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Chapter 1

Introduction

The accurate description of different quantum phenomena is a key issue in their potential
use in modern IT-technologies, for example communication, security, or quantum comput-
ers. The parameter estimation of quantum channels, which is commonly called quantum
process tomography [7], plays a major role in quantum information processing.

In quantum mechanics, both dynamical changes and communication is treated using
quantum channels. These are nothing else but trace preserving completely positive map-
pings E which transform the input state ρ given on the input of the channel to the output
state E(ρ) appearing on the other side. It is a reasonable assumption that the channel
belongs to a channel class, i.e., for a fixed input state the output state belongs to the
parametric family {Eθ(ρ)}θ∈Θ, where Θ denotes the parameter space. Thus, the chan-
nel estimation problem can be traced back to parameter estimation problem [10]. The
channel parameter estimation problem is also called process tomography in the literature.

Direct quantum process tomography is performed by sending known quantum systems
into the channel, and then estimating the output state. In quantum mechanics the mea-
surement has a probabilistic nature [13, 15], therefore many identical copies of the input
quantum system are needed, and an estimator is constructed by using statistical consid-
erations. For achieving efficient process tomography, experiment design is necessary that
consists of selecting the optimal input state, optimal measurement of the output state,
and an efficient estimator of the channel from the measured data.

The field of quantum process tomography is well-established, an exhaustive description
of possible tomography methods can be found in [11]. The Pauli channels - the subject
of this thesis - form a relatively wide family of quantum channels. The tomography of
Pauli channels has a huge literature, however, due to the level of difficulty of the topic,
papers mostly deal with special cases, e.g., with the optimal parameter estimation of a
depolarizing channel [17]. But there are some publications investigating the estimation
of multi-parameter channels [2, 20], and the multidimensional case also appears [8, 12].
There are also some experimental results concerning the optimal estimation of the Pauli-
channels [4, 5].

In contrast to the majority of the works in this area, we propose an extended problem
statement: we investigate qubit Pauli channels with unknown channel directions. Despite
of the novelty of the approach, there are a few papers that deal with optimally estimating
qubit Pauli channels including their channel directions. In [1] the problem was examined
using convex optimization methods, and a numerical method was provided for finding the
optimal input - measurement pairs. In [16] we examined the optimality of the estimation
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problem using purely statistical considerations to achieve analytical results. However,
analytical results could only be obtained for the case of known channel directions.

Therefore, the aim of this thesis is to give an analytical description of the optimal
estimation of qubit Pauli channels in the case of unknown channel directions, too.

We introduce the channel matrix that characterizes the Pauli channel, and give an
estimation method of the channel matrix. This estimation scheme uses three input qubits
and three von Neumann measurements for complete channel tomography. Computing the
Jordan-decomposition of the estimated channel matrix one gets the estimations of the
contraction parameteres and the angle parameters that describe the channel directions.
The efficiency of these estimations is measured here with three quantities: the mean
squared error of the estimated contraction parameters and angle parameters, and the
mean distance of the estimated and the real channel matrix are investigated.

The optimization of the different quantities needs different mathematical techniques.
The mean squared error of the estimated contraction parameters and the mean distance
of the estimated and the real channel matrix is minimized analytically. The mean squared
error of the estimated angle parameters has a comlex form, therefore it is optimized with
numerical methods in general. However, in an important special case this loss function
can also be minimized analytically.

The main result of this work is that we determined the optimal measurement config-
urations for quantum bit Pauli channels with respect to the most relevant loss functions.
For optimally estimating the contraction parameters and the channel matrix we should
have input qubits and measurements in the channel directions, however, for optimally
estimating the channel directions, we should use different tomography conditions: from
simulation investigations and analytical results in special cases we conjecture that us-
ing input and measurement directions that are complementary to the channel directions
would give a nearly optimal result.
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Chapter 2

Basic notions

In this chapter we give a brief description of the mathematical formalism of quantum
information theory and we get the hang of the quantum channel which is the object of
the tomography problem presented in this thesis. This chapter is based on the books [13]
and [15].

2.1 An owerview of the basics of quantum information
theory

2.1.1 Quantum states

Every quantum system has an associated complex, separable Hilbert space. A quantum
system is said to be finite dimensional (or simply finite) if the associated Hilbert space is
Cn with some n ∈ Z+.

The elements of the standard basis of Cn are often denoted by |0〉 , . . . , |n− 1〉 , and
the corresponding elements of the dual space are denoted by 〈0| , . . . , 〈n− 1| .

The states of finite quantum systems are described by density matrices. ρ ∈ Mn(C)
is a density matrix, if it satisfies the following conditions:

Tr(ρ) = 1 (2.1.1)

ρ ≥ 0. (2.1.2)

The state space of the n-level quantum system is denoted by S(Cn). The set of the self-
adjoint n× n matrices (denoted by Ms.a.

n (C)) is a real vector space of dimension n2, and
it is also a Hilbert space with the inner product 〈x, y〉 := Trx∗y.

It is a natural problem to characterize the quantum states. The most popular solution
of this problem is the Bloch paramertrization. Let us fix an orthogonal basis of Ms.a.

n (C)
containing the identity matrix: F = {F0 = I, F1, F2, . . . , Fn2−1}. One can expand the
ρ ∈ S(Cn) density matrix in this basis:

ρ =
1

n
(x0I + x1F1 + · · ·+ xn2−1Fn2−1) (x0, . . . , xn2−1 ∈ R). (2.1.3)

It follows from the condition (2.1.1) that x0 = 1. The (x1, . . . , xn2−1) ∈ Rn2−1 vector is
called the Bloch vector of the state ρ.
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In this thesis the most important quantum system is the quantum bit (or qubit). The
Hilbert space of the qubit system is H = C2, hence the states are described by 2 × 2
density matrices. The space of the 2 × 2 self-adjoint matrices is spanned by the Pauli
basis. If C ∈Ms.a.

2 (C), then

C =
1

2
(x0σ0 + x1σ1 + x2σ2 + x3σ3) , (2.1.4)

where

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are the Pauli matrices and x0, x1, x2, x3 ∈ R. It is easy to check that C is a density matrix
if and only if x0 = 1 and x2

1 + x2
2 + x2

3 ≤ 1.
Therefore by the Bloch parametrization, we can identify the state space with the closed

unit ball of the space R3.

2.1.2 Quantum measurements

In quantum mechanics, the measurement has probabilistic nature. The measurable quan-
tities, the observables are self-adjoint matrices, hence they have a spectral decomplosition.
If B ∈Ms.a.

n (C) then
B =

∑
j

λjPj, (2.1.5)

where the λj-s are the different eigenvalues of B and the Pj-s are the orthoprojections
onto the eigenspace of the eigenvalue λj. The possible outcomes of the measurement are
the eigenvalues of B : if the quantum system is in the state ρ, we measure the eigenvalue
λj with probability TrρPj.

The quantum measurement changes the state of the system. After measuring λj, the
state of the system can be described with the density matrix

ρj =
PjρPj

TrPjρPj
.

Let {Pj}j∈J be the spectral projections of a self-adjoint matrix. Then naturally

(∀j ∈ J) Pj ≥ 0 and
∑
j∈J

Pj = I. (2.1.6)

If a set of bounded operators {Pj}j∈J satisfies the conditions (2.1.6), then {Pj}j∈J is called
a positive operator valued measure (the usual abbreviation is POVM).

The POVM describes a quantum measurement the following way: the possible out-
comes are the elements of the POVM. IfM is an element of the POVM then the probability
of measuring M is TrρM, where ρ is the state of the quantum system. The two-element
POVMs form sn important special class of the POVMs. Every two-element POVM has
the form {M, I−M}, where 0 ≤M ≤ I. IfM is a projection then the POVM {M, I−M}
is called a von Neumann measurement.
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2.2 State transformations and quantum channels

2.2.1 State transformations

When our quantum system is not closed, the interaction with the environment causes
dynamical changes. Assume that the Hilbert space of our quantum system in Cn and the
initial state is ρ ∈Mn(C). Let the Hilbert space of the environment be Cm and assume that
the environment is in the state ρe. Before interaction the joint system has the statistical
operator ρe ⊗ ρ ∈Mm (Mn(C)) . The effect of the interaction is implemented by unitary
conjugation, the new density of the total system is U (ρe ⊗ ρ)U∗ where U ∈ Mm·n is a
unitary matrix.

The new statistical operator of the quantum system we are interested in is the reduced
density

ρ̃ = Tr1

(
U (ρe ⊗ ρ)U∗

)
(2.2.1)

where Tr1 is the partial trace with respect to the first component. The map E : ρ 7→
E(ρ) := ρ̃ is called state transformation.

Fortunately, there is a convenient characterization of the state transformations.

Theorem. Any state transformation E : Mn(C)→Mn(C); ρ 7→ E(ρ) has the form

E(ρ) =
m∑
k=1

EkρE
∗
k (2.2.2)

where the operators Ek ∈Mn(C) satisfy

m∑
k=1

E∗kEk = I. (2.2.3)

Conversely, all linear mappings of this form are state transformations.

The state transformations are defined on densities but they can be extended linearly
to the matrix algebra Mn(C). Note that every state transformation is identity-preserving.

2.2.2 Examples of quantum channels

In this subsection we present some concrete examples of quantum operations.

Example 1 (Depolarizing channel). The depolarizing channel describes a kind of quan-
tum noise. Imagine that we have the statistical operator ρ ∈Mn(C) and it is replaced by
the compeletely mixed state 1

n
I with probability p and it is left untouched with probability

1− p. The state of the quantum system after this noise is

E(ρ) = p
1

n
I + (1− p)ρ. (2.2.4)

Example 2 (Bit flip channel). The bit flip channel is the quantum analogue of the classical
bit flip that changes the value of a bit with some probability. The bit flip channel acts on
the state space of the quantum bit system. This channel is given by the equation

E(ρ) = E1ρE
∗
1 + E2ρE

∗
2 (2.2.5)
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where
E1 =

√
p

(
1 0
0 1

)
, E2 =

√
1− p

(
0 1
1 0

)
.

