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Abstract

One classical result of Freiman gives the optimal lower bound for the cardinality
of A + A if A is a d-dimensional finite set in Rd. Matolcsi and Ruzsa have recently
generalized this lower bound to |A+ kB| if B is d-dimensional, and A is contained in
the convex hull of B. We characterize the equality case of the Matolcsi–Ruzsa bound.
The argument is based partially on understanding triangulations of polytopes.

1 Introduction

The topic of this paper is the cardinality of the sum of finite sets in the real affine space.
For thorough surveys and background, consult I.Z. Ruzsa [7], and T. Tao, V. Vu [10].

A set A in Rd is d-dimensional if it is not contained in any affine hyperplane. One
seminal result proved by G. Freiman [1] is that for any finite d-dimensional set A in Rd,

|A+A| ≥ (d+ 1)|A| − d(d+ 1)

2
. (1)

The inequality is tight and the extremal sets have been characterized by Y. Stanchescu
[8]. It was recently generalized by M. Matolcsi and I.Z. Ruzsa [6] as follows.

Theorem 1 (Matolcsi–Ruzsa). If B is finite d-dimensional in Rd and A ⊂ [B], then for
every k ∈ N

|A+ kB| ≥
(
d+ k

k

)
|A| − k

(
d+ k

k + 1

)
.
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In particular, taking A = B they get the following, of which (1) is the case k = 2:

Corollary 2 (Freiman–Matolcsi–Ruzsa). If A is finite d-dimensional in Rd, then for every
k ∈ N

|kA| ≥
(
d+ k − 1

k − 1

)
|A| − (k − 1)

(
d+ k − 1

k

)
.

In these results, for a set X ⊂ Rd, we set 1X = X, kX = (k − 1)X + X for k ≥ 2,
and 0X = {0}. The sum X + ∅ is always the empty set. The convex hull of the set
X ⊂ Rd is denoted by [X]. Similarly, [x1, . . . , xm] will denote the convex hull of points
x1, . . . , xm ∈ Rd.

One of the motivations of the Matolcsi–Ruzsa inequality is the observation that to prove
(1) for the sumset A + A, the relevant points of the second summand are the vertices of
[A].

The goal of this paper is to give an explicit characterization of the sets A and B for
which the inequality in Theorem 1 is tight, that is, for which A ⊂ [B] and

|A+ kB| =
(
d+ k

k

)
|A| − k

(
d+ k

k + 1

)
.

We call such a pair (A,B) a k-critical pair. As in M. Matolcsi and I.Z. Ruzsa [6], trian-
gulations of B have a crucial role in our paper. By a triangulation T of B, we mean a
triangulation of [B] where the set of vertices of T is B. In addition, T is called stacked if it
has |B|−d full-dimensional simplices (which is the minimum possible number of simplices
in a triangulation of |B| points in Rd). As first steps in the characterization, we show that
for every k-critical pair (A,B):

• B ⊂ A (Lemma 18).

• (A ∩ [B′], B′) is also k-critical, for any subset B′ ⊂ B (Lemma 19).

• B is totally stackable (Corollary 21), meaning that all of its triangulations are
stacked.

Total stackability is a very restrictive property that can be expressed in different ways
(Lemma 11) and totally stackable sets are completely characterized by B. Nill and A.
Padrol (see Theorem 12). Section 3 includes these results and some preliminary back-
ground on triangulations. The fact that B needs to be totally stackable in order to have
equality follows from the following refinement of Theorem 1 that we prove in Section 6.
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Theorem 3. Let T be a shellable triangulation of B with h-vector (h0, . . . , hd). Let A be
such that B ⊂ A ⊂ [B]. Then,

|A+ kB| ≥
(
d+ k

k

)
|A| − k

(
d+ k

k + 1

)
+

min(d,k+1)∑
j=2

hj

(
d+ k + 1− j
k + 1− j

)
.

The h-vector (h0, h1, . . . , hd) ∈ Nd+1 (here and in what follows N = {0, 1, 2, . . . }) of
a d-dimensional triangulation is a classical invariant in geometric combinatorics, which
can be read either from the f -vector (the number of simplices of each dimension) or from
a shelling. See more background on this topic in Section 3. Since hi ≥ 0 for every i,
Theorem 3 implies Theorem 1. But it also tells us that in order to have equality in
Theorem 1 all the shellable triangulations of B need to have hi = 0 for all i ≥ 2, which is
equivalent to them having |B| − d simplices. Hence, B needs to be totally stackable.

It is worth noticing that the inequality in Theorem 3 is equivalent to

|A+ kB| ≥
(
d+ k

k

)
|A \B|+

min(d,k+1)∑
j=0

hj

(
d+ k + 1− j
k + 1− j

)
.

For the case A = B this leads to the following refinement of Corollary 2:

Corollary 4. Let T be a shellable triangulation of A with h-vector (h0, . . . , hd). Then,

|kA| ≥
min(d,k)∑
j=0

hj

(
d+ k − j
k − j

)
.

The geometric structure of critical pairs is complemented by its arithmetic structure.
To express this arithmetic structure we introduce the following concepts. For finite B ⊂
Rd, we write Λ(B) to denote the additive subgroup of Rd generated by B −B, and hence
by B if 0 ∈ B. We note that Λ(B) is called a lattice if it is of rank d, which will be the
typical case.

Definition We say that A ⊂ [B] is stable with respect to B, or B-stable if

(A+ Λ(B)) ∩ [B] = A.

The fact that A is B-stable provides a substantial arithmetic structure to A. For
example, suppose that A is B-stable and let l be a line intersecting A and such that
Λ(B) contains non-zero vectors parallel to l. Let w be the shortest such vector (which
is unique up to sign). Then A ∩ l can be partitioned into arithmetic progressions with
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common difference w, each of which equals (x+Zw)∩[B] for some x ∈ Rd. If, in addition, l
contains an edge [u, v] of [B], then one of these arithmetic progressions contains the vertices
u, v of the edge. In particular, for two parallel lines l, l′ intersecting A these arithmetic
progressions have the same common difference (w depends only on the direction of l) and
if the lines contain edges e, e′ with `(e) ≥ `(e′) of B then the translation of A ∩ e′ within
e matching one vertex of e is contained in A ∩ e.

As usual, a d-dimensional (straight) prism P is the Minkowski sum of a (d − 1)-
dimensional polytope Q and a segment s not parallel to it. Edges of P parallel to s are
called vertical. We are interested in the case where Q is a simplex and where the vertical
edges are allowed to have different lengths. We abbreviate this as a simplex-prism. Put
differently, a simplex prism is any polytope afffinely equivalent to

{(x, t) ∈ Rd+1 : x ∈ ∆ ⊂ Rd, t ∈ R, `(x) ≤ t ≤ u(x)},

where ∆ is a d-simplex and `, u are two affine functions with `(x) < u(x) for every x ∈ ∆.

With these geometric and arithmetic ingredients, Sections 7, 8 and 9 lead to the fol-
lowing explicit characterization of the critical pairs via a case study based in the charac-
terization of totally stackable sets.

Theorem 5. Let k ≥ 1, d ≥ 1, and let A,B ⊂ Rd be finite such that B spans Rd, and
A ⊂ [B]. Equality holds in Theorem 1 if and only if B ⊂ A, B is contained in the union
of the edges of [B], and one of the following conditions hold.

(i) |B| = d+ 1. That is, B is the vertex set of a d-simplex.

(ii) For d ≥ 1, B consists of the vertices of the simplex [v0, . . . , vd], and some extra
points on the edge [v0, vd]. The points of B on this edge are part of an arithmetic
progression D contained in A, and A\(B ∪D) is the disjoint union of translates of
D \ {v0}.

(iii) For d ≥ 2, [B] is a simplex-prism, A is stable with respect to B, and A is contained
in the vertical edges of B.

(iv) For d = 2, A consists of the vertices of a triangle and the midpoints of its sides.

(v) For d = 2, B consists of the the vertices of a parallelogram, and A is stable with
respect to B and contained in the boundary of [B].

