ProGAN / StyleGAN

all slides shamelessly and mindlessly stolen from
https://towardsdatascience.com/progan-how-nvidia-generated-
iImages-of-unprecedented-quality-51c98ec2cbd?2
and
https://towardsdatascience.com/explained-a-style-based-generator-

architecture-for-gans-generating-and-tuning-realistic-6¢cb2be0f431,
and the original papers https://arxiv.org/abs/1710.10196
and https://arxiv.org/abs/1812.04948.

https://towardsdatascience.com/progan-how-nvidia-generated-images-of-unprecedented-quality-51c98ec2cbd2
https://towardsdatascience.com/progan-how-nvidia-generated-images-of-unprecedented-quality-51c98ec2cbd2
https://towardsdatascience.com/explained-a-style-based-generator-architecture-for-gans-generating-and-tuning-realistic-6cb2be0f431
https://towardsdatascience.com/explained-a-style-based-generator-architecture-for-gans-generating-and-tuning-realistic-6cb2be0f431
https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1812.04948

Why just StyleGAN?

e The talk presents a dozen or so engineering tricks
employed by the creators of StyleGAN (Karras et al).

e |n themselves, probably not too many of these tricks
would deserve extra attention from us when looking at the
broader picture of deep learning methods.

e But together they give a diverse cross-section of useful
techniques that we can employ when working with image
data, and especially when generating image data.

Negative cherry-
picking

Z

Random code Generator neural network

Discriminator neural network

G X

Real sample

X

Generated sample

—> D D

D(x') D(x) | 0SS

Pr(real | fake) Pr(real | real)

7

&~ N

4x4
X' X
Training time: 0 days
4x4 resolution
Zz = random code
Generator
e X = real image
L < Discriminator
57 x' = generated image

The pdf is not animated, see the animation here.

https://cdn-images-1.medium.com/max/1600/1*tUhgr3m54Qc80GU2BkaOiQ.gif

Generator |
H||||9|||||9“‘”_..9 (|1
4x4
8x8 | o
16x16 | B

X
U
k/2 x k/2 @ X!
W Upscale 2x kxk X

No learnable weights, uses nearest neighbor algorithm
B Dense Layer

Used in input layer only (1 0()
~ Convolutional Layer

Filters are 3x3, stride = 1, padding = 'same’ 9

(] Leaky ReLU

Activation function
z = random code

~ Pixelnorm

| .
An alternative to batch normalization A= generated image

W To-RGB Layer a = extent to which last layer is "faded in"

A 1x1 convolutional layer that outputs 3 channels

Pixel Normalization

Instead of using batch normalization, as is commonly done, the authors used
pixel normalization. This “pixelnorm” layer has no trainable weights. It
normalizes the feature vector in each pixel to unit length, and is applied after
the convolutional layers in the generator. This is done to prevent signal

magnitudes from spiraling out of control during training.

L,Y

ll/
JET it

The values of each pixel (x, y) across C channels are normalized to a fixed length. Here, a is the input tensor, b is
the output tensor, and € is a small value to prevent dividing by zero.

Fade In

Generator |
H||||9|||||9“‘”_..9 (|1
4x4
8x8 | o
16x16 | B

X
U
k/2 x k/2 @ X!
W Upscale 2x kxk X

No learnable weights, uses nearest neighbor algorithm
B Dense Layer

Used in input layer only (1 0()
~ Convolutional Layer

Filters are 3x3, stride = 1, padding = 'same’ 9

(] Leaky ReLU

Activation function
z = random code

~ Pixelnorm

| .
An alternative to batch normalization A= generated image

W To-RGB Layer a = extent to which last layer is "faded in"

A 1x1 convolutional layer that outputs 3 channels

Discriminator

X = input image

o o = controls "fading in" of top layer
A4
Oks — = - e" Ileo(x)
/N
4x4
8x8
16x16
k/2 x k/2
(1-x)
@ Dense Layer ™ From-RGB Layer
Used for output layers only A 1x1 convolutional layer
@ Minibatch Standard Deviation Layer ! Downscale 2x
No learnable parameters Uses average pooling, no learned parameters
[JLeaky ReLU ~ Convolutional Layer
Activation function Filters are 3x3, stride = 1, padding = 'same’

Minibatch standard
deviation

WGAN-GP Loss

Lossg = —D(z')
GP = (|vD(az’ + (1 = a)z))|ly — 1)°
Lossp = —D(x) + D(z') + A« GP

StyleGAN

22.1N0S

destination

pardoo s9[A1s as1e0))

Source A

¢ 92IN0S WOoIJ SI[AIS ISIROD) ¢ 92IN0S WOIJ SA[AIS 2_252 g woIj aur

Random vector
(Latent Code)

Normalize

Mapping
Network

FC

FC

FC

512X1

FC

FC

FC

FC

FC

Synthesis
Network

4x4

1024x1024

512X1

(a) Distribution of (b) Mapping from (¢) Mapping from
features in training set Z to features VV to features

Adaptive Instance
Normalization

Latent
Code

512X1

Normalize

— [T p— p— g— [—

3| B[13131818 SHS| [

512X1

Synthesis
Network

4x4

v

Upsample

[Conv3x3 |

4
v
,
‘
v
’
Ad&'N #
.
’

Y

16%16
v "

1024x1024

n channels

ré X;

W 1x512 |

Indino
AUOD

l l

A[Learned affine] " Normalize channel

transformation _(by its mean and variance)
| 5
2xn . ‘ \ P
| Ysii , Scale and bias
Yb,i _ channel
' x; — p(x;)
AdaIN(x;,y) = Y. Vb.is

Latent
Code (* Normalize
v
FC
=G
| EE
S e
wn |
FC
FG
FG
e
w v

Synthesis

Noise

512X1

Network
~A—»> 4x4 <€ B I(
Upsample B
—A—> Learned per-
channel scale
[Ad?IN |
Conv 3x3
- A—> @4 B <
AdalN
8x8
Y
A—> 1024x1024 |« B |«

Random vector
(Latent Code)

Generator

512X1

[\N:mnlin
Mapping

lnetwork f A style ASIN
1

Synthesis network g

Const 4x4x512

" B

Noise

FC Coova3 1| | = [€ - mmmmmmmmmmms s s sl Training---------
= AR Ad:lN .
F.C 4x4
FC l
58 ‘ lee ,
23 Conv 3x3 . ProGAN
= e B Discriminator
39 A5 AdaIN
||
Conv 3x3
A AdaIN - |
l 8x§ N p
% | Loss
<
N
! . |
1024x1024 R -
Real Sample

—>» Downscaling

N

(e.g. WGAN-GP)

>

Truncation trick in W

Feature
disentanglement

Not just faces

https://colab.research.google.com/drive/1xR-
SITNnWwEG6wZ5viUy45¢c23auObFKLSE#scrollTo=KMDri2w3GC t

https://colab.research.google.com/drive/1xR-Sj1nWwE6wZ5vIUy45c23auObFKLSE#scrollTo=KMDrI2w3GC_t
https://colab.research.google.com/drive/1xR-Sj1nWwE6wZ5vIUy45c23auObFKLSE#scrollTo=KMDrI2w3GC_t