Example 3 (Phase flip channel). The mathematical description of the phase flip channel
is very similar to the previous example; the phase flip is given by the equation (2.2.5) with

E1 =
√
p

(
1 0
0 1

)
, E2 =

√
1− p

(
1 0
0 −1

)
.

All these state transformations belong to the family of Pauli channels.
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Chapter 3

Tomography of qubit Pauli channels

The Pauli channels form a wide and well-known family of the quantum channels in the
qubit case. Heuristically, the Pauli channel is a transformation of the state space that
contracts in some directions. The main part of this work is about the tomography of the
qubit Pauli channel, hence it seems to be useful to define it.

Definition 1 (Qubit Pauli channel). Let { 1√
2
I, v1, v2, v3} be an arbitrary orthonormal

basis of Ms.a.
2 (C). Let λ1, λ2, λ3 be real numbers satisfying the condition

1± λ3 ≥ |λ1 ± λ2|. (3.0.1)

The mapping

E : S(C2)→Ms.a.
2 (C); ρ =

1

2

(
I +

3∑
i=1

θivi

)
7→ E(ρ) =

1

2

(
I +

3∑
i=1

λiθivi

)
(3.0.2)

is called qubit Pauli channel. The {1
2

(I + tvi) : t ∈ R} ⊂Ms.a.
2 (C) affine subspaces (i ∈

{1, 2, 3}) are the channel directions, the λ1, λ2, λ3 numbers are the contraction parameters.

The above defined Pauli channel is obviously trace-preserving, and the complete posi-
tivity is guaranteed via condition (3.0.1) [14]. Hence Range(E) ⊂ S(C2) ⊂Ms.a.

2 (C). Note
that the condition (3.0.1) is symmetric in its three variables, and the inequality holds if
and only if (λ1, λ2, λ3) ∈ Conv ((1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)) ⊂ R3, where
Conv denotes the convex hull.

The effect of the Pauli channel gets more picturesque, if we consider the representing
Bloch vectors of the quantum states. In the qubit case, the Bloch parametrization is the

ρ : B
3 → S(C2); θ = (θ1, θ2, θ3) 7→ ρ(θ) =

1

2
(I + θ1σ1 + θ2σ2 + θ3σ3) (3.0.3)

map, where B
3 ⊂ R3 is the closed unit ball (that used to be called Bloch ball in this

context). In the following we introduce the channel matrix, that decribes the effect of the
Pauli channel in the Bloch ball modell of the state space, and we characterize the channel
matrices.

Definition 2 (Channel matrix). The A : B
3 → B

3 map is the channel matrix of the
Pauli channel E, if

E ◦ ρ = ρ ◦ A. (3.0.4)
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Lemma 1. Every Pauli channel has a unique channel matrix. The channel matrices are
linear transformations of R3, and every channel matrix is diagonal in an orthonormal
basis of R3.

Proof. The parametrization ρ is a bijection, therefore the equation (3.0.4) can be written
in the form

ρ−1 ◦ E ◦ ρ = A. (3.0.5)

This form shows the existence and the uniqueness of A.
{vj}3

j=1 is an orthonormal basis of the traceless subspace of Ms.a.
2 (C), hence with the

notations

σ =
1√
2

 σ1

σ2

σ3

 , v =

 v1

v2

v3

 (3.0.6)

one gets
σ = Rv (3.0.7)

with some R ∈ O(3,R) matrix
Using the notation rij = [R]ij one has

E(ρ(θ)) = E

(
1

2

(
I +

3∑
i=1

θiσi

))
= E

(
1

2

(
I +

3∑
i=1

θi

3∑
j=1

rijvj

))
=

= E

(
1

2

(
I +

3∑
j=1

(
3∑
i=1

θirij

)
vj

))
=

1

2

(
I +

3∑
j=1

λj

(
3∑
i=1

θirij

)
vj

)
=

=
1

2

(
I +

3∑
j=1

λj

(
3∑
i=1

θirij

)(
3∑

k=1

rkjσk

))
=

1

2

(
I +

3∑
k=1

(
3∑
i=1

(
3∑
j=1

λjrijrkj

)
θi

)
σk

)
.

(3.0.8)
Therefore (

(ρ−1 ◦ E ◦ ρ)(θ)
)
k

=
3∑
i=1

(
3∑
j=1

λjrijrkj

)
θi. (3.0.9)

(3.0.9) shows that A is a linear map, and its matrix elements are obtained as well:

[A]ki =
3∑
j=1

λjrijrkj =
3∑
j=1

[R]kjλj[R
T ]ji. (3.0.10)

Hence
A = RΛRT , (3.0.11)

where

Λ =

 λ1 0 0
0 λ2 0
0 0 λ3

 .
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Set E = {Diag (ε1, ε2, ε3) : εi ∈ {1,−1} ∀i ∈ {1, 2, 3}}. E is a subgroup of O(3,R)
that is isomorphic to (Z3

2,+). It is easy to see that for R1, R2 ∈ O(3,R)

R1Λ(λ1, λ2, λ3)RT
1 ≡ R2Λ(λ1, λ2, λ3)RT

2 (3.0.12)

if and only if R2 = R1E for some E ∈ E. Therefore, two orthogonal matrices determine
the same channel parametrization if and only if they are in the same left coset of E.

Hence, using a parametrization of O(3,R)/E and the result of Lemma 1, one can
parametrize the channel matrices the following way.

Lemma 2. Every channel matrix A has the form

A(λ1, λ2, λ3, φz, φy, φx) = RzRyRxΛR
−1
x R−1

y R−1
z , (3.0.13)

where

Rz(φz) =

 cosφz − sinφz 0
sinφz cosφz 0

0 0 1

 , Ry(φy) =

 cosφy 0 − sinφy
0 1 0

sinφz 0 cosφy

 ,

Rx(φx) =

 1 0 0
0 cosφx − sinφx
0 sinφx cosφx

 , Λ =

 λ1 0 0
0 λ2 0
0 0 λ3

 ,

0 ≤ φz, φy, φx < π, and φy = π
2
⇒ φz = 0, and the real numbers λ1 ≥ λ2 ≥ λ3 satisfy the

condition of positivity (3.0.1).

Note that this parametrization is surjective but not bijective. If some contraction
parameters are equal, the channel matrix gets independent of some angle parameters. We
will determine a parameter domain where the parametrization of the channel matrices is
bijective. This domain is described in (3.1.18).

3.1 A tomography scheme for qubit Pauli channels

3.1.1 The description of the tomography scheme

For complete channel tomography, we need three input states, and three differnt mea-
surements. Earlier investigations show that the input qubits should be pure states, and
their Bloch vectors should be orthogonal [1, 16].

Let θ1, θ2, θ3 be the Bloch vectors of the input states. The matrix [θ1, θ2, θ3] is orthog-
onal, hence it can be written in the form

[θ1, θ2, θ3] = Rz(ϑz)Ry(ϑy)Rx(ϑx), (3.1.1)

where Rz, Ry, Rx are the rotations defined in (3.0.13), and 0 ≤ ϑz, ϑy < π, 0 ≤ ϑx <
π
2
.

Therefore, the chosen input states are described by the ϑz, ϑy, ϑx angle parameters.
Now, we show that the von Neumann measurements can be parametrized in a similar

way.

Lemma 3. In the qubit case, the two-elemwnt POVM {M, I −M} is a non-trivial von
Neumann measurement if and only if M is a rank-one projection. A density matrix is a
rank-one projection if and only if its Bloch vector’s length equals one.
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Proof. The first part of the statement is obvious. On the other hand, M is a rank-one
projection⇔M = M∗ and M has the eigenvalues µ1 = 1, µ2 = 0⇔M = M∗, TrM = 1,
DetM = 0. It is easy to see that the last three conditions are satisfied by the densities
lying on the border of the Bloch ball.

Let {{Mi, I − Mi}}3
i=1 denote the von Neumann measurements, and let the corre-

sponding Bloch vectors be denoted by {mi}3
i=1. Earlier investigations show that the

measurement directions (i.e. the Bloch vectors of the measurements) should be orthogo-
nal as well [16]. Therefore the measurement directions m1,m2,m3 can be written in the
form

[m1,m2,m3] = Rz(τz)Ry(τy)Rx(τx) (3.1.2)

where 0 ≤ τz, τy < π, 0 ≤ τx <
π
2
.

3.1.2 The estimation of the output states and the channel matrix

To get information about the Pauli channel, one has to estimate the output qubits. For
every j ∈ {1, 2, 3}, we send 3N identical copies of the input state ρ

(
θj
)
into the Pauli

channel. Ater that, we perform the von Neumann measurement {Mi, I −Mi} N times in
the output state E

(
ρ
(
θj
))

(i ∈ {1, 2, 3}). N is an important parameter of the tomography
scheme, it is called the number of measurements. The following lemma declares a basic
property of the von Neumann measurements.

Lemma 4. If one performes the {M, I −M} von Neumann measurement in the state
ρ(θ), then

Prob(measuring M) =
1

2
(1 +m · θ) , (3.1.3)

where m = (m1,m2,m3) is the Bloch vector of M.

Proof.
Prob(measuring M) = Tr(ρ(θ)M) =

= Tr

(
1

2
(I + θ1σ1 + θ2σ2 + θ3σ3)

1

2
(I +m1σ1 +m2σ2 +m3σ3)

)
=

=
1

4
2 (1 +m · θ) =

1

2
(1 +m · θ) , (3.1.4)

because the Pauli matrices satisfy Tr(σiσj) = 2δij (i, j ∈ {0, 1, 2, 3}).

