Exact bound on tree based secret sharing schemes

László Csirmaz

CEU, Budapest

Joint work with
Gábor Tardos, Rényi Institute

Definition A Perfect Secret Sharing Scheme \mathcal{S} on the vertices V of a graph G is a joint distribution

$$
\left\{\xi_{v}: v \in V\right\} \text { (shares) and } \xi_{s} \text { (secret) }
$$

such that

- each edge (v, w) can recover the secret, i.e. ξ_{v} and ξ_{w} determines uniquely ξ_{s},
- if $A \subseteq V$ is independent, then $\left\{\xi_{v}: v \in A\right.$ and ξ_{s} are independent.

Definition $\mathrm{H}(\xi)$ is the Shannon entropy of ξ;
$\mathcal{S}(v) \stackrel{\text { def }}{=} \frac{\mathrm{H}\left(\xi_{v}\right)}{\mathrm{H}\left(\xi_{s}\right)}=$ how many bits \mathcal{S} assigns to v for each bit in s.

Definition The worst case information rate

$$
\mathrm{R}(G) \stackrel{\text { def }}{=} \min _{\text {scheme } \mathcal{S}} \max _{v \in V} \mathcal{S}(v)
$$

(i.e. at least that much information someone must remember)

Claim $\mathrm{R}(G) \geq 1$ if G is not empty. In fact, $\mathcal{S}(v) \geq 1$ for each non-isolated vertex.

Theorem

$\mathrm{R}(G)=1$ for the complete graph K_{n} (Shamir)
$\mathrm{R}(G) \leq \frac{1}{2}($ max degree +1$)$ (Stinson)
$\mathrm{R}(G) \leq \frac{c n}{\log n}$ for all graphs on n vertices (Erdős-Pyber)
$R(G) \geq \log _{2} n$ for some graph on n vertices (Csirmaz, van Dijk, Capocelli et al)

Known exact information rate for certain graphs

- $R($ star $)=1$ (folklore)
- paths, cycles (Stinson):
$\mathrm{R}\left(P_{1}\right)=\mathrm{R}\left(P_{2}\right)=1, \mathrm{R}\left(P_{k}\right)=1.5$ otherwise;
$\mathrm{R}\left(C_{3}\right)=\mathrm{R}\left(C_{4}\right)=1, \mathrm{R}\left(C_{k}\right)=1.5$ otherwise
- all graphs on ≤ 5 vertices (Stinson, van Dijk, Santis)
- some graphs on 6 vertices
- specially constructed large graphs (van

Dijk, Santis),
e.g. $\operatorname{R}\left(\{0,1\}^{d}\right)=d / 2 \quad$ (Csirmaz)

Theorem (Csirmaz - Tardos, 2006) The exact information rate for all trees.

Upper Bounds

Claim $R($ star $) \leq 1$.
Proof secret $s \in\{0,1\}$, random $r \in\{0,1\}$

Theorem (Stinson): $G_{i} \subseteq G, \mathcal{S}_{i}$ is a scheme on G_{i} assigning $\mathcal{S}_{i}(v)$ bits to $v \in V$. Each edge is covered $\geq k$ times. Then for some scheme \mathcal{S} on G,

$$
\mathcal{S}(v) \leq \frac{1}{k} \sum_{i} \mathcal{S}_{i}(v)
$$

Corollary $R($ path $) \leq 1.5$
Proof Each edge is covered twice, each vertex gets 2 or 3 bits:

Observation For each tree $T, \mathrm{R}(T) \leq 2$.

Proof each edge is covered, each vertex gets ≤ 2 bits.

Theorem For the comb of width k :

$$
\mathrm{R}\left(\mathrm{comb}_{k}\right) \leq 2-1 / k
$$

Proof Summing up all k sharings, all edges are covered k times, and $2 k-1$ bits are assigned to all bottom nodes.

\leftarrow bits used

Lower Bounds

Reminder: $\mathrm{H}(A)=$ entropy of $\left\{\xi_{v}: v \in A\right\}$

Use known linear inequalities for the entropy, in particular: $I(X ; Y \mid Z) \geq 0$.

Typically the lower bound is an LP problem.
Example: For $G={ }_{\bullet}^{a} \quad{ }_{\bullet}^{b} \quad{ }_{\bullet}^{d}$ we have $\mathrm{H}(b)+\mathrm{H}(c) \geq \mathrm{H}(b c) \geq 3 \mathrm{H}(s)$ as:

$$
\begin{aligned}
\mathrm{H}(a b c d) & \geq \mathrm{H}(a d)+\mathrm{H}(s) \\
\mathrm{H}(a d)+\mathrm{H}(a c) & \geq \mathrm{H}(a c d)+\mathrm{H}(a) \\
\mathrm{H}(a c d)+\mathrm{H}(a b c) & \geq \mathrm{H}(a b c d)+\mathrm{H}(a c)+\mathrm{H}(s) \\
\mathrm{H}(a b)+\mathrm{H}(b c) & \geq \mathrm{H}(a b c)+\mathrm{H}(b)+\mathrm{H}(s) \\
\mathrm{H}(a)+\mathrm{H}(b) & \geq \mathrm{H}(a b)
\end{aligned}
$$

Does not necessarily work: not all polymatroids are entropy-representable (Matuš)

Definition A core C of G is a connected subset of the vertices such that each vertex in C has a heighbour (in G) outside if C.

For each tree the maximal core size can be found in $O\left(n^{2}\right)$ steps.

Theorem (Csirmaz-Tardos) Let G be a tree, and let k be the size of the maximal core in G. Then the information rate $\mathrm{R}(G)=$ $2-1 / k$.

Example Path of length at least 3:

has maximal core size $2, R($ path $)=2-1 / 2$.

For the comb, the bottom nodes form a core of size k, thus $\mathrm{R}\left(\mathrm{comb}_{k}\right)=2-1 / k$

Proof The Lower bound uses information theoretic machinery. Let C be a core in G, then (assuming $\mathrm{H}(s)=1$)

$$
\begin{equation*}
\sum_{v \in C} \mathrm{H}(v) \geq \mathrm{H}(C)+|C|-2 \tag{1}
\end{equation*}
$$

(1) follows from the connectedness of C. Now

$$
\begin{equation*}
\mathrm{H}(C) \geq|C|+1 \tag{2}
\end{equation*}
$$

as each vertex in C is connected to a member in a large independent set. Summing these

$$
\sum_{v \in C} \mathrm{H}(v) \geq 2|C|-1
$$

i.e. for at least one $v \in C, \mathrm{H}(v) \geq 2-1 /|C|$.

The upper bound comes from a multiple covering of the edges by stars. Let k be the size of the largest core in G. Then there exists a collection of stars (as subgraphs of G) such that

- each vertex is covered exactly k times,
- no vertex is contained in more than $2 k-1$ of these stars.

Such a covering can be constructed in $O\left(n^{3}\right)$ steps.

Using Stinson's construction, we can construct the required perfect secret sharing scheme with rate $2-1 / k$.

Problems for further research

when Stinson's construction does not help...
The rate of this graph is $7 / 4$. The best construction from covering it by stars yields a scheme with rate 2.

Determine the rate of the graph on $2 n$ vertices, where each vertex of a complete graph on n vertices is matched to an independent set of size n. (The above graph is the special case for $n=3$). The lower bound is $2-1 / 2^{n-1}$, and for $n>3$ only construction with rate 2 is known.

Finally, and most importantly, is there any graph where the lower bound given by the entropy method cannot be achieved?

