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Alfréd Rényi Institute of Mathematics

Deep Learning Group



Team
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Background



Data can be very expensive
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Data can be very expensive

• Reliably detecting early stage lung cancer (<4mm) requires

CAT scanning, X-ray is not sufficient.

• 300-500 slices per scan, very time consuming manual process,

requires high level of expertise.

• US National Lung Screening Trial had 450 false negatives in

45000 samples.
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Data can be very expensive

• This laborious, expensive and error-prone process is what our

industry partner MedInnoScan plans to replace with deep

learning technology, saving human lives.

• But to train their deep learning systems, laborious and

expensive manual annotation is required.

• Saving on the required amount of annotated training data can

make or break the project.
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Regularization

Regularization: Any change to a machine learning model that

makes it generalize better to unseen data. In the context of

artificial neural networks:

• L2 weight decay (Plaut et al 1986)

• dropout (Srivastava et al 2014)

• batch normalization (Ioffe-Szegedy 2015)

• label smoothing (Szegedy et al 2015)

• ...and hundreds of other techniques
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Smoothness prior

• The core idea behind our project is to enforce a smoothness

property of the neural network via a well-chosen regularization

term.

• Tiny perturbations of the network input should not lead to

large changes in network output.

• This idea was independently rediscovered several times, most

recently by our team. The earliest known reference is Drucker

and LeCun’s double backpropagation from 1991.

• But to the best of our current knowledge, we are the first to

report that significant accuracy improvements can be achieved

on vision tasks when the amount of data is restricted.
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Smoothness prior

We can formalize local smoothness in different ways:

• Our Spectral Regularizer (SpectReg) approximates the

Frobenius norm of the Jacobian of the input-logit mapping at

the training examples:

LSpectReg (x ,Θ) = ‖ ∂
∂x

fΘ(x)‖2
F = Er∼N (0, Im) [‖ 1√

m
rT

∂

∂x
fΘ(x)‖2

2]

• The DataGrad regularizer penalizes large changes of the loss

function at the training examples:

LDataGrad(x , y ,Θ) = ‖ ∂
∂x

L(fΘ(x), y)‖2
2
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Wait, this is not supposed to work!
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...But it does work.

• We are still in the process of understanding the phenomenon

better,

• ...but apparently the low-dimensional intuition of the previous

slides does not generalize to complex high-dimensional loss

surfaces,

• ...especially not when our method of discovery of these

surfaces is the gradient descent.

• Gradient descent does not converge to step function-like

solutions such as seen on the previous slide.

• It is probably better to think of gradient regularization as

“smarter weight decay“. It influences the gradient norm at

points far away from the training dataset.

12



...But it does work.
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Experimental Results



MNIST – training on 2000 randomly chosen samples,

interaction with weight decay

Weight decay NoGR SpectReg DataGrad

LeNet

no WD 97.15 97.55 (λ = 0.03) 97.93 (λ = 20)

WD=0.0005 97.32 97.67 (λ = 0.05) 97.93 (λ = 50)

Dropout is on in all of these runs, dropout rate 0.5.
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Gradient regularization’s interaction with DO and BN

NoGR SpectReg DataGrad

LeNet unreg 96.99 97.59 97.56

LeNet BatchNorm 96.89 96.94 96.89

LeNet Dropout 97.29 97.67 97.93

Comparison of dropout, batch normalization and two variants of

gradient regularization: symbolic DataGrad and SpectReg. Train

size was set to 2000. Each hyperparameter was tuned individually

on a development set.
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Comparison of various regularization methods on MNIST
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DataGrad learning curve on full CIFAR-10
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Improvements even on full CIFAR-10 with data augmentation. 17



Research plan

• Better understanding the behavior of these regularizers is a

promising research project.

• Scaling up these results to high resolution images is in the

works.

• We hope to be able to reduce the necessary amount of training

data for annotation-heavy tasks like lung cancer detection.
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Deliverables

• We commit to publish two papers on our methods as

conference papers at prestigious deep learning conferences.

(This is the preferred method of publication in the field of

deep learning.)

• We open source all our neural network code and experiments.

• We commit to evaluate the performance of our method class

on the problem of lung cancer detection.
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