(vi) For 2 ≤ q < d, A and B are the unions of some d − q points and sets A′, B′

respectively, where (A′, B′) is a pair of q-dimensional sets of type (iii), (iv) or (v).
That is to say, [A] = [B] is an iterated pyramid over [A′] = [B′] and the only points
of A \A′ are the new vertices.
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Observe that in part (vi) we do not include (iterated) pyramids over the configurations
of parts (i) and (ii) because these are again configurations of the types described in (i)
and (ii).

The characterization in Theorem 5 reveals two interesting facts about critical pairs.

• The characterization is independent of k. One direction (the fact that k-criticality
implies (k − 1)-criticality, if k ≥ 2) is proved in Lemma 22. The other direction is
only proved as a consequence of the full characterization.

• If (A,B) is critical then A is stable with respect to B. Actually, criticality of the
pair (A,B) depends on A and the lattice Λ(B) generated by the points of B rather
than the structure of B itself. Again, without resorting to the full characteriza-
tion, we only have a partial direct proof of this, namely the case of dimension one
(Proposition 8).

In turn, Theorem 5 yields the following concerning the equality case of Corollary 2.

Corollary 6. Let k ≥ 2, d ≥ 2, and let the finite A span Rd. Equality holds in Corollary 2
if and only if one of the following conditions hold.

(i) The set A consists of the vertices of a simplex plus an arithmetic progression contained
in an edge of the simplex, starting and ending at the endpoints of the edge.

(ii) The set A consists of the vertices of a simplex plus the midpoints of the sides of a
certain 2-face of the simplex.

(iii) For d ≥ q ≥ 2, [A] is an iterated pyramid over a q-dimensional simplex-prism. There
exists a non-zero w ∈ Rd such that A consists of the vertices of [A] and, for each
vertical edge of the prism, the arithmetic progression of difference w starting and
ending at its endpoints.

Actually, Corollary 6 admits the more concise form of Corollary 7. In it, we say that
a triangulation T of a finite set A spanning Rd is unimodular if Λ(A) is a lattice with
determinant ∆, and each full dimensional simplex of T has volume ∆/d!. We note that
if A has a stacked unimodular triangulation then all of its triangulations are unimodular
and stacked.

Corollary 7. Let k ≥ 2, d ≥ 2, and let the finite A span Rd. Equality holds in Corollary 2
if and only if A has a stacked unimodular triangulation.

To prove Theorem 5, first we consider the one-dimensional case in Section 2, which
is the base of the arithmetic structure of critical pairs. Next we discuss some useful
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properties of triangulations of convex polytopes in Section 3. Section 4 reviews the proof
of the Matolcsi–Ruzsa inequality Theorem 1, and concludes with a technical, but useful,
characterization (Theorem 15) of the equality case. Based on this result, we show in
Section 5 that the pairs (A,B) listed in Theorem 5 are k-critical for any k ≥ 1. Theorem 15
is also the base of the arguments leading to the fundamental properties of k-critical pairs
in Section 6. Finally, a case by case analysis in Sections 7, 8 and 9 describes explicitly the
arithmetic structure of the cases in Theorem 5. In Section 10 we show how the results of
the previous sections imply that the list in Theorem 1 is complete.

2 The case of dimension one

It is instructive to discuss the one-dimensional version of Theorem 5 first, because it
does not require the geometric machinery built later on, and it provides the base of the
arithmetic structure of higher dimensional critical pairs.

For rational 0 ≤ b1 < . . . < bn, n ≥ 2, we define gcd{b1, . . . , bn} to be the largest
rational number w such that b1/w, . . . , bn/w are integers. We observe that if A,B ⊂ R are
finite such that A ⊂ [B] = [0, 1], then A being stable with respect to B is equivalent to
saying that B ⊂ Q, and A is the union of maximal arithmetic progressions in [0, 1] with
difference w = gcd(B).

We note that the one-dimensional version of Theorem 1 reads as follows. If A,B ⊂ R
are finite sets with A ⊂ [B], and k ≥ 1, then

|A+ kB| ≥ (k + 1)(|A| − 1) + 1. (2)

The first part of the next proposition gives the one-dimensional version of Theorem 5.
The second part will be used later.

Proposition 8. Let k ≥ 1, and let A,B ⊂ R be finite such that A ⊂ [B] = [0, 1].

(i) The pair (A,B) is k-critical if and only if {0, 1} ⊂ A and A is stable with respect to
B.

(ii) If C ⊂ (0, 1) is finite, then

|C + kB| ≥ (k + 1)|C|, (3)

with equality if and only if C is stable with respect to B.
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Proof. If a finite D ⊂ [B] is stable with respect to B, then

D + kB = D + k{0, 1},

and hence equality holds in (3) for D = C, and also in (2) for D = A provided that
{0, 1} ⊂ A.

We note that if either 0 6∈ A or 1 6∈ A, then a translate of A is contained in (0, 1), a
case dealt with in (ii), which shows that (A,B) is not k-critical. Thus let the pair (A,B)
be k-critical with {0, 1} ⊂ A.

If B = {0, 1}, then A is clearly stable with respect to B. Therefore we may assume
that |B| ≥ 3. We write X ′ to denote the image of X ⊂ R in the torus R/Z by the quotient
map. In particular

|A′| = |A| − 1. (4)

Let Ã ⊂ [0, 2) be the set obtained by choosing the smallest element of A+B in each coset
of Z intersecting A+B. Since 0 ∈ B yields that Ã∩ (A+1) = ∅, the sum A+kB contains
the disjoint union

{k + 1} ∪ Ã ∪ ((A\{1}) + 1) ∪ . . . ∪ ((A\{1}) + k).

We deduce using |A′ +B′| ≥ |A′| that

|A+ kB| ≥ |A′ +B′|+ k|A′|+ 1 ≥ (k + 1)|A′| − 1. (5)

As the pair (A,B) is k-critical, (2) and (4) yield that |A′ +B′| = |A′|. In particular

a+ b ∈ A′ for a ∈ A′ and b ∈ B′.

We deduce from |B| ≥ 3 that there exists some non-zero element of B′, which in turn
implies by the finiteness of A′ that B′ generates a finite subgroup H of R/Z, and A′ is the
union of some cosets of H. It follows that B ⊂ Q, and H is generated by w′ for w = gcd(B).
This implies (i). The argument for (ii) is completely analogous, only k+ 1 6∈ C + kB, and
hence (5) is replaced by |C + kB| ≥ |C ′ +B′|+ k|C ′| where |C ′| = |C|. 2

3 Some observations about triangulations

Throughout this paper, a triangulation of a finite point set B ⊂ Rd is a geometric simplicial
complex with vertex set B and underlying space [B]. A triangulation will be given as a
list of d-simplices.

Let T = {S1, . . . , Sm} be a triangulation of B. We say that the ordering S1, . . . , Sm
of the simplices of T is a shelling if, for every i, the intersection of Si with S1 ∪ · · · ∪ Si−1
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is a union of facets of Si. Equivalently, if S1 ∪ · · · ∪ Si is a topological ball for every i.
The index of a simplex Si in a shelling is the number of facets of Si that are contained
in S1 ∪ · · · ∪ Si−1. That is, the index of S1 is zero and the index of every other Si is an
integer between 1 and d. The h-vector of a shelling is the vector h = (h0, . . . , hd) with hi
equal to the number of simplices of index i. We recall without proof some simple facts
about shellings and h-vectors (see [5, Section 9.5.2] or [11, Chapter 8] for details):

Lemma 9. (i) Not every triangulation is shellable, but every point set has shellable tri-
angulations. For example, all regular triangulations (which include placing, pulling
and Delaunay triangulations) are shellable.

(ii) The h-vector of a shellable triangulation is independent of the choice of shelling. In
fact, the h-vector of a (perhaps non-shellable) triangulation can be defined as

hk =
k∑
i=0

(−1)k−i
(
d+ 1− i
k − i

)
fi−1,

where (f−1, . . . , fd) is the f -vector of T . That is, fi is the number of i-simplices in
T , with the convention that f−1 = 1.

(iii) Every triangulation of B has h0 = 1, h1 = |B| − d− 1, and
∑
hi = m, where m and

d are the number of d-simplices and the dimension of T .

