ProGAN / StyleGAN



all slides shamelessly and mindlessly stolen from
https://towardsdatascience.com/progan-how-nvidia-generated-
iImages-of-unprecedented-quality-51c98ec2cbd?2
and
https://towardsdatascience.com/explained-a-style-based-generator-

architecture-for-gans-generating-and-tuning-realistic-6¢cb2be0f431,
and the original papers https://arxiv.org/abs/1710.10196
and https://arxiv.org/abs/1812.04948.
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Why just StyleGAN?

e The talk presents a dozen or so engineering tricks
employed by the creators of StyleGAN (Karras et al).

e |n themselves, probably not too many of these tricks
would deserve extra attention from us when looking at the
broader picture of deep learning methods.

e But together they give a diverse cross-section of useful
techniques that we can employ when working with image
data, and especially when generating image data.
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Pixel Normalization

Instead of using batch normalization, as is commonly done, the authors used
pixel normalization. This “pixelnorm” layer has no trainable weights. It
normalizes the feature vector in each pixel to unit length, and is applied after
the convolutional layers in the generator. This is done to prevent signal

magnitudes from spiraling out of control during training.
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The values of each pixel (x, y) across C channels are normalized to a fixed length. Here, a is the input tensor, b is
the output tensor, and € is a small value to prevent dividing by zero.




Fade In
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Discriminator

X = input image
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WGAN-GP Loss

Lossg = —D(z')
GP = (|vD(az’ + (1 = a)z))|ly — 1)°
Lossp = —D(x) + D(z') + A« GP



StyleGAN
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Not just faces






https://colab.research.google.com/drive/1xR-
SITNnWwEG6wZ5viUy45¢c23auObFKLSE#scrollTo=KMDri2w3GC t



https://colab.research.google.com/drive/1xR-Sj1nWwE6wZ5vIUy45c23auObFKLSE#scrollTo=KMDrI2w3GC_t
https://colab.research.google.com/drive/1xR-Sj1nWwE6wZ5vIUy45c23auObFKLSE#scrollTo=KMDrI2w3GC_t

