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Background



Regularization

Regularization: Any change to the model that makes it generalize

better to unseen data.

• L2 weight decay (Plaut et al 1986)

• dropout (Srivastava et al 2014)

• label smoothing (Szegedy et al 2015)

• entropy regularization (Pereyra et al 2017)

• ...and hundreds of others
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Data loss

Unregularized training: we are looking for optimal network

parameters

argmin
Θ

L(fΘ(x), y)

where

• Θ are the network parameters,

• fΘ(x) is the output of the network on input x ,

• y is the expected output on input x .

• L(ŷ , y) is the loss function that quantifies how much we like

the network’s output, the smaller the better.

• (x , y) ∼ (X ,Y ) is sampled from our training data.
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Regularization term

Now we want to regularize, that is, improve generalization to

unseen data. One standard class of methods works by adding a

regularization term to the data loss that penalizes network settings

that we want to avoid:

argmin
Θ

[L(fΘ(x), y) + λLreg (Θ)]
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Weight decay

The archetypal regularization term, from 1986 but still widely used,

is the L2 weight decay :

Lreg (Θ) = ‖Θ‖2
2

It punishes large network weights (strong neural connections),

which helps to avoid memorizing superficial correlations.

Remark: For a single dense linear layer it is equal to the squared

Frobenius norm of the weight matrix.
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Method



Smoothness prior

• The core idea behind our project is to enforce a smoothness

property of the neural network via a well-chosen regularization

term.

• Tiny perturbations of the network input should not lead to

large changes in network output.
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Smoothness prior

• We formalize smoothness in several ways, leading to our

Spectral Regularizer, that approximates the Frobenius norm of

the Jacobian of the input-output mapping at the training

examples:

LSpectReg (x ,Θ) = ‖ ∂
∂x

fΘ(x)‖2
F = Eε∼N (0, Im) [‖εT ∂

∂x
fΘ(x)‖2

2]

• and the DataGrad regularizer that penalizes large changes of

the loss function at the training examples:

LDataGrad(x , y ,Θ) = ‖ ∂
∂x

L(fΘ(x), y)‖2
2
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DataGrad

For lack of time we will only talk about DataGrad in this talk. To

the best of our knowledge, the Spectral Regularizer is our

contribution, but DataGrad has a more complex background story.
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DataGrad

LDataGrad(x , y ,Θ) = ‖ ∂
∂x

L(fΘ(x), y)‖2
2

• The DataGrad regularization term was introduced by (Ororbia

et al 2016).

• Intuitively, DataGrad penalizes large changes in the

performance of the classifier at the training examples.

• Interestingly, the authors do not analyze or even implement

this method, arguably making this a case of flag-planting.

• Instead, they work with an finite-difference approximation,

based on adversarial sampling, and demonstrate that it can

make models more robust to adversarial sampling.
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DataGrad

In relation to (Ororbia et al 2016), our contributions are twofold:

• We implement and investigate the symbolic, rather than

adversarial sampling based version of DataGrad.

• We present detailed empirical evidence that the symbolic

DataGrad method can improve classification accuracy,

especially when the size of the training dataset is small.
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Wait, this is not supposed to work!

LDataGrad(x , y ,Θ) = ‖ ∂
∂x

L(fΘ(x), y)‖2
2

• Did I say that the gradient norm is only controlled at the

training examples?

• Yes. (And standard tricks like controlling it at noise-perturbed

training examples did not help.)

10



Wait, this is not supposed to work!
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Wait, this is not supposed to work!
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Wait, this is not supposed to work!
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...But it does work.

• We are still in the process of understanding the phenomenon

better,

• ...but apparently the low-dimensional intuition of the previous

slides does not generalize to complex high-dimensional loss

surfaces,

• ...especially not when our method of discovery of these

surfaces is the gradient descent.

• Gradient descent does not converge to step function-like

solutions such as seen on the previous slide.

• It is probably better to think of gradient regularization as

“smarter weight decay“. It influences the gradient norm at

points far away from the training dataset.
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Symbolic differentiation



An implementation issue

• How do we calculate the gradient norms required for our

Symbolic DataGrad and SpectReg regularizations?
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Symbolic differentiation

Modern neural networks are big and complex beasts:

(Szegedy et al 2016) 16



Symbolic differentiation

• ...but at the end of the day they are still just formulae (or

more precisely, straight line programs).

• They are built up from a small class of operations such as

matrix-vector multiplication, vector addition, and elementwise

maximum of vectors.

• Modern tensor software libraries such as Tensorflow and

PyTorch are designed to manipulate such formulae

symbolically. We can build the formula for ∂
∂x f (x) with a

single operation:

tf.gradients(f, [x])
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Symbolic differentiation

datagrad_loss = tf.reduce_sum(

tf.square(tf.gradients(loss, [x])[0]), axis=1)

gradients = tf.gradients(

logits * tf.random_normal((OUTPUT_DIM,)), [x])[0]

spectreg_loss = tf.reduce_sum(

tf.square(gradients), axis=1)
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Experimental Results



MNIST – training on 2000 randomly chosen samples,

interaction with weight decay

Weight decay NoGR SpectReg DataGrad

LeNet

no WD 97.15 97.55 (λ = 0.03) 97.93 (λ = 20)

WD=0.0005 97.32 97.67 (λ = 0.05) 97.93 (λ = 50)

Dropout is on in all of these runs, dropout rate 0.5.
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Gradient regularization’s interaction with DO and BN

NoGR SpectReg DataGrad

LeNet unreg 96.99 97.59 97.56

Lenet BatchNorm 96.89 96.94 96.89

Lenet Dropout 97.29 97.67 97.93

Comparison of dropout, batch normalization and two variants of

gradient regularization: symbolic DataGrad and SpectReg. Train

size was set to 2000. Each hyperparameter was tuned individually

on a development set.
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Comparison of various regularization methods on MNIST
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DataGrad learning curve on full CIFAR-10
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Improvements even on full CIFAR-10 with data augmentation. 22



Generative models



Gradient regularization in generative models

Unfortunately I do not

have the time to talk

about gradient

regularization in

generative models, but

aren’t these artificial

bedrooms nice?
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Summary



Summary

• We propose the symbolic DataGrad and SpectReg

regularization methods,

• present them in a more general framework of Jacobian-based

regularizers,

• and experimentally demonstrate that they very consistently

improve test accuracy on variations of standard low-resolution

image recognition benchmarks,

• especially when the size of the training set is small.

24


	Background
	Method
	Symbolic differentiation
	Experimental Results
	Generative models
	Summary