One useful way of constructing triangulations of a point set is the placing procedure,
which is recursively defined as follows (see [5, Section 4.3.1] for more details). Let B ⊂ Rd
be a finite point set and let x ∈ B be such that B′ := B \ {x} is d-dimensional and
x 6∈ [B′]. If T ′ is a triangulation of B′, we call placing of x in T ′ the triangulation T of B
obtained adding to T ′ the pyramids with apex at x of all the boundary (d− 1)-simplices
of T ′ that are visible from x. Here, we say that a (d− 1)-simplex S in the boundary of B′

is visible from x if its supporting hyperplane H separates x from B′ \H. Equivalently, if
[x, y] ∩ [B′] = {y} for every point y ∈ S. It can be shown that if T ′ is shellable then T is
shellable too.

The placing procedure can be used to construct a (shellable) triangulation of B from
scratch, by choosing an initial simplex S = [x1, . . . , xd+1] with {x1, . . . , xd+1} ⊂ B and
S ∩ (B \ {x1, . . . , xd+1}) = ∅, or to extend a given triangulation of a subset B′ ⊂ B with
[B′] ∩ (B \B′) = ∅.

We observe that if C = {x1, . . . , xd+1} is affinely independent, s ∈ {1, . . . , d+ 1}, and
t > 0, then for the facets Fj = [C\xj ] of [C], j = 1, . . . , s, we have

t ·
(
[C]\

(
∪sj=1Fj

))
=


d+1∑
j=1

λjxj : λj > 0 for j ≤ s, ∀λj ≥ 0,
d+1∑
j=1

λj = t

 . (6)
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Therefore if k ≥ 1, and S1, . . . , Sm is a shelling of a triangulation T , then

Ti + kSi = (k + 1)Ti for i = 2, . . . ,m and Ti = Si\(S1 ∪ . . . ∪ Si−1). (7)

Of special interest for us will be stacked triangulations. A stacked triangulation is one
that satisfies any of the following equivalent properties, and they are a particular case of
placing triangulations, hence shellable:

Lemma 10. The following properties are equivalent, for a triangulation T of a point set
B.

(i) The number of d-simplices in T equals |B| − d.

(ii) hi = 0 for all i ≥ 2.

(iii) The dual graph of T is a tree. The dual graph is the graph having as vertices the
d-simplices of T and as edges the adjacent pairs (pairs that share a facet).

(iv) Every simplex of dimension at most d− 2 of T is contained in ∂[B].

Proof. The equivalence of the first two properties follows from
∑
hi = m and h0 + h1 =

|B| − d, where m denotes the number of d-simplices. For a shellable triangulation T , the
implications (ii)⇒(iii)⇒(iv)⇒(ii) are also trivial. Hence, the only thing we need to prove
is that any of (i), (iii) and (iv) implies T to be shellable. Let the simplices in T be ordered
S1, . . . , Sm in such a way that Si shares at least one facet with S1 ∪ · · · ∪ Si−1, which can
always be done. Then:

(i) S1 ∪ · · · ∪ Si has at most one vertex more than S1 ∪ · · · ∪ Si−1. If the total number of
vertices equals |B| − d we need the number to always increase by one, which implies
(S1 ∪ · · · ∪ Si−1) intersects Si only in a facet.

(iii) If the dual graph is a tree, it has one less edge than vertices. Then, no Si has two
facets in common with S1 ∪ · · · ∪ Si−1. It may in principle have a facet plus some
lower dimensional face σ, but this would imply the dual graph of the link of σ in
S1 ∪ · · · ∪ Si to become disconnected. Since at the end of the process all links have
connected dual graphs, there has to be a j > i such that Sj also contains σ and is
glued to S1 ∪ · · · ∪ Sj−1 along at least two facets, a contradiction.

(iv) If every simplex of dimension at most d − 2 of T is contained in ∂[B], then every
(d − 1)-simplex in T disconnects T . Hence the dual graph is a tree and, by the
previous argument, T is shellable.
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2

We call a point set B totally stackable if all its triangulations are stacked. This poses
heavy restrictions on the combinatorics of B, as we now see:

Lemma 11. Let B ⊂ Rd be a d-dimensional finite point set. The following conditions are
equivalent:

(i) B is totally stackable.

(ii) Every k points of B lie in a face of [B] of dimension at most k, for every k.

(iii) Every subset C of at most d− 1 points of B has [C] ⊂ ∂[B].

Proof. The implication (ii)⇒ (iii) is obvious, and (iii) clearly implies the last property
of Lemma 10 for every triangulation, hence it implies (i). So, we only need to show
(i)⇒ (ii).

Let C ⊂ B be a set of k points and let F be the minimal face of [B] containing C (the
carrier of C). Assume that dim(C) > k and, without loss of generality, that C is affinely
independent. It is easy to show that BF := B ∩ F has a triangulation TF using C as a
simplex. Since [C] goes through the interior of F , the link of C in TF is a (dim(C)− k)-
sphere. In particular, since dim(C) − k > 0, its dual graph has cycles. This TF can be
extended to a triangulation of B (for example via the placing procedure, see [5, Section
4.3.1]) which will still have cycles in its dual graph. 2

Properties (ii) and (iii) have the following straightforward consequences. , which will
be useful in order to give an explicit description of all possible totally stackable sets:

• If B is totally stackable, every point of B is either a vertex of [B] or lies in the
relative interior of an edge of [B]. That is, B is contained in the union of edges of
[B]. We call the edges of [B] that contain points of B other than vertices loaded.

• Every subset B′ of a totally stackable set B is totally stackable in aff(B′).

Sets satisfying property (iii) of Lemma 11 are called of combinatorial degree one by
B. Nill, A. Padrol [4], who give a complete classification of them. The description uses
iterated pyramids, which we define in terms of the join operator. Let B1 and B2 be two
finite sets in Rd whose affine hulls are of dimensions d1 and d2, respectively. We say that
B1 ∪B2 is a join of B1 and B2 if the affine hull of B1 ∪B2 is of dimension d1 + d2 + 1. For
i = 1, 2, consider a triangulation for Bi where the number of di-simplices is mi. These two
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triangulations induce a triangulation for the join B1∪B2 where the number of (d1+d2+1)-
simplices is m1m2. Moreover, all triangulations of a join arise in this way. A join where
B2 is a single point is a pyramid, and if B2 is affinely independent it is an iterated pyramid
over B1.

Theorem 12 (B. Nill and A. Padrol [4]). Let B be a finite set in Rd not contained in a
hyperplane. Then B is totally stackable if and only if B is contained in the union of the
edges of [B], and either of the following conditions holds.

(i) [B] is a simplex, and all loaded edges meet at a vertex.

(ii) [B] is an iterated pyramid over a polygon, and every loaded edge is a side of the
polygon.

(iii) [B] is (projectively equivalent to) an iterated pyramid over a simplex-prism, and
every loaded edge is a vertical edge of the prism.

Observe that if the polygon in case (ii) is a triangle then [B] is a simplex (as in case
(i)), but still the two cases differ in which edges are allowed to be loaded. In part (iii) we
need to allow projective equivalence on the prisms since being stackable is invariant under
it. The effect of a projective deformation on a prism is that the “vertical” edges may no
longer be parallel, but rather span lines meeting at a point.

4 A proof of Theorem 1 and some consequences for critical
pairs

In this section, we review the proof of Theorem 1 from M. Matolcsi and I.Z. Ruzsa [6]
in order to analyze the equality case. This will lead to a technical but useful character-
ization of critical pairs (Theorem 15), a strengthening of the Matolcsi–Ruzsa inequality
(Theorem 20), and various fundamental properties of critical pairs (Theorem 23).

Recall that kM = M + · · · + M denotes the k-fold Minkowski sum of M with itself
and k ·M = {kx : x ∈M} denotes the dilation of M by a factor of k. We note that if M
is a convex set in Rd, and k ≥ 1 is an integer, then

kM = {kx : x ∈M} = k ·M. (8)

The following simple observation will be often used.

Claim 13. Let S = [C] be a d-simplex for C = {v0, . . . , vd}.
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(i) |kC| =
(
d+k
k

)
.

