete Weyl unitaries):

f(Φ(ρ),Φ(σ)) =
dE∑
i=1

1
dkE

f(Φ(ρ),Φ(σ))

= f

(
1
dE

IE ⊗ TrE V (ρ)V ∗,
1
dE

IE ⊗ TrE V (σ)V ∗
)

= f

(∑
i

1
n
UiV ρV

∗U∗
i ,
∑
i

1
n
UiV σV

∗U∗
i

)

≤ 1
nk

n∑
i=1

f(ρ, σ) = f(ρ, σ),

which holds with k = 1 and the usual sum in the real case and with k = 0 and maximum as summation
in the tropical case.

Proposition 4.2.5. If functions of the form (4.2) and (4.3) satisfy the data processing inequality then
the measure µ is concentrated on one point.

Proof. By Lemma 4.2.4 we require functions of the form (4.2) and (4.3) to be jointly convex and
jointly quasiconvex. In particular both family of functions needs to be jointly quasiconvex in the
one dimensional special case. These functions are totally differentiable and if we restrict f to a line
segment then having a zero directional derivative and negative second derivative would mean strict
local maximum and would contradict quasiconvexity. Consider the general directional derivative of
f at 1. The forms of f in (4.2) and (4.3) are differentiable and the derivative of the integrands are
continuous on X and Y and thus bounded. Then by [Fol99, Theorem 2.27] the differentiation and the
integration commute.

d
dsf(1X + sξ, 1Y )

∣∣∣∣
s=0

= d
ds

[
exp

∫
X

log(1X + sξ) dµ
]∣∣∣∣
s=0

= f(1X + sξ, 1Y )
[∫

X

ξ

1X + sξ
dµ
]∣∣∣∣
s=0

=
∫
X

ξ dµ

and

d2

ds2 f(1X + sξ, 1Y )
∣∣∣∣
s=0

= d2

ds2

[
exp

∫
X

log(1X + sξ) dµ
]∣∣∣∣
s=0

= f(1X + sξ, 1Y )
[(∫

X

ξ

1X + sξ
dµ
)2

−
∫
X

(
ξ

1X + sξ

)2
dµ
]∣∣∣∣∣
s=0

=
(∫

X

ξ dµ
)2

−
∫
X

ξ2 dµ.

To get a contradiction with quasiconvexity, we need to find a continuous function ξ whose integral
is zero and such that ξ2 has nonzero integral, supposing that µ is not concentrated on a point. To
this end let x1, x2 be distinct points in the support of µ. Choose disjoint closed neighborhoods A1

and A2 (possible since X is a compact Hausdorff space). By Urysohn’s lemma, there exist continuous
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functions ξ1, ξ2 : X → [0, 1] such that ξ1 is 1 on A1 and 0 on A2, and ξ2 is 0 on A1 and 1 on A2. Let

ξ =
(∫

X

ξ2 dµ
)
ξ1 −

(∫
X

ξ1 dµ
)
ξ2.

By construction, the integral of ξ vanishes, while∫
X

ξ2 dµ ≥ µ(A1)
(∫

X

ξ2 dµ
)2

> 0.

Corollary 4.2.6. Let α := µ(X) and γ := ν
ν(Y ) . Taking Propositions 4.2.1 and 4.2.5 into account an

element of the 1-test spectrum must have one of the following forms.

f

(
d⊕
i=1

pi,

d⊕
i=1

qi

)
=

d∑
i=1

pi(x)α exp
[
(1 − α)

∫
Y

log qi dγ
]

(4.4)

if f goes into the reals and

f

(
d⊕
i=1

pi,

d⊕
i=1

qi

)
= max

i∈[d]
pi(x) exp

[
−
∫
Y

log qi dγ
]
, (4.5)

if f goes into the tropicals, where we further took into account that f(u) = 2 is required for elements
of the spectrum going into the tropical numbers. (4.4) is characterized by the point x, the weight α ≥ 1
and the probability measure γ, while (4.5) is characterized by the point x and the probability measure
γ.

Proposition 4.2.7. (4.4) and (4.5) satisfy the data processing inequality.

Proof. By Lemma 4.2.4 the functions (4.4) are monotone under channels if and only if they are jointly
convex. Since the sum of such functions also enjoy joint convexity, it is sufficient to show joint con-
vexity in the 1-dimensional case. Joint convexity then equivalently translates to the second directional
derivative being nonnegative at any point in any direction. Let us compute the general directional sec-
ond derivative relying on the commutativity of the differentiation and integration by [Fol99, Theorem
2.27].

f(p+ sξ, q + sη) = f(p, q)f(1X + sξ̃, 1Y + sη̃),
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with ξ̃ := ξ
p and η̃ := η

q . Then the second directional derivative of (4.4) is

d2

ds2 f(p+ sξ, q + sη)
∣∣∣∣
s=0

=f(p, q) d
dsf(1X + sξ̃, 1Y + sη̃)

[
α

ξ̃(x)
1X + sξ̃(x)

+ (1 − α)
∫
Y

η̃

1Y + sη̃
dγ
]∣∣∣∣
s=0

=f(p, q)
[(

αξ̃(x) + (1 − α)
∫
Y

η̃ dγ
)2

− αξ̃(x)2 − (1 − α)
∫
Y

η̃2 dγ
]

=f(p, q)(α− 1)
[
αξ̃(x)2 − 2αξ̃(x)

∫
Y

η̃ dγ +
∫
Y

η̃2 dγ + (α− 1)
(∫

Y

η̃ dγ
)2
]

≥f(p, q)(α− 1)α
[
ξ̃(x)2 − 2ξ̃(x)

∫
Y

η̃ dγ +
(∫

Y

η̃ dγ
)2
]

=f(p, q)(α− 1)α
(
ξ̃(x) −

∫
Y

η̃ dγ
)2

≥ 0,

where we used that the second moment of η̃ is greater than the square of the first moment. We conclude
that the functions (4.4) are jointly convex and thus satisfy the data processing inequality, they are
monotone decreasing under stochastic maps. Now for a function f of the form (4.4) consider

gα

(
d⊕
i=1

pi,

d⊕
i=1

qi

)
:=
(

d∑
i=1

f(pi, qi)
) 1

α

=
(

d∑
i=1

pαi (x) exp
[
(1 − α)

∫
Y

log qi dγ
]) 1

α

.

(4.6)

gα then satisfies the data processing inequality and preserves this property in the α → ∞ limit.
However

lim
α→∞

gα

(
d⊕
i=1

pi,

d⊕
i=1

qi

)
= max

i∈[d]
pi(x) exp

[
−
∫
Y

log qi dγ
]
,

showing that functions of the form (4.5) satisfy the data processing inequality too.

Note that functions of the form (4.4) can be viewed as the Rényi α-divergences Qα of a positive
vector p and some pointwise geometric mean of positive vectors qi. What we used in the last proof is
that the max-divergence, i.e., functions in (4.5), can be given as a α → ∞ limit of Rényi divergences.

Remark 4.2.8. In [Fri23, 7.3 Definition.] the so-called logarithmic evaluation map is introduced and
defined by

levx : TSper1(S,≼) → [0,∞), ϕ 7→ log ϕ(x)
log ϕ(u) .

It is continuous for all nonzero x ∈ S. We note that with our notation above in (4.6), log gα(p, q) =
lev(p,q)(f).
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Theorem 4.2.9. TSper1(Sc
X,Y ) consists of the functions

fα,x,γ

(
d⊕
i=1

pi,

d⊕
i=1

qi

)
=

d∑
i=1

pi(x)α exp
[
(1 − α)

∫
Y

log qi dγ
]
, (4.7)

where α ≥ 1, x ∈ X and γ is a probability measure on Y , if f is real-valued and

fx,γ

(
d⊕
i=1

pi,

d⊕
i=1

qi

)
= max

i∈[d]
pi(x) exp

[
−
∫
Y

log qi dγ
]
, (4.8)

where, x ∈ X and γ is a probability measure on Y , if f is tropical real-valued.

Proof. Follows from Propositions 4.2.1, 4.2.5 and 4.2.7.

We will be referring to elements of TSper1(Sc
X,Y ) as f(α),x,γ or g(α),x,γ , if we want distinct multiple

elements of the spectrum, signifying the characterizing quantities x, γ and possibly α as well, the same
time.

If X and Y are one-point spaces, then the elements of the spectrum are exponentiated Rényi
divergences. With normalized arguments, these are bounded from below by 1, with equality if and
only if the two arguments are the same. We conclude this section with an analogous statement for the
spectral points on the classical semiring for general spaces.

Proposition 4.2.10. Let α > 1, x ∈ X and γ a probability measure on Y . Suppose that (p, q) ∈ Sc
X,Y

is normalized, i.e.,
∑d
i=1 pi(x′) = 1 and

∑d
i=1 qi(y′) = 1 for all x′ ∈ X and y′ ∈ Y . Then fα,x,γ(p, q) ≥

1 with equality if and only if p(x) = q(y) for all y ∈ supp γ. Similarly, fx,γ(p, q) ≥ 1 with equality if
and only if p(x) = q(y) for all y ∈ supp γ.

Proof. The inequality follows from monotonicity under the stochastic map p 7→
∑d
i=1 pi and the

normalization f(1X , 1Y ) = 1. Let
q̄i = exp

∫
Y

log qi dγ,

so that

fα,x,γ(p, q) =
d∑
i=1

pi(x)αq̄1−α
i = 2(α−1)Dα(p∥q̄).

By the Jensen inequality, ∑
i=1

q̄i ≤
∑
i=1

∫
Y

qi dγ =
∫
Y

∑
i=1

qi︸ ︷︷ ︸
1Y

dγ = 1.

Since the Rényi divergence is anti-monotone in the second argument and strictly positive when the
arguments are distinct probability distributions, the equality fα,x,γ(p, q) = 1 is equivalent to p(x) = q̄.
This means that the Jensen inequality holds with equality which, by strict concavity of the logarithm,
implies q(y) = q̄ = p for all y ∈ supp γ.

Similarly, if fx,γ(p, q) = 1 then for all i we have pi(x) ≤ q̄i but
∑d
i=1 pi(x) = 1 ≥

∑
i=1 q̄i, which

implies p(x) = q̄.
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4.3 Quantum extensions

In Section 4.1 we defined the preordered semiring SX,Y , the set of pairs of families of positive op-
erators equipped with the relative submajorization as a preorder. In Section 4.2 we introduced the
classical subsemiring Sc

X,Y of SX,Y and we succeeded in characterizing the whole set of the spectrum
TSper1(Sc

X,Y,≽), that is the homomorphisms from Sc
X,Y into the real numbers or the normalized ho-

momorphisms from Sc
X,Y to the tropical numbers. Our ultimate goal is to use Theorem 2.3.26 in the

most general case possible of our setting.
By Theorem 4.2.9 we could already apply Theorem 2.3.26 in its full force to Sc

X,Y , this would
allow us to fully characterize asymptotic relative submajorization and give sufficient conditions for
catalytic relative submajorization between pairs of families, assuming that all the operators commute
with each other. This would already make it available, for example, to fully characterize the so-called
strong converse regime of hypothesis testing, with composite hypotheses in the form of continuous
families of states. This characterization would be in terms of the classical Rényi divergences derived
in Theorem 4.2.9. In Subsection 4.4.1, for example, we will discuss this problem, however with less
restriction. We will only need to assume that the operators in the second family σ commute with each
other and we will be able to assume general noncommutativity between any other pairs of operators.
For this purpose and to be able to use Theorem 2.3.26 in the most general case possible we need to
try and characterize further elements of TSper1(SX,Y,≽) in this section.

Proposition 4.3.1. Suppose that f̃ is an element of the spectrum. Let f(α),x,γ be f̃ constrained on
the classical semiring according to (4.7) or (4.8) in Theorem 4.2.9. Then for any ρ, ρ′ : X → B(H)>0
such that ρ(x) = ρ′(x) and for any σ, σ′ : Y → B(H)>0 such that σ(y′) = σ′(y′) for all y′ ∈ supp γ, it
follows that f̃(ρ, σ) = f̃(ρ′, σ′).

Proof. Let

c1(x′) = min{t : ρ′(x′) ≤ tρ(x′)}

d1(y′) = max{t : σ′(y′) ≥ tσ(y′)}

c2(x′) = min{t : ρ(x′) ≤ tρ′(x′)}

d2(y′) = max{t : σ(y′) ≥ tσ′(y′)}.

Then c1, c2, d1, d2 are strictly positive continuous functions on X and Y , respectively, and

(ρ′, σ′) ≼ (c1, d1)(ρ, σ) ≼ (c1, d1)(c2, d2)(ρ′, σ′).

c1(x) = c2(x) = 1 and d1(y′) = d2(y′) = 1 for all y′ ∈ supp γ, (c1, d1) and (c2, d2) are classical pairs
and thus f̃(c1, d1) = f(α),x,γ(c1, d1) = 1 and f̃(c2, d2) = f(α),x,γ(c2, d2) = 1. Applying now f̃ to all
three parts of the above inequality yields

f̃(ρ′, σ′) ≤ f̃(ρ, σ) ≤ f̃(ρ′, σ′).
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The following proposition classifies the test-spectrum of Ssc
X,Y .

Proposition 4.3.2. Let (ρ, σ) ∈ SX,Y and let f̃ be a real element of the spectrum and let fα,x,γ be its
restriction onto the classical subsemiring. Let g̃ be a tropical element of the spectrum and let gx,γ be
its restriction onto the classical subsemiring. If [σ(y), σ(y′)] = 0 ∀y, y′ ∈ Y then

f̃(ρ, σ) = Q∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)

and

g̃(ρ, σ) =
∥∥∥∥∥ρ 1

2 (x)
(

exp
∫
Y

log σ dγ
)−1

ρ
1
2 (x)

∥∥∥∥∥
∞

.