Let N+
ij denote the number of the events when Mi is measured in the state E

(
ρ
(
θj
))
,

and ξ
j
be the Bloch vector of E

(
ρ
(
θj
))
. Set

xij = mi · ξj, X = {xij}3
i,j=1. (3.1.5)

It follows from the previous lemma and from the independence of the different measure-
ments that

N+
ij = Binom

(
N,

1 + xij
2

)
. (3.1.6)
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The well-known properties of the binomial distribution show that

E
(
N+
ij

)
=
N

2
(1 + xij), Var

(
N+
ij

)
= N

1 + xij
2

(
1− 1 + xij

2

)
=
N

4
(1− x2

ij). (3.1.7)

Now, we can state that

Lemma 5. There exists an unbiased estimator of xij and its variance is O
(

1
N

)
.

Proof.

x̂ij :=
2

N
N+
ij − 1. (3.1.8)

Then

E (x̂ij) =
2

N

N

2
(1 + xij)− 1 = xij, Var (x̂ij) =

4

N2

N

4
(1− x2

ij) =
(1− x2

ij)

N
. (3.1.9)

Let us introduce the notations

M = [m1,m2,m3] , Θ = [θ1, θ2, θ3] , Ξ =
[
ξ

1
, ξ

2
, ξ

3

]
, X̂ = {x̂ij}3

i,j=1. (3.1.10)

By definition,
X = MTΞ, (3.1.11)

hence MX = Ξ, therefore we can estimate the Bloch vector of the output qubits:

Ξ̂ := MX̂. (3.1.12)

By the definition of the channel matrix A, the equation

Ξ = AΘ (3.1.13)

holds, hence let the estimator of the channel matrix be

Â := Ξ̂Θ−1 = MX̂Θ−1. (3.1.14)

3.1.3 The estimation of the channel parameters

To get the estimators of the channel parameters, one has to compute the inverse of the
channel parametrization described in Lemma 2, and apply it to the estimated channel
matrix Â.

Hence, we have to construct an extension of the inverse of the mapping

A : D →M3(R); (λ1, λ2, λ3, φz, φy, φx) 7→ A(λ1, λ2, λ3, φz, φy, φx) (3.1.15)

that is defined in (3.0.13). Here D ⊂ R6 is a proper subset of the parameter domain
determined in Lemma 2, where A is injective. We have to find a map

T : M3(R)→ R6; Â 7→ (λ̂1, λ̂2, λ̂3, φ̂z, φ̂y, φ̂x) (3.1.16)

such that
T ◦ A = IdD. (3.1.17)
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The domain of T should be M3(R), because the estimation Â is a random variable, its
range is wider than Range(A).

The construction of T is the following. Let us symmetrize the estimation of the
channel matrix Âs := 1

2

(
Â+ ÂT

)
. Âs is symmetric, hence it is diagonizable in an or-

thogonal basis. The Jordan decomposition of Âs is computable, because its characteristic
polynomial is qubic, hence the eigenvalues can be obtained by Cardano’s formula. By
simple linear algebraic methods, the eigenvectors are obtained as well. Therefore, let us
assume that Âs has the eigenvalues λ̂1 ≥ λ̂2 ≥ λ̂3 and the corresponding eigenvectors
are v1 = (v1

1, v
2
1, v

3
1),v2 = (v1

2, v
2
2, v

3
2),v3 = (v1

3, v
2
3, v

3
3). Without loss of generality we can

assume that v3
1 > 0 or v3

1 = 0 & v2
1 > 0 or v1

1 = 1, because if the above condition is not
satisfied, we may consider −v1.

The estimators of the contraction parameters are the λ̂1 ≥ λ̂2 ≥ λ̂3 eigenvalues of
Âs. The hard task is the estimation of the angle parameters. By the investigation of
the channel parametrization (3.0.13), one can see the picturesque meaning of the angle
parameters:

• φz is the polar angle of the eigenvector v1

• φy is the azimuth angle of the eigenvector v1

• φz is the angle between the eigenvector v2 and the intersection of the orthocomple-
ment subspace of v1 and the subspace spanned by the standard unit vectors e1 and
e2.

These quantities are well-defined if and only if λ̂1 > λ̂2 > λ̂3. But we can not assume in
general that λ̂1 > λ̂2 > λ̂3, hence we have to handle the following four opportunities.

1. In the general case λ̂1 > λ̂2 > λ̂3.

In the case v3
1 = 1 set φ̂y = π

2
, φ̂z = 0. (If the azimuth angle equals π

2
, the polar

angle can not be determined, hence our choice is 0.)

If v3
1 6= 1 and v2

1 = 0, set φ̂y = arccos v1
1 and φ̂z = 0, because if v1 lies in the plane

spanned by e1 and e3, but v1 6= e3, then the polar angle is zero, and the azimuth
angle can be calculated by the above simple formula.

If v2
1 6= 0, set y = sgn(v2

1)
√

(v1
1)2 + (v2

1)2, z :=
v11
y
and φ̂y := arccos y, φ̂z := arccos z.

We determined φ̂z and φ̂y, hence we can write an orthonormal basis of the orthogonal
subspace of v1 with the folowing property: the first basis vector is in the plane
spanned by e1 and e2:

s1 = (− sinφz, cosφz, 0)T , s2 = (− sinφy cosφz,− sinφy sinφz, cosφy)
T .

These two vectors are the second and the third column vectors of the matrix
Rz(φz)Ry(φy). Therefore v1, s1, s2 is an orthonormal basis. v2 and v1 are orthogo-
nal, hence v2 = 〈v2, s1〉 s1+〈v2, s2〉 s2. Let us introduce the notations q1 = 〈v2, s1〉
and q2 = 〈v2, s2〉 . Now, we can estimate the third angle: set x = sgn(q2)q1 if |q1| 6= 1
and x = 1 if |q1| = 1, and φ̂x := arccosx.

2. In the case λ̂1 > λ̂2 = λ̂3 the estimations φ̂y and φz can be determined as in the
generel case, and we choose φ̂x = 0. (If λ2 = λ3, then RxΛR

−1
x ≡ Λ.)
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3. In the case λ̂1 = λ̂2 > λ̂3 one can calculate the eigenvector v3.

If |v3
3| = 1, then v1 ∈ span(e1, e2), hence the azimuth angle is zero (φ̂y := 0).

span(e1, e2) is the eigensubspace of the eigenvalue λ̂1, hence the polar angle is
unspecified, our choice is φ̂z = 0. Obviously, φ̂x = 0 in this case.

If |v3
3| 6= 1, then there is a unique eigenvector v2 of the eigenvalue λ̂1 = λ̂2 such that

v3
2 = 0, v1

2 ≤ 0 and v1
2 = 0 ⇒ v2

2 = 1. The polar angle can be calculated from v2 :
φ̂z = arccos v2

2. The azimuth angle is the angle between v3 and e3: φ̂y = arccos v3
3,

and φ̂x = 0.

4. If λ1 = λ2 = λ3, then set φ̂x = φ̂y = φ̂z = 0.

Now we can determine the parameter domain, where the parametrization of the Pauli
channels is bijective:

D = {(λ1, λ2, λ3, φz, φy, φx) ∈ R6 : 1± λ3 ≥ |λ1 ± λ2|, λ1 ≥ λ2 ≥ λ3,

φz, φy, φx ∈ [0, π), φy =
π

2
⇒ φz = 0, λ1 = λ2 = λ3 ⇒ φz = φy = φx = 0,

λ1 = λ2 > λ3 ⇒ (φx = 0 és φy = 0⇒ φz = 0),

λ1 > λ2 = λ3 ⇒ φx = 0}. (3.1.18)

3.2 The accuracy of the parameter estimation
The efficiency of the channel tomography scheme described in the previous subsection
depends on the parameters of the Pauli channel, and it depends on the parameters of
the estimation scheme, as well. The input states and the maesurements are described
by the angle parameters ϑ = (ϑz, ϑy, ϑx) and τ = (τz, τy, τx) introduced in (3.1.1) and
(3.1.2). Hence, the estimation scheme is determined by the parameters ϑ, τ and N
(N is the number of measurements). The Pauli channel is described by the parameters
λ = (λ1, λ2, λ3) and φ = (φz, φy, φx).

We measure the efficiency of the parameter estimation with the mean squared error of
the estimated contraction parameters and angle parameters, and with the mean squared
mean squared distance of the real and the estimated channel matrix.

Let us introduce the following quantities:

f1(λ, φ, τ , ϑ,N) = E
(

dist(φ̂z, φz)
2 + dist(φ̂y, φy)

2 + dist(φ̂x, φx)
2
)

(3.2.1)

f2(λ, φ, τ , ϑ,N) = E
(

(λ̂1 − λ1)2 + (λ̂2 − λ2)2 + (λ̂3 − λ3)2
)

(3.2.2)

f3(λ, φ, τ , ϑ,N) = E
(
||A(λ̂1, λ̂2, λ̂3, φ̂z, φ̂y, φ̂x)− A(λ1, λ2, λ3, φz, φy, φx)||2

)
, (3.2.3)

where || · || is the Hilbert-Schmidt norm. We identify the angle parameters that determine
the same Pauli channel, therefore we define the above distance function with the formula

dist(φ̂α, φα) := inf{|φ̂α − (φα + kπ)| : k ∈ Z}. (3.2.4)

It is easy to see that in fact

inf{|φ̂α − (φα + kπ)| : k ∈ Z} = min{|φ̂α − (φα + kπ)| : k ∈ {−1, 0, 1}}, (3.2.5)
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hence dist(φ̂α, φα) is easy to compute.
Our aim is to determine the most efficient estimation strategy for given Pauli channel

and for fixed number of measurements. That is, we have to minimize the

(τ , ϑ) 7→ fi(λ, φ, τ , ϑ,N) (i ∈ {1, 2, 3}) (3.2.6)

functions with given λ, φ,N values.

Proposition 6 (Rotational invariance). For any O ∈ M3(R) orthogonal matrix, the
estimation of the Pauli channel described by the channel matrix A using the input and
measurement settings Θ and M (see (3.1.1), (3.1.2)) is exactly as efficient as the estima-
tion of the Pauli channel described by OAO−1 with the input and measurement settings
OΘ and OM .

Therefore, it is enough to investigate Pauli channels with channel parameters φz =
φy = φx = 0.

