
(Variational) Autoencoder Kiss Melinda Flóra 1 / 27

(Variational) Autoencoder

Kiss Melinda Flóra

(Variational) Autoencoder Kiss Melinda Flóra 2 / 27

Autoencoder

Goal: reconstruct the input

Encoder:

Maps the input to the latent space
h = f (x)

Decoder:

Reconstruct the input from the latent space representation
r = g(h)

We want x̂ = g(f (x)) to be close to x .

(Variational) Autoencoder Kiss Melinda Flóra 3 / 27

Autoencoder

Autoencoding is a data compression algorithm where the
compression and decompression functions are

data-specific
lossy
learned automatically from examples

Not good for data compression:

data-specific
Very hard to train one, which does a better job than JPEG

(Variational) Autoencoder Kiss Melinda Flóra 4 / 27

Principal component analysis vs autoencoder

(Variational) Autoencoder Kiss Melinda Flóra 5 / 27

Constraints

We hope we can discover dependencies in the data.

We need to constrain the model to prevent memorizing.

(Variational) Autoencoder Kiss Melinda Flóra 6 / 27

Autoencoder

An ideal autoencoder is

Sensitive enough to the inputs to acccurately build a
reconstruction
Insensitive enough so the model doesn’t simply memorize the
data.

In many cases the loss function consists of two parts:

Reconstruction loss L(x , g(f (x)))

Regularizer, which discourages memorizing.

(Variational) Autoencoder Kiss Melinda Flóra 7 / 27

Undercomplete autoencoder

Easiest way is to constrain the number of nodes in the hidden
layers.

Limits the amount of information that can flow through the
network.

No regularizer, only reconstruction loss.

(Variational) Autoencoder Kiss Melinda Flóra 8 / 27

Sparse autoencoder

Regularized autoencoder: we have constraints, but not on the
dimensions.

Only a few nodes are activated.

(Variational) Autoencoder Kiss Melinda Flóra 9 / 27

Sparse autoencoder

Loss function: Reconstruction loss + sparsity constraint

Two types:

L1 regularization

sparsity constraint = λ
∑

i |a
(h)
i |

λ is a hyperprameter, a(h)i is the activation of the ith node in the
hidden layer.

Kullback-Leibler divergence

(Variational) Autoencoder Kiss Melinda Flóra 10 / 27

Kullback-Leibler divergence

Measures distance between two distributions

DKL(p‖q) =

∫
p(x)·log

p(x)

q(x)
dx =

∫
p(x)·

(
log p(x)−log q(x)

)
dx

DKL(p‖q) = Ex∼p log
p(x)

q(x)

Not symmetric
Triangle inequality doesn’t hold
nonegative

(Variational) Autoencoder Kiss Melinda Flóra 11 / 27

Sparse autoencoder

ρ: sparsity parameter: small number

For all nodes in the hidden layer

ρ̂j =
1
m

m∑
i=1

(a
(h)
j (x (i)))

Sparsity constraint:
∑sh

j=1 DKL(ρ‖ρ̂j), Kullback-Leibler divergence
berween two Bernoulli distributions

DKL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

Loss function:

L(x , x̂) + β

sh∑
j=1

DKL(ρ‖ρ̂j),

(Variational) Autoencoder Kiss Melinda Flóra 12 / 27

Denoising autoencoder

(Variational) Autoencoder Kiss Melinda Flóra 13 / 27

Training an autoencoder on the
MNIST dataset, and visualizing
the encodings from a 2D latent
space reveals the formation of
distinct clusters. This makes
sense, as distinct encodings for
each image type makes it far
easier for the decoder to decode
them.

(Variational) Autoencoder Kiss Melinda Flóra 14 / 27

Variational autoencoder

Generative model:

Goal: approximate the underlying p∗(x) distribution of the training
set.

Want to generate new samples, similar to the training set.

Latent variable model:

Learn a low-dimensional latent representation

We assume it generated the actual training data.

(Variational) Autoencoder Kiss Melinda Flóra 15 / 27

Problem scenario

We have a dataset D = {x(i)}ni=1 consisting of n i.i.d samples from
some continuous or discrete variable x .

We assume the data was generated by a random process, involving
an unobserved continuous variable z.

1 A value z(i) is generated from some prior distribution p(z)

2 A value x(i) is generated from some conditional distribution
p(x | z).

p(x) =

∫
p(x |z)p(z) dz

We aim to maximize the probability of each x (i) in the training set.

(Variational) Autoencoder Kiss Melinda Flóra 16 / 27

We are interested in a general algorithm, which works in the case of

1 Intractability: the marginal likelihood:

p(x) =

∫
p(x | z)p(z)dz

and the posterior density:

p(z | x) =
p(x , z)

p(x)

are both intractable,

2 A large dataset: we have so much data that sampling-based
solutions would be too slow.

p(x) ≈ 1
N

N∑
i=1

p(x |zi)

(Variational) Autoencoder Kiss Melinda Flóra 17 / 27

The prior and the likelihood

We assume that samples of z can be drawn from a simple
distribution, i.e N (0, I).

Also, we assume that the likelihood is from a parametric family
with parameters θ.

pθ(x |z) = N (x |f (z , θ), σ2 · I),

so it is Gaussian with mean f (z , θ) and covariance σ2 · I .

