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De�nition A Perfect Secret Sharing Scheme
S on the vertices V of a graph G is a joint
distribution

f�v : v 2 V g (shares) and �s (secret)

such that

� each edge (v; w) can recover the secret,
i.e. �v and �w determines uniquely �s,
� if A � V is independent, then f�v : v 2 A
and �s are independent.

De�nition H(�) is the Shannon entropy of �;

S(v) def= H(�v)
H(�s) = how many bits S assigns to

v for each bit in s.
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De�nition The worst case information rate
R(G) def= minscheme S maxv2V S(v)

(i.e. at least that much information someone
must remember)

Claim R(G) � 1 if G is not empty. In fact,
S(v) � 1 for each non-isolated vertex.

Theorem
R(G) = 1 for the complete graph Kn (Shamir)

R(G) � 1
2( max degree +1) (Stinson)

R(G) � cn
logn for all graphs on n vertices

(Erd}os{Pyber)
R(G) � log2 n for some graph on n vertices

(Csirmaz, van Dijk, Capocelli et al)
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Known exact information rate
for certain graphs

� R(star) = 1 (folklore)
� paths, cycles (Stinson):
R(P1) = R(P2) = 1, R(Pk) = 1:5 otherwise;
R(C3) = R(C4) = 1, R(Ck) = 1:5 otherwise
� all graphs on � 5 vertices (Stinson, van

Dijk, Santis)
� some graphs on 6 vertices
� specially constructed large graphs (van

Dijk, Santis),
e.g. R(f0;1gd) = d=2 (Csirmaz)

Theorem (Csirmaz { Tardos, 2006) The
exact information rate for all trees.
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Upper Bounds
Claim R(star) � 1.
Proof secret s 2 f0;1g,

random r 2 f0;1g �s� r
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Theorem (Stinson): Gi � G, Si is a scheme
on Gi assigning Si(v) bits to v 2 V . Each
edge is covered � k times. Then for some
scheme S on G,

S(v) � 1
k
X
i
Si(v)

Corollary R(path) � 1:5
Proof Each edge is covered twice, each
vertex gets 2 or 3 bits:

� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �
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Observation For each tree T , R(T ) � 2.

Proof each edge is
covered, each vertex
gets � 2 bits.
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Theorem For the comb of width k:

� � � � � � � � � �
� � � � � � � � � �

R(combk) � 2� 1=k.

Proof Summing up all k sharings, all edges
are covered k times, and 2k � 1 bits are
assigned to all bottom nodes.
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Lower Bounds

Reminder: H(A) = entropy of f�v : v 2 Ag

Use known linear inequalities for the entropy,
in particular: I(X;Y jZ) � 0.

Typically the lower bound is an LP problem.

Example: For G = � � � �a b c d we have
H(b) + H(c) � H(bc) � 3H(s) as:

H(abcd) � H(ad) + H(s)
H(ad) + H(ac) � H(acd) + H(a)

H(acd) + H(abc) � H(abcd) + H(ac) + H(s)
H(ab) + H(bc) � H(abc) + H(b) + H(s)
H(a) + H(b) � H(ab)

Does not necessarily work: not all poly-
matroids are entropy-representable (Matu�s)
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De�nition A core C of G is a connected
subset of the vertices such that each vertex
in C has a heighbour (in G) outside if C.

For each tree the maximal core size can be
found in O(n2) steps.

Theorem (Csirmaz{Tardos) Let G be a
tree, and let k be the size of the maximal
core in G. Then the information rate R(G) =
2� 1=k.

Example Path of length at least 3:

� � � � � � � � � ��
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has maximal core size 2, R(path) = 2� 1=2.
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For the comb, the bottom nodes form a core
of size k, thus R(combk) = 2� 1=k

� � � � � � � � � �
� � � � � � � � � �
�
�

�
�

Proof The Lower bound uses information
theoretic machinery. Let C be a core in G,
then (assuming H(s) = 1)

X
v2C

H(v) � H(C) + jCj � 2: (1)

(1) follows from the connectedness of C. Now
H(C) � jCj+1; (2)

as each vertex in C is connected to a member
in a large independent set. Summing these

X
v2C

H(v) � 2jCj � 1;

i.e. for at least one v 2 C, H(v) � 2� 1=jCj.
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The upper bound comes from a multiple cov-
ering of the edges by stars. Let k be the size
of the largest core in G. Then there exists a
collection of stars (as subgraphs of G) such
that

� each vertex is covered exactly k times,

� no vertex is contained in more than 2k � 1
of these stars.

Such a covering can be constructed in O(n3) steps.

Using Stinson's construction, we can con-
struct the required perfect secret sharing
scheme with rate 2� 1=k.
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Problems for further research

when Stinson's construction does not help : : :
The rate of this graph is
7/4. The best construc-
tion from covering it by
stars yields a scheme
with rate 2.
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Determine the rate of the graph on 2n ver-
tices, where each vertex of a complete graph
on n vertices is matched to an independent
set of size n. (The above graph is the spe-
cial case for n = 3). The lower bound is
2 � 1=2n�1, and for n > 3 only construction
with rate 2 is known.

Finally, and most importantly, is there any
graph where the lower bound given by the
entropy method cannot be achieved?
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