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Goal: reconstruct the input

Original Input Latent Representation

Reconstructed Output

q —" Encoder -’I-’ Decoder —>
X h r

Encoder:

@ Maps the input to the latent space
e h=f(x)
Decoder:

@ Reconstruct the input from the latent space representation
o r=g(h)

We want X = g(f(x)) to be close to x.
«Or «Fr «=>r «E>» = Q>
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Autoencoder

Autoencoding is a data compression algorithm where the
compression and decompression functions are

@ data-specific
@ lossy

o learned automatically from examples

Not good for data compression:
o data-specific
@ Very hard to train one, which does a better job than JPEG



Principal component analysis vs autoencoder

Linear vs nonlinear dimensionality reduction

Autoencoder

PCA
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Input layer

We hope we can discover dependencies in the data.

Hidden layer

Output layer

We need to constrain the model to prevent memorizing.

<O «Fr o« > QA
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Autoencoder

An ideal autoencoder is

@ Sensitive enough to the inputs to acccurately build a
reconstruction

@ Insensitive enough so the model doesn’t simply memorize the
data.
In many cases the loss function consists of two parts:

@ Reconstruction loss £(x, g(f(x)))

@ Regularizer, which discourages memorizing.



Easiest way is to constrain the number of nodes in the hidden
layers.

Input layer

Output layer

L
7

7
ZA\
,§ )

Limits the amount of information that can flow through the
network.

No regularizer, only reconstruction loss.
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dimensions.

Regularized autoencoder: we have constraints, but not on the

Input layer Hidden layers Output layer
% a

Only a few nodes are activated.
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Loss function: Reconstruction loss + sparsity constraint
Two types:

o [ regularization

sparsity constraint = A\ ), |a§h)|

(h)

i

A is a hyperprameter, a
hidden layer.

is the activation of the ith node in the
o Kullback-Leibler divergence

«O0>» «F>» «E» «E>» Q>



Measures distance between two distributions

Du(pla) = [ plx)iog plx

T ; dx — /p(x)-(logp(x)—ng(X))
Dri(pllq) = Ex~plog Zgi
@ Not symmetric

@ Triangle inequality doesn't hold
@ nonegative

«O>» «F>» «E» «E>» Q>



p: sparsity parameter: small number

For all nodes in the hidden layer

L QL (h) (i
= > @)

i=1
Sparsity constraint: Zj"zl Dk (pl|pj), Kullback-Leibler divergence
berween two Bernoulli distributions

p
1—pj

Sh
L, %)+ B> Dui(pllpy),

./:l «O> «Fr «=» «=>» 1PN G4
- eSS
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Dki(pllp;) = plog = + (1 — p) log
J

Loss function:




/

Add noise to the
input image

Feed
corrupted
input into

autoencoder

Measure
reconstruction

loss against
original image
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Training an autoencoder on the
MNIST dataset, and visualizing
the encodings from a 2D latent
space reveals the formation of
distinct clusters. This makes
; sense, as distinct encodings for
each image type makes it far
;\ easier for the decoder to decode
them.
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Variational autoencoder

Generative model:

Goal: approximate the underlying p*(x) distribution of the training
set.

Want to generate new samples, similar to the training set.

Latent variable model:
Learn a low-dimensional latent representation

We assume it generated the actual training data.



(Variational) Autoencoder Kiss Melinda Fléra 15 / 27

Problem scenario

We have a dataset D = {x()}7_| consisting of n i.i.d samples from
some continuous or discrete variable x.

We assume the data was generated by a random process, involving
an unobserved continuous variable z.

© A value zU) is generated from some prior distribution p(z)

@ A value x/) is generated from some conditional distribution
p(x | 2).

We aim to maximize the probability of each x(/) in the training set.
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We are interested in a general algorithm, which works in the case of

@ |Intractability: the marginal likelihood:

p(x) = [ plx | 2)plz)cz
and the posterior density:

p(z| x) = 222

are both intractable,

© A large dataset: we have so much data that sampling-based
solutions would be too slow.

N
Z x|2)
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The prior and the likelihood

We assume that samples of z can be drawn from a simple
distribution, i.e N/(0, /).

Also, we assume that the likelihood is from a parametric family
with parameters 6.

po(x|2) = N(x|f(z,0),0% - 1),
so it is Gaussian with mean f(z, ) and covariance o2 - /.