3.2.1 General computations

First we prove some basic statements that are useful to solve the above declared opti-
mization problems.

Sometimes, it is convenient to expand matrices in the basis of the matrix units, and
consider the representing vectors instead of the matrices themselves. The following lemma
formulates a basic rule that can be proved by direct computations.

Lemma 7. Set B, J ∈ Mn(R), then LBRJ : Mn(R) → Mn(R); X 7→ BXJ is a linear
map, furthermore, the matrix of LBRJ is B ⊗ JT ∈Mn2(R). That is, if

x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn ∈ R

are defined by the equation X =
∑n

i,j=1 xijEij (where {Eij}ni,j=1 is the basis of the matrix
units), and

y11, . . . , y1n, y21, . . . , y2n, . . . , yn1, . . . , ynn ∈ R
are given by the equation BXJ =

∑n
i,j=1 yijEij, then

(y11, . . . , y1n, y21, . . . , y2n, . . . , yn1, . . . , ynn)T =

= B ⊗ JT (x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn)T . (3.2.7)

The following lemma is often cited in the further proofs.

Lemma 8. The tensor product of orthogonal matrices is orthogonal as well, and the
Hadamart-square of an orthogonal matrix is bistochastic.

Proof. If O1, O2 ∈Mn(R) are orthogonal, then

(O1 ⊗O2) (O1 ⊗O2)T = (O1 ⊗O2)
(
OT

1 ⊗OT
2

)
= O1O

T
1 ⊗O2O

T
2 = In⊗ In = I2n. (3.2.8)

A similar computation shows that

(O1 ⊗O2)T (O1 ⊗O2) = I2n. (3.2.9)

Hence O1 ⊗O2 is orthogonal, therefore (among others) (O1 ⊗O2)−1 =
(
OT

1 ⊗OT
2

)
.

The bistochastic property of the Hadamart-square follows from the fact that every
column and row of an orthogonal matrix is a unit vector (in the Euclidean norm).
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Lemma 9 (Unbiasedness I). The estimation of the channel matrix is unbiased, that is
E(âij) = aij, where {âij}3

i,j=1 are the elements of the estimation Â defined in (3.1.14),
and {aij}3

i,j=1 are the elements of the channel matrix A(λ, φ).

Proof. (3.1.9) states that E(x̂ij) = xij. Because of Lemma 7 we can write (3.1.14) in the
following form:

Â = (R(τ)⊗R(ϑ)) X̂. (3.2.10)

(Now Â and X̂ denote the representing vectors.) The expected value is linear, hence

E(Â) = (R(τ)⊗R(ϑ))E(X̂) = (R(τ)⊗R(ϑ))X. (3.2.11)

On the other hand, using the representing vectors, by the definition of X, we can write

X =
(
R(τ)T ⊗R(ϑ)T

)
A. (3.2.12)(

R(τ)T ⊗R(ϑ)T
)−1

= R(τ)⊗R(ϑ), hence

A = (R(τ)⊗R(ϑ))X. (3.2.13)

(3.2.11) and (3.2.13) shows that the proof is complete.

If i 6= k or j 6= l, then x̂ij and x̂kl are independent random variables, because they are
determined by independent measurements. Hence the equation (3.2.10) shows that the âij
estimators are linear combinations of independent random variables, and the coefficients
depend only on τ and ϑ:

âk =
∑
l∈H

ckl (τ , ϑ) x̂l, (3.2.14)

where H = {11, 12, 13, 21, 22, 23, 31, 32, 33}, k ∈ H.

Lemma 10. Set ψ =
∑

k∈H dkâk (dk ∈ R). Then

Var (ψ) =
∑
l∈H

(∑
k∈H

dkckl (τ, ϑ)

)2
1− x2

l

N
. (3.2.15)

Proof. (3.2.14) shows that

ψ =
∑
k∈H

dkâk =
∑
k∈H

dk
∑
l∈H

ckl (τ, ϑ) x̂l =
∑
l∈H

(∑
k∈H

dkckl (τ, ϑ)

)
x̂l, (3.2.16)

and Var(x̂ij) = 1
N

(
1− x2

ij

)
(see (3.1.9)), hence the proof is complete.

3.2.2 Linearized estimators

It is difficult to handle the functions f1 and f2 defined in (3.2.1) anf (3.2.2), because
the estimators λ̂i and φ̂α are non-linear. These estimators are M3(R) → R functions
(the input is the estimated channel matrix), one can approximate them with their first-
order Taylor-polynomial. Let the base point of the Taylor-polynomial be the expected
value of the input. By Lemma 10, Var (âij) = O

(
1
N

)
, hence the distribution of the

random variable Â is concentrated on a small environment of E(Â), if N is large enough.
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Therefore, the linearized functions with the base point E(Â) approximate the non-linear
estimators well.

By Lemma 9, E(Â) = A, hence we consider the following linearizations of the estima-
tors λ̂1, λ̂2, λ̂3, φ̂z, φ̂y, φ̂x :

λ̃i := λ̂i(A) +
〈

gradλ̂i(A), Â− A
〉

(∀ i ∈ {1, 2, 3}), (3.2.17)

φ̃α := φ̂α(A) +
〈

gradφ̂α(A), Â− A
〉

(∀ α ∈ {z, y, x}). (3.2.18)

Now, we can define an approximation of the functions f1 and f2.

f̃1(λ, φ, τ , ϑ,N) := E
(

(φ̃z − φz)2 + (φ̃y − φy)2 + (φ̃x − φx)2
)
, (3.2.19)

f̃2(λ, φ, τ , ϑ,N) := E
(

(λ̃1 − λ1)2 + (λ̃2 − λ2)2 + (λ̃3 − λ3)2
)

(3.2.20)

Lemma 11 (Unbiasedness II). The linearized estimators λ̃i (i ∈ {1, 2, 3}) and φ̃α (α ∈
{z, y, x}) are unbiased.

Proof.

E(λ̃i) = E(λ̂i(A)) + E
(〈

gradλ̂i(A), Â− A
〉)

= λ̂i(A) +
〈

gradλ̂i(A), E(Â− A)
〉

=

= λ̂i(A) + 0 = λi. (3.2.21)

It was used that the estimation of the channel matrix is unbiased (see Lemma 9), and the
parameter estimation is the (left) inverse of the channel parametrization, hence

λ̂i
(
A(λ, φ)

)
= λi (i ∈ {1, 2, 3}). (3.2.22)

Similarly, φ̂α
(
A(λ, φ)

)
= φα, therefore

E(φ̃α) = E(φ̂α(A)) + E
(〈

gradφ̂α(A), Â− A
〉)

= φα (α ∈ {z, y, x}). (3.2.23)

It follows that the loss functions defined by the mean squared error can be written in
a simpler form:

f̃1(λ, φ, τ , ϑ,N) = Var(φ̃z) + Var(φ̃y) + Var(φ̃x), (3.2.24)

f̃2(λ, φ, τ , ϑ,N) = Var(λ̃1) + Var(λ̃2) + Var(λ̃3). (3.2.25)

(3.2.17) and (3.2.18) show that the linearized estimators are linear combinations of the
the estimated channel matrix elements, the âij-s (up to an additive constant). By Lemma
10, the variance of the random variables of this type is computable, hence f̃1 and f̃2 can
be written in a closed form.

The parameter estimation

T : M3(R)→ R6; Â 7→ (λ̂1, λ̂2, λ̂3, φ̂z, φ̂y, φ̂x) (3.2.26)
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is the (left) inverse of the channel parametrization

A : D →M3(R); (λ1, λ2, λ3, φz, φy, φx) 7→ A(λ1, λ2, λ3, φz, φy, φx), (3.2.27)

hence
dT
(
A(λ, φ)

)
=
(
dA(λ, φ)

)−1
. (3.2.28)

Because of the rotational invariance, it is enough to investigate the channels with angle
parameters φz = φy = φx = 0. It follows from (3.0.13) that

A(λ1, λ2, λ3, φz, 0, 0) =

 λ1 cos2 φz + λ2 sin2 φz (λ1 − λ2) sinφz cosφz 0
(λ1 − λ2) sinφz cosφz λ1 sin2 φz + λ2 cos2 φz 0

0 0 1

 , (3.2.29)

A(λ1, λ2, λ3, 0, φy, 0) =

 λ1 cos2 φy + λ3 sin2 φy 0 (λ1 − λ3) sinφy cosφy
0 1 0

(λ1 − λ3) sinφy cosφy 0 λ1 sin2 φy + λ3 cos2 φy

 , (3.2.30)

A(λ1, λ2, λ3, 0, 0, φx) =

 1 0 0
0 λ2 cos2 φx + λ3 sin2 φx (λ2 − λ3) sinφx cosφx
0 (λ2 − λ3) sinφx cosφx λ2 sin2 φx + λ3 cos2 φx

 , (3.2.31)

therefore
∂A

∂φz
(λ1, λ2, λ3, 0, 0, 0) =

 0 (λ1 − λ2) 0
(λ1 − λ2) 0 0

0 0 0

 , (3.2.32)

∂A

∂φy
(λ1, λ2, λ3, 0, 0, 0) =

 0 0 (λ1 − λ3)
0 0 0

(λ1 − λ3) 0 0

 , (3.2.33)

∂A

∂φx
(λ1, λ2, λ3, 0, 0, 0) =

 0 0 0
0 0 (λ2 − λ3)
0 (λ2 − λ3) 0

 . (3.2.34)

On the other hand A(λ, 0) = Diag(λ1, λ2, λ3), hence

∂A

∂λ1

(λ, 0) = Diag(1, 0, 0),
∂A

∂λ2

(λ, 0) = Diag(0, 1, 0),
∂A

∂λ3

(λ, 0) = Diag(0, 0, 1). (3.2.35)

