Stability of the Prékopa-Leindler inequality

Keith M. Ball, Károly J. Böröczky*

May 12, 2010

Abstract

We prove a stability version of the Prékopa-Leindler inequality.

1 The problem

Our main theme is the Prékopa-Leindler inequality, due to A. Prékopa [16] and L. Leindler [14]. Soon after its proof, the inequality was generalized in A. Prékopa [17] and [18], C. Borell [7], and in H.J. Brascamp, E.H. Lieb [8]. Various applications are provided and surveyed in K.M. Ball [1], F. Barthe [5], and R.J. Gardner [13]. The following version from [1], is often more useful and is more convenient for our purposes.

THEOREM 1.1 (Prékopa-Leindler) If m, f, g are non-negative integrable functions on \mathbb{R} satisfying $m(\frac{r+s}{2}) \geq \sqrt{f(r)g(s)}$ for $r, s \in \mathbb{R}$, then

$$\int_{\mathbb{R}} m \geq \sqrt{\int_{\mathbb{R}} f \cdot \int_{\mathbb{R}} g}.$$

S. Dubuc [9] characterized the equality case under the restriction that the integrals of f, g, m above are positive. To explain this characterization, we need to recall that a non-negative real function h on \mathbb{R} is log-concave if for any $x, y \in \mathbb{R}$ and $\lambda \in (0, 1)$, we have

$$h((1 - \lambda)x + \lambda y) \geq h(x)^{1-\lambda}h(y)^{\lambda}.$$

*Supported by OTKA grants 068398 and 75016, and by the EU Marie Curie TOK project DiscConvGeo and FP7 IEF grant GEOSUMSETS.
In other words, the support of h is an interval, and $\log h$ is concave on the support. Now in [9] it is proved that equality holds in the Prékopa-Leindler inequality if and only if there exist $a > 0$, $b \in \mathbb{R}$ and a log-concave h with positive integral on \mathbb{R} such that for a.e. $t \in \mathbb{R}$, we have

$$
m(t) = h(t)
\quad f(t) = a \cdot h(t + b)
\quad g(t) = a^{-1} \cdot h(t - b).
$$

In addition for all $t \in \mathbb{R}$, we have $m(t) \geq h(t)$, $f(t) \leq a \cdot h(t + b)$ and $g(t) \leq a^{-1} \cdot h(t - b)$.

Our goal is to prove the following stability version of the Prékopa-Leindler inequality.

Theorem 1.2 There exists an absolute positive constant c with the following property. If m, f, g are non-negative integrable functions with positive integrals on \mathbb{R} such that m is log-concave, $m(r^2 + s^2) \geq \sqrt{f(r)g(s)}$ for $r, s \in \mathbb{R}$, and

$$
\int_{\mathbb{R}} m \leq (1 + \varepsilon)^{\frac{1}{2}} \int_{\mathbb{R}} f \cdot \int_{\mathbb{R}} g,
$$

for $\varepsilon > 0$, then there exist $a > 0$, $b \in \mathbb{R}$ such that

$$
\int_{\mathbb{R}} |f(t) - a \cdot m(t + b)| \, dt \leq c \cdot \sqrt[4]{\varepsilon} \cdot \ln \varepsilon \cdot a \cdot \int_{\mathbb{R}} m(t) \, dt
\quad \int_{\mathbb{R}} |g(t) - a^{-1} \cdot m(t - b)| \, dt \leq c \cdot \sqrt[4]{\varepsilon} \cdot \ln \varepsilon \cdot a^{-1} \cdot \int_{\mathbb{R}} m(t) \, dt.
$$

Remark 1.3 The statement also holds if the condition that m is log-concave, is replaced by the condition that both f and g are log-concave. The reason is that the function

$$
\tilde{m}(t) = \sup \{ \sqrt{f(r)g(s)} : t = \frac{r^2 + s^2}{2} \}
$$

is log-concave in this case.

Remark 1.4 Most probably, the optimal error estimate in Theorem 1.2 is of order ε. This cannot be proved using the method of this note; namely, by proving first an estimate on the quadratic transportation distance.
The paper is organised as follows. In Section 2 we establish the main properties of log-concave functions that we need, and we introduce the transportation map in Section 3. After translating the hypothesis \(\int_{\mathbb{R}} m \leq (1 + \varepsilon) \sqrt{\int_{\mathbb{R}} f \cdot \int_{\mathbb{R}} g} \) into an estimate for the transportation map, we estimate the quadratic transportation distance between our two functions in Section 4. Based on this, we estimate the \(L_1 \) distance of \(f \) and \(g \) in Section 5, which leads to the proof of Theorem 1.2 in Section 6. We note that the upper bound in Section 5 for the \(L_1 \) distance of two log-concave probability distributions in terms of the their quadratic transportation distance is close to being optimal.

Another way to prove the Prékopa-Leindler inequality on \(\mathbb{R} \) is using the “one-dimensional Brunn-Minkowski inequality”; namely that the outer Lebesgue measure of \(X + Y \) is at least the sum of the measures of the two Lebesgue measurable \(X, Y \subset \mathbb{R} \). For this proof, one assumes that the two functions on \(\mathbb{R} \) have the same bounded supremum, and then apply the one-dimensional Brunn-Minkowski inequality to the level sets. Unlike the transportation argument (see Section 3), this proof works for any pair of bounded functions, but we see no way that it would lead to a stability version of the Prékopa-Leindler inequality on \(\mathbb{R} \).

REMARK 1.5 It is not clear whether the condition in Theorem 1.2 that \(m \) be log-concave is necessary for there to be a stability estimate.

REMARK 1.6 Given \(\alpha, \beta \in (0,1) \) with \(\alpha + \beta = 1 \), we also have the following version of the Prékopa-Leindler inequality: If \(m, f, g \) are non-negative integrable functions on \(\mathbb{R} \) satisfying \(m(\alpha r + \beta s) \geq f(r)^\alpha g(s)^\beta \) for \(r, s \in \mathbb{R} \), then

\[
\int_{\mathbb{R}} m \geq \left(\int_{\mathbb{R}} f \right)^\alpha \left(\int_{\mathbb{R}} g \right)^\beta.
\]

The method of this note also yields the corresponding stability estimate, except that the \(c \) in the new version of Theorem 1.2 depends on \(\alpha \). For this statement, the formula

\[
\frac{1 + T'(x)}{2\sqrt{T'(x)}} = 1 + \frac{(1 - T'(x))^2}{2\sqrt{T'(x)(1 + \sqrt{T'(x)})^2}},
\]

used widely in this note should be replaced with Koebe’s estimate

\[
\frac{\alpha + \beta T'(x)}{T'(x)^\beta} \geq 1 + \min\{\alpha, \beta\}(1 - T'(x))^2
\]

\[
T'(x)^\beta(1 + \sqrt{T'(x)})^2
\]
as long as $T'(x)$ is “not too large”, or, if $T'(x)$ is “large”, the estimate \[
\frac{\alpha + \beta T'(x)}{T'(x)^p} > \beta T(x) \alpha .
\]

REMARK 1.7 The Prékopa-Leindler inequality also holds in \mathbb{R}^n for $n \geq 2$. One possible approach to finding a higher dimensional analogue of the stability statement is to use Theorem 1.2 and a suitable stability version of the injectivity of the Radon transform on log-concave functions. Here the difficulty is caused by the fact that the Radon transform is notoriously unstable even on the space of smooth functions. Another possible approach is to combine Theorem 1.2 with the recent stability version of the Brunn-Minkowski inequality due to A. Figalli, F. Maggi, A. Pratelli [11] and [12], improving on L. Esposito, N. Fusco, C. Trombetti [10]. This approach has been successfully applied in K. M. Ball, K. J. Böröczky [4] at least for even functions. Actually the Brunn-Minkowski inequality is equivalent to the Prékopa-Leindler inequality (see for example K. M. Ball [3] or F. Barthe [5]). A third possible approach to have a stability version of the Prékopa-Leindler inequality in \mathbb{R}^n is to use mass transportation as in A. Figalli, F. Maggi, A. Pratelli [11] and [12]. Unfortunately the fact that the corresponding functions are not constants on their supports makes the problem much more complicated for a transportation argument than the Brunn-Minkowski inequality.