We want to optimize the ¢ parameters, so the logarithm of the
marginal likelihood will be maximal:
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We could compute p(x(7)) approximately, by sampling a lot of z
values, z;, .. ., 2, then compute 1/0 p(x\)|z), but usually the /

has to be very large.

In practice, for most z, the probability py(x(") | z) will be almost

zero, so they contribute nothing to py(x()).

The key idea behind the variational autoencoder is that we would
like to sample values of z that are likely to have produced x(/).

So we want to infer the characteristics of z, but we can only see
the x(1).

We cannot use the posterior py(z | x(/)) because is intractable, so
we will approximate it with a new distribution, g4(z | x(/)).
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pixl2) j | atz

We'd like to use our
observations to
understand the hidden
variable.

Kiss Melinda Fléra 19 / 27

i

Latent space

representation.
Neural network Neural network
mapping x to z. mapping z to x.

If the space of z values that are likely under g, is much smaller
than those likely under p(z), then we can compute
Eqy(z1xi)(log po(xU) | 2)) relatively easily.

We will relate qu,)(z|x,-)(|og p(;(x(i) | 7)) and pg(x(i)).

i
N
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We compute the Kullback-Leibler divergence between py(z | x(1))
and g (z|x()):

20 / 27

Dii(qs(2x )| po(21x7)) = E,, (10 (l0g a6 (2|x"))—log py(z|x()) =
Applying Bayes rule to py(z | x()):

= Eg, (o< (l0g a5(2|x")) — log py(x7|2) — log p(z)) + log ps(x"")
After rearranging:

log po(x") — Di(ap(zIx)lpo(z1x")) =
Eq,(z1x) (log po(x)|z) + log p(z) — log q¢(z]x(i)))

[m]

=
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Variational lower bound

= Eq (21x) log po(x|2) — Dic (a4 (2|x D) p(2)).

We call the right hand side the variational lower bound:

£(0, ¢, x) = Ey, (;1x00) log po(xV]2) = Dri(95(2[x D) [|p(2))-

1)

This is indeed a lower bound for log py(x(")), because the
KL-divergence is always nonnegative.

We want to maximize log py(x()), so we need to optimize the lower
bound with respect to both parameters, ¢ and ¢.

We want to perform stochastic gradient descent on the right hand
side.



Only reconstruction loss Only KL divergence Combination

DA
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The usual choice for g4(z|x() is N'(z | py(x1)), X (x()), where
[ty and X4 are arbitrary, deterministic functions that can be learned
from data.

Now the KL-divergence on the right hand side is between two
multivariate Gaussian distributions, which can be computed in
closed form:

Dir(N (1o, Zo) IV (11, £1)) =

- 1 . — det ¥4
=5 (tl(zl 20) + (11 — po) X1 (p1 — po) — k + log (det Zo)>7

where k is the dimensionality of the distribution.
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In our case:

Dit (N (u(x 1), 2(x)) [N (0, 1)) =

— %(tr(z(x(i))) + (/L(X(i))T(/L(X(i)) — k + log det(Z(x(i)))

We could use sampling to estimate the other term on the right
hand side, but instead as is standard in stochastic gradient descent
we take one sample of z and treat py(x(") | z) for that z as an
approximation of Eq,(zx) log po(xt) | 2).

So we compute the gradient of

log py(x\") | z) = Diw(ae(z | x| 1p(2)),

and average it over arbitrarily many samples of z.
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Reparametrization trick

The problem with he last equation is that Eq,(z1x) 108 pg(x(i) | 2)
depends on the parameters ¢ also, but here the dependency has
disappeared.

We need to backpropagate the error through a layer that samples z
from g4(z | x), which is a non-continuous operation and has no
gradient.

Solution: we move the sampling to an input layer.

Given 1(x() and ¥ (x()), tha mean and covariance of g,(z | x{1),
we can sample from A/(;(x()), = (x())) by first sampling
£~ N(0,1), and then computing z = (x)) + /2 (x()) . ¢,
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So the equation becomes:

E.no.) ( log py(x) | z

(x4 =12 (x0) . g)—
~Dra(ao(z | xXD)l|po(2)))

decoder model

decoder model
. | !
Deterministic node
°~q(z|x) [cesarameterizaion 3 0 Z=ptoOe
/) LN
606 oS00
I I
encoder model

encoder model

Random node

26 / 27
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Testing
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