Let the derivative of A be written in the form

dA =



∂a11
∂λ1

∂a11
∂λ2

∂a11
∂λ3

∂a11
∂φz

∂a11
∂φy

∂a11
∂φx

∂a22
∂λ1

∂a22
∂λ2

∂a22
∂λ3

∂a22
∂φz

∂a22
∂φy

∂a22
∂φx

∂a33
∂λ1

∂a33
∂λ2

∂a33
∂λ3

∂a33
∂φz

∂a33
∂φy

∂a33
∂φx

∂a12
∂λ1

∂a12
∂λ2

∂a12
∂λ3

∂a12
∂φz

∂a12
∂φy

∂a12
∂φx

∂a13
∂λ1

∂a13
∂λ2

∂a13
∂λ3

∂a13
∂φz

∂a13
∂φy

∂a13
∂φx

∂a23
∂λ1

∂a23
∂λ2

∂a23
∂λ3

∂a23
∂φz

∂a23
∂φy

∂a23
∂φx


. (3.2.36)

(3.2.32), (3.2.33), (3.2.34) and (3.2.35) show that

dA(λ1, λ2, λ3, 0, 0, 0) = Diag(1, 1, 1, λ1 − λ2, λ1 − λ3, λ2 − λ3), (3.2.37)
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It follows from (3.2.28) and (3.2.37) that

dT (A(λ, 0)) = Diag(1, 1, 1,
1

λ1 − λ2

,
1

λ1 − λ3

,
1

λ2 − λ3

). (3.2.38)

By the construction of T,
T = T |Ms

3(R) ◦ S, (3.2.39)

where Ms
3(R) ⊂M3(R) is the subspace of the symmetric matrices and S is the orthogonal

projection onto this subspace (S : Â 7→ Âs := 1
2

(
Â+ (Â)T

)
). Set

â12,s =
1

2
(â12 + â21) , â13,s =

1

2
(â13 + â31) , â23,s =

1

2
(â23 + â32) . (3.2.40)

With this notation, the result of (3.2.38) is the following:

∂λ̂1

∂â11

=
∂λ̂2

∂â22

=
∂λ̂3

∂â33

= 1,
∂φ̂z
∂â12,s

=
1

λ1 − λ2

,
∂φ̂y
∂â13,s

=
1

λ1 − λ3

,
∂φ̂x
∂â23,s

=
1

λ2 − λ3

,

(3.2.41)
if Â = Diag(λ1, λ2, λ3), and all the other partial derivatives vanish. Applying the chain
rule to the equation (3.2.39) one gets the gradient of the parameter estimations.

Lemma 12. The non-vanishing partial derivatives of the parameter estimations λ̂i, φ̂α (i ∈
{1, 2, 3}, α ∈ {z, y, x}) in the point Â = Diag(λ1, λ2, λ3) are the following:

∂λ̂1

∂â11

=
∂λ̂2

∂â22

=
∂λ̂3

∂â33

= 1,
∂φ̂z
∂â12

=
∂φ̂z
∂â21

=
1

2(λ1 − λ2)
,

∂φ̂y
∂â13

=
∂φ̂y
∂â31

=
1

2(λ1 − λ3)
,
∂φ̂x
∂â23

=
∂φ̂x
∂â32

=
1

2(λ2 − λ3)
. (3.2.42)

By Lemma 12, the variance of the linearized parameter estimations defined in (3.2.17)
and (3.2.18) has the form

Var(λ̃1) = Var(â11), Var(λ̃2) = Var(â22), Var(λ̃3) = Var(â33) (3.2.43)

and

Var(φ̃z) =
1

4(λ1 − λ2)2
Var(â12 + â21), Var(φ̃y) =

1

4(λ1 − λ3)2
Var(â13 + â31), (3.2.44)

Var(φ̃x) =
1

4(λ2 − λ3)2
Var(â23 + â32). (3.2.45)

A(λ̂1, λ̂2, λ̂3, φ̂z, φ̂y, φ̂x) = Âs, hence the distance of the real and the estimated channel
matrix is the following:

||A(λ1, λ2, λ3, φz, φy, φx)− A(λ̂1, λ̂2, λ̂3, φ̂z, φ̂y, φ̂x)||2 = ||A(λ1, λ2, λ3, φz, φy, φx)− Âs||2 =

= (â11 − a11)2 + (â22 − a22)2 + (â33 − a33)2+

+2

(
â12 − a12

2
+
â21 − a21

2

)2

+2

(
â13 − a13

2
+
â31 − a31

2

)2

+2

(
â23 − a23

2
+
â32 − a32

2

)2

.

(3.2.46)
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Â is unbiased, therefore

E
(
||A(λ1, λ2, λ3, φz, φy, φx)− A(λ̂1, λ̂2, λ̂3, φ̂z, φ̂y, φ̂x)||2

)
=

= Var(â11)+Var(â22)+Var(â33)+
1

2
(Var(â12 + â21) + Var(â13 + â31) + Var(â23 + â32)) .

(3.2.47)

Summary. The loss functions f̃1, f̃2 and f3 defined in (3.2.19), (3.2.20) and (3.2.3) have
the form

f̃1(λ, 0, τ , ϑ,N) =

=
1

4(λ1 − λ2)2
Var(â12 + â21) +

1

4(λ1 − λ3)2
Var(â13 + â31) +

1

4(λ2 − λ3)2
Var(â23 + â32),

(3.2.48)

f̃2(λ, 0, τ , ϑ,N) = Var(â11) + Var(â22) + Var(â33), (3.2.49)

f3(λ, 0, τ , ϑ,N) =

= Var(â11)+Var(â22)+Var(â33)+
1

2
(Var(â12 + â21) + Var(â13 + â31) + Var(â23 + â32)) .

(3.2.50)

3.3 Optimal tomography settings
In this section we determine the optimal tomography settings by minimizing the quantities
in the above summary.

3.3.1 Optimal estimation of the channel matrix

Theorem 13.
f3(λ, 0, τ , ϑ,N) ≥ 1

N

(
6− (λ2

1 + λ2
2 + λ2

3)
)
, (3.3.1)

and (3.3.1) holds with equality, if τ = ϑ = 0.

Proof. Observe that

f3(λ, 0, τ , ϑ,N) = −1

2

(
Var(â12− â21) +Var(â13− â31) +Var(â23− â32)

)
+

∑
i,j∈{1,2,3}

Var(âij).

(3.3.2)
Using the representing vectors one can see that

Â = (R(τ)⊗R(ϑ)) X̂, (3.3.3)

where R(ζ) = Rz(ζz)Ry(ζy)Rx(ζx), (ζ ∈ {τ, ϑ}). The x̂ij-s are independent estimators,
hence

Var
(
Â
)

= (R(τ)⊗R(ϑ))2 Var
(
X̂
)
, (3.3.4)
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where (·)2 denotes the Hadamart-square. By Lemma 8, (R(τ)⊗R(ϑ))2 is bistochastic
and Var(x̂ij) =

1−x2ij
N

, hence

∑
i,j∈{1,2,3}

Var(âij) =
1

N

9−
∑

i,j∈{1,2,3}

x2
ij

 . (3.3.5)

On the other hand, by Lemma 10

Var(âij − âji) =
∑
l∈H

(cij,l (τ , ϑ)− cji,l (τ , ϑ))2 1− x2
l

N
. (3.3.6)

If i 6= j, then ∑
l∈H

(cij,l (τ , ϑ)− cji,l (τ , ϑ))2 = 2, (3.3.7)

because it is the squared norm of the sum of two orthogonal unit vectors. 1
N

(1 − x2
l ) ≤

1
N

(∀l ∈ H), hence ∑
l∈H

(cij,l (τ , ϑ)− cji,l (τ , ϑ))2 1− x2
l

N
≤ 2

N
. (3.3.8)

It follows that

Var(â12 − â21) ≤ 2

N
, Var(â13 − â31) ≤ 2

N
, Var(â23 − â32) ≤ 2

N
. (3.3.9)

The last step is that∑
i,j∈{1,2,3}

x2
ij = TrXXT = Tr

(
R(τ)TΛ(λ1, λ2, λ3)R(ϑ)R(ϑ)TΛ(λ1, λ2, λ3)TR(τ)

)
= λ2

1+λ2
2+λ2

3,

(3.3.10)
and the inequality (3.3.1) is proved. It is easy to check that if τ = ϑ = 0, then

Var(âij) =
1

N
(1− δijλ2

i ), Var(â12 − â21) = Var(â13 − â31) = Var(â23 − â32) =
2

N
,

where i, j ∈ {1, 2, 3} and δij is the Kronecker-symbol, hence the minimum is obtained.

3.3.2 Optimal estimation of the contraction parameters

Theorem 14.
f̃2(λ, 0, τ , ϑ,N) ≥ 1

N

(
3− (λ2

1 + λ2
2 + λ2

3)
)
, (3.3.11)

and (3.3.11) holds with equality, if τ = ϑ = 0.

Proof.

f̃2(λ, 0, τ , ϑ,N) =
∑

i∈{1,2,3}

Var(âii) =
∑

i,j∈{1,2,3}

Var(âij)−
∑
i 6=j

Var(âij). (3.3.12)

(3.3.4) shows thatVar (âij) ≤ 1
N

(∀i, j), because 1−x2ij
N
≤ 1

N
for every i, j, and (R(τ)⊗R(ϑ))2

is double stochastic. Therefore ∑
i 6=j

Var(âij) ≤
6

N
. (3.3.13)
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If we compare the results of (3.3.5) and (3.3.10) with (3.3.12), we get that

Var(â11) + Var(â22) + Var(â33) ≥ 1

N

(
9− (λ2

1 + λ2
2 + λ2

3)
)
− 6

N
, (3.3.14)

hence the inequality (3.3.11) is proved. It is easy to check that if τ = ϑ = 0, then

Var(â11) =
1

N
(1− λ2

1), Var(â22) =
1

N
(1− λ2

2), Var(â33) =
1

N
(1− λ2

3), (3.3.15)

hence the minimum is obtained.

Practical consequence. The estimation of the channel matrix and the contraction pa-
rameters is optimal, if the input states, the von Neumann measurements and the Pauli
channel have the same directions.