2 Some elementary properties of log-concave probability distributions on \mathbb{R}

Let h be a log-concave probability distribution on \mathbb{R}. In this section we discuss various useful elementary properties of h. Many of these properties are implicit or explicit in many places.

First, assuming $h(t_0) = a \cdot b^t$ for $a, b > 0$, and $t_1 < t_0 < t_2$, we have

$$
\begin{align*}
\text{if } h(t_1) &\geq a \cdot b^{t_1}, \text{ then } h(t_2) \leq a \cdot b^{t_2}, \\
\text{if } h(t_2) &\geq a \cdot b^{t_2}, \text{ then } h(t_1) \leq a \cdot b^{t_1}.
\end{align*}
$$

(1)

Next we write w_h and μ_h to denote the median and mean of h; namely,

$$
\int_{-\infty}^{w_h} h = \int_{w_h}^{\infty} h = \frac{1}{2} \quad \text{and} \quad \mu_h = \int_{\mathbb{R}} x h(x) \, dx.
$$

Our first goal is to describe in Proposition 2.2 how a log-concave probability distribution is concentrated around its median.
PROPOSITION 2.1 Suppose f and g are positive, θ is an increasing function on (a, b), and there exists $c \in (a, b)$ such that $f(t) \leq g(t)$ if $t \in (a, c)$, and $f(t) \geq g(t)$ if $t \in (c, b)$. If $\int_a^b g(t) \, dt = \int_a^b f(t) \, dt$ then

$$\int_a^b \theta(t) g(t) \, dt \leq \int_a^b \theta(t) f(t) \, dt.$$

Proof: Since both factors of $(\theta(t) - \theta(c))(f(t) - g(t))$ change sign at c, the product is non-negative. Therefore $\int_a^b g(t) \, dt = \int_a^b f(t) \, dt$ yields

$$\int_a^b \theta(t) f(t) \, dt - \int_a^b \theta(t) g(t) \, dt = \int_a^b (\theta(t) - \theta(c))(f(t) - g(t)) \, dt \geq 0. \quad \Box$$

PROPOSITION 2.2 If h is a log-concave probability distribution on \mathbb{R} then for $w = w_h$ and $\mu = \mu_h$, we have

(i) $h(w) \cdot |w - \mu| \leq \ln \sqrt{e/2}.$

(ii) $h(w) \cdot e^{-2h(w)|x-w|} \leq h(x) \leq h(w) \cdot e^{2h(w)|x-w|}$ if $|x - w| \leq \frac{\ln 2}{2h(w)}$.

(iii) $h(x) \leq 2h(w)$ for $x \in \mathbb{R}$.

(iv) If $x > w$ then $\int_x^\infty h \leq \frac{h(x)}{2h(w)}$.

(v) If $x > w$ and $\int_x^\infty h = \nu > 0$, then

$$\int_x^\infty (t - w)h(t) \, dt \leq \frac{\nu}{4h(w)} \cdot (1 - \ln 2\nu)$$

$$\int_x^\infty (t - w)^2h(t) \, dt \leq \frac{\nu}{8h(w)^2} \cdot [(\ln 2\nu)^2 - 2\ln 2\nu + 2].$$

Remark All estimates are optimal.

Proof: After replacing h by $a \cdot h(a(t - w))$ for $a = \frac{1}{2h(w)}$, we may assume that $w = 0$, and $h(w) = \frac{1}{2}$. It is natural to compare h near 0 to the probability distribution

$$\varphi(x) = \begin{cases} \frac{1}{2} \cdot e^{-x} & \text{if } x \geq -\ln 2 \\ 0 & \text{if } x < -\ln 2, \end{cases}$$

which satisfies $w_\varphi = 0$, and $\varphi(0) = h(0)$. We observe that $\log \varphi$ is a linear and h is a log-concave function on $[-\ln 2, \infty]$, and hence the set of all $x \in$
$[-\ln 2, \infty]$ with $h(x) > \varphi(x)$ is an interval (possibly empty). Since $\varphi(0) = h(0)$ and $\int_{0}^{\infty} h = \int_{0}^{\infty} \varphi$, there exists some $v > 0$ such that

$$
\begin{align*}
 h(x) &\geq \varphi(x) \quad \text{provided } x \in [0, v] \\
 h(x) &\leq \varphi(x) \quad \text{provided } x \geq v \text{ or } x \in [-\ln 2, 0].
\end{align*}
$$

In particular $\int_{-\infty}^{0} h = \int_{-\infty}^{0} \varphi$, $\int_{0}^{\infty} h = \int_{0}^{\infty} \varphi$ and Proposition 2.1 yield

$$
-\ln \frac{e}{2} = \int_{-\infty}^{0} x\varphi(x) \, dx + \int_{0}^{\infty} x\varphi(x) \, dx \leq \int_{-\infty}^{0} xh(x) \, dx + \int_{0}^{\infty} xh(x) \, dx = \mu.
$$

Comparing h to $\varphi(-x)$ shows that $\mu \leq \ln \frac{e}{2}$, and in turn, we deduce (i).

Turning to (ii), the upper bound directly follows from (2), and its consequence $h(x) \leq \varphi(-x)$ for $x \in [0, \ln 2]$ by symmetry. To prove the lower bound, we may assume that $x > 0$. According to $h(0) = \frac{1}{2}$ and the log-concavity of h, it is enough to check the case $x = \ln 2$. Therefore we suppose that

$$
h(\ln 2) < \frac{1}{4},
$$

and seek a contradiction. Since h is log-concave, there exists some $a \in \mathbb{R}$ such that

$$
h(x) < \frac{1}{4} e^{-a(x-\ln 2)} \quad \text{for } x \in \mathbb{R}.
$$

Here $h(0) = \frac{1}{2}$ yields that $a > 1$.

We observe that $\frac{1}{4} e^{-a(x_0-\ln 2)} = \frac{1}{2} e^{x_0}$ for $x_0 = \frac{a+1}{a+1} \ln 2$, and applying the analogue of (2) to $\varphi(-x)$, we obtain that $h(x) \leq \frac{1}{2} e^{x}$ for $x \in [0, x_0]$. In particular

$$
\int_{0}^{\infty} h < \int_{0}^{x_0} \frac{1}{2} e^{x} \, dx + \int_{x_0}^{\infty} \frac{1}{4} e^{-a(x-\ln 2)} \, dx = \left(\frac{1}{a} + 1 \right) 2^{-\frac{a+1}{a+1}} - \frac{1}{2}.
$$

Differentiation shows that the last expression is first strictly decreasing, and after that strictly increasing in $a \geq 1$. Since the value of this last expression is $\frac{1}{2}$ both at $a = 1$ and at $a = \infty$, we deduce that $\int_{0}^{\infty} h < \frac{1}{2}$. This is absurd, therefore we have proved (ii).