Proof. There exists a positive definite operator σ̃ such that the eigenbasis of σ̃ simultaneously diago-
nalizes all σ(y). Let Pσ̃n

denote the pinching by σ̃⊗n, then Pσ̃n
leaves σ⊗n(y) invariant for all y ∈ Y .

It follows that

(ρ, σ)n ≽
(
Pσ̃n

(
ρ⊗n),Pσ̃n

(
σ⊗n))

=
(
Pσ̃n

(
ρ⊗n), σ⊗n)

≽

(
1

poly(n) , 1
)(
ρ⊗n, σ⊗n),

where poly(n) is a polynomial of n and we used that any pinching is a completely positive trace-
preserving map and the pinching inequality:

ρ⊗n ≤ | spec(σ̃⊗n)|Pσ̃n

(
ρ⊗n) = poly(n)Pσ̃n

(
ρ⊗n).

We have shown in Proposition 4.3.1 that f̃ and g̃ only depend on one point of ρ apart from σ, but
after the pinching all these operators commute and thus we are evaluating f̃ and g̃ on the classical
subsemiring, where f̃ and g̃ are determined by Theorem 4.2.9. Applying f to all three parts and taking
the n-th root yields

f̃(ρ, σ) ≥ n

√
fα,x,γ(Pσ̃n

(ρ⊗n(x)), σ⊗n)

= n

√
Tr(Pσ̃n(ρ⊗n(x)))α

(
exp

∫
Y

log σ⊗n dγ
)1−α

= n

√√√√Tr(Pσ̃n
(ρ⊗n(x)))α

((
exp

∫
Y

log σ dγ
)⊗n

)1−α

≥ n

√
1

(poly(n))α f̃(ρ, σ).

Taking the limit n → +∞ gives us

f̃(ρ, σ) ≥ Q∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)

≥ f̃(ρ, σ), (4.9)
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where we refer to [Tom16, Proposition 4.12.] (see also [PVW22, Theorem 4.4.]) in taking the limit of
the middle term.

Now applying g̃ to all three parts yields

g̃(ρ, σ) ≥ n

√
gx,γ(Pσ̃n

(ρ⊗n(x)), σ⊗n)

= n

√∥∥∥∥(Pσ̃n
(ρ⊗n(x)))

(
exp

∫
Y

log σ⊗n dγ
)∥∥∥∥

∞

= n

√√√√∥∥∥∥∥(Pσ̃n(ρ⊗n(x)))
((

exp
∫
Y

log σ dγ
)⊗n

)∥∥∥∥∥
∞

≥ n

√
1

poly(n) g̃(ρ, σ).

Taking the limit n → +∞ gives us

g̃(ρ, σ) ≥

∥∥∥∥∥ρ 1
2 (x)

(
exp

∫
Y

log σ dγ
)−1

ρ
1
2 (x)

∥∥∥∥∥
∞

≥ g̃(ρ, σ), (4.10)

where we refer to [Dat09] and [Tom16, Section 4.2.4] in taking the limit of the middle term.

Corollary 4.3.3. Suppose that f̃ is an element of the spectrum and let fα,x,γ be its restriction to the
classical semiring. If σ(y) = σ0 for all y ∈ supp γ, then f̃(ρ, σ) = Q∗

α(ρ(x)∥σ0).

Proof. By Proposition 4.3.1, f̃(ρ, σ) is equal to f̃(ρ, σ̄) where σ̄(y) := σ0 for all y ∈ Y . σ̄(y) is constant,
hence commuting. The statement then follows from Proposition 4.3.2.

We prove an analogue of Proposition 4.2.10 for the quantum extensions:

Proposition 4.3.4. Suppose that f̃ is an element of the spectrum and let fα,x,γ be its restriction to the
classical semiring. Suppose that (ρ, σ) is normalized, i.e., Tr ρ(x′) = 1 and Trσ(y′) = 1 for all x′ ∈ X

and y′ ∈ Y . Then f̃(ρ, σ) ≥ 1 with equality if and only if ρ(x) = σ(y′) for all y′ ∈ supp γ. Similarly,
if f̃ is tropical and its restriction is fx,γ , then f̃(ρ, σ) ≥ 1 with equality if and only if ρ(x) = σ(y′) for
all y′ ∈ supp γ.

Proof. As in Proposition 4.2.10, the inequality follows by applying monotonicity under the trace map.
The ”if” part is a consequence of Corollary 4.3.3. For the ”only if” direction, suppose that ρ(x) ̸= σ(y)
for some y ∈ supp γ. Let F be a measurement channel such that F (ρ(x)) ̸= F (σ(y)). Then (ρ, σ) ≽

(F (ρ), F (σ)), so by monotonicity and Proposition 4.2.10 we have the strict inequality.

The expression exp
∫
Y

log σ dγ in (4.9) and (4.10) can be viewed as a continuous analogue of a
weighted geometric mean of positive numbers. The form of the spectrum elements in the case of
commuting σ suggests looking for fully quantum generalizations of the form f(ρ, σ) = Q∗

α(ρ(x)∥M(σ)),
where α ≥ 1, x ∈ X and M is some noncommutative version of the weighted geometric mean. We
note that multivariable Rényi divergences constructed using Kubo–Ando means have been studied
in [FLO23,MBV23].
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In the following definition we make the requirements more precise and also more flexible by allowing
the result to be also a continuous family of positive operators. The advantages of this formulation are
that a simple composition property conveniently allows for the construction of many examples, and
that these objects also give rise to homomorphisms between different semirings SX,Y → SX′,Y ′ . We
equip C(Y,B(H)>0) with the pointwise semidefinite partial order.

Definition 4.3.5. Let Y and Y ′ be nonempty compact Hausdorff topological spaces. A family
of continuous geometric means indexed by Y ′ is a collection of maps M : ∪HC(Y,B(H)>0) →
∪HC(Y ′,B(H)>0) respecting the Hilbert space and satisfying the following properties for all Hilbert
space H and all σ ∈ C(Y,B(H)>0), σ′ ∈ C(Y,B(H′)>0) and λ ∈ R>0:

(i) M(UσU∗) = UM(σ)U∗, for all unitary U

(ii) M(σ ⊕ σ′) = M(σ) ⊕M(σ′),

(iii) M(σ ⊗ σ′) = M(σ) ⊗M(σ′),

(iv) M(λσ) = λM(σ),

(v) if σ ≤ σ′, then M(σ) ≤ M(σ′),

(vi) M is concave.

The set of families of geometric means is denoted by G(Y, Y ′). When Y ′ is a one-point space,
we identify C(Y ′,B(H)>0) with B(H)>0 and write G(Y ) instead of G(Y, Y ′). We will see in Proposi-
tion 4.3.14, that in the commutative case, elements of G(Y ) reduce to exp

∫
Y

log σ dγ as in (4.9) and
(4.10), and thus we call elements of G(Y, Y ′) geometric means.

Remark 4.3.6. Because of unitary equivariance, it is sufficient to specify a family of means for families
of operators on Cd for all d. Note also that the properties of families of geometric means that we
consider imply that they can be extended to positive semidefinite operators by limϵ→0 M(σ+ ϵ(IH)Y ).
This extension will automatically satisfy (ii)-(vi) in Definition 4.3.5. If σ ∈ C(Y,B(H)≥0) is such that
the operators σ(y) share the same support for all y ∈ Y , then this extension can be given by mapping
the positive definite part of σ by M in the restrictive sense of Definition 4.3.5 and then adding the zero
operator on the missing subspace kerσ by the direct sum. In particular, in this case, M(σ(y′)) will
share the same support with σ(y) for all y ∈ Y and y′ ∈ Y ′. Thus it is clear that if σ ∈ C(Y,B(H)≥0)
is such that the operators σ(y) share the same support for all y ∈ Y , then this extension is invariant
under isometries. Such an extension, however, may map a σ ∈ C(Y,B(H)≥0) into a discontinuous
function (see e.g., the Kubo-Ando means below).

Example 4.3.7. An example of an element of G({1, 2}) is given by

σ(1)#σ(2) = σ(1)1/2(σ(1)−1/2σ(2)σ(1)−1/2)1/2σ(1)1/2,

the (unweighted) geometric mean of a pair of matrices, introduced in [PW75] and put in a general
context by Kubo and Ando [KA80]. Extensions to several variables have been constructed by building
on the bivariable geometric mean or generalizing characterizations thereof (see e.g. [Moa05, PT05,
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BH06,LL11,LP12]), and also studied from an axiomatic point of view [ALM04]. Examples of elements
of G{1, 2, . . . , n} are the Karcher means [LL11,LP12].

Remark 4.3.8. Since the axioms in Definition 4.3.5 are directly motivated by the use of means in
constructing homomorphisms, the axioms given here differ from the ones considered in the literature on
geometric means of matrices, in particular in emphasis on relating the means of matrices of different
sizes (by the tensor product or the direct sum). In addition, we need to consider every possible
weighting of the arguments, therefore symmetry is not a relevant property in our problem.

Example 4.3.9. Further examples of elements of G({1, 2}) are given by the weighted geometric mean
of pairs of matrices (see for example [LL11]):

σ(1)#tσ(2) = σ(1)1/2(σ(1)−1/2σ(2)σ(1)−1/2)tσ(1)1/2.

Proposition 4.3.10. If the family of positive operators CY is a constant function, then for any
M ∈ G(Y, Y ′) one has M(CY ) = CY ′ .

Proof. First consider the constant function (IC1)Y mapping each point of Y to IC1 . For this function

M((IC1)Y ) = M((IC1)Y ⊗ (IC1)Y ) = M((IC1)Y ) ⊗M((IC1)Y ).

The only positive definite operator satisfying this is IC1 itself yielding M((IC1)Y ) = (IC1)Y ′ . Then
from the eigendecomposition of C = U

⊕n
i=1 λiIC1U∗,

M(CY ) = M

(
U

n⊕
i=1

λi(IC1)Y U∗

)
= U

n⊕
i=1

λiM((IC1)Y )U∗ = U

n⊕
i=1

λi(IC1)Y ′U∗ = CY ′ .

Remark 4.3.11. I will use an abuse of notation and write simply M(C) = C omitting the topological
spaces from the indices, the underlying topological space will be clear from context.

The following proposition is a specialization of the main idea behind Lemma 2.2.19 and Lemma 4.2.4
to geometric means.

Proposition 4.3.12. Families of geometric means are increasing under completely positive trace-
preserving maps in the sense that if M ∈ G(Y, Y ′), σ ∈ C(Y,B(H)>0) and T : B(H) → B(H′) is a
completely positive trace-preserving map, then M(T (σ)) ≥ T (M(σ)).

Proof. Consider the Stinespring dilation of T (.) = TrE V (.)V ∗, with an isometry V : H → K ⊗ HE ,
and writing the partial trace multiplied by the maximally mixed state as a convex combination of
unitary conjugations (e.g., by the discrete Weyl unitaries):

1
dE

IE ⊗ TrE V (.)V ∗ =
∑
i

1
n
UiV (.)V ∗U∗

i ,
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then

1
dE

IE ⊗M(T (.)) = M

(
1
dE

IE ⊗ TrE V (.)V ∗
)

=M
(∑

i

1
n
UiV (.)V ∗U∗

i

)
≥
∑
i

1
n
M(UiV (.)V ∗U∗

i )

=
∑
i

1
n
UiVM(.)V ∗U∗

i = 1
dE

IE ⊗ TrE V (M(.))V ∗ = 1
dE

IE ⊗ T (M(.)),

where we used (iii) and (iv) from Definition 4.3.5, the extended version of M in the sense of Re-
mark 4.3.6 in all the formulas, the equivariance of the extended geometric means under isometries,
(vi) from Definition 4.3.5 i.e., the concavity of the extended geometric means to obtain the inequality
and Proposition 4.3.10 on the constant function IE . The partial trace is a positive map and so tracing
the environment out finishes the proof.

Lemma 4.3.13. For any a ∈ R>0, any M ∈ G(Y ) and any σ ∈ C(Y,B
(
C1)

>0) one has M(σa) =
M(σ)a.

Proof. Let b and c be positive integer numbers, then by the multiplicative property (iii) in Defini-
tion 4.3.5 we have

M
(
σ

b
c

)
=
(
M
((
σ

b
c

)c)) 1
c

=
(
M
(
σb
)) 1

c = (M(σ))
b
c .

Now let {bn, cn, b′
n, c

′
n}∞
n=1 be sequences of positive integers such that bn

cn
↗ a ↙ b′

n

c′
n

, then from the
monotonicity of c(·) on real numbers and the monotonicity property (v) in Definition 4.3.5 we have

M(σ)
bn
cn = M

(
σ

bn
cn

)
≤ M(σa) ≤ M

(
σ

b′
n

c′
n

)
= M(σ)

b′
n

c′
n .

However, limn→∞

∥∥∥M(σ)a −M(σ)
bn
cn

∥∥∥
∞

= limn→∞

∥∥∥∥M(σ)a −M(σ)
b′

n
c′

n

∥∥∥∥
∞

= 0, since M(σ) is a

bounded function.

The following Proposition underlines the validity of calling elements of G(Y, Y ′) geometric means.