(ii) For distinct points a, b ∈ S and k ≥ 1 we have

(a+ kC) ∩ (b+ kC) = ∅,

unless both a, b ∈ C.

Proof. We may assume that v0 is the origin, and v1, . . . , vd form the orthonormal basis.
In this case we have

kC =

{
(t1, . . . , td) ∈ Nd :

d∑
i=0

ti ≤ k

}
,

and hence (i) follows by enumeration.

For (ii), we observe that, for each pair x, y ∈ kC of distinct points, the sets x+ [0, 1)d

and y + [0, 1)d are disjoint. Since S\{v0, . . . , vd} ⊂ [0, 1)d, it follows from (a+ kC) ∩ (b+
kC) 6= ∅ that either a or b is a vertex, say a is a vertex of S. Then x+ a ∈ Zd, thus b is a
vertex of S as well. 2

Corollary 14. If C = {v0, . . . , vd} is the vertex set of a simplex and if A ⊂ [C], then

|A+ kC| =
(
d+ k

k

)
|A| −

|A∩C|∑
i=1

((
d+ k

k

)
−
(
d+ k + 1− i

k

))
.

In particular,

|A+ kC| ≥
(
d+ k

k

)
|A| − k

(
d+ k

k + 1

)
,

with equality if and only if C ⊂ A.

Proof. Clearly,

A+ kC =
⋃
a∈A

(a+ kC).

By Claim 13(i) each of the sets a + kC has cardinality
(
d+k
k

)
and, by Claim 13(ii), they

are pairwise disjoint except when a, a′ ∈ C ∩A. That is:

|A+ kC| =
(
d+ k

k

)
|A \ C|+ |(A ∩ C) + kC|.

To prove (i) we only need to check that

|(A ∩ C) + kC| =
|A∩C|∑
i=1

(
d+ k + 1− i

k

)
.

12



For this assume, as in the proof of Claim 13(i), that v0 is the origin, and v1, . . . , vd form an
orthonormal basis. Let Cl := {v0, v1, . . . , vl−1}, 1 ≤ l ≤ d+1, and assume that A∩C = Ct
for some t. Observe that

C1 + kC = kC,

and, for each l = 2, . . . , d+ 1,

(Cl + kC) \ (Cl−1 + kC) =

(t1, . . . , td) ∈ Nd :

∑d
i=0 ti = k + 1

t1 = · · · = tl−2 = 0
tl−1 > 0

 .

Hence,

|(Cl + kC) \ (Cl−1 + kC)| =
(
d+ k + 1− l

k

)
,

and

|(A ∩ C) + kC| = |Ct + kC| =
|A∩C|∑
i=1

(
d+ k + 1− i

k

)
.

For the second part of the statement, observe that each summand in
∑|A∩C|

i=1

((
d+k
k

)
−
(
d+k+1−i

k

))
is non-negative, so(

d+ k

k

)
|A| − |A+ kC| ≤

d+1∑
i=1

((
d+ k

k

)
−
(
d+ k + 1− i

k

))
= k

(
d+ k

k + 1

)
,

with equality if and only if |A ∩ C| = d+ 1. 2

Proof of Theorem 1. Let S1, . . . , Sm be a shelling of a triangulation T of B. Let Ci be
the set of vertices Si. According to (8),

(k + 1)Si, i = 1, . . . ,m, form a triangulation of (k + 1)[B]. (9)

We define

A1 = A ∩ S1

Ai = A ∩ (Si\(S1 ∪ . . . ∪ Si−1)) for i = 2, . . . ,m.

We observe that A1, . . . , Am form a partition of A. Moreover, by shellability,

Ai ⊂ Si, and Ai contains at most one vertex of Si for i = 2, . . . ,m. (10)
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We deduce from (7) that

|A+ kB| ≥
m∑
i=1

|Ai + kCi|. (11)

Now Corollary 14 yields that

|A1 + kC1| ≥
(
d+ k

k

)
|A1| − k

(
d+ k

k + 1

)
(12)

(with equality if and only if C1 ⊂ A1), and Claim 13 (i) and (ii) imply by (10) that

|Ai + kCi| =
∑
a∈Ai

|a+ kCi| =
(
d+ k

k

)
|Ai| for i = 2, . . . ,m. (13)

Theorem 1 follows from combining (11), (12) and (13). 2

Using the notation of the above proof, the following characterization of equality in
Theorem 1 follows from (7) and (9) on the one hand, and (11), (12) and (13) on the other
hand.

Theorem 15. Let A,B ⊂ Rd finite such that A ⊂ [B] and dim[B] = d, and let k ≥ 1.
The pair (A,B) is k-critical if and only if for some shelling S1, . . . , Sm of an arbitrary
triangulation T of B, we have

(i) C1 ⊂ A;

(ii) Ai + kCi = (A+ kB) ∩ (k + 1)Ti for i = 1, . . . ,m

where Ci denotes the set of vertices Si, T1 = S1 and Ti = Si\(S1 ∪ . . . ∪ Si−1), i ≥ 2, and
Ai = A ∩ Ti for i = 1, . . . ,m.

We will also use the following consequence of the proof of Theorem 1.

Lemma 16. Suppose that A+ x ⊂ int[B] for some x ∈ Rd. Then

|A+ kB| ≥
(
d+ k

k

)
|A|. (14)

Proof. If A + x ⊂ int[B] for some x ∈ Rd, then A ∩ B = ∅ can be assumed, and hence
Corollary 14 gives, in the notation of the proof of Theorem 1, |A1 + kC1| ≥

(
d+k
k

)
|A1|.

Therefore (11) and (13) yields (14). 2

14



5 Proof of sufficiency in Theorem 5

Based on Theorem 15, we show that the pairs (A,B) in Theorem 5 are k-critical for any
k ≥ 1. First we show that we can restrict B to the vertices of [B] in the case of the pairs
(A,B) listed in Theorem 5.

Lemma 17. If (A,B) is any of the pairs listed in Theorem 5, and B′ is the vertex set of
[B], then

A+ kB = A+ kB′ for any k ≥ 1.

Proof. It is sufficient to prove that for any a ∈ A and b ∈ B, there exist a′ ∈ A and
b′ ∈ B′ such that a + b = a′ + b′. Since B ⊂ A, we may assume that a, b 6∈ B′. In
particular, we may assume that one of the cases (ii)–(iv) holds.

Write {a, b} = {ã, b̃}, where a = ã and b = b̃ in the cases (ii) and (iv), and vertical
edge of [B] containing b̃ is not longer than the vertical edge containing ã in the case (iii).
The fact that A is stable with respect to B and the conditions in (ii)–(iv) of Theorem 5
mean that b̃ belongs to an arithmetic progression D along an edge [u, v] of [B] containing
its two vertices u, v, and ã belongs to x+D\{u} ⊂ A for some x. The result follows since
D +D\{u} = {u, v}+D\{u}. 2

Proof of sufficiency in Theorem 5. Let us assume that the pair (A,B) satisfies one of the
conditions (i)–(vi) in Theorem 5.

If [B] is a simplex, then combining Lemma 17 and Corollary 14 yields equality in
Theorem 1. This covers the cases (i), (ii) and (iv) of Theorem 5, and the part of case (vi)
when the pair (A,B) is obtained by adding d− 2 points to a pair (A′, B′) described in the
case (iv).

Therefore we assume that [B] is an iterated pyramid over a q-dimensional simplex-
prism P , 2 ≤ q ≤ d, and referring to Lemma 17, also that B consists of the vertices of [B].
Let B0 = B\(B ∩ P ). We write v1, . . . , vq, w1, . . . , wq to denote the vertices of P in a way
such that the vectors wi − vi are parallel pointing into the same direction for i = 1, . . . , q.
We define Si = [{v1, . . . , vi, wi . . . wq} ∪ B0] for i = 1, . . . , q, and hence S1, . . . , Sq form
a shelling of the corresponding triangulation of B. We write Ai, Ci, Ti to denote the
corresponding sets defined in Theorem 15 for i = 1, . . . , q.