To prove (iii), we may assume $x > 0$ and $h(x) \geq 1$, and hence (ii) yields that $x \geq \ln 2$. Since $h(t) \geq \frac{1}{2} e^{\frac{1}{2} \ln 2h(x)}$ for $t \in [0, x]$ by the log-concavity of h.
and $h(0) = \frac{1}{2}$, we have
\[
\frac{1}{2} \geq \int_0^x h \geq \int_0^x \frac{1}{2} e^{\frac{x}{2} \ln 2h(x)} dt = \frac{x(2h(x) - 1)}{2 \ln 2h(x)}.
\]
As $\frac{s-1}{\ln s} > \frac{1}{\ln 2}$ for $s > 2$, we conclude $h(x) \leq 1$.

For (iv), recall that $2h(w) = 1$. In particular, (iv) holds if $h(x) \geq \frac{1}{2}$ as $\int_0^x h < \frac{1}{2}$. Thus we assume that $h(x) < \frac{1}{2}$, and hence $h(x) = \frac{1}{2} e^{-x_0}$ for some $x_0 > 0$. If $x \geq x_0$, then the log-concavity of h and $h(0) = \frac{1}{2}$ yield
\[
\int_0^x h(t) dt \geq \int_0^x \frac{1}{2} e^{-\frac{tx_0}{2}} dt = \frac{x}{x_0} \int_0^{x_0} \frac{1}{2} e^{-t} dt \geq \int_0^{x_0} \frac{1}{2} e^{-t} dt,
\]
therefore
\[
\int_x^\infty h(t) dt \leq \int_{x_0}^\infty \frac{1}{2} e^{-t} dt = h(x).
\]
On the other hand, if $x < x_0$, then $h(x) = \frac{1}{2} e^{-ax}$ for $a = x_0/x > 1$. It follows from the log-concavity of h and $h(0) = \frac{1}{2}$ that $h(t) \leq \frac{1}{2} e^{-at}$ for $t > x$. Therefore
\[
\int_x^\infty h(t) dt \leq \int_x^\infty \frac{1}{2} e^{-at} dt = h(x)/a < h(x).
\]

Finally, we prove (v). Let $x_1 = -\ln 2\nu$, which satisfies that $\int_x^\infty h(t) dt = \int_{x_1}^\infty \frac{1}{2} e^{-t} dt$. It follows from (2) that $x_1 \geq x$. We define two functions f and g on $[x, \infty)$. Let $f(t) = \frac{1}{2} e^{-t}$ if $t \geq x_1$, and let $f(t) = 0$ if $t \in [x, x_1)$. In addition let $g = h|_{[x, \infty)}$. These two functions satisfy the conditions in Proposition 2.1, therefore for $\alpha \geq 0$, we have
\[
\int_x^\infty t^\alpha h(t) dt = \int_x^\infty t^\alpha g(t) dt \leq \int_x^\infty t^\alpha f(t) dt = \int_{x_1}^\infty t^\alpha e^{-t} dt.
\]
Evaluating the last integral for $\alpha = 1, 2$ yields (v). □

Next we discuss various consequences of Proposition 2.2.

COROLLARY 2.3 Let h be a log-concave probability density function on \mathbb{R}, and let $\int_x^\infty h = \nu \in (0, \frac{1}{2}]$. Then

(i) $h(x) \cdot e^{-\frac{h(x) |t-x|}{\nu}} \leq h(t) \leq h(x) \cdot e^{\frac{h(x) |t-x|}{\nu}}$ if $|t - x| \leq \frac{\nu \ln 2}{h(x)}$.

7
(ii) If \(\nu \in (0, \frac{1}{6}) \), \(w = w_h \) and \(\mu = \mu_h \), then

\[
\int_x^\infty |t - \mu| h(t) \, dt \leq \frac{\nu}{2h(w)} \cdot |\ln \nu|.
\]

\[
\int_x^\infty |t - \mu|^2 h(t) \, dt \leq \frac{5\nu}{4h(w)^2} \cdot (\ln \nu)^2.
\]

Remark The order of all estimates is optimal, as it is shown by the example of \(h(t) = e^{-|t|}/2 \).

Proof: To prove (i), let \(|t - x| \leq \frac{\nu \ln 2}{h(x)} \). There exists a unique \(\lambda \in \mathbb{R} \), such that for the function

\[
\tilde{h}(t) = \begin{cases} h(t) & \text{if } t \geq x; \\
\min\{h(t), h(x) \cdot e^{\lambda(t-x)}\} & \text{if } t \leq x.
\end{cases}
\]

we have \(\int_{-\infty}^x \tilde{h} = \nu \). We note that \(\tilde{h} \) is log-concave, and \(\lambda \geq -\frac{h(x)}{\nu} \). In particular \(\frac{1}{2\nu} \tilde{h} \) is a log-concave probability distribution whose median is \(x \), and hence Proposition 2.2 (ii) yields \(h(t) \geq \tilde{h}(t) \geq h(x) \cdot \frac{1}{\nu} e^{-\tilde{h}(x)|s-x|} \). Since for \(s = 2x - t \), we have \(h(s) \geq h(x) \cdot \frac{1}{\nu} e^{-\tilde{h}(x)|s-x|} \), we conclude (i) by (1).

For (ii), we may assume that \(h(w) = \frac{1}{2} \), and hence Proposition 2.2 (i) yields that \(|w - \mu| \leq \ln \frac{\xi}{2} \). Since \(\ln 2 \nu \leq -1 \), we deduce by Proposition 2.2 (v) that

\[
\int_x^\infty |t - \mu| h(t) \, dt \leq \int_x^\infty (|t - w| + |w - \mu|) h(t) \, dt
\]

\[
\leq \nu \cdot (-\ln 2\nu) + \nu \cdot \ln \frac{\xi}{2} < \nu \cdot |\ln \nu|.
\]

In addition

\[
\int_x^\infty (t - \mu)^2 h(t) \, dt \leq \int_x^\infty 2[(t - w)^2 + (w - \mu)^2] h(t) \, dt
\]

\[
\leq \nu \cdot 5(\ln 2\nu)^2 + \nu \cdot 2(\ln \frac{\xi}{2})^2 < 5\nu \cdot (\ln \nu)^2.
\]

\(\Box \)
3 The transportation map for log-concave probability distributions, and the Prékopa-Leindler inequality

Let \(f \) and \(g \) be log-concave probability distributions on \(\mathbb{R} \), and let \(I_f \) and \(I_g \) denote the open intervals that are the supports of \(f \) and \(g \), respectively. We define the transportation map \(T : I_f \to I_g \) by the identity

\[
\int_{-\infty}^{x} f(t) \, dt = \int_{-\infty}^{T(x)} g(t) \, dt. \quad (3)
\]

Among other things \(T \) is monotone increasing, bijective, and differentiable on \(I_f \), and for any \(x \in I_f \), we have

\[
f(x) = g(T(x))T'(x). \quad (4)
\]

Remark Using (3), the transportation map \(T : \mathbb{R} \to \mathbb{R} \) can be defined for any two probability distributions \(f \) and \(g \), and \(T \) is naturally monotone increasing. In addition (4) holds for almost all \(x \) provided that the product of two numbers out of which one is zero and the other is undefined is understood as zero.