Proposition 4.3.14. If σ ∈ C(Y,B
(
C1)

>0), then for all M ∈ G(Y ), M(σ) = exp
∫
Y

log σ dγ for some
probability measure γ.

Proof. logM
(
e(.)) is a positive linear functional on C(Y,B

(
C1)

>0) by Lemma 4.3.13 and the multi-
plicative property (iii) in Definition 4.3.5. Thus by Theorem 2.1.1 there exists some unique γ Radon
measure such that

logM
(
e(ξ)
)

=
∫
Y

ξ(y) dγ(y),
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then

M(σ) = exp
∫
Y

log σ dγ(y).

From Proposition 4.3.10 we have

M(e1) = exp
∫
Y

dγ(y) = e1

yielding
∫
Y

dγ(y) = 1.

Remark 4.3.15. From Proposition 4.3.14 and Theorem 4.2.9 it follows that for all M ∈ G(Y )

f

(
d⊕
i=1

pi,

d⊕
i=1

qi

)
:=

d∑
i=1

pi(x)αM(qi)1−α

is an element of the classical spectrum underlying the connection between the elements of the spectrum
and the geometric means.

The following proposition lists basic constructions that allow one to exhibit many elements of G(Y ).
Geometric means that can be obtained in this way include the Ando–Li–Mathias mean [ALM04] and
the Bini–Meini–Polini means [BMP10].

Proposition 4.3.16. Let Y, Y ′, Y ′′ be nonempty compact spaces.

(i) If M ∈ G(Y, Y ′) and N ∈ G(Y ′, Y ′′), then N ◦M ∈ G(Y, Y ′′).

(ii) If f : Y ′ → Y is a continuous map, then M(σ) = σ ◦ f defines an element of G(Y, Y ′).

(iii) M(σ) = σ′ with

σ′(y1, y2, γ) := σ(y1)#γσ(y2) = σ(y1)1/2
(
σ(y1)−1/2σ(y2)σ(y1)−1/2

)γ
σ(y1)1/2

defines an element of G(Y, Y × Y × [0, 1]).

(iv) G(Y ) is compact with respect to the pointwise convergence (i.e., convergence of i 7→ Mi(σ) for
all σ).

Proof. (i): The composition is clearly additive, multiplicative, homogeneous and monotone. For con-
cavity, we apply N to the inequality M(λσ+ (1 −λ)σ′) ≥ λM(σ) + (1 −λ)M(σ′), which expresses the
concavity of M , using that first N is monotone and then that it is concave as well:

(N ◦M)(λσ + (1 − λ)σ′) = N(M(λσ + (1 − λ)σ′))

≥ N(λM(σ) + (1 − λ)M(σ′))

≥ λN(M(σ)) + (1 − λ)N(M(σ′)).

(ii): M is clearly additive, multiplicative, homogeneous, monotone and affine (hence concave).
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(iii): σ′ is clearly continuous for every continuous σ. The geometric mean is clearly additive,
multiplicative and homogeneous. For concavity and monotonicity see [KA80] and [Sim19, Theorem
37.1].

(iv): If σ ∈ C(Y,B(H)>0), then there exist constants c1, c2 > 0 such that c1I ≤ σ ≤ c2I. By
the monotonicity property (v) in Definition 4.3.5, it follows that c1I ≤ M(σ) ≤ c2I for every M ∈
G(Y ). The interval [c1I, c2I] =

{
A ∈ B

(
Cd
)
>0 : c1I ≤ A ≤ c2I

}
is compact for every d, therefore the

evaluations embed G(Y ) into the compact space
∏
d∈N

∏
σ∈C(Y,B(Cd)>0)[c1(σ)I, c2(σ)I]. The conditions

defining G are closed (equalities and non-strict inequalities with respect to the semidefinite partial
order), therefore the image under the embedding is closed.

Remark 4.3.17. We state without proof that G{1, 2} consists only of the Kubo-Ando means given
in Example 4.3.9.

So far we studied the properties of the geometric means we introduced. We argued that that
geometric means in the above sense could be a noncommutative generalization of σ 7→ exp

∫
Y

log σ dγ.
We also showed in Proposition 4.3.14 that, indeed, geometric means on real-valued functions (and
thus on commuting operators) will take this form. Our goal is to find more general means using the
above and plug them in the elements of the spectrum of Ssc

X,Y for some X,Y to arrive to more general
elements of the spectrum, than the ones already characterized in Proposition 4.3.2 and Corollary 4.3.3.
To this end we will use the following proposition.

Proposition 4.3.18. Let X,Y,X ′, Y ′ be nonempty compact spaces, M ∈ G(Y, Y ′) and f : X ′ → X

continuous. Then the map SX,Y → SX′,Y ′ : (ρ, σ) 7→ (ρ ◦ f,M(σ)) is a semiring homomorphism.

Proof. This map is by definition additive and multiplicative. We have yet to show monotonicity.
Suppose that (ρ, σ) ≽T (ρ′, σ′). Then T (ρ) ≥ ρ′ and T (σ) ≤ σ′. From monotonicity of M in its
variables under completely positive trace-nonincreasing maps:

T (M(σ)) ≤ M(T (σ)) ≤ M(σ′).

This yields (ρ,M(σ)) ≽ (ρ′,M(σ′)) by the same map T .

Theorem 4.3.19. Let X,Y be nonempty compact spaces. For all α ≥ 1, x ∈ X and M ∈ G(Y ) the
functional

f(ρ, σ) = Q∗
α(ρ(x)∥M(σ)) (4.11)

is an element of the real part of the spectrum, and

f(ρ, σ) =
∥∥∥M(σ)−1/2ρ(x)M(σ)−1/2

∥∥∥
∞

(4.12)

is an element of the tropical part.

Proof. By Proposition 4.3.18, the map (ρ, σ) 7→ (ρ(x),M(σ)) determines a semiring homomorphism
from SX,Y to S1,1, where 1 is a one-point space. On S1,1 the functionals fα(ρ, σ) = Q∗

α(ρ∥σ) are
in the real spectrum and (ρ, σ) 7→

∥∥σ−1/2ρσ−1/2
∥∥

∞ is in the tropical spectrum, as follows from
Proposition 4.3.2 (see also [PVW22,BV21]). Therefore (4.11) and (4.12) are compositions of semiring
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homomorphisms, which implies that they are points in the real (respectively tropical) part of the
spectrum.

4.4 Applications

The largest subsemiring of SX,Y for which we classified the whole test-spectrum is the semiclassical
subsemiring Ssc

X,Y . Theorem 2.3.26, Remark 2.3.27, Theorem 4.2.9 and Proposition 4.3.2 yield the
following:

Theorem 4.4.1. Let (ρ, σ), (ρ′, σ′) ∈ Ssc
X,Y \ {0}. Then we have (i) ⇒ all of the conditions in (ii),

any one of the conditions in (ii) ⇒ (iii) and (iii) ⇔ (iv) in the following:

(i) for all x ∈ X, α > 1 and γ probability distribution on Y ,

Q∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)
> Q∗

α

(
ρ′(x)

∥∥∥∥exp
∫
Y

log σ′ dγ
)

;

(ii) (a) (ρ, σ)n ≽ (ρ′, σ′)n for every sufficiently large n;

(b) (ρ, σ) ≽c (ρ′, σ′);

(iii) For all x ∈ X, α > 1 and γ probability distribution on Y ,

Q∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)

≥ Q∗
α

(
ρ′(x)

∥∥∥∥exp
∫
Y

log σ′ dγ
)

;

(iv) (ρ, σ) ≿ (ρ′, σ′).

Moreover, if (ii)/(a) holds, then (ii)/(b) holds and there exists a nonnegative integer k such that the
catalyst in (ii)/(b) can be chosen as

⊕n
j=0
(
2kρ⊗j ⊗ ρ′⊗n−j , σ⊗j ⊗ σ′⊗n−j) for any sufficiently large n.

Proof. Theorem 2.3.26 modified by Remark 2.3.27 needs to be applied to the elements of the spectrum
derived in Theorem 4.2.9 and Proposition 4.3.2. The quantities Q∗

α on positive definite operators are
continuous in α. Thus it follows that from the ordering of the quantities of Q∗

α for α > 1 directly
follows the ordering of

• limα→1 Q
∗
α = Q∗

1 and

• limα→∞
1

α−1 logQ∗
α = D∗

∞, where for states ω, τ of full support D∗
∞(ω∥τ) = log

∥∥∥ω 1
2 τ−1ω

1
2

∥∥∥
∞

is
the max-divergence of ω and τ (see (2.25)).

This shows that the orderings

Q∗
1

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)

vs. Q∗
1

(
ρ′(x)

∥∥∥∥exp
∫
Y

log σ′ dγ
)

and ∥∥∥∥∥ρ 1
2 (x)

(
exp

∫
Y

log σ dγ
)−1

ρ
1
2 (x)

∥∥∥∥∥
∞

vs.
∥∥∥∥∥ρ′ 1

2 (x)
(

exp
∫
Y

log σ′ dγ
)−1

ρ′ 1
2 (x)

∥∥∥∥∥
∞
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can be omitted from the conditions in Theorem 4.4.1 for simplicity.

In the general case of SX,Y , the whole spectrum is not classified, and so generally we can only state
necessary conditions. Theorem 2.3.26, Remark 2.3.27 and Theorem 4.3.19 yield the following:

Corollary 4.4.2. Let (ρ, σ), (ρ′, σ′) ∈ SX,Y \{0}. Then we have (i) ⇒ (ii), (ii) ⇒ all of the conditions
in (iii) in the following:

(i) there exists a x ∈ X, α > 1 and M ∈ G(Y ) such that

Q∗
α(ρ(x)∥M(σ)) < Q∗

α(ρ′(x)∥M(σ′));

(ii) (ρ, σ) ̸≿ (ρ′, σ′);

(iii) (a) ∄n ∈ N such that (ρ, σ)n ≽ (ρ′, σ′)n;

(b) (ρ, σ) ̸≽c (ρ′, σ′).

Proof. Completely analogous to the above proof of Theorem 4.4.1 but now using the characterized
part of the general spectrum of SX,Y given in Theorem 4.3.19.

Remark 4.4.3. Neither Theorem 4.4.1 or Corollary 4.4.2 uses the tropical part of the characterized
part of the spectrum (fully characterized for Ssc

X,Y and partially for SX,Y ) in the characterization of
the catalytic or the asymptotic relative submajorization. However the reason behind it is that the
sandwiched Rényi divergence Q∗

α giving the elements of the known part of the spectrum is continuous
in α on positive definite operators. We know no general argument showing that the general spectrum
of SX,Y could not contain tropical functions that are independent from the real part.

4.4.1 Composite hypothesis testing

One interpretation of a (normalized) pair of families is that the states in ρ(x), x ∈ X form a composite
null hypothesis which is to be tested against the composite alternative hypothesis σ(y), y ∈ Y . In this
hypothesis testing problem one considers a two-outcome POVM (Π, I − Π), or test, and the decision
is based on the measurement result, rejecting the null hypothesis if the second outcome is observed.
Such a test is uniquely specified by an operator Π such that 0 ≤ Π ≤ I and every such operator gives
rise to a valid POVM.

A type I error occurs when the null hypothesis is falsely rejected. For every member in the family
ρ we define a probability of type I error,

αx(Π) := Tr ρ(x)(I − Π) = 1 − Tr ρ(x)Π,

and the maximum
α(Π) := max

x∈X
αx(Π)

is the significance level of the test.
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In contrast, a type II error means that the correct state was from σ but the null hypothesis does
not get rejected. The probability of a type II error is

βy(Π) := Trσ(y)Π,

and their maximum is
β(Π) := max

y∈Y
βy(Π).

In general it is not possible to have arbitrarily low probability for both types of errors but there is a
trade-off between the two quantities. Following the idea of [Ren16]), the possible values are exactly
characterized by the preordered semiring SX,Y :

Proposition 4.4.4. Let (ρ, σ) ∈ SX,Y be a pair of families of states of full support and let α : X → R
and β : Y → R be continuous functions, such that α < 1 and β > 0. Then (1 − α, β) is an element of
SX,Y and the following are equivalent:

(i) there exists a test Π with αx(Π) ≤ α(x) and βy(Π) ≤ β(y) for all x ∈ X and y ∈ Y ,

(ii) (ρ, σ) ≽ (1 − α, β).

Proof. Let (ρ, σ) ∈ SX,Y be a pair of families of states on H and suppose that a test exists with the
properties above. Consider the map T : B(H)>0 → B(C)>0 given by T (X) = Tr(XΠ). T is completely
positive because Π ≥ 0 and trace-nonincreasing because Π ≤ I. We apply T to the families:

T (ρ(x)) = Tr(ρ(x)Π) = 1 − αx(Π) ≥ 1 − α(x)

T (σ(y)) = Tr(σ(y)Π) = βy(Π) ≤ β(y),

for all x ∈ X and y ∈ Y , therefore (ρ, σ) ≽T (1 − α, β).
Conversely, suppose that (ρ, σ) ≽ (1 − α, β). This means that there exists a completely positive

trace-nonincreasing map T : B(H)>0 → B(C)>0 such that T (ρ) ≥ (1 − α) and T (σ) ≤ β. Pick such a
map and let Π = T ∗(IC1). Then 0 ≤ Π ≤ I and

αx(Π) = Tr ρ(x)(I − Π) = 1 − Tr ρ(x)T ∗(IC1) = 1 − T (ρ(x)) ≤ α(x)

βy(Π) = Trσ(y)Π = Trσ(y)T ∗(IC1) = T (σ(y)) ≤ β(y),

for all x ∈ X and y ∈ Y .