Note. In this work, a tomography scheme for Pauli channels with unknown channel
directions is presented. Nonetheless, one can apply this scheme for Pauli channels with
known channel directions. Assume that the channel directions are

{
1
2
(I + tσi)

}3

i=1
. Now,

we do not estimate any angle parameters and the estimators of the contraction parameters
get simpler: λ̂i = âii (i ∈ {1, 2, 3}). Recall that

3∑
i=1

Var (âii) ≥
1

N

(
3− (λ2

1 + λ2
2 + λ2

3)
)

(3.3.16)

and if τ = ϑ = 0, then this inequality holds with equality. Therefore, the tomography of
a Pauli channel with known directions is optimal if the input states, the von Neumann
measurements and the Pauli channel have the same directions. Hence the proof of Theorem
14 is a new verification of the result that appiers in [16].

3.3.3 Optimal estimation of the angle parameters

(3.3.3) shows that the quantities Var(âij + âji) (i 6= j) can be written as explicit functions
of τ , ϑ,X and N, and by (3.1.11), X is an explicit function of λ, τ and ϑ as well. Therefore
the quantity

f̃1(λ, 0, τ , ϑ,N) =

=
1

4(λ1 − λ2)2
Var(â12 + â21) +

1

4(λ1 − λ3)2
Var(â13 + â31) +

1

4(λ2 − λ3)2
Var(â23 + â32)

(3.3.17)
can be expressed in a closed formula. With fix λ and N, the optimization of f̃1 is an
extremal value problem with six variables (τz, τy, τx, ϑz, ϑy, ϑx) that can not be solved
analytically. Therefore we seek the best estimation strategy by numerical optimization
with some fixed contraction parameters.

For example, set λ1 = 0.8, λ2 = 0.65, λ3 = 0.5 and N = 1000. In this case, the
optimal angles

(
τ opt, ϑopt

)
that can be calculated numerically do not show any regularity

except τ opt = ϑopt. However, f̃1 is nearly minimal in two special points: f̃1 = 0.03676, if
τz = ϑz = π

4
, τy = ϑy = π

4
, τx = ϑx = 0 or τz = ϑz = π

4
, τy = ϑy = 0, τx = ϑx = π

4
, while

the minimum is
min
τ , ϑ

f̃1 = 0.03634. (3.3.18)
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The difference can be considered small, for comparison, f̃1(τ = 0, ϑ = 0) = 0.05.
We get a similar result, if we fix the contraction parameters λ1 = 0.9, λ2 = 0.67, λ3 =

0.6 and the number of measurements N = 1000. In this case τ opt = ϑopt holds as well,
and in the above mentioned points τ = ϑ = (π

4
, π

4
, 0) and τ = ϑ = (π

4
, 0, π

4
) f̃1 is nearly

minimal: f̃1 = 0.01675, while
min
τ , ϑ

f̃1 = 0.01659. (3.3.19)

For comparison, f̃1(τ = 0, ϑ = 0) = 0.02446.
There are some results of empirical simulations in the Appendix. These simulation

results are useful to illustrate and verify the theoretical results and we can formulate con-
jectures based on these investigations as well. Figure 5.1 and Figure 5.2 in the Appendix
show the graph of the function f̃1 with λ1 = 0.8, λ2 = 0.65, λ3 = 0.5, N = 1000, τ = ϑ,
and with fixed ϑx = τx = 0 and ϑx = τx = π

4
, respectively.

Now, we can formulate a conjecture based on the numerical optimization computa-
tions.

Conjecture. For any fixed parameters λ,N

• if f̃1(λ, 0, τ , ϑ,N) is minimal at (τ opt, ϑopt), then τ opt = ϑopt,

• the estimation strategies described by parameters τ 1 = ϑ1 = (π
4
, π

4
, 0) and τ 2 = ϑ2 =

(π
4
, 0, π

4
) are nearly optimal.

3.4 Pauli channel with known parameters in one direc-
tion

In the previous subsection we did not succeed to find the optimal tomography setting to
estimate the angle parameters analytically. However, if we assume some a priori knowledge
about the Pauli channel, this optimization problem has an analytical solution.

Let us assume that we have the following informations about the orthonormal system
{vj}3

j=1 ⊂ Ms.a.
2 (C) and about the contraction parameters λ1, λ2, λ3 that determine the

Pauli channel:
v3 = σ3 and λ3 = 0. (3.4.1)

In this case the channel matrix has the following simplified form

A(λ1, λ2, φ) = R(φ)Λ(λ1, λ2)R(φ)−1, (3.4.2)

that is

A(λ1, λ2, φ) =

 λ1 cosφ2 + λ2 sinφ2 (λ1 − λ2) sinφ cosφ 0
(λ1 − λ2) sinφ cosφ λ1 sinφ2 + λ2 cosφ2 0

0 0 0

 . (3.4.3)

Now it is easy to show that the input states and the von Neumann measurements should
be orthogonal vectors in the plane spanned by σ1 and σ2. Hence, the input states and the
measurements can be parametrized using a single angle parameter ϑ and τ , respectively:

Θ =

 θ11 θ21 0
θ12 θ22 0
0 0 1

 = R(ϑ), M =

 m11 m21 0
m12 m22 0

0 0 1

 = R(τ).
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Let us linearize the estimation of the angle parameter. The parameter estimation
T : M2(R)→ R3; Â 7→ (λ̂1, λ̂2, φ̂) is the left inverse of the channel parametrization

A : R3 ⊃ D →M2(R); (λ1, λ2, φ) 7→ A(λ1, λ2, φ), (3.4.4)

therefore the derivatives satisfy

dT (A(λ1, λ2, φ)) = (dA(λ1, λ2, φ))−1 . (3.4.5)

Let us write the derivative of A in the matrix form

dA =


∂a11
∂λ1

∂a11
∂λ2

∂a11
∂φ

∂a22
∂λ1

∂a22
∂λ2

∂a22
∂φ

∂a12
∂λ1

∂a12
∂λ2

∂a12
∂φ

 . (3.4.6)

It follows from (3.4.3) that

dA(λ1, λ2, φ) =

 cos2 φ sin2 φ (λ2 − λ1) sin 2φ
sin2 φ cos2 φ (λ1 − λ2) sin 2φ

1
2

sin 2φ −1
2

sin 2φ (λ1 − λ2) cos 2φ

 . (3.4.7)

Because of the rotational invariance it is enough to investigate the channels with angle
parameter φ = 0, hence it is useful to observe that

dA(λ1, λ2, 0) =

 1 0 0
0 1 0
0 0 (λ1 − λ2)

 . (3.4.8)

Because of the construction of T,

T = T |Ms
2(R) ◦ S, (3.4.9)

where Ms
2(R) ⊂M2(R) is the subspace of the symmetric matrices and S is the orthopro-

jection onto this subspace (S : Â 7→ Âs := 1
2

(
Â+ (Â)T

)
). Let us introduce the notation

â12,s = 1
2
(â12 + â21).

If we calculate the inverse of the matrix in (3.4.8), we get that in the point Â =
Diag(λ1, λ2, 0) we have

∂λ̂1

∂â11

=
∂λ̂2

∂â22

= 1,
∂φ̂

∂â12,s

=
1

λ1 − λ2

, (3.4.10)

and all the other partial derivatives vanish. By applying the chain rule to the equation
(3.4.9), we get the derivatives of the parameter estimations.

Lemma 15. With the usual notations

∂λ̂1

∂â11

=
∂λ̂2

∂â22

= 1,
∂φ̂

∂â12

=
∂φ̂

∂â21

=
1

2(λ1 − λ2)
(3.4.11)

and the other components of dT are zeros in the point Â = Diag(λ1, λ2, 0).
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Because of the unbiasedness of Â, the linearized estimator of the angle parameter with
the base point E(Â) is the following:

φ̃ = φ̂(A) +
∂φ̂

∂â11

(A) · (â11 − a11) + · · ·+ ∂φ̂

∂â22

(A) · (â22 − a22). (3.4.12)

By Lemma 15, if the angle parameter of the channel is φ = 0, then

φ̃ = φ̂ (A(λ1, λ2, 0)) +
1

2(λ1 − λ2)
(â12 − a12 + â21 − a21) . (3.4.13)

The mean squared error of this estimation has the form

g̃(λ1, λ2, φ, τ, ϑ,N) = E
(
φ̃− φ

)2

, (3.4.14)

The estimation Â is unbiased and the linearized estimation φ̃ is unbiased as well, hence
it follows from (3.4.13) that

g̃(λ1, λ2, φ, τ, ϑ,N) = Var(φ̃) =
1

4(λ1 − λ2)2
Var (â12 + â21) . (3.4.15)

By (3.2.15), the expression Var (â12 + â21) can be written as an explicit function of
λ1, λ2, τ, ϑ and N. We have to solve the minimization problem

g̃(λ1, λ2, φ, τ, ϑ,N)→ min

with two variables (τ, ϑ) for fixed λ1, λ2, N values. The result is formulated in the following
theorem.

Theorem 16. Assume that λ1 > λ2, λ2 6= 0 and λ1 6= −λ2.

1. If (λ1 + λ2)2 ≥ 2(λ1 − λ2)2, then g̃(λ1, λ2, 0, τ, ϑ,N) is minimal if and only if

τopt = ϑopt =
π

4

(
mod

π

2

)
.

The minimal value of the loss function is

g̃(λ1, λ2, 0,
π

4
,
π

4
, N) =

1

4(λ1 − λ2)2

1

2N

(
4− (λ1 + λ2)2

)
. (3.4.16)

2. If (λ1 + λ2)2 < 2(λ1 − λ2)2, then g̃(λ1, λ2, 0, τ, ϑ,N) is minimal if and only if

τopt = ϑopt = x or
π

2
− x

(
mod

π

2

)
,

where x = 1
4

arccos
(
− (λ1+λ2)2

2(λ1−λ2)2

)
. The minimal value is now

g̃(λ1, λ2, 0, τopt, ϑopt, N) =
1

4(λ1 − λ2)2

1

2N

(
4− (λ2

1 + λ2
2)− 1

8

(λ1 + λ2)4

(λ1 − λ2)2

)
.

