Tatracrypt 2007

Exact bound on tree based secret sharing schemes

László Csirmaz

CEU, Budapest

Joint work with Gábor Tardos, Rényi Institute **Definition** A Perfect Secret Sharing Scheme S on the vertices V of a graph G is a joint distribution

 $\{\xi_v : v \in V\}$ (shares) and ξ_s (secret)

such that

- each edge (v, w) can recover the secret, i.e. ξ_v and ξ_w determines uniquely ξ_s ,
- if $A \subseteq V$ is independent, then $\{\xi_v : v \in A \text{ and } \xi_s \text{ are independent.}$

Definition $H(\xi)$ is the Shannon entropy of ξ ;

 $\mathcal{S}(v) \stackrel{\text{def}}{=} \frac{\mathsf{H}(\xi_v)}{\mathsf{H}(\xi_s)} = \text{how many bits } \mathcal{S} \text{ assigns to}$ v for each bit in s.

Definition The worst case information rate $R(G) \stackrel{\text{def}}{=} \min_{\substack{\text{scheme } S}} \max_{v \in V} \mathcal{S}(v)$ (i.e. at least that much information someone

(i.e. at least that much information someone must remember)

Claim $R(G) \ge 1$ if G is not empty. In fact, $S(v) \ge 1$ for each non-isolated vertex.

Theorem

 $R(G) = 1 \text{ for the complete graph } K_n \text{ (Shamir)}$ $R(G) \leq \frac{1}{2} (\text{ max degree } +1) \text{ (Stinson)}$ $R(G) \leq \frac{cn}{\log n} \text{ for all graphs on } n \text{ vertices}$ (Erdős-Pyber)

 $R(G) \ge \log_2 n$ for some graph on n vertices (Csirmaz, van Dijk, Capocelli et al)

Known exact information rate for certain graphs

• R(star) = 1 (folklore)

 $R(P_1) = R(P_2) = 1$, $R(P_k) = 1.5$ otherwise;

 $R(C_3) = R(C_4) = 1$, $R(C_k) = 1.5$ otherwise

- all graphs on \leq 5 vertices (Stinson, van Dijk, Santis)
- some graphs on 6 vertices
- specially constructed large graphs (van Dijk, Santis),
 e.g. R({0,1}^d) = d/2 (Csirmaz)

Theorem (Csirmaz – Tardos, 2006) *The exact information rate for all trees.*

Upper Bounds

Claim R(star) ≤ 1 . Proof secret $s \in \{0, 1\}$, random $r \in \{0, 1\}$

Theorem (Stinson): $G_i \subseteq G$, S_i is a scheme on G_i assigning $S_i(v)$ bits to $v \in V$. Each edge is covered $\geq k$ times. Then for some scheme S on G,

$$\mathcal{S}(v) \leq rac{1}{k} \sum_i \mathcal{S}_i(v)$$

Corollary $R(path) \leq 1.5$

Proof Each edge is covered twice, each vertex gets 2 or 3 bits:

Observation For each tree T, $R(T) \leq 2$.

Proof Summing up all k sharings, all edges are covered k times, and 2k - 1 bits are assigned to all bottom nodes.

Lower Bounds

Reminder: $H(A) = entropy \text{ of } \{\xi_v : v \in A\}$

Use known linear inequalities for the entropy, in particular: $I(X; Y|Z) \ge 0$.

Typically the lower bound is an LP problem.

Example: For $G = \overset{a}{\bullet} \overset{b}{\bullet} \overset{c}{\bullet} \overset{d}{\bullet}$ we have $H(b) + H(c) \ge H(bc) \ge 3 H(s)$ as:

H(abcd)	\geq	H(ad) + H(s)
H(ad) + H(ac)	\geq	H(acd) + H(a)
H(acd) + H(abc)	\geq	H(abcd) + H(ac) + H(s)
H(ab) + H(bc)	\geq	H(abc) + H(b) + H(s)
H(a) + H(b)	\geq	H(ab)

Does not necessarily work: not all polymatroids are entropy-representable (Matuš) **Definition** A core C of G is a connected subset of the vertices such that each vertex in C has a heighbour (in G) outside if C.

For each tree the maximal core size can be found in $O(n^2)$ steps.

Theorem (Csirmaz–Tardos) Let G be a tree, and let k be the size of the maximal core in G. Then the information rate R(G) = 2 - 1/k.

Example Path of length at least 3:

has maximal core size 2, R(path) = 2 - 1/2.

For the comb, the bottom nodes form a core of size k, thus $R(\text{comb}_k) = 2 - 1/k$

Proof The Lower bound uses information theoretic machinery. Let C be a core in G, then (assuming H(s) = 1)

$$\sum_{v \in C} H(v) \ge H(C) + |C| - 2.$$
(1)

(1) follows from the connectedness of C. Now

$$\mathsf{H}(C) \ge |C| + 1, \tag{2}$$

as each vertex in C is connected to a member in a large independent set. Summing these

$$\sum_{v \in C} \mathsf{H}(v) \geq 2|C| - 1,$$

i.e. for at least one $v \in C$, $H(v) \ge 2 - 1/|C|$.

The upper bound comes from a multiple covering of the edges by stars. Let k be the size of the largest core in G. Then there exists a collection of stars (as subgraphs of G) such that

- each vertex is covered exactly k times,
- no vertex is contained in more than 2k 1 of these stars.

Such a covering can be constructed in $O(n^3)$ steps.

Using Stinson's construction, we can construct the required perfect secret sharing scheme with rate 2 - 1/k.

Problems for further research

when Stinson's construction does not help ...

The rate of this graph is 7/4. The best construction from covering it by stars yields a scheme with rate 2.

Determine the rate of the graph on 2n vertices, where each vertex of a complete graph on n vertices is matched to an independent set of size n. (The above graph is the special case for n = 3). The lower bound is $2 - 1/2^{n-1}$, and for n > 3 only construction with rate 2 is known.

Finally, and most importantly, is there any graph where the lower bound given by the entropy method cannot be achieved?