Let k ≥ 1 and i ∈ {1, . . . , q}. We claim that assuming vi = 0, we have

A+ kB = (Ai + Λ(B)) ∩ (k + 1)[B] (15)

Ai + kCi = (Ai + Λ(B)) ∩ (k + 1)Ti. (16)
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Before proving (15) and (16), we point out that they readily yield Theorem 15 (ii)
for the shelling S1, . . . , Sq. Since Theorem 15 (i) holds by B ⊂ A, we deduce equality in
Theorem 1 for the pair (A,B).

To verify (15) and (16), we observe that each coset of Λ(B) intersecting A has a
representative in Ai. In other words,

A+ Λ(B) = Ai + Λ(B). (17)

We distinguish two cases. If P is parallelogram, then P is actually a fundamental
parallelogram for the two-lattice Λ(B) ∩ linP . Since A is stable with respect to Λ(B), we
deduce (15) by (17). In addition (16) follows from (7), and the fact that the non-zero
elements of Ci form a Z-basis of Λ(B). This covers the case (v) of Theorem 5, and the
corresponding part of the case (vi).

Finally we consider the case (iii) of Theorem 5, and the corresponding part of the case
(vi). We assume that P is not a parallelogram, and hence A∩P is contained in the vertical
edges [vj , wj ] of P , j = 1, . . . , q. Let

{z1, . . . , zd−1} = B0 ∪ ({v1, . . . , vq}\{vi}),

thus there exists w ∈ Rd pointing into the same direction as wi−vi such that {w, z1, . . . , zd−1}
form a Z-basis for Λ(B). It follows that there exist integers m1, . . . ,mq ≥ 1 such that
wj − vj = mjw for j = 1, . . . , q, and there exists Ω ⊂ [0, 1) such that vj + tw ∈ A for
j ∈ {1, . . . , q} and t ∈ [0,mj ] if and only if t−btc ∈ Ω. We define the integers n1, . . . , nd−1

by np = mj if zp = mj , and np = 0 if zp ∈ B0. Writing

Ξ = {(i1, . . . , id−1) ∈ Zd−1 : i1 + . . .+ id−1 = k and ij ≥ 0},

we deduce (15) from (17) and

A+ kB =
⋃

(i1,...,id−1)∈Ξ

tw +
d−1∑
j=1

ijzj : t− btc ∈ Ω and 0 ≤ t ≤
d−1∑
j=1

ijnj


= (Ai + Λ(B)) ∩ (k + 1)[B].

Turning to (16), we observe that Ci\{vi} form a basis for Rd. Combining this fact
with (7) yields

Ai + kCi = (Ai + Λ(Ci)) ∩ (k + 1)Ti.

Since {w}∪(Ci\{vi, wi}) form a Z-basis for Λ(B), and Ai+w ⊂ Ai+Λ(Ci), we deduce that
Ai + Λ(Ci) = Ai + Λ(B). We conclude (16), and in turn that equality holds in Theorem 1
for the pairs (A,B) in Theorem 5. 2
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6 Basic properties of k-critical pairs

The goal of the section is to prove Theorem 23 listing some fundamental properties of
k-critical pairs. The first one is a direct consequence of Theorem 15.

Lemma 18. If (A,B) is a k-critical pair, k ≥ 1, then B ⊂ A.

Proof. For any x ∈ B, we consider a shellable triangulation T with x ∈ C1 for the first
simplex S1 = [C1] of T (this can be achieved, for example, via a placing triangulation).
Theorem 15 yields C1 ⊂ A, thus x ∈ A. 2

Based on Theorem 15, we prove that criticality is preserved by taking subsets of B.

Lemma 19. Let A,B be d-dimensional point sets with A ⊂ [B], and let k ≥ 1. If (A,B)
is k-critical, then (A ∩ [B′], B′) is also k-critical for every B′ ⊂ B.

Proof. Let B̃ = B ∩ [B′] and Ã = A ∩ [B′]. Since B′ ⊂ B̃ and [B′] = [B̃], it is sufficient
to prove that (Ã, B̃) is k-critical.

If dim [B′] = d, then constructing a placing triangulation first for B̃, we obtain some
shelling S1, . . . , Sm of a triangulation of B such that the union of S1, . . . , Sn is [B′] for
some n ≤ m. Now Theorem 15 (i) and (ii) for the pair (A,B) readily yield the analogous
properties for the pair (Ã, B̃).

Next we assume that dim[B′] = q < d. We choose x1, . . . , xd−q ∈ B such that for

B∗ = {x1, . . . , xd−q} ∪ B̃, we have dim[B∗] = d and B ∩ [B∗] = B∗. Let A∗ = A ∩ [B∗].

We observe that L = aff B′ is a supporting q-plane to [B∗], with Ã = A∗ ∩L, B̃ = B∗ ∩L
and [B̃] = [B∗] ∩ L.

Let S̃1, . . . , S̃n be a shelling of some triangulation of B̃, and let Ãi, C̃i, T̃i for i = 1, . . . , n
be the corresponding sets for Theorem 15. We need to prove that they satisfy Theorem 15.
Since B ⊂ A according to Lemma 18, Theorem 15 (i) readily follows, and all we have to
verify is Theorem 15 (ii).

To achieve that, we observe that S1, . . . , Sn is a shelling of a triangulation of B∗ where
Si = [x1, . . . , xd−q, S̃i] for i = 1, . . . , n. Writing Ai, Ci and Ti to denote the corresponding

sets in Theorem 15, we have A1 = Ã1 ∪ {x1, . . . , xd−q}, Ai = Ãi for i = 2, . . . , n, moreover

C̃i = Ci∩L and T̃i = Ti∩L for i = 1, . . . , n. The pair (A∗, B∗) is k-critical by the argument
above because B∗ ⊂ B with dimB∗ = d, and hence Ai, Ci and Ti satisfy Theorem 15 (ii).
It follows that the same conclusion holds for Ãi, C̃i and T̃i, as for i = 1, . . . , n, we have

(Ã+ kB̃) ∩ T̃i = L ∩ ((A∗ + kB∗) ∩ Ti) ⊂ L ∩ (Ai + kCi) = Ãi + kC̃i,
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where the first and the last equality is a consequence of the fact that L is a supporting
q-plane to [B∗]. 2

Under the assumption B ⊂ A, the ideas in the proof of Theorem 1 also lead to a proof
of Theorem 3. We recall its statement for the convenience of the reader.

Theorem 20. Let A,B ⊂ Rd be finite such that dim [B] = d and B ⊂ A ⊂ [B], and let T
be a shellable triangulation of B with h-vector (h0, . . . , hd). Then

|A+ kB| ≥
(
d+ k

k

)
|A| − k

(
d+ k

k + 1

)
+

min(d,k+1)∑
j=2

hj

(
d+ k + 1− j
k + 1− j

)
.

Proof. Let S1, . . . , Sm be a shelling of T . We keep the same notation for Ai, Ci and Ti
as in the statement of Theorem 15. In particular, we have

|A+ kB| =
m∑
i=1

|(A+ kB) ∩ (k + 1)Ti|.

Let A′i = Ai \Ci. In each (k+ 1)Ti, we have, by the same argument as in Corollary 14,
and taking into account that Ci ⊂ B ⊂ A,

|(A+ kB) ∩ (k + 1)Ti| ≥ |Ai + kCi| = |A′i + kCi|+ |(k + 1)Ci ∩ (k + 1)Ti|. (18)

The first summand is

|A′i + kCi| =
(
d+ k

k

)
|A′i|,

by Claim 13 (i), and so
m∑
i=1

|A′i + kCi| =
(
d+ k

k

)
|A \B|.

For the second summand, let si be the index of Si in the shelling, and hence (6) and
enumeration yield

|(k + 1)Ci ∩ (k + 1)Ti| =

{(
d+k+1−si
k+1−si

)
if si ≤ k + 1,

0 otherwise.