(3.4.17)
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Proof.

g̃(λ1, λ2, 0, τ, ϑ,N) =
1

4(λ1 − λ2)2
Var (â12 + â21) =

1

4(λ1 − λ2)2

1

8N
×

×
(

16−3(λ2
1 +λ2

2)−2λ1λ2 +(λ1 +λ2)2(cos 4τ+cos 4ϑ)+(λ1−λ2)2 cos 4(τ+ϑ)

)
. (3.4.18)

Computing the partial derivatives with respect to τ and ϑ, one gets that if g̃ has a local
extremum in (τ, ϑ), then

−(λ1 + λ2)2 sin(4ϑ) = (λ1 − λ2)2 sin(4(ϑ+ τ)), (3.4.19)

−(λ1 + λ2)2 sin(4τ) = (λ1 − λ2)2 sin(4(ϑ+ τ)). (3.4.20)

(λ1 +λ2)2 6= 0, hence (3.4.19) and (3.4.20) show that sin(4ϑ) = sin(4τ). By a trigonomet-
rical fact, if additionally 4ϑ 6= 4τ (mod 2π), then sin(4ϑ+ 4τ) = 0. Therefore by (3.4.20)
and (3.4.20) τ = 0, ϑ = π

4
(mod π

2
) or τ = π

4
, ϑ = 0 (mod π

2
). It is clear form (3.4.18)

that g̃ is strictly greater in these points than in the point τ = ϑ = π
4

(mod π
2
), because

−2(λ1 + λ2)2 + (λ1 − λ2)2 ≤ −(λ1 − λ2)2, (3.4.21)

and (3.4.21) holds with equality if and only if λ2 = 0, but we assumed that λ2 6= 0. Hence
the minimum of g̃ is obtained on the line τ = ϑ. Therefore, let us assume that τ = ϑ,
and our problem turns into an optimization problem with one variable. It is clear from
(3.4.18) that we have to minimize

Fλ1,λ2(τ) := 2(λ1 + λ2)2 cos (4τ) + (λ1 − λ2)2 cos (8τ)→ min. (3.4.22)

Fλ1,λ2 is π
2
-periodic in its variable τ -ban, hence we may assume that τ ∈

[
0, π

2

)
.

1. F ′λ1,λ2(τ) = 0 if and only if (λ1 + λ2)2 sin(4τ) = −2(λ1− λ2)2 sin(4τ) cos(4τ), that is

τ ∈
{

0,
π

4

}
or cos(4τ) = − (λ1 + λ2)2

2(λ1 − λ2)2
. (3.4.23)

2.
F ′′λ1,λ2(τ) = −32

(
(λ1 + λ2)2 cos (4τ) + 2(λ1 − λ2)2 cos (8τ)

)
. (3.4.24)

This expression is negative in τ = 0, hence there is a local maximum in τ = 0. F ′′λ1,λ2
is positive in τ = π

4
if and only if (λ1 + λ2)2 > 2(λ1 − λ2)2.

Therefore if (λ1 + λ2)2 > 2(λ1 − λ2)2, then by (3.4.23) and by the bounded property of
the cosine function, g̃ can be extremal only in the points τ = 0 and τ = π

4
. (λ1 + λ2)2 >

2(λ1 − λ2)2, hence g̃ has a local minimum in τ = π
4
. (Recall that in τ = 0 there is a local

maximum.) g̃ does not have any other local minimum, hence there is a global minimum
in τ = π

4
.

If (λ1 + λ2)2 = 2(λ1 − λ2)2, then (3.4.23) shows that if g̃ has a local extremum in τ,
then τ ∈ {0, π

4
}. g̃ has a local maximum in τ = 0, hence by the Weierstrass theorem (that

states that every continuous peridic function has a minimum) g̃ has a (global) minimum
in τ = π

4
.
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If (λ1 + λ2)2 < 2(λ1− λ2)2, then g̃ has local maximum in τ = 0 and in τ = π
4
. (3.4.23)

shows that the minimum can be obtained in{
τ : cos(4τ) = − (λ1 + λ2)2

2(λ1 − λ2)2
, τ ∈

[
0,
π

2

)}
=

=

{
1

4
arccos

(
− (λ1 + λ2)2

2(λ1 − λ2)2

)
,
π

2
− 1

4
arccos

(
− (λ1 + λ2)2

2(λ1 − λ2)2

)}
. (3.4.25)

It is clear form (3.4.22) that Fλ1,λ2(τ) ≡ Fλ1,λ2(
π
2
− τ), hence by the Weierstrass theorem,

the global minimum is obtained in both of the above mentioned points.
The minimal values of the loss function g̃ (see (3.4.16) and (3.4.17)) are calculated by

direct computations from (3.4.18).

Practical consequence. To optimally estimate the angle parameter, the directions of the
input states and the von Neumann measurements have to be the same, but these directions
differ from the channel directions and depend on the contraction parameters λ1 and λ2.

Example 4. If λ1 = 0.8 and λ2 = 0.2 the optimal input and measurement directions are
τopt = ϑopt = π

4
. These are the optimal angles in most cases, however, if λ1 = 1 and

λ2 = 0 then τopt = ϑopt = π
3
or π

6
.
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Chapter 4

Tomography of generalized Pauli
channels

As a generalization of the quantum bit Pauli channel, Petz and Ohno introduced the
generalized Pauli channels for finite dimensional quantum systems [14]. None of the
papers related to this topic define the channel directions (see e.g. [8] and [12]). Our aim
is to define the channel directions and the angle parameters for generalized Pauli channels.

A class of the generalized Pauli channels is in one-to-one correspondence with the
mutually unbiased bases of the underlying Hilbert space. By this bijection and by a
parametrization of the unitary matrices we can define angle parameters for the Pauli
channels of this class.

4.1 Pauli channels given by Abelian subalgebras

4.1.1 Mutually unbiased bases

Definition 3 (MUB). Let F1 = {f 1
1 , . . . f

n
1 }, . . . ,Fr = {f 1

r , . . . f
n
r } be orthonormal bases

of the space Cn. If ∣∣〈f ik, f jl 〉∣∣2 =
1

n
(4.1.1)

holds for every 1 ≤ k 6= l ≤ r and i, j ∈ {1, . . . , n}, then F1, . . . ,Fr are called mutually
unbiased bases (the often used abbreviation is MUB).

If n = pM with some prime p and M ∈ Z+, then there exists a MUB of Cn with
n+ 1 elements [3]. The construction is the following. Let us identify the elements of the
standard basis of Cn with the elements of the finite field F (n). Let us define the function

χ(θ) := exp

(
2πi

p

(
θ + θp + θp

2

+ · · ·+ θp
M−1
))

and the matrices

Xq :=
∑
s∈F (n)

|s+ q〉 〈s| , Zr :=
∑
s∈F (n)

χ(rs) |s〉 〈s| . (4.1.2)

Then {{Zr : r ∈ F (n)}}∪{{XqZqr : q ∈ F (n)} : r ∈ F (n)} is a system of sets with n+1
elements. Every element of this system is a set of n commuting matrices. One can map
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the common eigenbasis to every set of commuting matrices. This way we get a MUB with
n+ 1 elements. This MUB is called the fundamental MUB of Cn.

Example 5. Set p = 2,M = 1. Then F (n) = Z2 = {0, 1}. By (4.1.2),

X0 = |0〉 〈0|+ |1〉 〈1| =
(

1 0
0 1

)
, X1 = |1〉 〈0|+ |0〉 〈1| =

(
0 1
1 0

)
, (4.1.3)

Z0 = 1 · |0〉 〈0|+ 1 · |1〉 〈1| =
(

1 0
0 1

)
,

Z1 = 1 · |0〉 〈0|+ exp

(
2πi

2
· 1
)
|1〉 〈1| =

(
1 0
0 −1

)
. (4.1.4)

Therefore

{X0Z0, X1Z0} =

{(
1 0
0 1

)
,

(
0 1
1 0

)}
, {X0Z0, X1Z1} =

{(
1 0
0 1

)
,

(
0 −1
1 0

)}
,

{Z0, Z1} =

{(
1 0
0 1

)
,

(
1 0
0 −1

)}
. (4.1.5)

The common eigenbases of the above three sets of matrices are

F1 =

{
1√
2

(|0〉+ |1〉) , 1√
2

(|0〉 − |1〉)
}
,

F2 =

{
1√
2

(|0〉+ i |1〉) , 1√
2

(|0〉 − i |1〉)
}
, F3 = {|0〉 , |1〉} , (4.1.6)

respectively. This is the fundamental MUB of C2.

4.1.2 The connection between MUBs and complementary subal-
gebras

Definition 4. Let A1,A2 ⊂ Mn(C) be ∗-subalgebras with unit. A1 and A2 are called
complementary (or quasi-orthogonal) if their traceless parts (A1 	CI and A2 	CI) are
orthogonal with respect to the Hilbert-Schmidt inner product.

Lemma 17. Let F1, . . . ,Fn+1 ⊂ Cn be mutually unbiased bases and Ai be the subalgebra
of the matrices that are diagonal in the basis Fi (i ∈ {1, . . . , n + 1}). Then {Ai}n+1

i=1 are
pairwise complementary maximal Abelian subalgebras (MASAs) that linearly span Mn(C).

Proof. By definition, Ai is a maximal Abelian subalgebra. We have to prove the quasi-
orthogonality. Set 1 ≤ k 6= l ≤ n+ 1, X ∈ Ak 	 CI, Y ∈ Al 	 CI, that is

X =
(
f 1
k , . . . , f

n
k

)
Diag(x1, . . . , xn)

 (f 1
k )
∗

...
(fnk )∗

 , Y =
(
f 1
l , . . . , f

n
l

)
Diag(y1, . . . , yn)

 (f 1
l )
∗

...
(fnl )∗

 ,

(4.1.7)
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where xi, yi ∈ C,
∑n

i=1 xi =
∑n

i=1 yi = 0. Then

TrXY ∗ = Tr

(f1
k , . . . , f

n
k

)
Diag(x1, . . . , xn)


(
f1
k

)∗
...