Remark 4.4.5. Note that Proposition 4.4.4

• is trivially fulfilled if ∃x ∈ X such that α(x) < 0, as neither of the two conditions can be satisfied
in this case;

• is trivially fulfilled if α ≥ 0 and β ≥ 1, since both conditions can be satisfied with the trivial test
Π = I and the trace functional Tr(·);
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• is trivially fulfilled if ∃x ∈ X and ∃y ∈ Y such that α(x) = 0 and β(y) < 1, since from α(x) = 0
we have that the test and the map must be as in the previous point: the trivial test and the
trace functional, and these do not satisfy either condition;

• gives a nontrivial characterization in the case when 0 < α < 1 and ∃y ∈ Y such that β(y) ∈ (0, 1).
However, we can assume that 0 < β ≤ 1 by restricting Y to β−1([0, 1]), as neither (i) or (ii) in
Proposition 4.4.4 results in any constraints for y ∈ β−1((1,+∞)).

Suppose that we have access to n copies of such identically prepared pairs of families. The element
of the semiring describing this situation is the power (ρ, σ)n = (ρ⊗n, σ⊗n). If we are allowed to perform
a joint measurement, i.e., Πn ∈ B(H⊗n)≥0 with Πn ≤ IH⊗n , then we expect to be able to achieve lower
probabilities of both types of errors than with a single copy. In particular, an extension of the quantum
Stein’s lemma says that when the alternative hypothesis is simple, as the number of copies n → ∞
and the maximum of the probability of the type I error is required to go to 0, it is possible to achieve
an exponential decay of the type II error, where the exponent is given by the minimum of the relative
entropies DUm(ρ(x)∥σ) [BDK+05,Nöt14,Mos15,BBH21].

Remark 4.4.6. Although in most asymptotic settings, the errors given in terms of the number of
copies we have access to are exponential, there are notable exceptions to this rule of thumb. See for
example our work in [BMMZ23]. In our case here however, the asymptotic errors are exponential in
the number of copies.

The asymptotic preorder ≿ is able to capture the exponential decay of the type II error and the
exponential convergence of the type I error to one, called the strong converse regime. We have the
following characterization.

Proposition 4.4.7. For compact Hausdorff topological spaces X,Y and composite null and alternative
hypotheses in the form of continuous functions ρ : X → S(H), σ : Y → S(H) consisting of states of
full support and for all R : X → R and r : Y → R continuous functions (rate functions), the following
are equivalent:

(i) there exists a sequence of tests {Πn}∞
n=1 and a sublinear sequence of nonnegative integers {kn}∞

n=1
such that αx(Πn) ≤ 1 − e−R(x)n−kn and βy(Πn) ≤ e−r(y)n for all x ∈ X, y ∈ Y and n ∈ N,

(ii) (ρ, σ) ≿ (e−R, e−r).

Proof. We have that (e−R, e−r) is an element of SX,Y for all R : X → R and r : Y → R continuous
functions. Recall from Remark 4.1.18 that in the definition of the asymptotic preorder, we can choose
u = (eX , 1Y ), and since u = (eX , 1Y ) is invertible, the condition appearing in the definition of the
asymptotic preorder may be written as

(ρ⊗n, σ⊗n) ≽ u−kn(e−R, e−r)n

= (e−Rn−kn , e−rn),

for all n ∈ N and some {kn}∞
n=1 sublinear sequence of nonnegative integers. According to Proposi-

tion 4.4.4, the above is equivalent to the existence of a sequence of tests {Πn}∞
n=1 such that αx(Πn) ≤

1 − e−R(x)n−kn and βy(Πn) ≤ e−r(y)n for all x ∈ X, y ∈ Y and n ∈ N.
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Remark 4.4.8. Note that, following directly from Remark 4.4.5, Proposition 4.4.7

• is trivially fulfilled if ∃x ∈ X such that R(x) < 0, as neither of the two conditions can be satisfied
in this case;

• is trivially fulfilled if R ≥ 0 and r ≤ 0, since both conditions can be satisfied with the sequence
of tests Πn = IH⊗n and the Tr(·) functional;

• gives a nontrivial characterization, when R ≥ 0 and ∃y ∈ Y such that r(y) > 0. However, similar
to the case in Remark 4.4.5, we can assume that r ≥ 0 without losing generality.

Proposition 4.4.9. For the one-point space X = {x} and any compact Hausdorff topological space
Y and simple null hypothesis ρ > 0 and composite alternative hypothesis in the form of continuous
function σ : Y → S(H) consisting of states of full support and for all continuous rate function r : Y →
R and error rate R ∈ R, the following are equivalent:

(i) for all sequences of tests {Πn}∞
n=1 such that βy(Πn) ≤ e−r(y)n for all y ∈ Y and n ∈ N, and for

all sublinear sequences of nonnegative integers {kn}∞
n=1, we have αx(Πn) > 1 − e−Rn−kn for all

but finitely many exceptions in n ∈ N,

(ii) (ρ, σ) ̸≿ (e−R, e−r).

Proof. (ii) ⇒ (i) : By Corollary 2.3.12 (ρ, σ) ̸≿ (e−R, e−r) ⇐⇒ for all sublinear sequences of positive
integers {kn}∞

n=1 we have that (ρ⊗n, σ⊗n) ≽ (e−Rn−kn , e−rn) for at most finitely many n ∈ N. Then
by Proposition 4.4.4 it follows that for all sequences of tests {Πn}∞

n=1 and all sublinear sequences of
positive integers {kn}∞

n=1 we have
(
αx(Πn) > 1 − e−Rn−kn or βy(Πn) > e−r(y)n for some y ∈ Y

)
for

all but finitely many n ∈ N. (i) ⇒ (ii) is immediate from Proposition 4.4.7.

Remark 4.4.10. Similarly as in Remark 4.4.8 we can assume in Proposition 4.4.9 that R, r ≥ 0,
without losing generality.

Remark 4.4.11. Note that, although, Theorem 4.4.1 only allows us characterization of the asymptotic
preorder in the case of (ρ, σ) ∈ Ssc

X,Y , i.e., both ρ and σ are positive definite operator valued continuous
functions on compact topological spaces and the operators in σ are required to commute, we have not
yet used these assumptions in the above propositions, in Proposition 4.4.4, Proposition 4.4.7 and
Proposition 4.4.9. The reason to still state these propositions in the above forms is that we could
not apply Theorem 4.4.1 to a more general setting. Precise construction of the more general semiring
S≥0
X,Y consisting of families of positive semidefinite operators as continous functions over topological

spaces is straightforward. Characterization of the elements of the spectrum, however, is a much harder
task, if positive semidefinite operators are allowed in the families of the semiring. The requirement
of compactness however is unavoidable for many arguments in the previous sections, even though one
could define type I and II errors with suprema instead of maxima.

Thus, to achieve asymptotically the smallest type I error probabilities for a family of given type
II error exponents r, we need to find the smallest R(x) values satisfying the equivalent conditions in
terms of the spectral points for the asymptotic preorder. Proposition 4.4.7 and Theorem 4.4.1 imply
the following theorem:
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Theorem 4.4.12. For compact Hausdorff topological spaces X,Y and composite null and alternative
hypotheses in the form of continuous functions ρ : X → S(H), σ : Y → S(H) consisting of states of
full support, where in addition [σ(y), σ(y′)] = 0 for all y, y′ ∈ Y , and for all R : X → R and r : Y → R
continuous rate functions, the following are equivalent:

(i) there exists a sequence of tests {Πn}∞
n=1 and a sublinear sequence of positive integers {kn}∞

n=1
for which αx(Πn) ≤ 1 − e−R(x)n−kn and βy(Πn) ≤ e−r(y)n for all x ∈ X, y ∈ Y and n ∈ N;

(ii) (ρ, σ) ≿ (e−R, e−r);

(iii)

R(x) ≥ sup
γ

sup
α>1

α− 1
α

[∫
Y

r dγ −D∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]

= max
γ

sup
α>1

α− 1
α

[∫
Y

r dγ −D∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]
,

(4.13)

for all x ∈ X.

Proof. According to Proposition 4.4.7, (i) ⇐⇒ (ii). According to Theorem 4.4.1, (ρ, σ) ≿ (e−R, e−r)
if and only if for all x ∈ X, α > 1 and γ probability distribution on Y ,

Q∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)

≥ Q∗
α

(
e−R(x)

∥∥∥∥exp
∫
Y

log e−r dγ
)

= Q∗
α

(
e−R(x)

∥∥∥∥e−
∫

Y
r dγ
)

= e
−R(x)α−

∫
Y
r dγ(1−α)

.

Applying 1
α−1 log(·) to both sides yields

D∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)

≥ −R(x) α

α− 1 +
∫
Y

r dγ,

(recall the definition of D∗
α in Example 2.2.24 and note that Tr ρ = 1X , since we assumed ρ is a family

of states). We rearrange for R(x):

R(x) ≥ α− 1
α

[∫
Y

r dγ −D∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]
,

for all x ∈ X, α > 1 and γ probability distribution on Y. We also used the lower semicontinuity of D∗
α

in its arguments (see [MO17, Corollary 3.27]) and thus changed the supremum in γ to a maximum.

Theorem 4.4.13. For compact Hausdorff topological spaces X,Y and composite null and alternative
hypotheses in the form of continuous functions ρ : X → S(H), σ : Y → S(H) consisting of states of
full support, where in addition [σ(y), σ(y′)] = 0 for all y, y′ ∈ Y , and for all r : Y → R continuous
rate functions, the following are equivalent for all x ∈ X and R ∈ R:
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(i) for all sequences of tests {Πn}∞
n=1 such that βy(Πn) ≤ e−r(y)n for all y ∈ Y and n ∈ N, and for

all sublinear sequences of nonnegative integers {kn}∞
n=1, we have αx(Πn) > 1 − e−Rn−kn for all

but finitely many n ∈ N;

(ii) (ρ(x), σ) ̸≿ (e−R, e−r) in Ssc
{x},Y ;

(iii)

R < max
γ

sup
α>1

α− 1
α

[∫
Y

r dγ −D∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]
.

In addition, all x ∈ X and R < 0 satisfy the above conditions and for all x ∈ X, ∃R > 0 satisfying
the above conditions if and only if

max
y

[
r(y) −DUm(ρ(x)∥σ(y))

]
> 0. (4.14)

Proof. According to Proposition 4.4.9, (i) ⇐⇒ (ii). (ii) ⇐⇒ (iii): follows by applying Theorem 4.4.12
to the one-point space {x}.

In addition, for the bound of R we have

sup
α>1

α− 1
α

max
γ

[∫
Y

r dγ −D∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]

≥ 0,

as

lim
α↘1

α− 1
α

max
γ

[∫
Y

r dγ −D∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]

= 0,

since the term in the brackets is bounded for a fixed r. Furthermore

sup
α>1

α− 1
α

max
γ

[∫
Y

r dγ −D∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]

> 0 ⇐⇒

∃α > 1 : max
γ

[∫
Y

r dγ −D∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]

> 0 ⇐⇒

max
γ

[∫
Y

r dγ −DUm
(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]

> 0,

where in the first equivalence we dropped the factor α−1
α as it is positive for all α > 1, and in the

second equivalence we used the monotonicity and continuity of D∗
α in α on positive definite operators

(see [MDS+13]) and the fact that whenever the first variable is a state, limα→1 D
∗
α evaluates as DUm

82



(see Example 2.2.24). However, for the derived condition we have

max
γ

[∫
Y

r dγ −DUm
(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]

= max
γ

[∫
Y

r dγ − Tr ρ(x)
(

log ρ(x) − log
(

exp
∫
Y

log σ dγ
))]

= max
γ

[∫
Y

r dγ − Tr ρ(x)
(

log ρ(x) −
∫
Y

log σ dγ
)]

= max
γ

∫
Y

[r − Tr ρ(x)(log ρ(x) − log σ)] dγ

= max
y

[r(y) − Tr ρ(x)(log ρ(x) − log σ(y))]

= max
y

[
r(y) −DUm(ρ(x)∥σ(y))

]
.

Remark 4.4.14. Note that similarly as in the case of Proposition 4.4.7 and Remark 4.4.8, Theo-
rem 4.4.12 and Theorem 4.4.13 give a nontrivial characterization for rate functions R, r ≥ 0.

Definition 4.4.15. We call the quantities in (4.13) γ-weighted Hoeffding anti-divergences. That is, for
a state ρ ∈ S(H) and for a compact set of commuting invertible states σ ⊂ S(H), indexed by a compact
Hausdorff topological space Y , and for any continuous rate function r : Y → R and γ probability
distribution on Y , the γ-weighted Hoeffding anti-divergence of ρ and the compact, commuting family
σ is defined as

H∗
r,γ(ρ∥σ) := sup

α>1

α− 1
α

[∫
Y

r dγ −D∗
α

(
ρ

∥∥∥∥exp
∫
Y

log σ dγ
)]
.

Remark 4.4.16. Note that when Y is a one-point space in Definition 4.4.15, then r is a single number
and γ is a Dirac measure and thus

H∗
r,γ(ρ∥σ) = sup

α>1

α− 1
α

[r −D∗
α(ρ∥σ)] = H∗

r (ρ∥σ)

is the Hoeffding anti-divergence of the states ρ and σ [MO15a,MO15b].