For log-concave probability distributions \(f, g \), and an integrable function \(m \) on \(\mathbb{R} \) satisfying \(m\left(\frac{r+s}{2}\right) \geq \sqrt{f(r)g(s)} \) for \(r, s \in \mathbb{R} \), one proof of the Prékopa-Leindler inequality runs as follows:

\[
1 = \int_{\mathbb{R}} f = \int_{I_f} \sqrt{f(x)} \cdot \sqrt{g(T(x))T'(x)} \, dx \\
\leq \int_{I_f} m\left(\frac{x + T(x)}{2}\right) \sqrt{T'(x)} \, dx \\
\leq \int_{I_f} m\left(\frac{x + T(x)}{2}\right) \cdot \frac{1 + T'(x)}{2} \, dx \\
= \int_{\frac{1}{2}(I_f + I_g)} m(x) \, dx \leq \int_{\mathbb{R}} m.
\]

The basic fact that we will exploit is this. If we know that \(\int_{\mathbb{R}} m \leq 1 + \varepsilon \)
then, using (4) in the last inequality, we have

\[\varepsilon \geq \int_{I_f} m \left(\frac{x + T(x)}{2} \right) \cdot \left(\frac{1 + T'(x)}{2} - \sqrt{T'(x)} \right) dx \]

\[\geq \int_{I_f} \sqrt{f(x)} \cdot \sqrt{g(T(x))T'(x)} \left(\frac{1 + T'(x)}{2\sqrt{T'(x)}} - 1 \right) dx \]

\[= \int_{I_f} f(x) \cdot \frac{(1 - \sqrt{T'(x)})^2}{2\sqrt{T'(x)}} dx. \]

\[(5) \]

As long as \(T' \) is not too large, the integrand is at least about \(f(x)(1 - T'(x))^2 \) and using a Poincaré inequality for the density \(f \) we can bound the integral of this expression from below by the transportation cost \(\int f(x)(x - T(x))^2 dx \). The main technical issue is to handle the places where \(T' \) is large.

4 The quadratic transportation distance

Let \(f \) and \(g \) be log-concave probability distributions on \(\mathbb{R} \) with zero mean; namely,

\[0 = \int_{\mathbb{R}} x f(x) dx = \int_{\mathbb{R}} y g(y) dy. \]

In this section we show that (5) yields an upper bound for the quadratic transportation distance

\[\int_{I_f} f(x)(T(x) - x)^2 dx \]

between \(f \) and \(g \).

Lemma 4.1 If \(f \) and \(g \) are log-concave probability distributions on \(\mathbb{R} \) with zero mean, and (5) holds for \(\varepsilon \in (0, \frac{1}{48}) \), then

\[\int_{I_f} f(x)(T(x) - x)^2 dx \leq 2^{20} f(w_f)^{-2} \cdot \varepsilon |\ln \varepsilon|^2, \]

where \(w_f \) is the median as mentioned earlier.
Remark The optimal power of \(\varepsilon \) is most probably \(\varepsilon^2 \) in Lemma 4.1 (compare Example 7.1). To improve the estimate, we should improve on (6) if \(R(x) = T(x) - x \) where \(T \) is the transportation map for another log-concave probability distribution. One may possibly use that \(T(x) - x \) is of at most logarithmic order.

Proof: The main tool in the proof of Lemma 4.1 is the Poincaré inequality for log-concave measures which can be found in (1.3) and (4.2) of S.G. Bobkov [6]. This guarantees that \(h \) is a log-concave probability distribution on \(\mathbb{R} \), and the function \(R \) on \(\mathbb{R} \) is locally Lipschitz with expectation \(\mu = \int_{\mathbb{R}} h(x) R(x) \, dx \), then

\[
\int_{\mathbb{R}} h(x)(R(x) - \mu)^2 \, dx = \int_{\mathbb{R}} h(x) R(x)^2 \, dx - \mu^2 \leq h(w_h)^{-2} \cdot \int_{\mathbb{R}} h(x) R'(x)^2 \, dx.
\]

(6)

By symmetry we may assume that \(g(w_g) \leq f(w_f) \), and by scaling that \(f(w_f) = \frac{1}{2} \). Let \(T \) be the transportation map from \(f \) to \(g \), and let \(S \) be its inverse, thus for \(x \in I_f \) and \(y \in I_g \), we have

\[
f(x) = g(T(x))T'(x) \quad \text{and} \quad g(y) = f(S(y))S'(y).
\]

(7)

Suppose that for some \(x \in \mathbb{R} \) with \(\int_{x}^{\infty} f = \nu \in (0, \frac{1}{2}] \), we have \(g(T(x)) \leq \frac{1}{16} f(x) \). If \(x \leq t \leq x + \frac{\ln 2}{T(x)} \) then Corollary 2.3 (i) yields \(f(t) \geq f(x) \cdot e^{-\frac{T(t)-(t-x)}{\nu}} \geq \frac{1}{2} f(x) \). On the other hand, the log-concavity of \(g \) and Proposition 2.2 (iii) yield that if \(x \leq t < x + \frac{\ln 2}{T(x)} \), then \(g(t) < 2g(x) \leq \frac{1}{4} f(t) \). In particular \(T'(t) > 4 \) by (7), and hence (compare (5))

\[
\varepsilon \geq \int_{\mathbb{R}} \frac{(1 - \sqrt{\frac{T'(t)}{2}})^2}{2T'(t)} f(t) \, dt > \int_{x}^{x+\frac{\ln 2}{T(x)}} \frac{f(x)}{4} \cdot e^{-\frac{T(t)-(t-x)}{\nu}} \, dt = \frac{\nu}{8}.
\]

A similar argument for \(f(-x) \) and \(g(-x) \) shows that if \(\int_{-\infty}^{x} f = \nu \) and \(g(T(x)) \leq \frac{1}{16} f(x) \) then \(\nu < 8\varepsilon \).

We define \(x_1, x_2, y_1, y_2 \) by

\[
\int_{-\infty}^{x_1} f = \int_{x_2}^{\infty} f = \int_{-\infty}^{y_1} g = \int_{y_2}^{\infty} g = 8\varepsilon \leq \frac{1}{6}.
\]

The argument above yields that if \(x \in (x_1, x_2) \), then \(T'(x) \leq 16 \) and \(g(T(x)) \geq \frac{1}{16} f(x) \), and hence \(g(w_g) \geq \frac{1}{32} \). As the means of \(f \) and \(g \) are zero, we deduce
by Corollary 2.3 (ii) and (7) that

\[\int_{\mathbb{R}\setminus[x_1,x_2]} |x|f(x) \, dx \leq 2^4 \varepsilon |\ln \varepsilon|; \]
\[(8) \]

\[\int_{\mathbb{R}\setminus[x_1,x_2]} |T(x)|f(x) \, dx = \int_{\mathbb{R}\setminus[y_1,y_2]} |y|g(y) \, dy \leq 2^8 \varepsilon |\ln \varepsilon|; \]
\[(9) \]

\[\int_{\mathbb{R}\setminus[x_1,x_2]} x^2f(x) \, dx \leq 2^7 \varepsilon (\ln \varepsilon)^2; \]
\[(10) \]

\[\int_{\mathbb{R}\setminus[x_1,x_2]} T(x)^2f(x) \, dx = \int_{\mathbb{R}\setminus[y_1,y_2]} y^2g(y) \, dy \leq 2^{15} \varepsilon (\ln \varepsilon)^2. \]
\[(11) \]

Since \((T(x) - x)^2 \leq 2[T(x)^2 + x^2]\), we have

\[\int_{\mathbb{R}\setminus[x_1,x_2]} (T(x) - x)^2f(x) \, dx \leq 2^{17} \varepsilon (\ln \varepsilon)^2. \]
\[(12) \]

Next we consider the log-concave probability distribution

\[\hat{f}(t) = \begin{cases}
(1 - 16\varepsilon)^{-1}f(t) & \text{if } t \in [x_1, x_2] \\
0 & \text{if } t \in \mathbb{R}\setminus[x_1, x_2].
\end{cases} \]

To estimate \(\hat{f}(w_f)\), we define \(z_1 = w_f - \ln 2\), and \(z_2 = w_f + \ln 2\). Since \(f(w_f) = \frac{1}{2}\), Proposition 2.2 (ii) applied to \(f\) yields

\[\int_{\mathbb{R}\setminus[z_1,z_2]} \hat{f}(x) \, dx \leq (1 - 16\varepsilon)^{-1} \left(1 - 16\varepsilon - \int_{z_1}^{z_2} e^{-|x-w_f|} \frac{e^x}{2} \, dx\right) < \frac{1}{2}. \]