Put differently,

m∑
i=1

|(k + 1)Ci ∩ (k + 1)Ti| =
min(d,k+1)∑

j=0

hj

(
d+ k + 1− j
k + 1− j

)
.
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Since (k + 1)Ci and A′i + kCi are disjoint by Claim 13 (ii), we obtain

|A+ kB| ≥
m∑
i=1

|A′i + kCi|+
m∑
i=1

|(k + 1)Ci ∩ (k + 1)Ti|

=

(
d+ k

k

)
|A \B|+

min(d,k+1)∑
j=0

hj

(
d+ k + 1− j
k + 1− j

)

=

(
d+ k

k

)
|A|+

(
d+ k + 1

k + 1

)
− (d+ 1)

(
d+ k

k

)
+

min(d,k+1)∑
j=2

hj

(
d+ k + 1− j
k + 1− j

)

=

(
d+ k

k

)
|A| − k

(
d+ k

k + 1

)
+

min(d,k+1)∑
j=2

hj

(
d+ k + 1− j
k + 1− j

)
,

where, in the last step, we use h0 = 1 and h1 = |B| − d− 1. 2

Corollary 21. If the pair (A,B) is k-critical with dim[B] = d, then B is totally stackable.
In particular, B is contained in the union of the edges of [B].

Proof. We have B ⊂ A according to Lemma 18. Theorem 20 yields that every shellable
(in particular, every regular) triangulation has h2 = 0. According to the characterization
of the h-vectors by R.P. Stanley [9] (see also Theorem 8.34 in G.M. Ziegler [11]), we have
hj = 0 for j ≥ 2, which, by Lemma 10, implies that B is stacked. That is, every regular
triangulation of B has |B| − d d-simplices. It is a fact (see [5, Theorem 8.5.19]) that then
all the triangulations (regular or not) have the same number |B| − d of d-simplices. That
is, B is totally stackable. 2

Next we prove that equality in Theorem 1 is preserved under reducing the value of k.

Lemma 22. If (A,B) is k-critical for k ≥ 2 with dim[B] = d, then it is also k′-critical
for every k′ = 1, . . . , k − 1.

Proof. Let S1, . . . , Sm be a shelling of a triangulation of B. We use the notation of
Theorem 15. Condition (i) of Theorem 15 is independent of k, and hence we need to check
condition (ii).

Let z ∈ (A + (k − 1)B) ∩ Ti for i = 1, . . . ,m, and what we need to show is that
z ∈ Ai + (k − 1)Ci. Since B is totally stackable by Corollary 21, we may assume that
Ci = {v0, . . . , vd} in a way such that Ti = Si\[v1, . . . , vd] if i ≥ 2, and z 6∈ [v1, . . . , vd] if
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i = 1. In particular, v0 ∈ Ai, and

z =
d∑
j=0

λjvj where λ0 > 0, λj ≥ 0 for j = 1, . . . , d, and λ0 + . . .+ λd = k

by (6). If z ∈ kCi, or equivalently each λi is an integer, then v0 ∈ Ai and λ0 > 0 yield
that z ∈ Ai + (k − 1)Ci. Therefore we assume that z 6∈ kCi.

Since z+v0 ∈ (A+kB)∩ (k+1)Ti and (A,B) is k-critical, Theorem 15 (ii) yields that

z + v0 = a+
d∑
j=0

mjvj (19)

where a ∈ Ai, every mj ≥ 0 is an integer. and m0 + . . .+md = k. We have

a =
d∑
j=0

αjvj where α0 > 0, αj ≥ 0 for j = 1, . . . , d, and α0 + . . .+ αd = 1,

and α0 > 0 is a consequence of (6). As Ci is affinely independent, the coefficients satisfy
λ0 + 1 = α0 +m0 and λj = αj +mj for j = 1, . . . , d.

Since z 6∈ kCi, we deduce that some αj is not integer, which in turn implies that
α0 < 1. We have α0 +m0 = λ0 + 1 > 1 based on (19), thus m0 ≥ 1 by α0 < 1. Therefore

z = a+ (m0 − 1)v0 +
d∑
j=1

mjvj ∈ Ai + (k − 1)Ci,

as it is required by Theorem 15 (ii). 2

We summarize Lemmas 18, 19 and 22 and Corollary 21 as follows.

Theorem 23. If the pair (A,B) is k-critical for k ≥ 2 with dim [B] = d, then

(i) B ⊂ A;

(ii) (A ∩ [B′], B′) is also k-critical for every B′ ⊂ B;

(iii) B is totally stackable, thus B is contained in the union of the edges of [B];

(iv) (A,B) is 1-critical, and hence |A+B| = (d+ 1)|A| − d(d+ 1)/2.

From now on we consider k-critical pairs (A,B) for k = 1, which will be simply called
critical pairs. Theorem 23 (iv) shows that k-critical pairs are critical. We also speak
about critical sets in the case of the one dimensional version |A + B| ≥ 2|A| − 1 of the
Matolcsi–Ruzsa inequality.
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7 The case of a simplex

In this section we consider the case where [B] is a d-simplex. First we discuss iterated
pyramids, a case that will be used later on as well.

Lemma 24. Let 1 ≤ q < d, and let (A,B) be a critical pair with dim[B] = d such that
[B] is an iterated pyramid over [B0] where B0 ⊂ B and dim[B0] = q. Then

(i) (A ∩ [B0], B0) is a critical pair, and

(ii) |(A ∩ L) + B0| = (q + 1)|A ∩ L| for any affine q-plane L parallel to L0 = aff(B0)
intersecting A and avoiding the vertices of [B].

Proof. We have B ⊂ A by Theorem 23 (i), and the pair (A ∩ [B0], B0) is critical by
Theorem 23 (ii). Let [B] = [x1, . . . , xd−q, B0], and let B̃ be the join of {x1, . . . , xd−q} and

B0. In particular, (A, B̃) is a critical pair, by Lemma 19.

We may assume that 0 ∈ B0. We divide A into equivalence classes according to the
cosets of H = Zx1 + . . . + Zxd−q + L0, and hence adding B̃ ⊂ H to different equivalence

classes results in disjoint sets. One equivalent class is Ã = {x1, . . . , xd−q}∪ (A∩ [B0]), and

|Ã+ B̃| ≥ (d+ 1)|Ã| − d(d+ 1)/2 (20)

by Theorem 1. Any other equivalence class is of the form A ∩ L for an affine q-plane L
parallel to L0 that avoids B̃ and intersects A. Since a translate of A ∩ L is contained in
the relative interior of [B0], Lemma 16 yields

|(A ∩ L) + B̃| ≥ (d+ 1)|A ∩ L|. (21)

As (A, B̃) is a critical pair, (20) and (21) imply

(d+ 1)|A ∩ L| = |(A ∩ L) + B̃| = |(A ∩ L) +B0|+
d−q∑
i=1

|(A ∩ L) + xi|,

therefore |(A ∩ L) +B0| = (q + 1)|A ∩ L|. 2

We recall that an edge of [B] is loaded if it contains at least three points of B.

Proposition 25. Let A,B be finite d-dimensional sets in Rd, d ≥ 2 with A ⊂ [B]. If [B]
is a simplex, and (A,B) is a critical pair, then B ⊂ A, B is contained in the edges of [B],
and one of the following conditions hold:
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(i) |B| = d+ 1; or

(ii) there is a unique loaded edge [u, v] of B; the points of B in this edge are part of an
arithmetic progression D contained in A; and A\(B ∪ D) is the disjoint union of
translates D \ {v}; or

(iii) there exist two or three loaded edges for B, which are sides of a two dimensional face
T of [B], and A consists of the vertices of [B], and the midpoints of the sides of T .

Proof. The facts that B ⊂ A and B is contained in the edges of [B] follow from Theo-
rem 23 (i) and (iii). Let B′ be the vertex set of [B].

We may assume |B| > d+ 1, and hence there exists a loaded edge [u, v] of [B].

It follows from Lemma 24 (i) and Proposition 8 (i) that B ∩ [u, v] is part of a maximal
arithmetic progression D containing the vertices u, v, and A ∩ [u, v] contains D, and the
rest of A∩ [u, v] is the disjoint union of translates of D \ {v}. In particular, Lemma 24 (ii)
and Proposition 8 (ii) imply that

A\(D ∪B′) is the disjoint union of translates of D \ {v}. (22)

If there exists a unique loaded edge of B, then (22) yields (ii). Therefore we may
assume that there are at least two loaded edges of [B]. Since B is totally stackable by
Theorem 23 (iii), it follows that either all loaded edges meet in a vertex, or they form a
triangular 2-dimensional face by Theorem 12.