We have the following immediate consequence of Theorem 4.4.12 and Theorem 4.4.13 on the strong
converse exponent:

Corollary 4.4.17. For compact Hausdorff topological spaces X,Y and composite null and alternative
hypotheses in the form of continuous functions ρ : X → S(H), σ : Y → S(H) consisting of states
of full support, where in addition [σ(y), σ(y′)] = 0 for all y, y′ ∈ Y , for all continuous rate functions
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r : Y → R , and for all x ∈ X, we have the following

inf lim inf
n→+∞

{
− 1
n

log(1 − αx(Πn))
}

= inf lim sup
n→+∞

{
− 1
n

log(1 − αx(Πn))
}

= max
γ

sup
α>1

α− 1
α

[∫
Y

r dγ −D∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]

= max
γ

H∗
r,γ(ρ(x)∥σ),

where the infimum is taken over all sequences of tests {Πn}∞
n=1, such that βy(Πn) ≤ e−r(y)n for all

y ∈ Y and n ∈ N. Furthermore for all x ∈ X, the above strong converse exponent is strictly positive if
and only if

max
y

[
r(y) −DUm(ρ(x)∥σ(y))

]
> 0.

Proof. By Theorem 4.4.12 for R : X → R with

R(x) = sup
α>1

α− 1
α

max
γ

[∫
Y

r dγ −D∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]

there exists a sequence of tests {Πopt
n }∞

n=1 and a sublinear sequence of positive integers {kn}∞
n=1 for

which αx(Πopt
n ) ≤ 1 − e−R(x)n−kn and βy(Πopt

n ) ≤ e−r(y)n for all x ∈ X, y ∈ Y and n ∈ N. Whereas
by Theorem 4.4.13, for all x ∈ X and for all

R < sup
α>1

α− 1
α

max
γ

[∫
Y

r dγ −D∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]

and for all sequences of tests {Πn}∞
n=1 such that βy(Πn) ≤ e−r(y)n for all y ∈ Y and n ∈ N, and for

all sublinear sequences of nonnegative integers {kn}∞
n=1, we have αx(Πn) > 1 − e−Rn−kn for all but

finitely many n ∈ N. The condition for strict positivity follows from Theorem 4.4.13.

In Theorem 4.4.12 and Theorem 4.4.13 we succeeded in controlling the error rate functions indi-
vidually for all operators in the families ρ and σ. One can simplify this setting by requiring bounds
on the maxima of the errors. This simplification results in the so-called worst case scenario, where we
want to control the quantities

α(Πn) = max
x∈X

αx(Πn) and β(Πn) = max
y∈Y

βy(Πn).

We have the following immediate consequence of Theorem 4.4.12 and Theorem 4.4.13 on the worst
case strong converse exponent:

Corollary 4.4.18. For compact Hausdorff topological spaces X,Y and composite null and alternative
hypotheses in the form of continuous functions ρ : X → S(H), σ : Y → S(H) consisting of states of
full support, where in addition [σ(y), σ(y′)] = 0 for all y, y′ ∈ Y , for all type II error rates r ∈ R , we
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have the following

inf lim inf
n→+∞

{
− 1
n

log(1 − α(Πn))
}

= inf lim sup
n→+∞

{
− 1
n

log(1 − α(Πn))
}

= sup
α>1

α− 1
α

[
r − min

x
min
γ
D∗
α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]

= max
x

max
γ

sup
α>1

α− 1
α

[
r −D∗

α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]

=

= max
x

max
γ

H∗
rY ,γ(ρ(x)∥σ),

where the infimum is taken over all sequences of tests {Πn}∞
n=1, such that βy(Πn) ≤ e−rn for all y ∈ Y

and n ∈ N. Furthermore, the above worst case strong converse exponent is strictly positive if and only
if

min
x

min
y
DUm(ρ(x)∥σ(y)) < r.

Proof. Choose the constant rate functions r := rY and

R := sup
α>1

α− 1
α

max
x

max
γ

[
r −D∗

α

(
ρ(x)

∥∥∥∥exp
∫
Y

log σ dγ
)]

in Corollary 4.4.17 and in the proof of it.

The above was first derived for simple null and alternative hypotheses in [MO15a]. By Corol-
lary 4.4.18, for a simple alternative hypothesis and finitely composite null hypothesis, the worst case
strong converse exponent is given by the maximum of the pairwise exponents. This was first derived
axiomatically in [BV21]. Corollary 4.4.18 is a generalization of both results. Note that the result for a
simple alternative hypothesis, but a finitely composite null hypothesis in [BV21] can also be obtained
from the simple null hypothesis case by an averaging argument (see [BV21, Proposition 9]). Corol-
lary 4.4.17 is an even further generalization, as it allows individual control of all the strong converse
exponents in terms of any continuous type II error rate function r and the worst case scenario can be
derived from it by computing the maximum of the individual exponents for a constant type II error
rate function.

4.4.2 Equivariant relative submajorization

In this section we consider pairs of operators on a representation space of some fixed group, and a
variant of relative submajorization that takes into account the group actions. Let G be a topological
group. Let π and π′ be finite dimensional unitary representations of G on H and H′, respectively.
Suppose that (ρ0, σ0) ∈ B(H)2

>0 and (ρ′
0, σ

′
0) ∈ B(H′)2

>0. We say that (π, ρ0, σ0) equivariantly relatively
submajorizes (π′, ρ′

0, σ
′
0) if there exists a completely positive trace-nonincreasing map T : B(H)>0 →
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B(H′)>0 such that

T (ρ0) ≥ ρ′
0

T (σ0) ≤ σ′
0

∀g ∈ G,∀A ∈ B(H) : T (π(g)Aπ(g)∗) = π′(g)T (A)π′(g)∗

On these triples the direct sum and tensor product (of representations and of operators) give binary
operations that are compatible with equivariant relative submajorization.

It will be convenient to restrict to compact groups G, and it can be done without loss of generality
for the following reason. Consider the closure K of {(π(g), π′(g)) : g ∈ G} ⊆ U(H) × U(H′). This
is a compact group (in fact, a Lie group), the map g 7→ (π(g), π′(g)) is a homomorphism and the
representations π, π′ of G extend to representations of K (namely the first and second projections
provide the required homomorphisms). By continuity, a map T : B(H) → B(H′) is G-equivariant if
and only if it is K-equivariant. Therefore the condition for (π, ρ0, σ0) ≽ (π′, ρ′

0, σ
′
0) can be formulated

in terms of the compact group K instead of G. Note that in this case the compact group in general
depends on the specific pair of triples to be compared (through the representations), which may not
always be desirable. Alternatively, one may construct K in a universal way, by taking the Bohr
compactification of G. Recall that the Bohr compactification of a topological group G is a compact
Hausdorff topological group b(G) together with a continuous homomorphism b : G → b(G) that is
universal in the sense that every continuous homomorphism from G into a compact group factors
through b in a unique way. Every topological group has an essentially unique Bohr compactification.
We can apply the universal property to the homomorphisms π : G → U(H) to get a representation
b(π) : b(G) → U(H). Thus, instead of each triple (π, ρ0, σ0) we may consider the modified triple
(b(π), ρ0, σ0). For notational simplicity, from now on we will assume that G itself is a compact
Hausdorff group.

We now show how to map the triples (π, ρ0, σ0) to pairs of families in such a way that the operations
are preserved and equivariant relative submajorization translates to the relative submajorization of the
families. In this way a triple (π, ρ0, σ0) gives rise to the following pair of families, parametrized by G:

ρ(g) = π(g)ρ0π(g)∗

σ(g) = π(g)σ0π(g)∗.

(ρ, σ) determines an element of SG,G, and this element remains the same if we replace the triple
(π, ρ0, σ0) by a unitary equivalent one. This map clearly respects the sum and product operations.

Example 4.4.19.

(i) Let G = {0, 1} with addition modulo 2 as the group operation. A representation π of G on H is
determined by the image of 1, which is a unitary Z satisfying Z2 = I. The triple (π, ρ, σ) then
gives rise to the element ((ρ, ZρZ), (σ, ZσZ)).

(ii) Let G = U(1). A representation π of G is given by the infinitesimal generator A ∈ B(H)sa
as eit 7→ eitA, which is well-defined if A has integer spectrum. The element corresponding to
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(π, ρ, σ) may be identified with ((eitAρe−itA)t∈[0,2π], (eitAσe−itA)t∈[0,2π]) (where 0 and 2π both
represent the identity element of U(1)).

Suppose that (π, ρ0, σ0) equivariantly relatively submajorizes (π′, ρ′
0, σ

′
0), and let T be an equivari-

ant completely positive trace-nonincreasing map satisfying T (ρ0) ≥ ρ′
0 and T (σ0) ≤ σ′

0. Consider the
corresponding elements (σ, ρ) and (σ′, ρ′) of SG,G. Then for all g ∈ G the inequality

T (ρ(g)) = T (π(g)ρ0π(g)∗) = π′(g)T (ρ0)π′(g)∗ ≥ π′(g)ρ′
0π

′(g)∗ = ρ′(g)

holds and similarly T (σ(g)) ≤ σ′(g). This means that (ρ, σ) ≽ (ρ′, σ′) holds.
Conversely, suppose that (ρ, σ) ≽ (ρ′, σ′) is true in SG,G for the families defined above. This means

that there exists a (not necessarily equivariant) completely positive trace-nonincreasing map T0 such
that for all g ∈ G the inequalities T0(ρ(g)) ≥ ρ′(g) and T0(σ(g)) ≤ σ′(g) hold. We construct an
equivariant map T by averaging:

T (X) =
∫
G

π′(g)∗T0(π(g)Xπ(g)∗)π′(g) dµ(g),

where µ is the Haar probability measure on G. Then T is G-equivariant and in addition

T (ρ0) =
∫
G

π′(g)∗T0(π(g)ρ0π(g)∗)π′(g) dµ(g)

=
∫
G

π′(g)∗T0(ρ(g))π′(g) dµ(g)

≥
∫
G

π′(g)∗ρ′(g)π′(g) dµ(g) = ρ′
0,

and similarly T (σ0) ≤ σ′
0.

Note that even though the map (π, ρ0, σ0) 7→ (ρ, σ) is order-preserving and order-reflecting, it is in
general not injective (on equivalence classes). Now we can apply our result on general pairs of families
to the question of asymptotic equivariant relative submajorization.

Theorem 4.4.20. Let G be a topological group and consider the triples (π, ρ0, σ0) and (π′, ρ′
0, σ

′
0),

where π is a unitary representation of G on H, ρ0, σ0 are positive definite operators on H and similarly
for π′, ρ′

0, σ
′
0 on H′. The following are equivalent:

(i) there exists a sequence of G-equivariant completely positive trace-nonincreasing maps
Tn : B(H⊗n)>0 → B(H′⊗n)>0 such that for all n ∈ N the inequalities

Tn(ρ⊗n
0 ) ≥ 2−o(n)ρ′

0
⊗n

Tn(σ⊗n
0 ) ≤ σ′

0
⊗n

hold,

(ii) f((π(g)ρ0π(g)∗)g∈G, (π(g)σ0π(g)∗)g∈G) ≥ f((π(g)ρ′
0π(g)∗)g∈G, (π(g)σ′

0π(g)∗)g∈G) for all f ∈
TSper1(SG,G).
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Remark 4.4.21. Compact groups include many familiar groups, in particular finite groups and com-
pact Lie groups such as U(1) or SU(2). Theorem 4.4.20 can be applied to any of these, but due to our
incomplete knowledge of the test-spectrum, in practice it only gives necessary conditions for catalytic
or asymptotic transformations (it would become sufficient if we could evaluate all elements of the real
and tropical spectrum). Under the additional assumption that the orbit of σ consists of commuting
operators, Corollary 4.4.23 below gives an explicit necessary and sufficient condition.

We note that in general many elements of TSper1(SG,G) collapse to the same function when re-
stricted to pairs of the form ((π(g)ρ0π(g)∗)g∈G, (π(g)σ0π(g)∗)g∈G). The reason is that left translations
of G give rise to automorphisms of SG,G of the form (ρ, σ) 7→ (ρ ◦ Lh, σ ◦ Lh) (where h ∈ G and
Lh : G → G is the map Lh(g) = hg), which in turn induce nontrivial automorphisms of TSper1(SG,G),
while the equivalence class of ((π(g)ρ0π(g)∗)g∈G, (π(g)σ0π(g)∗)g∈G) remains unchanged by these trans-
formations. This can be seen explicitly on the subsemiring of pairs with commuting σ, where the
precise form of spectral points is known: if ρ(g) = π(g)ρ0π(g)∗ and σ(g) = π(g)σ0π(g)∗ such that
σ(g)σ(e) = σ(e)σ(g) for all g ∈ G, then

fα,x,γ(ρ ◦ Lh, σ ◦ Lh) = Q∗
α

(
ρ(hx)

∥∥∥∥exp
∫
G

log σ(hg) dγ(g)
)

= Q∗
α

(
π(h)ρ(x)π(h)∗

∥∥∥∥π(h) exp
∫
G

log σ(g) dγ(g)π(h)∗
)

= Q∗
α

(
ρ(x)

∥∥∥∥exp
∫
G

log σ(g) dγ(g)
)

= fα,x,γ(ρ, σ).

The first line of this calculation also shows that

fα,x,γ(ρ ◦ Lh, σ ◦ Lh) = fα,hx,(Lh)∗(γ)(ρ, σ).

In particular, fα,h,γ and fα,e,(Lh−1 )∗(γ) coincide on these elements.

Example 4.4.22.