It follows that \(|w_f - w_f| < \ln 2\), and hence we deduce again by Proposition 2.2 (ii) that

\[\hat{f}(w_f) > \frac{1}{4}. \]

For the expectation

\[\mu = \int_{\mathbb{R}} (T(x) - x)\hat{f}(x) \, dx, \]

we have the estimate

\[|\mu| = (1 - 16\varepsilon)^{-1} \int_{\mathbb{R}\setminus[x_1,x_2]} (T(x) - x)f(x) \, dx \leq 2^{10} \varepsilon |\ln \varepsilon|. \]

\[12 \]
If \(x \in (x_1, x_2) \), then \(T'(x) \leq 16 \), thus the expression in (5) satisfies

\[
\frac{(1 - \sqrt{T'(x)})^2}{2\sqrt{T'(x)}} = \frac{(T'(x) - 1)^2}{2(1 + \sqrt{T'(x)})^2 \sqrt{T'(x)}} \geq \frac{(T'(x) - 1)^2}{200} > 2^{-8}(T'(x) - 1)^2.
\]

We deduce using (6) and (5) that

\[
\int_{[x_1, x_2]} (T(x) - x)^2 f(x) \, dx \leq \int_{\mathbb{R}} (T(x) - x)^2 \tilde{f}(x) \, dx
\]

\[
\leq \mu^2 + \tilde{f}(w_{\tilde{f}})^{-2} \int_{\mathbb{R}} (T'(x) - 1)^2 \tilde{f}(x) \, dx
\]

\[
\leq 2^{20} \varepsilon^2 |\ln \varepsilon|^2 + 2^{13} \int_{x_1}^{x_2} \frac{(1 - \sqrt{T'(x)})^2}{2\sqrt{T'(x)}} f(x) \, dx
\]

\[
\leq 2^{20} \varepsilon^2 |\ln \varepsilon|^2 + 2^{13} \varepsilon.
\]

Therefore combining (12) and (13), completes the proof of Lemma 4.1. \(\Box \)

5 The \(L_1 \) and quadratic transportation distances

Our goal is to estimate the \(L_1 \) distance of two log-concave probability distributions \(f \) and \(g \) in terms of their quadratic transportation distance. In this section, \(T \) always denotes the transportation map \(T : I_f \to I_g \) satisfying

\[
\int_{-\infty}^{\infty} f(t) \, dt = \int_{-\infty}^{T(x)} g(t) \, dt.
\]

We prepare Theorem 5.3 by Propositions 5.1 and 5.2. While the ideas for Propositions 5.1 and 5.2 are rather simple-minded, they still lead to the essentially optimal (up to a logarithmic factor) estimate of Theorem 5.3.

When we write \(A \ll B \) for expressions \(A \) and \(B \), then we mean that \(|A| \leq c \cdot B \) where \(c > 0 \) is an absolute constant, independent of all the quantities occurring in \(A \) and \(B \). In addition \(A \approx B \) means that \(A \ll B \) and \(B \ll A \).
PROPOSITION 5.1 Let \(f \) and \(g \) be log-concave probability distributions on \(\mathbb{R} \) satisfying \(\int_{-\infty}^{x} f \geq \nu \) and \(\int_{x}^{\infty} f \geq \nu \) for \(\nu \in (0, \frac{1}{2}] \) and \(z \in \mathbb{R} \). If either \(\int_{-\infty}^{z} g \leq \nu/2 \) or \(\int_{z}^{\infty} g \leq \nu/2 \), then

\[
\int_{z - \frac{\nu}{f(z)}}^{z + \frac{\nu}{f(z)}} (T(x) - x)^2 f(x) \, dx \geq \frac{\nu^3}{f(z)^2}.
\]

Proof: We may assume that \(\int_{z}^{\infty} g \leq \nu/2 \). It follows from Corollary 2.3 (i) that if \(z < x \leq z + \frac{\nu \ln 3}{f(z)} \) then

\[
\int_{z}^{x} f \leq \int_{z}^{z + \frac{\nu \ln 3}{f(z)}} f(z) \frac{f(x)}{f(z)} \, dt = \nu/2,
\]

and hence \(T(x) \leq z \). Therefore

\[
\int_{z + \frac{\nu \ln 3}{f(z)}}^{z + \frac{\nu \ln 3}{f(z)}} (T(x) - x)^2 f(x) \, dx \geq \int_{z + \frac{\nu \ln 3}{f(z)}}^{z + \frac{\nu \ln 3}{f(z)}} \left(\frac{\nu \ln \frac{3}{f(z)}}{2} \right)^2 \frac{f(z)}{f(z)} \, dx \geq \frac{\nu^3}{f(z)^2}. \quad \square
\]

PROPOSITION 5.2 Let \(f \) and \(g \) be log-concave probability distributions on \(\mathbb{R} \) satisfying \(\int_{-\infty}^{x} f \geq \nu \) and \(\int_{x}^{\infty} f \geq \nu \), moreover \(\int_{z}^{\infty} g \geq \nu/2 \) and \(\int_{z}^{\infty} g \geq \nu/2 \) for \(\nu > 0 \) and \(z \in \mathbb{R} \). If \(g(z) \neq f(z) \) and \(\Delta = \frac{\nu \ln 2}{3f(z)} \cdot \min\{|\ln \frac{g(z)}{f(z)}|, 3\} \), then

\[
\int_{z - \Delta}^{z + \Delta} (T(x) - x)^2 f(x) \, dx \geq \frac{\nu^3}{f(z)^2} \cdot \min\left\{\left|\ln \frac{g(z)}{f(z)}\right|, 3\right\}^4.
\]

Remark If in addition \(e^{-3} f(z) \leq g(z) \leq e^{3} f(z) \), then the arguments in Cases 2 and 3 show that the interval \([z - \Delta, z + \Delta]\) of integration can be replaced by \([z - \frac{\Delta}{150}, z + \frac{\Delta}{150}]\), and if \(x \in [z - \frac{\Delta}{150}, z + \frac{\Delta}{150}] \), then

\[
\frac{1}{3} \left| \ln \frac{g(z)}{f(z)} \right| \leq \left| \ln \frac{g(x)}{f(z)} \right| \leq \frac{5}{3} \left| \ln \frac{g(z)}{f(z)} \right|.
\]

Proof: According to Corollary 2.3 (i), if \(z - \Delta \leq x \leq z + \Delta \), then

\[
f(z)/2 \leq f(z) \cdot \frac{f(z)[x-z]}{\nu} \leq f(x) \leq f(z) \cdot \frac{f(z)[x-z]}{\nu} \leq 2f(z). \quad (14)
\]

Similarly if \(z - \frac{\nu \ln 2}{2g(z)} \leq x \leq z + \frac{\nu \ln 2}{2g(z)} \), then

\[
g(z)/2 \leq g(z) \cdot \frac{g(x)[x-z]}{\nu} \leq g(x) \leq g(z) \cdot \frac{g(z)[x-z]}{\nu} \leq 2g(z). \quad (15)
\]
We may assume

\[T(z) \leq z. \]

For the rest of the argument, we distinguish four cases.

Case 1 \(g(z) \geq e^3 f(z) \).