Therefore we may assume [v0, v1] and [v0, v2] are two loaded edges of B with v0 = 0, and
let T = [v0, v1, v2] be the 2-face containing these two edges. In particular, (A ∩ T,B ∩ T )
is a critical pair by Theorem 23 (ii). It follows by (22) that for i = 1, 2, A ∩ T contains
an arithmetic progression Di of length mi ≥ 3 with endpoints v0 and vi. According
to (22), a1 = m1−2

m1−1 v1 is part of a translate of D2\{v2} contained in A ∩ T , and hence

also of a segment σ ⊂ T of length at least m2−2
m2−1 ‖v2‖. Since mi−2

mi−1 ≥
1
2 , we deduce that

m1 = m2 = 3, D1 = {v0, a1, v1} and D2 = {v0, a2, v1} for a2 = 1
2 v2. It follows by (22)

that a0 = 1
2(v1 + v2) = a1 + a2 ∈ A.

Let a ∈ A\(D1 ∪ B′), and let L = a + lin{v1, v2}. It follows by (22) applied to the
edge [v0, v1] that a ∈ {p, p − a1} where {p, p − a1} ⊂ A. Now p 6∈ (D2 ∪ B′), and hence
applying (22) to the edge [v0, v2], we conclude that either p + a2 ∈ A, or p − a2 ∈ A. In
other words, either [p, p − a1, p + a2] ⊂ [B] ∩ L, or [p, p − a1, p − a2] ⊂ [B] ∩ L. Since
[B] ∩ L is a translate of λT for λ ∈ (0, 1] and {p, p− a1} ∩D1 = ∅, we deduce that λ = 1,
and {p, p− a1, p− a2} = {a0, a2, a1}. Therefore A consists of the vertices of [B], and the
midpoints of T . 2
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8 Critical pairs (A,B) with dim[B] = 2

In this section, A,B are finite sets in R2 satisfying that A ⊂ [B] and B spans R2. Thus
the case k = 1 of Theorem 1 can be written into the form

|A+B| ≥ 3|A| − 3. (23)

We note that the case when [B] is a triangle is handled in Section 7, and hence we start
with the case when [B] is a quadrilateral.

Proposition 26. Let (A,B) be a critical pair with [B] = [v0, v1, v2, v3] a quadrilateral.
Then A ⊂ ∂[B] and [B] is a trapezoid. Moreover

(i) if B consists of the vertices of a parallelogram, then A can be partitioned into pairs
of points, each a translate of a pair of consecutive points of B;

(ii) if B has a loaded edge or is not a parallelogram, then A is contained in two parallel
edges of B, say e1 = [v0, v1] and e2 = [v2, v3], and each of A∩ei can be partitioned into
maximal arithmetic progressions with common difference w; in addition, if `(e2) ≤
`(e1) and [v0, v2] is an edge of [B], then (A ∩ e2)− (v2 − v0) = A ∩ (e2 − (v2 − v0)).

Proof. Let B′ = {v0, v1, v2, v3} be the vertices of B, where we may assume that v0 = o
and [0, v1], [0, v2] are edges of [B]. By Theorem 23, we may assume that B ⊂ A and that
(A,B′) is critical.

Suppose that [B] has no pair of parallel sides. We say that a side of [B] is big if the
sum of the angles at the endpoints of the side is less than π. Since one side out of two
opposite sides of [B] is big, there exists a vertex of [B] where two big sides meet. Therefore
we may assume that B = {o, v1, v2, t1v1 + t2v2}, where

0 < t1 ≤ t2 < 1 and t1 + t2 > 1.

In addition, if s1v1 + s2v2 ∈ A then s1 + s2 ≤ t1 + t2.

Let B′0 = {o, v1, v2}. We observe that any coset of Z2 = Zv1 +Zv2 intersects [0, 1)v1 +
[0, 1)v2 in exactly one point, therefore no two points of A\B′0 are in the same coset. We
deduce that

|A+B′0| = |A \B′0| · |B′0|+ |2B′0| = 3(|A| − 3) + 6 = 3 · |A| − 3.

On the other hand, if s1v1 + s2v2 ∈ A + B0 then s1 + s2 ≤ t1 + t2 + 1. Therefore
2(t1 + t2) > t1 + t2 + 1 yields

2(t1v1 + t2v2) ∈ (A+B′)\(A+B′0),

23



and hence |A + B′| > |A + B′0| = 3 · |A| − 3, contradicting that (A,B′) is a critical pair.
This proves the first part of the statement.

For (i), suppose that B = B′ and [B] is a parallelogram. We may assume that [B] =
[0, 1]2. We partition A = A0 ∪ · · · ∪ At into equivalence classes according to Z2, where
A0 = B. We observe that, for i > 0, each Ai consists either of one single point or a pair
which is a translate of a pair of consecutive vertices in B. We have

|A+B| =
k∑
i=0

|Ai +B| = 3|A0| − 3 +
k∑
i=1

|Ai +B| = 3|A| − 3,

which implies |Ai +B| = 3|Ai| for each i = 1, . . . , k. This implies that no Ai consists of a
single point.

Finally, to prove (ii), we suppose that v1 = λ(v3 − v2) with λ ≥ 1 and that the edge
e1 = [o, v1] is loaded if λ = 1. Set Ai = A ∩ ei and Bi = B ∩ ei for i = 1, 2. Consider
equivalence classes of A determined by the cosets of the subgroup H = Zv2 + Rv1. One
equivalence class of A is A1 ∪A2, and the rest are of the form A∩ l for some line l parallel
to [o, v1], and intersecting int[B]. For such a line l we claim that

|(A ∩ l) +B| > 3|A ∩ l|. (24)

Indeed, if λ > 1 then

|(A ∩ l) +B′| = |(A ∩ l) ∪ ((A ∩ l) + v1) ∪ ((A ∩ l) + {v2, v3})| > 3|A ∩ l|.

If λ = 1 then |B1| > 2 by our assumption, and we have |(A∩ l) +B1| ≥ |A∩ l|+ |B1|−1 =
|A ∩ l|+ 2. Hence,

|(A∩ l)+(B1∪B2)| = |(A∩ l)+B1|+ |(A∩ l)+B2| ≥ (|A∩ l|+2)+(2|A∩ l|−1) > 3|A∩ l|.

Since |(A1 ∪ A2) + (B1 ∪ B2)| ≥ 3|(A1 ∪ A2)| − 3 by Theorem 1, it follows from (24)
that A = A1 ∪A2, and in turn B ⊂ A implies that B = B1 ∪B2. This shows that both A
and B are contained in two parallel lines of the trapezoid. Therefore,

|A+B| = |A1 +B1|+ |A2 +B2|+ |(A1 +B2) ∪ (A2 +B1)|,

where, by Proposition 8 (i), |Ai +Bi| ≥ 2|Ai| − 1 with equality if and only if Ai is stable
with respect to Bi. Moreover we have also |(A1 + B2) ∪ (A2 + B1)| ≥ |A1| + |A2| − 1.
Hence, it follows from |A + B| = 3|A| − 3 that there is equality in the three inequalities
above, which implies

A2 ⊆ A1 + v2 and (A1 + v2) ∩ [v2, v3] ⊆ A2,

which together with the other two equalities imply (ii). 2
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Lemma 27. If (A,B) is a critical pair, and [B] is a polygon, then [B] has at most four
vertices.

Proof. We suppose that P = [B] is a polygon of at least five vertices, and seek a contra-
diction. According to Theorem 23, we may assume that P is a pentagon, and B consists
of the vertices of P . For any vertex v of P , let Pv be the convex hull of the other four
vertices of P . It follows again by Theorem 23 that (A ∩ Pv, B ∩ Pv) is a critical pair, as
well, and hence Proposition 26 yields that Pv is a trapezoid.