(i) Let G = {0, 1} with addition modulo 2. TSper1(SG,G) contains (at least) the maps
((ρ0, ρ1), (σ0, σ1)) 7→ Q∗

α(ρ0∥σ0#γσ1) and ((ρ0, ρ1), (σ0, σ1)) 7→ Q∗
α(ρ1∥σ0#γσ1) for all α ≥ 1

and γ ∈ [0, 1]. On an element of the form ((ρ, ZρZ), (σ, ZσZ)) with Z2 = I, Z unitary, the two
are related as

Q∗
α(ρ∥σ#γ(ZσZ)) = Tr

(
ρ1/2(σ#γ(ZσZ))

1−α
α ρ1/2

)α
= Tr

(
Zρ1/2Z((ZσZ)#γσ)

1−α
α Zρ1/2Z

)α
= Tr

(
(ZρZ)1/2(σ#1−γ(ZσZ))

1−α
α (ZρZ)1/2

)α
= Q∗

α(ZρZ∥σ#1−γ(ZσZ)).

(ii) Let G = U(1), and consider the representation π(eit) = eitA. An example of a geometric
mean in G(U(1)) is the map Mt1,t2,t3(σ) = (σ(t1)#σ(t2))#σ(t3) for some t1, t2, t3 ∈ [0, 2π] (for
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notational simplicity, we identify [0, 2π) with U(1), see 4.4.19). For any t the maps (ρ, σ) 7→
Q∗
α(ρ(t)∥Mt1,t2,t3(σ)) are in TSper1(SU(1),U(1)). When evaluated on an element (ρ, σ) of the

form ρ(t) = eitAρ(0)e−itA, σ(t) = eitAσ(0)e−itA, it gives

Q∗
α(ρ(t)∥Mt1,t2,t3(σ)) = Tr

(
ρ(t)1/2Mt1,t2,t3(σ)

1−α
α ρ(t)1/2

)α
= Tr

(
eitAρ(0)1/2e−itAMt1,t2,t3(σ)

1−α
α eitAρ

1/2
0 e−itA

)α
= Tr

(
ρ(0)1/2Mt1,t2,t3(e−itAσeitA)

1−α
α ρ(0)1/2

)α
= Tr

(
ρ(0)1/2Mt1−t,t2−t,t3−t(σ)

1−α
α ρ(0)1/2

)α
= Q∗

α(ρ(0)∥Mt1−t,t2−t,t3−t(σ)),

which only depends on the differences t1 − t, t2 − t, and t3 − t.

Corollary 4.4.23. Under the conditions of Theorem 4.4.20, suppose that [σ0, π(g)σ0π(g)∗] = 0 and
[σ′

0, π(g)σ′
0π(g)∗] = 0 for all g ∈ G. Then (π, ρ0, σ0) ≿ (π′, ρ′

0, σ
′
0) (in the sense of asymptotic equiv-

ariant relative submajorization) if and only if for all α ≥ 1 and Radon probability measure γ on G the
inequality

D∗
α

(
ρ0

∥∥∥∥exp
∫
G

log π(g)σ0π(g)∗ dγ(g)
)

≥ D∗
α

(
ρ′

0

∥∥∥∥exp
∫
G

log π(g)σ′
0π(g)∗ dγ(g)

)
holds.

Remark 4.4.24. The assumption that the orbit of σ consists of commuting operators is a strong one
due to the following rigidity property: if the orbit of σ under the action of a connected group contains
only operators that commute with σ, then σ is a fixed point of the action. To see this, note that
π(G) is a connected Lie subgroup of U(H), therefore the exponential map is surjective. If iA is an
element of the Lie algebra, then [eitAσe−itA, σ] = 0 for all t ∈ R, which implies by differentiation that
[[A, σ], σ] = 0. Since σ is diagonalizable, so is the map X 7→ [X,σ], therefore its kernel is equal to the
kernel of its square. It follows that [A, σ] = 0, i.e., eitAσe−itA = σ for all t.

Asymptotic transformations by thermal processes

Thermal operations are central to the resource theoretic approach to quantum thermodynamics. This
is the class of quantum channels that can be obtained by preparing Gibbs states at a fixed temperature
T , performing energy-preserving unitaries and tracing out subsystems [JWZ+00,BHO+13,HO13]. This
characterization does not suggest a simple way to decide whether a given channel is a thermal operation
or whether a transformation between given states is feasible by a thermal operation, which motivates
the study of channels and transformations admitting a simpler description at the cost of satisfying
only some of the constraints governing thermal operations.

In the absence of coherence between energy eigenspaces, Gibbs-preserving maps provide an espe-
cially useful relaxation, which turns out to allow the same transitions as thermal operations. This is no
longer true if coherence is present [FOR15], and in addition to being Gibbs-preserving, the condition of
time-translation symmetry has been identified as another key property of thermal operations [LJR15].
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Adding this requirement leads to the notion of thermal processes [GJB+18].
Transformations by such processes are an instance of equivariant relative majorization: the group

is that of time-translations, isomorphic to R, and to a system with Hilbert space H, Hamiltonian
H ∈ B(H) and state ρ we associate the triple (πH , ρ, e−βH), where πH : R → U(H) is the representation
t 7→ e−itH and β is the inverse temperature. By definition, (πH , ρ, e−βH) ≽ (πH , σ, e−βH) if there exists
a completely positive trace-preserving map T : B(H)>0 → B(H)>0 such that T (ρ) = σ, T (e−βH) =
e−βH (by linearity, this amounts to preserving the Gibbs state e−βH/Tr e−βH), and T (e−itHωeitH) =
e−itHT (ω)eitH for all states ω and t ∈ R.

If we relax these transformations to equivariant relative submajorization and consider the asymp-
totic limit, then Theorem 4.4.20 provides a characterization of the resulting preorder in terms of the
spectrum TSper1(Sb(R),b(R)). Moreover, since e−itHe−βHeitH = e−βH , the orbit of e−βH has only one
element, the simpler characterization of Corollary 4.4.23 can be applied.

Proposition 4.4.25. Let H ∈ B(H) be a Hamiltonian on a Hilbert space H, and ρ, σ ∈ S(H). Then
the following are equivalent:

(i) there exists a sequence of trace-nonincreasing thermal processes Tn : B(H⊗n)>0 → B(H⊗n)>0

such that Tn(ρ⊗n) ≥ 2−o(n)σ⊗n,

(ii) there exists a sequence of trace-preserving thermal processes Tn : B(H⊗n)>0 → B(H⊗n)>0 such
that Tn(ρ⊗n) ≥ 2−o(n)σ⊗n,

(iii) for all α ≥ 1 the inequality D∗
α

(
ρ
∥∥e−βH) ≥ D∗

α

(
σ
∥∥e−βH) holds.

Proof. As explained in Section 4.4.2, we replace the noncompact group R with its Bohr compactification
b(R) and consider the unique representation π : b(R) → U(H) such that π(b(t)) = e−itH , where
b : R → b(R) is the universal map. We claim that the image of π is the closure of

{
e−itH : t ∈ R

}
,

which we denote by K. Since π(b(R)) is compact (hence closed) and contains e−itH for all t, it must
contain K as well. K is a closed subgroup of U(H), therefore compact. By the universal property,
there exists map φ : b(R) → K such that φ(b(t)) = e−itH for all t ∈ R. Composing with the inclusion
ι : K → U(H) we get π(b(t)) for all t ∈ R, so by uniqueness we have ι ◦ φ = π.

By continuity, we have π(g)e−βHπ(g)∗ = e−βH for every g ∈ b(R), therefore

exp
∫

b(R)
log π(g)e−βHπ(g)∗ dγ(g) = e−βH

for every probability measure γ on b(R). This means that the condition D∗
α

(
ρ
∥∥e−βH) ≥ D∗

α

(
σ
∥∥e−βH)

for all α ≥ 1 is equivalent to the condition in Corollary 4.4.23. This already proves (i) ⇒ (iii).
To see the equivalence as stated, note that for any trace-nonincreasing equivariant Gibbs sub-

preserving completely positive map Tn there exists a trace-preserving thermal process T ′
n such that

Tn ≤ T ′
n (in the completely positive partial order), for example the map

T ′
n(X) = Tn(X) + (TrX − TrTn(X)) (e−βH)⊗n − Tn((e−βH)⊗n)

Tr(e−βH)⊗n − TrTn((e−βH)⊗n)
.

T ′
n preserves the Gibbs state (e−βH)⊗n/Tr

(
e−βH)⊗n by construction, it is the sum of Tn and a

90



completely positive equivariant map (since (e−βH)⊗n is invariant and therefore its image under the
equivariant map Tn is invariant as well). Finally, we have T ′

n(ρ⊗n) ≥ Tn(ρ⊗n) ≥ 2−o(n)σ⊗n, proving
(iii) ⇒ (ii). (ii) ⇒ (i) is trivial.

We note that this characterization is exactly the same as the one obtained in [PVW22] for Gibbs-
preserving maps without the equivariance condition. This means that in this asymptotic limit, Gibbs-
preserving maps are no more powerful than thermal processes.

Hypothesis testing with group symmetry

In the group-symmetric variant of binary state discrimination problems, the measurements are re-
stricted to be invariant with respect to a group representation π : G → U(H). This problem was
considered in [HMH09] in three asymptotic regimes: when both error probabilities decay exponen-
tially with the same exponent (Chernoff); when the exponential decays are different (Hoeffding); and
when the type I error probability approaches zero arbitrarily, and the type II error decays exponentially
(Stein).

We now focus on the strong converse domain. In the unrestricted (i.e., without group symmetry)
case, this is characterized in Theorem 4.4.12 and Theorem 4.4.13, providing an operational interpre-
tation of the sandwiched Rényi divergences with orders α > 1. Following the strategy of [PVW22], we
show that the strong converse error exponent can be characterized in terms of the asymptotic preorder
associated with equivariant relative submajorization.

We begin with single-copy measurements. Given a representation π : G → U(H), by a group-
symmetric POVM (or invariant measurement) we mean a POVM (Fi)ri=1 with measurement operators
Fi satisfying π(g)Fiπ(g)∗ = Fi for all g ∈ G. Since we are interested in discriminating between two
hypotheses, the measurement will be a test, i.e., a two-outcome POVM with measurement operators
(Π, I−Π). We interpret the outcome associated with Π as accepting (not rejecting) the null hypothesis
ρ, and the other outcome corresponds to accepting σ. The probability of a type I error is therefore
Tr(I − Π)ρ = 1 − Tr Πρ, while that of the type II error is Tr Πσ.

Lemma 4.4.26. Let π : G → U(H) be a representation and ρ, σ ∈ S(H). Then the following are
equivalent for a, b ∈ R>0:

(i) there exists a two-outcome group-symmetric POVM (Π, I − Π) on H such that the type I and
type II errors satisfy

Tr(I − Π)ρ ≤ 1 − a,

Tr Πσ ≤ b.

(ii) (π, ρ, σ) ≽ (1, a, b), where 1 denotes the trivial representation of G on C, and we identify B(C) ≃
C.

Proof. An invariant measurement on H can be identified with an equivariant (completely) positive
trace-nonincreasing map T : B(H)>0 → B(C)>0 ≃ R>0, where R>0 carries the trivial representation
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1: the POVM (Π, I − Π) corresponds to the map T (X) = Tr(XΠ). This is indeed equivariant (which
in this special case means invariant), since

T (π(g)Xπ(g)∗) = Tr(π(g)Xπ(g)∗Π)

= Tr
(
Xπ(g−1)Ππ(g−1)∗)

= Tr(XΠ) = T (X).

Conversely, any equivariant linear map T : B(H)>0 → R>0 is of the form T (X) = Tr(XΠ) for a
unique Π that is necessarily invariant, and T is completely positive and trace-nonincreasing if and
only if 0 ≤ Π ≤ I. It follows that (π, ρ, σ) ≽ (1, a, b) for some a, b > 0 if and only if there exists a
POVM (Π, I − Π) such that the type I error satisfies 1 − Tr Πρ ≤ 1 − a and the type II error satisfies
Tr Πσ ≤ b.

The following is an immediate consequence of Lemma 4.4.26, the definition of the asymptotic
preorder, Theorem 4.4.20, and Corollary 4.4.23:

Corollary 4.4.27. Let G be a compact group and π : G → U(H) a representation and ρ, σ ∈ S(H).
Then the following are equivalent for r,R ≥ 0:

(i) there exists a sequence of π⊗n-invariant measurements (Πn, I−Πn) with Πn ∈ B(H⊗n) such that
the type I error is at most 1 − 2−Rn+o(n) and the type II error is at most 2−rn;

(ii) (π, ρ, σ) ≿ (1, 2−R, 2−r);

(iii) ∀f ∈ TSper1(SG,G) : f((π(g)ρπ(g)∗)g∈G, (π(g)σπ(g)∗)g∈G) ≥ f(2−R, 2−r).

Moreover, if the orbit of σ consists of operators that commute with σ, then the condition is equivalent
to

R ≥ sup
α>1

max
γ

α− 1
α

[
r −D∗

α

(
ρ

∥∥∥∥exp
∫
G

log π(g)σπ(g)∗ dγ(g)
)]
, (4.15)

where the maximum is over Radon probability measures γ on G.

In the following, R∗(r) denotes the smallest possible error exponent for a given r.