In this case, \(\Delta = \frac{\nu \ln 2}{f(z)} \). We note that,

\[\frac{\ln 2}{2 \cdot e^3} < \frac{\ln 2}{10} < \frac{3 \ln 2}{10} < \frac{\ln 5}{4}. \] (16)

Since \(\frac{\nu \ln 2}{2 g(z)} < \frac{\Delta}{10} \), (15) yields that if \(x \geq z + \frac{\Delta}{10} \), then

\[\int_x^z g > \frac{\nu}{4}. \] (17)

However (14) and (16) imply that if \(z < x \leq z + \frac{3\Delta}{10} \), then

\[\int_x^z f < \frac{\nu}{4}. \] (18)

Since \(T(z) \leq z \), (17) and (18) yield that if \(z + \frac{2\Delta}{10} \leq x \leq z + \frac{3\Delta}{10} \), then \(T(x) \leq z + \frac{\Delta}{10} \). In particular

\[\int_{z + \frac{\Delta}{10}}^{x + \frac{3\Delta}{10}} (T(x) - x)^2 f(x) \, dx \geq \int_{z + \frac{2\Delta}{10}}^{x + \frac{3\Delta}{10}} \left(\frac{\Delta}{10} \right)^2 f(z) \, dx \approx \Delta^3 f(z). \]

Case 2 \(f(z) < g(z) \leq e^3 f(z) \).

Let \(\lambda = \left(\frac{f(z)}{g(z)} \right)^\frac{1}{3} \geq 1/e \). Since \(2g(z) \leq 2e^3 f(z) < 50 f(z) \) and \(\Delta = \frac{\nu \ln 2}{3 f(z)} \ln \frac{g(z)}{f(z)} \), if \(z \leq x \leq z + \frac{1}{50} \Delta \), then (14) and (15) yield

\[\lambda \cdot f(z) \leq f(x) \leq \lambda^{-1} \cdot f(z) \quad \text{and} \quad \lambda \cdot g(z) \leq g(x) \leq \lambda^{-1} \cdot g(z). \]

In particular if \(z \leq s, t \leq z + \frac{1}{50} \Delta \), then \(\frac{f(s)}{g(t)} \leq \lambda \). We deduce that if \(z < x \leq z + \frac{1}{150} \Delta \) then

\[\int_x^z f \leq \int_x^{z + \lambda(x-z)} g. \]

Thus \(T(x) \leq z + \lambda(x-z) \) by \(T(z) \leq z \), and hence

\[x - T(x) \geq (1 - \lambda)(x-z) = \lambda \left(\frac{1}{\lambda} - 1 \right) (x-z) \geq \frac{x-z}{3e} \cdot \ln \frac{g(z)}{f(z)}. \]

15
It follows that
\[
\int_{z + \frac{\Delta}{300}}^{z + \frac{\Delta}{150}} (T(x) - x)^2 f(x) \, dx \gg \Delta^3 f(z) \ln \frac{f(z)}{g(z)}.
\]

Case 3 \(e^{-3}f(z) \leq g(z) < f(z)\).

Let \(\lambda = (\frac{f(z)}{g(z)})^{\frac{1}{3}} \leq e\). Since \(\Delta = \frac{\nu}{f(z)} \ln \frac{f(z)}{g(z)}\), if \(z - \frac{1}{2} \Delta \leq x \leq z\), then (14) and (15) yield

\[
\lambda^{-1} \cdot f(z) \leq f(x) \leq \lambda \cdot f(z) \quad \text{and} \quad \lambda^{-1} \cdot g(z) \leq g(x) \leq \lambda \cdot g(z).
\]

In particular if \(z - \frac{1}{2} \Delta \leq s, t \leq z\), then \(f(s) \geq f(z)/2\) and \(g(x) \leq 2g(z)\), respectively. In particular if \(z - \frac{1}{2} \Delta < x \leq z\) then

\[
\int_{x}^{z} f \geq \int_{z-\lambda(z-x)}^{z} g.
\]

Thus \(T(x) \leq z - \lambda(z-x)\) by \(T(z) \leq z\), and hence

\[x - T(x) \geq (\lambda - 1)(z - x) \geq \frac{z - x}{3} \cdot \ln \frac{f(z)}{g(z)}.
\]

It follows that
\[
\int_{z - \frac{\Delta}{300}}^{z - \frac{\Delta}{150}} (T(x) - x)^2 f(x) \, dx \gg \Delta^3 f(z) \ln \frac{f(z)}{g(z)}.
\]

Case 4 \(g(z) \leq e^{-3}f(z)\).

Since \(\Delta = \frac{\nu}{f(z)} \ln \frac{f(z)}{g(z)}\), if \(z - \Delta \leq x \leq z\), then (14) and (15) yield that \(f(x) \geq f(z)/2\) and \(g(x) \leq 2g(z)\), respectively. In particular if \(z - \Delta \leq s, t \leq z\), then \(f(s) \geq 2g(t)\). We deduce that if \(z - \frac{1}{2} \Delta < x \leq z\) then

\[
\int_{x}^{z} f \geq \int_{z-2(z-x)}^{z} g.
\]

Thus \(T(x) \leq z - 2(z-x)\) by \(T(z) \leq z\), and hence \(x - T(x) \geq z - x\). It follows that
\[
\int_{z - \frac{\Delta}{300}}^{z - \frac{\Delta}{150}} (T(x) - x)^2 f(x) \, dx \gg \Delta^3 f(z) \quad \square
\]
THEOREM 5.3 If \(f \) and \(g \) are log-concave probability distributions on \(\mathbb{R} \), and \(\int_I f(x)(T(x) - x)^2 dx = \varepsilon \cdot f(w_f)^{-2} \) for \(\varepsilon \in (0, 1) \), then
\[
\int_\mathbb{R} |f(x) - g(x)| \, dx \ll \sqrt[3]{\varepsilon} \ln \varepsilon^{\frac{4}{3}}.
\]

Remark According to Example 7.2, the exponent \(\frac{1}{3} \) of \(\varepsilon \) is optimal in Theorem 5.3.

Proof: It is enough to prove the statement if \(\varepsilon < \varepsilon_0 \), where \(\varepsilon_0 \in (0, \frac{1}{7}) \) is an absolute constant specified later. We may assume that \(f(w_f) = 1 \), and hence \(f(x) \leq 2 \) for any \(x \in \mathbb{R} \) by Proposition 2.2 (iii), and for the inverse \(S \) of \(T \),
\[
\int_I f(x)(T(x) - x)^2 dx = \int_I g(y)(S(y) - y)^2 dy \leq \varepsilon.
\]

For \(x \in \mathbb{R} \), we define
\[
\nu(x) = \min \left\{ \int_x^\infty f, \int_x^\infty f \right\},
\]
\[
\tilde{\nu}(x) = \min \left\{ \int_x^\infty g, \int_x^\infty g \right\}.
\]

First we estimate \(g \). Since \(\nu(w_f) = \frac{1}{2} \), if \(\varepsilon_0 \) is small enough then Propositions 5.1 and 5.2 yield that \(\tilde{\nu}(w_f) > \frac{1}{4} \) and \(g(w_f) \leq 2 \), respectively. We conclude by Proposition 2.2 (ii) that \(g(w_g) \leq 4 \), and hence \(g(x) \leq 8 \) for any \(x \in \mathbb{R} \) by Proposition 2.2 (iii).

It follows by \(f(x) \leq 2 \) and Proposition 5.1 that there exists a positive constant \(c_1 \) such that if \(\nu(x) \geq c_1 \sqrt[3]{\varepsilon} \) then \(\tilde{\nu}(x) \geq \nu(x)/2 \). Now applying Proposition 5.1 to \(g \), and possibly increasing \(c_1 \), we have the following: If \(\nu(x) \geq c_1 \sqrt[3]{\varepsilon} \) then \(\tilde{\nu}(x) \leq 2 \nu(x) \). Finally, possibly increasing \(c_1 \) further, if \(\nu(x) \geq c_1 \sqrt[3]{\varepsilon} \), then \(\ln \frac{g(x)}{f(x)} \leq \ln 2 \) by Proposition 5.2. We choose \(\varepsilon_0 \) small enough to satisfy \(2c_1 \sqrt[3]{\varepsilon_0} < \frac{1}{2} \).