Since the sum of the angles of P is 3π, there exists a side f of P such that the sum of
the angles at the two endpoints is at least 6π

5 > π. Let e be the diagonal of P not meeting
f , and let v be the vertex not in e ∪ f . It follows that Pv is a trapezoid where e and f
are parallel, and `(e) > `(f). We deduce from Proposition 26 that there exists x ∈ A ∩ e
different from the endpoints of e.

Now let w be an endpoint of f . Since e is a diagonal of Pw, we have x ∈ A ∩ intPw.
However Proposition 26 (i) and (ii) applied to the pair (A ∩ Pw, B ∩ Pw) shows that
A ∩ intPw = ∅, which is a contradiction. 2

9 Critical pairs (A,B) where [B] is an iterated pyramid over
a simplex-prism

Our first statement is a preparation for the proof of Lemma 29.

Lemma 28. If A,B ⊂ Rd, d ≥ 2, are finite such that x+A ⊂ int[B] for x ∈ Rd, and [B]
is a d-dimensional simplex-prism, then

|A+B| > (d+ 1)|A|.

Proof. Let [v0, . . . , vd−1] and [w0, . . . , wd−1] be the facets of [B] such that [vi, wi] are the
parallel vertical edges for i = 0, . . . , d− 1, and

‖vi − wi‖ ≤ ‖v0 − w0‖ for i = 1, . . . , d− 1. (25)

We may assume that v0 is the origin, and A ⊂ int[B]. Let B̃ = {v0, w0, . . . , vd−1, wd−1}
be the vertex set of [B], and let B′ = {v1, w1, . . . , vd−1, wd−1}.

We divide A into equivalence classes according to the subgroup

H = Zv1 + . . .+ Zvd−1 + Rw0,
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and hence adding B̃ ⊂ H to different equivalence classes results in disjoint sets. As
A ⊂ int[B] and (25) yield that A ⊂ (0, 1)v1 + . . . + (0, 1)vd−1 + (0, 1)w0, any equivalence
class is of the form A ∩ l for a line l parallel to w0 and intersecting A, and a translate of
A ∩ l is contained in [v0, w0]\{v0, w0}. Thus Proposition 8 (ii) implies

|(A ∩ l) + {v0, w0}| ≥ 2|A ∩ l|. (26)

We note that
the sets l + vi, i = 0, . . . , d− 1, are pairwise disjoint, (27)

therefore

|(A ∩ l) +B′| =
d−1∑
i=1

|(A ∩ l) + {vi, wi}| ≥
d−1∑
i=1

(|A ∩ l|+ 1) > (d− 1)|A ∩ l|. (28)

We conclude |A+B| ≥ |A+ B̃| > (d+ 1)|A| by (26), (27) and (28). 2

Combining Lemmas 24 and 28 yield the following.

Lemma 29. If d > q ≥ 2 and (A,B) is a critical pair such that B spans Rd, A ⊂ [B], and
[B] = [x1, . . . , xd−q, P ] for a q-dimensional simplex-prism P , then A = {x1, . . . , xd−q} ∪
(A ∩ P ).

It remains to describe the structure of A and B when [B] is a simplex-prism.

Proposition 30. If d ≥ 3, and (A,B) is a critical pair such that [B] is a d-dimensional
polytope projectively equivalent to a simplex-prism, then B ⊂ A, and

(i) the vertical edges of [B] are parallel,

(ii) A is contained in the vertical edges of [B],

(iii) there exists a vertical vector w 6= 0 such that for each vertical edge e, A ∩ e can be
partitioned into maximal arithmetic progressions of difference w in e, one of them
containing both endpoints of e, and this longest arithmetic progression contains B∩e.
In addition if e and f are vertical edges, and e+ v ⊂ f in a way such that e+ v and
f share a common endpoint, then (A ∩ e) + v = A ∩ (e+ v).

Proof. We have B ⊂ A by Theorem 23 (i). Let [v0, . . . , vd−1] and [w0, . . . , wd−1] be the
facets of [B] such that [vi, wi] are the vertical edges for i = 0, . . . , d− 1.
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For 0 ≤ i < j ≤ d− 1, it follows from Theorem 23 (iii) that (Aij , Bij) is a critical pair
for Aij = [vi, wi, vj , wj ] ∩A and Bij = [vi, wi, vj , wj ] ∩B, therefore Proposition 26 yields

[vi, wi, vj , wj ] is a trapezoid, and (29)

Aij and Bij satisfy the conditions of Proposition 26 (i) or (ii). (30)

We verify (i) using an indirect argument. We suppose that the lines of the vertical edges
meet at a point p ∈ Rd, and seek a contradiction. We may assume that wi ∈ [p, vi] for i =
0, . . . , d− 1. Since the pair composed of A∩ [v0, v1, w1, v2, w2] and B ∩ [v0, v1, w1, v2, w2] is
critical by Theorem 23 (iii), and [v1, w1, v2, w2] is a trapezoid according to (29) , Lemma 29
yields that

A ∩ [v0, v1] = {v0, v1}. (31)

However wi ∈ [p, vi] for i = 0, 1 and (29) yield that [w0, w1] is parallel with and shorter
than [v0, v1]. We deduce from Proposition 26 that |A ∩ [v0, v1]| ≥ 3, contradicting (31),
and implying (i).

We prove (ii) again by contradiction, therefore we suppose that there exists an x ∈ A
not contained in the vertical edges.

According to the Charateodory theorem (see e.g. B. Grünbaum [2]), if x ∈ [X]\X for
X ⊂ Rd, then x ∈ [x0, . . . , xd] for x0, . . . , xd ∈ X. It follows that possibly after reindexing,
there exists m such that 1 ≤ m ≤ d, [x0, . . . , xm] is an m-simplex, and

x ∈ relint[x0, . . . , xm] = {t0x0 + . . .+ tmxm : t0, . . . , tm > 0 and t0 + . . .+ tm = 1}. (32)

We deduce from (32) that there exists 1 ≤ m ≤ d, and affinely independent vertices
x0, . . . , xm of [B] such that x ∈ relint[x0, . . . , xm]. Since an m-simplex has no two parallel
edges, we may assume that x0 = v0, and w0 6∈ {x1, . . . , xm}. In particular, x ∈ A ∩ P
for P = [v0, v1, w1, . . . , vd−1, wd−1] where Q = [v1, w1, . . . , vd−1, wd−1] is a simplex-prism
by (i). It follows from x ∈ relint[x0, . . . , xm] that x 6= v0 and x 6∈ Q. Since the pair
(A ∩ P,B ∩ P ) is critical, this contradicts Lemma 29, and hence implies (ii).

The last property (iii) follows from (30) and Proposition 26. 2

10 Proof of necessity in Theorem 5

Let (A,B) be a k-critical pair for some k ≥ 1 with dim[B] = d. In particular, (A,B) a
1-critical and B is totally stackable by Theorem 23. According to Theorem 12, [B] is a
simplex, or an iterated pyramid over a polygon, or over (a projective deformation of) a
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simplex-prism. If [B] is a simplex, then the characterization in Theorem 5 (i), (ii), (iv)
and (vi) is achieved by Proposition 8 if d = 1, and Proposition 25 if d ≥ 2.

Therefore let [B] be an iterated pyramid over P with dimP = q where P is polygon
or a projective deformation of a simplex-prism. We may assume that P is not a triangle.
Since the pair (A∩P,B ∩P ) is 1-critical by Theorem 23 (ii), Proposition 26 and 27 yield
that if P is a polygon, then it is a trapezoid. In addition, Proposition 30 yields that the
vertical edges of P are parallel even if q ≥ 3.

We deduce from Lemma 29 that any point of A is a vertex of [B], or contained in P .
Therefore we conclude Theorem 5 (iii) and (v) from Proposition 26 if q = 2, and from
Proposition 30 if q ≥ 3.
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1053 Budapest, Reáltanoda u. 13–15. HUNGARY. and

Central European University, 1051 Budapest, Nador u. 9, HUNGARY

F. Santos: Departamento de Matemáticas, Estad́ıstica y Computación Universidad de
Cantabria, Av. de los Castros 48 E-39005 Santander, SPAIN
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