Example 4.4.28. Consider the states and representation as in [HMH09, Example 6.1]: The group is
G = {0, 1} with addition modulo 2, H = C2, and the nontrivial element acts as the Pauli Z matrix.
Let the states be

ρ = λ
1
2

[
1 1
1 1

]
+ (1 − λ)1

2

[
1 −1

−1 1

]

σ = µ
1
2

[
1 1
1 1

]
+ (1 − µ)1

2

[
1 −1

−1 1

]

for some λ, µ ∈ (0, 1). Then ZσZ is also of the same form with µ replaced with 1 −µ, and these states
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commute with each other. From (4.15) we obtain

R∗(r) = sup
α>1

max
γ∈[0,1]

α− 1
α

[
r − 1

α− 1 log
(
λαµ(1−α)γ(1 − µ)(1−α)(1−γ)

+ (1 − λ)α(1 − µ)(1−α)γµ(1−α)(1−γ)
)]
.

This can be strictly larger than the maximum of the strong converse exponents for testing ρ against
σ or ZσZ, which correspond to γ = 0 and γ = 1. Note that a similar strict inequality was shown for
unrestricted hypothesis testing with a composite alternative hypothesis in [MSW22].

Example 4.4.29. Let G = {0, 1}, and π : G → U(H), ρ, σ ∈ S(H) arbitrary full-rank, and let Z =
π(1). Without the commuting orbit assumption, we can only give a lower bound on the strong converse
exponent, corresponding to the inner approximation of the test-spectrum given by Theorem 4.3.19 and
Proposition 4.3.16:

R∗(r) ≥ sup
α>1

max
γ∈[0,1]

α− 1
α

[r −D∗
α(ρ∥σ#γ(ZσZ))].

We do not know whether this inequality can be strict for some Z, ρ, σ.

Example 4.4.30. Let G be an arbitrary compact group, π : G → U(H), ρ ∈ S(H) arbitrary and
suppose that σ ∈ S(H) is G-invariant, i.e., π(g)σπ(g)∗ = σ for all g ∈ G (as always, both ρ and σ are
assumed to be of full rank). Then the orbit of σ is a single point, therefore (4.15) may be used and
simplified because the exponentiated integral is equal to σ independently of the measure γ. Therefore
the bound reduces to

R∗(r) = sup
α>1

α− 1
α

[r −D∗
α(ρ∥σ)],

which is the same as with unrestricted measurements [MO15a]. This phenomenon is similar to the
equality of the Stein exponents in the group-symmetric and unrestricted problems, and is in contrast
with the Chernoff and Hoeffding exponents, which can be strictly worse with group-symmetric tests,
even if σ is G-invariant [HMH09, Example 6.2].

Reference frames in hypothesis testing

When the dynamics of a system is constrained by symmetries, an additional supply of asymmetric states
(imperfect reference frames) becomes a resource, which allows to partially overcome the limitations of
symmetric evolutions [BRS07]. Suppose that πref : G → U(K) is a representation and Ω ∈ S(K) is
a state with full support and trivial stabilizer. In the setting of group-symmetric hypothesis testing
as modeled above in terms of equivariant relative submajorization, the reference frame corresponds to
the triple (πref,Ω,Ω). The two states in this triple are equal, therefore they cannot be distinguished
even with unrestricted measurements. The mathematical property that makes it a useful resource in
group-symmetric hypothesis testing is the following:

Proposition 4.4.31. Let πref : G → U(K) be a representation and Ω ∈ S(K) a state with full support
and trivial stabilizer. Let f ∈ TSper1(SG,G) and let its restriction to Sc

G,G be characterized by α > 1
(for real points), x ∈ G, and the probability measure γ. Then there are two possibilities: either γ is
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the Dirac measure at x, or

f((πref(g)Ωπref(g)∗)g∈G, (πref(g)Ωπref(g)∗)g∈G) > 1.

Proof. Since the stabilizer of Ω is trivial, for all g, g′ ∈ G, g ̸= g′ we have πref(g)Ωπref(g)∗ ̸=
πref(g′)Ωπref(g′)∗. By assumption, Trπref(g)Ωπref(g)∗ = Tr Ω = 1, so by Proposition 4.3.4, the condi-
tion for f((πref(g)Ωπref(g)∗)g∈G, (πref(g)Ωπref(g)∗)g∈G) = 1 is that γ is concentrated at x.

Example 4.4.32.

(i) Let G = {0, 1}, and let the nontrivial element act on C2 by the Pauli X operator. A biased
coin Ω = q|0⟩⟨0| + (1 − q)|1⟩⟨1| with q ∈ (0, 1/2) is an example of a reference frame. Since
[Ω, XΩX] = 0, we can use the explicit form of the spectrum of the classical semiring Sc

G,G.
Identifying the probability measure γ with the value γ({0}) ∈ [0, 1], for α > 1 we have

fα,0,γ((Ω, XΩX), (Ω, XΩX))

= qαq(1−α)γ(1 − q)(1−α)(1−γ) + (1 − q)α(1 − q)(1−α)γq(1−α)(1−γ)

= q1−(1−α)(1−γ)(1 − q)(1−α)(1−γ) + (1 − q)1−(1−α)(1−γ)q(1−α)(1−γ),

which is equal to 1 if and only if γ = 1.

(ii) Let G = U(1), which we can think of as the group of complex numbers with modulus 1. To find
a reference frame, we consider the representation

π(z) =
[

1 0
0 z

]
,

and let Ω be any full-rank state with nonzero off-diagonal entries, such as Ω = (1 − ϵ)|+⟩⟨+| +
ϵ|−⟩⟨−|, where ϵ ∈ (0, 1/2) and |±⟩ = 1√

2 (|0⟩ ± |1⟩). Conjugation by π(z) means that the
off-diagonal elements pick up the phase factor z and z, therefore the stabilizer is trivial.

We can find a lower bound on the values of the spectral points by applying a suitable measure-
ment. Let us measure in the basis (|+⟩, |−⟩). The probability of obtaining the plus outcome in
the state π(z)Ωπ(z)∗ is

1
4 Tr

[
1 1
1 1

][
1 (1 − 2ϵ)z

(1 − 2ϵ)z 1

]
= 1

2 + 1 − 2ϵ
2 Re z,

which has a strict maximum at z = 1, therefore this measurement gives a nontrivial bound for
any probability measure γ ̸= δ1. More precisely, if f ∈ TSper1(SU(1),U(1)), and its restriction to
the classical subsemiring is characterized by α > 1, x = 1 ∈ U(1) and the probability measure
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γ, then

f((π(z)Ωπ(z)∗)z∈U(1), (π(z)Ωπ(z)∗)z∈U(1))

≥fα,1,γ((1
2 + 1 − 2ϵ

2 Re z)z∈U(1), (
1
2 + 1 − 2ϵ

2 Re z)z∈U(1))

=(1 − ϵ)α exp
[
(1 − α)

∫ 2π

0
log
(

1
2 + 1 − 2ϵ

2 cosφ
)

dγ(φ)
]

+ ϵα exp
[
(1 − α)

∫ 2π

0
log
(

1
2 − 1 − 2ϵ

2 cosφ
)

dγ(φ)
]
.

Testing (π, ρ, σ) aided by the reference frame corresponds to comparing (π ⊗ πref, ρ ⊗ Ω, σ ⊗ Ω)
with a one-dimensional triple with trivial representation. In an asymptotic setting, more generally, we
may use κ copies of the reference frame per sample of the state to be discriminated. In this case the
exponent pair (R, r) is achievable if and only if

∀f ∈ TSper1(SG,G) : f((π(g)ρ0π(g)∗)g∈G, (π(g)σ0π(g)∗)g∈G)

· f((πref(g)Ωπref(g)∗)g∈G, (πref(g)Ωπref(g)∗)g∈G)κ ≥ f(2−R, 2−r),

therefore

R∗(r, κ) = sup
α>1

sup
f∈TSper1(SG,G)

log f(2,1)=α

α− 1
α

[
r − 1

α− 1 log f((π(g)ρ0π(g)∗)g∈G, (π(g)σ0π(g)∗)g∈G)

− κ
1

α− 1 log f((π(g)Ωπ(g)∗)g∈G, (π(g)Ωπ(g)∗)g∈G)
]
,

where we may as well restrict to those elements of the spectrum that depend on the first family
through its value at the identity. As κ → ∞ (i.e., in the limit of unlimited supply of the reference
frame), the supremum is achieved for the γ (which, as before, is determined by the restriction of f to
the classical subsemiring) that is concentrated at the identity by Proposition 4.4.31, since this is the
only point where the last term vanishes. This means that we recover the unrestricted strong converse
exponent [MO15a], which is potentially much smaller than the group-symmetric one. In an extreme
example, ρ0 and σ0 might be in the same G-orbit, in which case R∗(r, 0) = r, i.e., a group-symmetric
measurement cannot offer any advantage over guessing.

When the orbits of σ0 and Ω consist of commuting operators, we can use Corollary 4.4.23 to obtain
an explicit form of the smallest type I strong converse exponent R∗ for a given decay rate r of the type
II error:

R∗(r, κ) = sup
α>1

max
γ

α− 1
α

[
r −D∗

α

(
ρ0

∥∥∥∥exp
∫
G

log π(g)σ0π(g)∗ dγ(g)
)

− κD∗
α

(
Ω
∥∥∥∥exp

∫
G

log πref(g)Ωπref(g)∗ dγ(g)
)]
.
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4.4.3 Approximate joint transformations

In this subsection we specialize our results and derive a characterization of approximate joint transfor-
mations with respect to the symmetrized max-divergence, in the asymptotic limit. Recall that the max-
divergence between a pair of states ρ, σ is Dmax(ρ∥σ) = log

∥∥σ−1/2ρσ−1/2
∥∥

∞ = min
{
λ ∈ R : 2λσ ≥ ρ

}
.

We will use the max-divergence as a measure of dissimilarity between states. It vanishes if and only if
the two states are equal, but for subnormalized states this is no longer true, and it is not symmetric.
However, the closely related quantity dT(ρ, σ) := max{Dmax(ρ∥σ), Dmax(σ∥ρ)} is a metric on the set
of positive definite operators (the Thompson metric [Tho63] associated with the semidefinite cone).
This metric is unbounded even on a fixed Hilbert space and satisfies dT(ρ⊗n, σ⊗n) = ndT(ρ, σ). The
notion of approximate transformations that we consider will be that the distance increases sublinearly
as the number of copies grow.

Proposition 4.4.33. Let X be a compact space, ρ ∈ C(X,B(H)>0), and ρ′ ∈ C(X,B(H′)>0). The
following are equivalent:

(i) there exists a sequence of completely positive trace-nonincreasing maps Tn : B(H⊗n)>0 →
B(H′⊗n)>0 such that for all n

2−o(n)ρ′⊗n ≤ Tn(ρ⊗n) ≤ ρ′⊗n,

i.e., for all x ∈ X we have

lim
n→∞

1
n
dT(Tn(ρ(x)⊗n), ρ′(x)⊗n) = 0,

uniformly in x;

(ii) (ρ, ρ) ≿ (ρ′, ρ′) in the preordered semiring SX,X ;

(iii) for all f ∈ TSper1(SX,X) the inequality f(ρ, ρ) ≥ f(ρ′, ρ′) holds.

Proof. The equivalence of (ii) and (iii) is a special case of Theorem 2.3.26. Using the definition of the
asymptotic preorder with the power universal element u = (2·1X , 1X), the condition for (ρ, ρ) ≿ (ρ′, ρ′)
is that there exists a sequence of completely positive trace-nonincreasing maps Tn : B(H⊗n)>0 →
B(H′⊗n)>0 and a sequence kn of natural numbers such that kn/n → 0 and for all n ∈ N and x ∈ X the
inequalities Tn(2knρ(x)⊗n) ≥ ρ′(x)⊗n and Tn(ρ(x)⊗n) ≤ ρ′(x)⊗n hold, which is the same as (i).

Remark 4.4.34. The (non-asymptotic) relative submajorization preorder between the pairs (ρ, ρ)
and (ρ′, ρ′) means that T (ρ(x)) ≤ ρ′(x) and T (ρ(x)) ≥ ρ′(x) for some subchannel T and all x, i.e.,
T (ρ(x)) = ρ′(x).

Specializing to classical families and using the explicit form of the 1-test spectrum of the classical
semiring (Theorem 4.2.9), we have the following characterization of asymptotic joint transformations
in the above sense.

Theorem 4.4.35. Let p : X → P([d]), p′ : X → P([d′]) where X is a compact Hausdorff space and
d, d′ ∈ N>0 are finite sets. The following are equivalent:
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(i) there exists a sequence of substochastic maps Tn from (Rd)⊗n to (Rd′)⊗n such that for all x ∈ X

lim
n→∞

1
n
dT(Tn(p(x)⊗n), p′(x)⊗n) = 0,

uniformly in x;

(ii) for all x ∈ X, α ≥ 1 and probability measure γ on X the inequality

d∑
i=1

pi(x)α exp(1 − α)
∫
X

log pi dγ ≥
d′∑
i=1

p′
i(x)α exp(1 − α)

∫
X

log p′
i dγ

holds.

The ideas in this section can be combined with our considerations on equivariant transformations:

Proposition 4.4.36. Let X0 be a compact space, G a compact group, π : G → U(H), π′ : G → U(H′)
unitary representations, ρ0 ∈ C(X0,B(H)>0) and ρ′

0 ∈ C(X0,B(H′)>0). Let X = X0 ×G and consider
ρ ∈ C(X,B(H)>0) defined as ρ(x, g) = π(g)ρ0(x)π(g)∗, and similarly ρ′, which determine the elements
(ρ, ρ) and (ρ′, ρ′) in SX,X . Then the following are equivalent:

(i) there exists an equivariant completely positive trace-nonincreasing map T such that T (ρ0(x)) =
ρ′

0(x) for all x ∈ X0;

(ii) (ρ, ρ) ≽ (ρ′, ρ′) in SX,X .