For \(z \in \mathbb{R} \), we define \(\Delta(z) = \frac{\nu \ln 2}{450f(z)} \cdot |\ln \frac{g(z)}{f(z)}| \). We assume \(\nu(z) \geq c_1 \sqrt[3]{\varepsilon} \), and hence \(\frac{1}{2} \leq \frac{g(z)}{f(z)} \leq 2 \). It follows by Corollary 2.3 (i) that and \(f(x) \geq f(z)/2 \), \(\nu(x) \leq 2 \nu(z) \) if \(x \in [z - \Delta(z), z + \Delta(z)] \). We deduce using Proposition 5.2 and its remark that there exists an absolute constant \(c_2 \) such that assuming \(g(z) \neq f(z) \), we have
\[
\int_{z - \Delta(z)}^{z + \Delta(z)} \frac{\nu(x)^2}{f(x)} \cdot |\ln \frac{g(x)}{f(x)}|^3 \, dx \leq c_2 \int_{z - \Delta(z)}^{z + \Delta(z)} (T(x) - x)^2 f(x) \, dx.
\]
We define

\[z_1 < z_2 \]

by the properties \(\nu(z_1) = \nu(z_2) = 2c_1 \sqrt{\varepsilon} \). We observe that if \(g(z) \neq f(z) \) and some \(x \in [z - \Delta(z), z + \Delta(z)] \) satisfies \(\nu(x) \geq 2c_1 \sqrt{\varepsilon} \) then \(\nu(z) \geq c_1 \sqrt{\varepsilon} \). It is not hard to show based on (19) that

\[
\int_{z_1}^{z_2} \nu(x)^2 \cdot \frac{\ln \frac{g(x)}{f(x)}}{f(x)^2} \, dx \leq c_2 \int_{\mathbb{R}} (T(x) - x)^2 f(x) \, dx.
\]

Since \(f(x) \leq 2 \) and \(\frac{|f(x) - g(x)|}{f(x)} \leq 4\ln \frac{g(x)}{f(x)} \) for \(x \in [z_1, z_2] \), we deduce

\[
\int_{z_1}^{z_2} \frac{\nu(x)^2}{f(x)^2} |f(x) - g(x)|^3 \, dx = 4 \int_{z_1}^{z_2} \frac{\nu(x)^2}{f(x)} \left(\frac{|f(x) - g(x)|}{f(x)} \right)^3 \, dx
\leq 4 \int_{z_1}^{z_2} \nu(x)^2 \left(\ln \frac{g(x)}{f(x)} \right)^3 \, dx \leq 4^4 \nu(x)^2 \, dx \leq 4^3 c_2 \varepsilon.
\]

It follows by the Hölder inequality that

\[
\int_{z_1}^{z_2} |f(x) - g(x)| \, dx = \int_{z_1}^{z_2} \frac{\nu(x)^2}{f(x)^2} |f(x) - g(x)| \cdot \frac{f(x)^3}{\nu(x)^3} \, dx
\leq \left[\int_{z_1}^{z_2} \frac{\nu(x)^2}{f(x)^2} |f(x) - g(x)|^3 \, dx \right]^\frac{1}{3} \times
\left[\int_{z_1}^{z_2} \frac{f(x)}{\nu(x)} \, dx \right]^\frac{2}{3}.
\]

Here \(f(x) = |\nu'(x)| \), therefore

\[
\int_{z_1}^{z_2} |f(x) - g(x)| \, dx \leq (4^4 c_2 \varepsilon)^\frac{1}{3} \left[\int_{z_1}^{w_f} \nu'(x) \left(\frac{\nu(x)}{f(x)} \right) \, dx + \int_{w_f}^{z_2} \frac{-\nu'(x)}{\nu(x)} \, dx \right]^\frac{2}{3}
= (4^4 c_2 \varepsilon)^\frac{1}{3} \left[2 \cdot \ln \frac{1}{2} - 2 \cdot \ln(2c_1 \sqrt{\varepsilon}) \right]^\frac{2}{3} \ll \sqrt{\varepsilon} |\ln \varepsilon|^\frac{2}{3}.
\]

On the other hand, \(\tilde{\nu}(x_i) \leq 2 \nu(x_i) = 4c_1 \sqrt{\varepsilon}, \ i = 1, 2 \), yields that

\[
\int_{z_1}^{z_2} |f(x) - g(x)| \, dx \leq 6c_1 \sqrt{\varepsilon} \text{ and } \int_{-\infty}^{\infty} |f(x) - g(x)| \, dx \leq 6c_1 \sqrt{\varepsilon},
\]

and in turn we conclude Theorem 5.3. \(\Box \)
6 The proof of Theorem 1.2

For a non-negative, bounded, and not identically zero function \(h \) on \(\mathbb{R} \), its log-concave hull is
\[
\tilde{h}(x) = \inf \{ p(x) : p \text{ is a log-concave function s.t. } h(t) \leq p(t) \text{ for } t \in \mathbb{R} \}.
\]
This \(\tilde{h} \) is log-concave and \(h(t) \leq \tilde{h}(t) \) for all \(t \in \mathbb{R} \), therefore we may take minimum in the definition. Next we present a definition of \(\tilde{h} \) in terms of \(\ln h \).

Let \(J_h \) be the set of all \(x \in \mathbb{R} \) with \(h(x) > 0 \), and let
\[
C_h = \{ (x, y) \in \mathbb{R}^2 : x \in J_h \text{ and } y \leq \ln h(x) \}.
\]
This \(C_h \) is convex if and only if \(h \) is log-concave. In addition \(J_{\tilde{h}} \) is the convex hull of \(J_h \), and the interior of \(C_{\tilde{h}} \) is the interior of the convex hull of \(C_h \). We also observe that for any unit vector \(u \in \mathbb{R}^2 \), we have
\[
\sup \{ \langle u, v \rangle : v \in C_h \} = \sup \{ \langle u, v \rangle : v \in C_{\tilde{h}} \}.
\]
(20)

Let \(f \), \(g \) and \(m \) be the functions in Theorem 1.2. The condition of the Prékopa-Leindler inequality is equivalent with
\[
\frac{1}{2}(C_f + C_g) \subset C_m;
\]
(21)
where \(C_f + C_g \) is the Minkowski sum of the two sets. Choose \(x_0, y_0 \in \mathbb{R} \) such that \(f(x_0) > 0 \) and \(g(y_0) > 0 \). For any \(x \in \mathbb{R} \), \(m(\frac{x + x_0}{2}) \geq \sqrt{f(x_0)g(x)} \) and \(m(\frac{x + y_0}{2}) \geq \sqrt{f(x)g(y_0)} \), and hence
\[
f(x) \leq \frac{m(\frac{x + x_0}{2})^2}{g(y_0)} \text{ and } g(x) \leq \frac{m(\frac{x + y_0}{2})^2}{f(x_0)}.
\]

Since \(m \) is log-concave function with finite integral, it is bounded, thus \(f \) and \(g \) are bounded, as well. Therefore we may define the log-concave hull of \(f \) and \(g \) of \(\tilde{f} \) and \(\tilde{g} \), respectively. It follows that \(\tilde{f}(x) \geq f(x) \) and \(\tilde{g}(y) \geq g(y) \).