We want to optimize the θ parameters, so the logarithm of the
marginal likelihood will be maximal:

log pθ(x (1), . . . , x (n)) =
n∑

i=1

log pθ(x (i)).

(Variational) Autoencoder Kiss Melinda Flóra 18 / 27

We could compute p(x (i)) approximately, by sampling a lot of z
values, z1, . . . , z`, then compute 1/`

∑
j p(x (i)|zj), but usually the `

has to be very large.

In practice, for most z , the probability pθ(x (i) | z) will be almost
zero, so they contribute nothing to pθ(x (i)).

The key idea behind the variational autoencoder is that we would
like to sample values of z that are likely to have produced x (i).

So we want to infer the characteristics of z , but we can only see
the x (i).

We cannot use the posterior pθ(z | x (i)) because is intractable, so
we will approximate it with a new distribution, qφ(z | x (i)).

(Variational) Autoencoder Kiss Melinda Flóra 19 / 27

If the space of z values that are likely under qφ is much smaller
than those likely under p(z), then we can compute
Eqφ(z|x i)(log pθ(x (i) | z)) relatively easily.

We will relate Eqφ(z|x i)(log pθ(x (i) | z)) and pθ(x (i)).

(Variational) Autoencoder Kiss Melinda Flóra 20 / 27

We compute the Kullback-Leibler divergence between pθ(z | x (i))
and qφ(z |x (i)):

DKL(qφ(z |x (i))‖pθ(z |x (i))) = Eqφ(z|x(i))(log qφ(z |x (i))−log pθ(z |x (i))) =

Applying Bayes rule to pθ(z | x (i)):

= Eqφ(z|x(i))(log qφ(z |x (i))− log pθ(x (i)|z)− log p(z)) + log pθ(x (i))

After rearranging:

log pθ(x (i))− DKL(qφ(z |x (i))‖pθ(z |x (i))) =

= Eqφ(z|x(i))
(

log pθ(x (i)|z) + log p(z)− log qφ(z |x (i))
)

=

(Variational) Autoencoder Kiss Melinda Flóra 21 / 27

Variational lower bound

= Eqφ(z|x(i)) log pθ(x (i)|z)− DKL(qφ(z |x (i))‖p(z)).

We call the right hand side the variational lower bound:

L(θ, φ, x (i)) = Eqφ(z|x(i)) log pθ(x (i)|z)− DKL(qφ(z |x (i))‖p(z)).

This is indeed a lower bound for log pθ(x (i)), because the
KL-divergence is always nonnegative.

We want to maximize log pθ(x (i)), so we need to optimize the lower
bound with respect to both parameters, θ and φ.

We want to perform stochastic gradient descent on the right hand
side.

(Variational) Autoencoder Kiss Melinda Flóra 22 / 27

Latent space

(Variational) Autoencoder Kiss Melinda Flóra 23 / 27

The usual choice for qφ(z |x (i)) is N (z | µφ(x (i)),Σφ(x (i)), where
µφ and Σφ are arbitrary, deterministic functions that can be learned
from data.

Now the KL-divergence on the right hand side is between two
multivariate Gaussian distributions, which can be computed in
closed form:

DKL(N (µ0,Σ0)‖N (µ1,Σ1)) =

=
1
2

(
tr(Σ−1

1 Σ0) + (µ1 − µ0)TΣ−1
1 (µ1 − µ0)− k + log

(det Σ1

det Σ0

))
,

where k is the dimensionality of the distribution.

(Variational) Autoencoder Kiss Melinda Flóra 24 / 27

In our case:

DKL(N (µ(x (i)),Σ(x (i)))‖N (0, I)) =

=
1
2

(
tr(Σ(x (i))) + (µ(x (i))T (µ(x (i))− k + log det(Σ(x (i)))

We could use sampling to estimate the other term on the right
hand side, but instead as is standard in stochastic gradient descent
we take one sample of z and treat pθ(x (i) | z) for that z as an
approximation of Eqφ(z|x(i)) log pθ(x (i) | z).

So we compute the gradient of

log pθ(x (i) | z)− DKL(qφ(z | x (i))‖p(z)),

and average it over arbitrarily many samples of z .

(Variational) Autoencoder Kiss Melinda Flóra 25 / 27

Reparametrization trick

The problem with he last equation is that Eqφ(z|x(i)) log pθ(x (i) | z)

depends on the parameters φ also, but here the dependency has
disappeared.

We need to backpropagate the error through a layer that samples z
from qφ(z | x), which is a non-continuous operation and has no
gradient.

Solution: we move the sampling to an input layer.

Given µ(x (i)) and Σ(x (i)), tha mean and covariance of qφ(z | x (i)),
we can sample from N (µ(x (i)),Σ(x (i))) by first sampling
ε ∼ N (0, I), and then computing z = µ(x (i)) + Σ1/2(x (i)) · ε.

(Variational) Autoencoder Kiss Melinda Flóra 26 / 27

So the equation becomes:

Eε∼N (0,I)

(
log pθ(x (i) | z = µ(x (i)) + Σ1/2(x (i)) · ε)−

−DKL(qφ(z | x (i))‖pθ(z))
)

(Variational) Autoencoder Kiss Melinda Flóra 27 / 27

Testing