Proof. (i) =⇒ (ii): Let T be an equivariant subchannel such that T (ρ0(x)) = ρ′
0(x) for all x ∈ X0.

Then for all x ∈ X0 and g ∈ G we have

T (ρ(x, g)) = T (π(g)ρ0(x)π(g)∗) = π(g)T (ρ0(x))π(g)∗ = π(g)ρ′
0(x)π(g)∗ = ρ′(x, g).

Therefore (ρ, ρ) ≽ (ρ′, ρ′) (see Remark 4.4.34).
(ii) =⇒ (i): Suppose that (ρ, ρ) ≽ (ρ′, ρ′) in SX,X . Then there exists a subchannel T0 such

that T0(ρ(x, g)) = ρ′(x, g) for all x ∈ X0 and g ∈ G. Let us define the completely positive trace-
nonincreasing map T as

T (σ) =
∫
G

π′(g)∗T0(π(g)σπ(g)∗)π′(g) dµ(g),

where µ is the Haar probability measure on G. This is equivariant by construction, and satisfies

T (ρ0(x)) =
∫
G

π′(g)∗T0(π(g)ρ0(x)π(g)∗)π′(g) dµ(g)

=
∫
G

π′(g)∗T0(ρ(x, g))π′(g) dµ(g)

=
∫
G

π′(g)∗ρ′(x, g)π′(g) dµ(g)

=
∫
G

ρ′
0 dµ(g) = ρ′

0(x).
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While a complete classification of TSper1(SX,X) is required to obtain an explicit characterization
of the asymptotic preorder, any subset of the spectrum gives necessary conditions for asymptotic,
single or multiple copy, and catalytic transformations. In particular, in the setting of Section 4.4.2, the
spectrum gives rise to many “second laws” of thermodynamics in the sense of [BHN+15]. For example,
if a transformation is possible by a thermal process under the Hamiltonian H and at temperature β−1,
then the value of

D∗
α

(
ρ
∥∥(e−itHρeitH)#γe

−βH) (4.16)

cannot increase under the process, for every α ≥ 1, γ ∈ [0, 1] and t ∈ R. Here the second argument
may be replaced with any weighted geometric mean of the Gibbs state and arbitrary time-translated
versions of ρ, and in addition the first argument may be replaced with the Gibbs state. To ensure that
the quantity is finite, one generally needs to restrict to full-rank states ρ.

Example 4.4.37. As a concrete example, consider a transition studied in [FOR15], perturbed slightly
to get full-rank states. With the Hamiltonian H = |1⟩⟨1| on C2, the transition |1⟩⟨1| → |+⟩⟨+|
was shown to be possible by Gibbs-preserving maps, but not possible with thermal processes. Let
τ = e−βH/Tr e−βH be the Gibbs state at temperature β−1. Then the transition (1 − ϵ)|1⟩⟨1| + ϵτ →
(1 − ϵ)|+⟩⟨+| + ϵτ is still possible by a Gibbs-preserving map. However, (4.16) with α = 2, γ = 1/2
and t = π evaluates to 1

2 log
(
1 + eβ

)
+O(ϵ) on the initial state while it diverges logarithmically on the

target state as ϵ → 0. This implies that, for sufficiently small ϵ, the transition is not possible under a
thermal process, even in the presence of a catalyst or assuming multicopy transformations. In fact, a
numerical comparison suggests that this holds for all ϵ ∈ (0, 1).

4.4.4 A two-parameter family of quantum Rényi divergences

A defining property of the monotone quantities in TSper1(SX,Y ) is that they are increasing in the first
argument and decreasing in the second one. From the point of view of relative majorization, this is a
severe and unnecessary restriction, and it is reasonable to expect that by dropping this requirement
one gets more constraints on joint transformations that are violated by relative submajorization.

In this section we point out that it is possible to derive some of these additional constraints by
specialization, thanks to the possibility of relative submajorization to express relative majorization as a
special case. We also used this in Section 4.4.3 for classical families, but now, with a different viewpoint,
we consider quantum pairs instead, and introduce a two-parameter family of monotone quantum Rényi
divergences. We note that α-z-divergences, another two-parameter quantum extension of the Rényi
divergences defined and summarized in [AD15], do not seem to have any obvious relation to ours, nor
the multivariable Rényi divergences defined in [FLO23].

Definition 4.4.38. For γ ∈ [0, 1) and α > 1, let us define the γ-weighted geometric sandwiched Rényi
divergence for positive definite arguments ρ, σ as

D∗,γ
α (ρ∥σ) := 1

1 − γ
D∗

α−γ
1−γ

(ρ∥σ#γρ)

= 1
α− 1 log Tr

(
√
ρ
(√

σ
(
σ−1/2ρσ−1/2

)γ√
σ
) 1−α

α−γ √
ρ

)α−γ
1−γ

.

(4.17)
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The α → 1 limit is studied in a more general context in [MBV23]. We summarize some properties
in the following proposition:

Proposition 4.4.39. Let γ ∈ [0, 1) and α > 1. Then for all ρ, σ ∈ B(H)>0 and ρ′, σ′ ∈ B(H′)>0 we
have

(i) if [ρ, σ] = 0, then D∗,γ
α (ρ∥σ) = 1

α−1 Tr ρασ1−α (extension of classical Rényi divergence);

(ii) D∗,γ
α (ρ⊗ ρ′∥σ ⊗ σ′) = D∗,γ

α (ρ∥σ) +D∗,γ
α (ρ′∥σ′) (additivity);

(iii) 2(α−1)D∗,γ
α (ρ⊕ρ′∥σ⊕σ′) = 2(α−1)D∗,γ

α (ρ∥σ) + 2(α−1)D∗,γ
α (ρ′∥σ′) (block additivity);

(iv) if there exists a channel T : B(H) → B(H′) such that T (ρ) = ρ′ and T (σ) = σ′, then D∗,γ
α (ρ∥σ) ≥

D∗,γ
α (ρ′∥σ′) (data processing inequality);

(v) if Tr ρ = Trσ = 1, then D∗,γ
α (ρ∥σ) ≥ 0 with equality if and only if ρ = σ (positive definiteness);

(vi) if H = H′ and σ ≤ σ′ in the semidefinite partial order, then D∗,γ
α (ρ∥σ) ≥ D∗,γ

α (ρ∥σ′) (anti-
monotonicity in the second argument).

Proof. Although the properties can be proved directly, in order to illustrate the general idea, we show
them by a reduction to Theorem 4.3.19 and Proposition 4.3.16 that give us a partial description of
the test-spectrum TSper1(SX,Y ) for any spaces X and Y . Let X = {1} and Y = {1, 2}, so that
the elements of SX,Y may be written as (ρ, (σ1, σ2)). Then for α > 1, α0 := α−γ

1−γ and γ ∈ [0, 1] the
functional

f(ρ, (σ1, σ2)) = Q∗
α0

(ρ∥σ2#γσ1)

belongs to TSper1(S{1},{1,2}) by Theorem 4.3.19 and Proposition 4.3.16. It is related to the γ-weighted
geometric sandwiched Rényi divergence as

D∗,γ
α (ρ∥σ) = 1

α− 1 log f(ρ, (ρ, σ)).

Note that the map φ : (ρ, σ) 7→ (ρ, (ρ, σ)) is clearly a semiring-homomorphism, which implies
properties (ii) and (iii). If T is a channel such that T (ρ) = ρ′ and T (σ) ≤ σ′, then (ρ, (ρ, σ)) ≽

(ρ′, (ρ′, σ′)), which implies (iv) and (vi) (the equality T (ρ) = ρ′ is important: φ is not monotone with
respect to relative submajorization). Property (i) can be seen by a direct calculation, and (v) is a
consequence of (i) and that the classical Rényi divergence is positive definite.

Remark 4.4.40. For completeness, we give a direct proof of properties (iv) and (vi) (the remaining
ones either follow easily from the definition or by a reduction to the classical case as in the proof of
Proposition 4.4.39).
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If T is a completely positive trace-preserving map, then

D∗,γ
α (T (ρ)∥T (σ)) = 1

1 − γ
D∗

α−γ
1−γ

(T (ρ)∥T (σ)#γT (ρ))

≥ 1
1 − γ

D∗
α−γ
1−γ

(T (ρ)∥T (σ#γρ))

≥ 1
1 − γ

D∗
α−γ
1−γ

(ρ∥σ#γρ)

= D∗,γ
α (ρ∥σ),

where the first inequality uses that T (σ)#γT (ρ) ≥ T (σ#γρ) and that the sandwiched Rényi divergence
is anti-monotone in its second argument, and the second inequality uses the data processing inequality
for the sandwiched Rényi divergence. This proves (iv). Property (vi) is true since the matrix geometric
mean is monotone in both arguments and the sandwiched Rényi divergence is anti-monotone in its
second argument.

Finally, we note that when γ = 0, (4.17) agrees with the minimal Rényi divergence, and when
α = 1, the limit γ → 1 is the Belavkin–Staszewski relative entropy [MBV23], but for α > 1 we do not
know what the limit γ → 1 is. We leave the detailed study of these divergences for future work.
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5 Conclusion and outlook

In Chapter 3 we gave a general procedure of defining multivariable quantum Rényi divergences from
monotone quantum relative entropies via a variational formula. These barycentric Rényi divergences
are defined on a finite collection of positive semidefinite operators. We showed in Section 3.3 that these
quantities inherit useful properties of the defining relative entropies, such as the scaling property, the
data processing inequality, or homogeneity. This part of the thesis is based on [MBV23], in which
further properties are shown for the 2-variable barycentric Rényi divergences, e.g., monotonocity in α,
nonnegativity, finiteness. The biggest open question in [MBV23] is whether these barycentric Rényi
divergences are additive or not.

We proved that the Rényi (α, z)-divergences and the measured or maximal Rényi divergences are
not barycentric Rényi divergences, and hence, even in the two variable case, this procedure gives a
rich supply of new quantum Rényi divergences with desirable mathematical properties. This is further
backed by the fact that a different version of the quantum relative entropy may be used, even for
each state to obtain barycentric Rényi divergences. The results that the measured or the Rényi (α, z)-
divergences are not barycentric divergences are rather trivial, whereas the similar result for the maximal
Rényi divergence is not. The main result of Section 3.4 is that all barycentric Rényi divergences are
strictly smaller then the maximal divergence. It should be also noted that if in the barycentric formulas
we use monotone and additive relative entropies, and in addition at least one of them is strictly greater
than the Umegaki relative entropy, than the resulting barycentric Rényi α-divergences will be greater
than the (α, z)-divergences for z = +∞ and as a consequence yield new families of quantum Rényi
α-divergences.

The study of multivariable quantum Rényi divergences seems to be a new initiative; the only papers
that we are aware of dealing with the subject are [FLO23,MBV23], and tangentially [BV23]. Probably
the most important open task in this direction is to find multivariable extensions of the (2-variable)
Petz-type Rényi divergences.

In Chapter 4, we derived axiomatically the quantities governing the asymptotic and catalytic
relaxations of relative submajorization based on the results in [BV23]. From this followed the axiomatic
definition of a new 2-parameter family of quantum Rényi divergences that are generalizations of the
sandwiched Rényi α-divergences, and a specialization of them is the first axiomatic description of the
sandwiched Rényi α-divergences for α > 1 given in [PVW22].

The relative submajorization is understood between pairs of families of positive definite operators,
each indexed by a compact Hausdorff topological space. The characterization of the functions governing
the relaxations of relative submajorization, the elements of the spectrum, is complete in this setting
if we further assume that all operators commute with each other from the second family. This, in
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turn, made it possible to give a complete characterization of individually controlled strong converse
exponents in binary composite hypothesis testing. The null and alternative hypotheses are assumed to
be compact set of states of full support, where the alternative hypothesis is further assumed to consist
of commuting states. The characterization is given in terms of sandwiched Rényi divergences.

In the more general case, if operators of the second family do not commute, some further elements
of the spectrum are given through composing the sandwiched Rényi divergences with quantum versions
of the geometric mean (such as the Kubo-Ando means). Every further element found would strengthen
the necessary conditions on relative submajorization and the relaxations of it provided by the theory.
An immediate task, in turn, is to find new quantum geometric means and through them new members
of the spectrum. It is also possible that by finding a large enough subset of the spectrum, through
the means described above or in other ways, some “reasonably sufficient” conditions can be given
for the asymptotic relative submajorization in general and as a consequence for all the applications,
notably composite hypothesis testing. Note for example, that we could omit the tropical elements of
the characterized spectrum of the semiclassical subsemiring from the characterization as the ordering
of the tropical part followed from the ordering of the real part.

Apart from composite hypothesis testing, applications of the theory are given in terms of hypothesis
testing with group symmetry, asymptotic transformations by thermal processes, and approximate joint
transformations. More precisely, in the context of the resource theory approach to thermodynamics, our
theory allows to give equivalent conditions for asymptotic transformations by Gibbs-preserving maps
that are in addition time-translation symmetric. The characterization is in terms of the “distance” of
the states from the Gibbs sate with respect to the sandwiched Rényi divergences. In Subsection 4.4.3 we
use elements of the spectrum to give equivalent characterization of approximate joint transformations
in terms of the max-divergence as a measure of dissimilarity between the sates, and its symmetrization,
the Thompson metric [Tho63]. The characterization is complete when the states commute, and gives
necessary conditions for general noncommuting states. When applied to time-translation symmetric
maps, the latter gives rise to second laws that constrain state transformations allowed by thermal
operations even in the presence of catalysts.
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