Since \(m \) is log-concave, (20) and (21) yield that \(m(\frac{w + w}{2}) \geq \sqrt{\tilde{f}(w_0)\tilde{g}(y)} \) for \(x, y \in \mathbb{R} \). We may assume that \(\tilde{f} \) and \(\tilde{g} \) are probability distributions with zero mean, and \(\tilde{f}(w_0) = 1 \). It follows that
\[
\int_{\mathbb{R}} f \geq 1 - \epsilon, \quad \int_{\mathbb{R}} g \geq 1 - \epsilon, \quad \int_{\mathbb{R}} m \leq 1 + \epsilon.
\]
(22)
Next applying (5), Lemma 4.1 and Theorem 5.3 to \tilde{f} and \tilde{g}, we conclude

$$\int_{\mathbb{R}} |\tilde{f}(t) - \tilde{g}(t)| \, dt \ll \sqrt[3]{\varepsilon} \ln \varepsilon. \quad (23)$$

In addition (22) yields

$$\int_{\mathbb{R}} |\tilde{f}(t) - f(t)| \, dt \leq \varepsilon \quad \text{and} \quad \int_{\mathbb{R}} |\tilde{g}(t) - g(t)| \, dt \leq \varepsilon. \quad (24)$$

Therefore to complete the proof of Theorem 1.2, all we have to do is to estimate $\int_{\mathbb{R}} |m(t) - \tilde{g}(t)| \, dt$. For this, let $T : I_{\tilde{f}} \to I_{\tilde{g}}$ be the transportation map satisfying

$$\int_{-\infty}^{x} \tilde{f}(t) \, dt = \int_{-\infty}^{T(x)} \tilde{g}(t) \, dt.$$

We note that $R(x) = \frac{x + T(x)}{2}$ is an increasing and bijective map from $I_{\tilde{f}}$ into $\frac{1}{2}(I_{\tilde{f}} + I_{\tilde{g}})$. We define the function $h : \mathbb{R} \to \mathbb{R}$ as follows. If $x \notin \frac{1}{2}(I_{\tilde{f}} + I_{\tilde{g}})$, then $h(x) = 0$, and if $x \in I_{\tilde{f}}$, then

$$h\left(\frac{x + T(x)}{2}\right) = \sqrt{\tilde{f}(x)\tilde{g}(T(x))}.$$

We have $h(x) \leq m(x)$, and the proof of the Prékopa-Leindler inequality using the transportation map in Section 3 shows that $\int_{\mathbb{R}} h \geq 1$. We deduce by (22) that

$$\int_{\mathbb{R}} |m(t) - h(t)| \, dt \leq \varepsilon. \quad (25)$$

To compare h to \tilde{g}, we note that $\int_{\mathbb{R}} h \leq 1 + \varepsilon$ implies

$$\int_{\mathbb{R}} h(t) - \tilde{g}(t) \, dt \leq \varepsilon. \quad (26)$$

Let $B \subset \mathbb{R}$ be the set of all $t \in \mathbb{R}$ where $\tilde{g}(t) < h(t)$, and hence $B \subset \frac{1}{2}(I_{\tilde{f}} + I_{\tilde{g}})$. In addition let $A = R^{-1}B \subset I_{\tilde{f}}$. If $t = \frac{x + T(x)}{2} \in B$ for $x \in A$ then as \tilde{g} is
log-concave and \(\tilde{f}(x) = \tilde{g}(T(x))T'(x) \), we have

\[
\begin{align*}
[h(R(x)) - \tilde{g}(R(x))] \cdot R'(x) & \leq \left[\sqrt{\tilde{f}(x)\tilde{g}(T(x))} - \sqrt{\tilde{g}(x)\tilde{g}(T(x))} \right] \cdot \frac{1 + T'(x)}{2} \\
& \leq (\tilde{f}(x) - \tilde{g}(x)) \cdot \frac{\sqrt{\tilde{g}(T(x))}}{\sqrt{\tilde{f}(x)}} \cdot \frac{1 + T'(x)}{2} \\
& = (\tilde{f}(x) - \tilde{g}(x)) \cdot \left(1 + \frac{(1 - \sqrt{T'(x)})^2}{2\sqrt{T'(x)}} \right).
\end{align*}
\]

In particular \(\tilde{g}(x) < \tilde{f}(x) \) for \(x \in A \). It follows from (5) and (23) that

\[
\int_B h(t) - \tilde{g}(t) \, dt = \int_A [h(R(x)) - \tilde{g}(R(x))] \cdot R'(x) \, dx
\leq \int_{I_{f(x)}} |\tilde{f}(x) - \tilde{g}(x)| + \tilde{f}(x) \cdot \frac{(1 - \sqrt{T'(x)})^2}{2\sqrt{T'(x)}} \, dx
\ll \sqrt{\varepsilon} |\ln \varepsilon|^{\frac{3}{4}}.
\]

It follows from (26) that \(\int_\mathbb{R} |h(t) - \tilde{g}(t)| \, dt \ll \sqrt[4]{\varepsilon} |\ln \varepsilon|^{\frac{3}{4}} \). Therefore combining this estimate with (24) and (25) leads to \(\int_\mathbb{R} |m(t) - g(t)| \, dt \ll \sqrt[4]{\varepsilon} |\ln \varepsilon|^{\frac{3}{4}} \). In turn we deduce \(\int_\mathbb{R} |m(t) - f(t)| \, dt \ll \sqrt[4]{\varepsilon} |\ln \varepsilon|^{\frac{3}{4}} \) by (23) and (24). \(\square \)

Remark 6.1 A careful check of the argument shows that the estimate for \(\int_\mathbb{R} |m(t) - f(t)| \, dt \) and \(\int_\mathbb{R} |m(t) - g(t)| \, dt \) is of the same order as the estimate for \(\int_\mathbb{R} |\tilde{f}(t) - \tilde{g}(t)| \, dt \). Therefore to improve on the estimate in Theorem 1.2, all one needs to improve is (23).

7 Appendix - Examples

Example 7.1 If \(f \) is an even log-concave probability distribution, \(g(x) = (1 + \varepsilon) \cdot f((1 + \varepsilon)x) \), and \(m(x) = (1 + \varepsilon) \cdot f(x) \), then we have (5), and

\[
\int_{I_f} f(x)(T(x) - x)^2 \, dx = \frac{\varepsilon^2}{(1 + \varepsilon)^2} \int_\mathbb{R} x^2 f(x) \, dx.
\]
Example 7.2 Let f be the constant one on $[-\frac{1}{2}, \frac{1}{2}]$, and let g a modification such that if $|x| \geq \frac{1}{2} - \varepsilon$ then

$$g(x) = e^{-\frac{|x| - \frac{1}{2} + \varepsilon}{\varepsilon}}.$$

In addition

$$m(x) = \begin{cases}
1 & \text{if } x \in [-\frac{1}{2}, \frac{1}{2}] \\
e^{-|x| - \frac{1}{2}} & \text{otherwise}.
\end{cases}$$

In this case $\int_{\mathbb{R}} m = 1 + \varepsilon,$

$$\int_{\mathbb{R}} f(x) \cdot \frac{(1 - \sqrt{T'(x)})^2}{2T'(x)} dx \approx \varepsilon \quad \text{and} \quad \int_{\mathbb{R}} |f(x) - g(x)| dx \approx \varepsilon.$$

Moreover $\int_{\mathbb{R}} f(x)(T'(x) - 1)^2 dx = \infty \quad \text{and} \quad \int_{\mathbb{R}} f(x)(T(x) - x)^2 dx \approx \varepsilon^3.$

Acknowledgement: We thank the referee whose remarks substantially simplified the proof of Proposition 2.1, and improved the overall presentation of the paper. We are also grateful for the help of Marianna Csörnyei, Katalin Marton, Franck Barthe, Francesco Maggi, David Preiss and Cedric Villani, in the preparation of this manuscript.

References