(fnk )
∗

(f1
l , . . . , f

n
l

)
Diag(y1, . . . , yn)


(
f1
l

)∗
...

(fnl )
∗


 =

= Tr


 x1 (f 1

k )
∗

...
xn (fnk )∗

(y1f
1
l , . . . , ynf

n
l

) (f 1
l )
∗

...
(fnl )∗

(f 1
k , . . . , f

n
k

) =

=
n∑
d=1

n∑
c=1

xdyc
〈
fdk , f

c
l

〉 〈
f cl , f

d
k

〉︸ ︷︷ ︸
1
n

=
1

n

n∑
d=1

n∑
c=1

xdyc =
1

n

(
n∑
d=1

xd

)(
n∑
c=1

yc

)
= 0. (4.1.8)

The last part of the satetement can be proved by counting dimensions. dim (Ai) = n,
hence dim (Ai 	 CI) = n − 1. CI,A1 	 CI, . . . ,An+1 	 CI are orthogonal subspaces,
therefore

dim (span (A1, . . . ,An+1)) = dim (CI ⊕ (A1 	 CI)⊕ · · · ⊕ (An+1 	 CI)) =

= 1+(n+1)(n−1) = n2 = dim (Mn(C)) , hence span (A1, . . . ,An+1) = Mn(C). (4.1.9)

If Fi and Ai are the same as in Lemma 17 and Ei : Mn(C)→Mn(C) is the orthogonal
projection onto the subalgebra Ai, then by the definition of Petz and Ohno [14], the map

E : Mn(C)→Mn(C); A 7→ E(A) :=

(
1−

n+1∑
i=1

λi

)
TrA

n
I +

n+1∑
i=1

λiEi(A) (4.1.10)

is a generalized Pauli channel if the numbers λi ∈ R are chosen such that E is completely
positive. A1, . . . ,An+1 are pairwise complementary MASAs, therefore the above defined
E is completely positive if and only if

1 + nλi ≥
n+1∑
j=1

λj ≥ −
1

n− 1
∀ i ∈ {1, . . . , n+ 1}. (4.1.11)

(See [14].)

4.2 Channel directions and generalized angle parame-
ters

Definition 5 (Channel directions). The channel directions of the generalized Pauli chan-
nel given by the pairwise complementary subalgebras A1, . . . ,Ar are the affine subspaces

Di = {σ ∈ Ai : σ∗ = σ, Tr (σ) = 1} ⊂Mn(C). (4.2.1)
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Unitary transformations of MUBs Given a MUB F1, . . . ,Fn+1 and a unitary ma-
trix X, the bases XF1, . . . , XFn+1 given by the definition XFi := {Xf 1

i , . . . , Xf
n
i } are

mutually unbiased bases as well. If X ∈ SU(n) then there are

α1, . . . , αn−1, θ1, . . . , θn(n−1)
2

, β1, . . . , βn(n−1)
2

real parameters such that

X = D(α1, . . . , αn−1)
∏

1≤j<k≤n

Uj,k (θjk, βjk) (4.2.2)

where
D(α1, . . . , αn−1) = Diag

(
eiα1 , eiα2 , . . . , eiαn−1 , e−i

∑n−1
l=1 αl

)
, (4.2.3)

and Uj,k is the rotation of the subspace spanned by the standard basis vectors |j − 1〉 and
|k − 1〉: its effect on the mentioned subspace is given by the matrix

Ũ(θ, β) =

(
cos θ − sin θe−iβ

sin θeiβ cos θ

)
(4.2.4)

and it equals with the identity on the orthocomplement (see [6]).
Now we can define angle parameters for Pauli channels given by MASAs.

Definition 6. Let n = pM (p is a prime, M ∈ Z+), F1, . . . ,Fn+1 be the fundamental
MUB of Cn and X be the unitary matrix determined by the parameters

α1, . . . , αn−1, θ1, . . . , θn(n−1)
2

, β1, . . . , βn(n−1)
2

.

Let Ai be the subalgebra of the matrices that are diagonal in the basis XFi, Ei be the
orthoprojection onto Ai. Assume that the numbers {λi}n+1

i=1 satisfy the condition (4.1.11).
Then the Pauli channel

E : Mn(C)→Mn(C); A 7→ E(A) :=

(
1−

n+1∑
i=1

λi

)
TrA

n
I +

n+1∑
i=1

λiEi(A) (4.2.5)

has the generalized angle parameters
(
α1, . . . , αn−1, θ1, . . . , θn(n−1)

2

, β1, . . . , βn(n−1)
2

)
.

Example 6. In the previous example we computed the fundamental MUB of C2 (4.1.6).
It is easy to see that the corresponding subalgebras are the following:

A1 = span{I, σ1}, A2 = span{I, σ2}, A3 = span{I, σ3}. (4.2.6)

If E is the Pauli channel with the generalized angle parameters (α, θ, β), then the MUB of
E is {XF1, XF2, XF3} , where

X = X(α, θ, β) =

(
eiα 0
0 e−iα

)(
cos θ − sin θe−iβ

sin θeiβ cos θ

)
. (4.2.7)

Therefore, the corresponding subalgebras are

A′1 = span{I,Xσ1X
∗}, A′2 = span{I,Xσ2X

∗}, A′3 = span{I,Xσ3X
∗}. (4.2.8)
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It follows that the channel matrix of E given by the equation A = ρ−1 ◦ E ◦ ρ (ρ is the
Bloch-parametrization) has the form

A = R̃(α, θ, β)Diag(λ1, λ2, λ3)R̃−1(α, θ, β), (4.2.9)

where

R̃(α, θ, β) =

{〈
1√
2
σi, X(α, θ, β)

1√
2
σjX

∗(α, θ, β)

〉}3

i,j=1

. (4.2.10)

The generalized angle parameters are not equal with the angle parameters introduced in
Lemma 2 in general, for example

R̃(α, θ, β) =

 cos 2α cos2 θ − cos 2(α− β) sin2 θ sin 2α cos2 θ + sin 2(α− β) sin2 θ cos(2α− β) sin 2θ
− sin 2α cos2 θ + sin 2(α− β) sin2 θ cos 2α cos2 θ + cos 2(α− β) sin2 θ − sin(2α− β) sin 2θ

− cosβ sin 2θ − sinβ sin 2θ cos 2θ

 , (4.2.11)

but

Rz(φz)Ry(φy)Rx(φx) =

 cosφz cosφy − cosφz sinφy sinφx − sinφz cosφx − cosφz sinφy cosφx + sinφz sinφx
sinφz cosφy − sinφz sinφy sinφx + cosφz cosφx − sinφz sinφy cosφx − cosφz sinφx

sinφy cosφy sinφx cosφy cosφx

 ,

(4.2.12)

where Rz, Ry, Rx are the rotations defined in Lemma 2. However, these parametrizations
show some analogies in some cases. For example,

R̃(α, 0, 0) =

 cos 2α sin 2α 0
− sin 2α cos 2α 0

0 0 1

 ≡ Rz(−2α), (4.2.13)

and

R̃(0, θ, 0) =

 cos 2θ 0 sin 2θ
0 1 0

− sin 2θ 0 cos 2θ

 ≡ Ry(−2θ). (4.2.14)
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Chapter 5

Conclusion and future work

In this thesis we investigated the tomography of quantum Pauli channels which form a
wide class of the state transformations.

In Chapter 3 we considered the Pauli channels acting on two-level quantum systems.
For quantum bit Pauli channels we defined the channel directions rigorously and intro-
duced the channel matrix that describes the effect of the channel. By a parametrization
of the rotation group O(3,R) we defined angle parameters that describe the channel
dirctions.

We developed a tomography scheme including efficient estimations of the channel ma-
trix, the contraction parameters and the angle parameters. The accuracy of an estimation
method can be measured with various quantities. In this thesis we considered the mean
squared error of the estimated channel matrix, contraction parameters and angle param-
eters. We constructed optimal tomography settings with respect to the above mentioned
quantities by minimizing the corresponding loss functions.

We proved that the estimation of the channel matrix is optimal if we let the input and
measurement directions be the same as the channel directions. A similar result appears if
the aim is the efficient estimation of the contraction parameters. The proofs are analytical,
this is a new concept in the study of the Pauli channels with unknown channel directions
(see [1, 16]).

In the general case we did not succed to minimize the mean squared error of the
estimated angle parameters, hence we formulate conjectures about the optimal settings
based on numerical optimization and empirical simulations. However, if we assume some
a priori knowledge about the Pauli channel, we can find the optimal settings to estimate
the angle parameter analytically.

In Chapter 4 we investigated the generalized Pauli channels that act on arbitrary
finite-dimensional quantum systems. We defined the channel directions and introduced
angle parametrization for a wide class of generalized Pauli channels.

These are the first steps of an interesting further work that is nothing else but the
generalization of the tomography scheme developed in this thesis for n-level quantum
systems.
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Appendix

Empirical simulations
In the subsection 3.3.3 we did not succeed in minimizing the mean squared error of the
estimated angle parameters analytically. Therefore we performed empirical simulations
to formulate conjectures based on them. (On the other hand, empirical simulations are
useful to check the analytical results.)

The parameter estimation method for qubit Pauli channel described in this work can
be performed by computer, because

1. one can generate the random variables N+
ij (see (3.1.6)) with the built-in packages

of symbolic mathematical programming languages,

2. with given N+
ij -s, one gets the parameter estimations by direct computations.

Performing the parameter estimation method K times, we get the estimations

λ̂j1, λ̂
j
2, λ̂

j
3, φ̂

j
z, φ̂

j
y, φ̂

j
x (j ∈ {1 . . . K}). (5.0.1)

Let us define the quantities

f̂1 =
1

K

K∑
j=1

dist(φ̂jz, φz)
2 + dist(φ̂jy, φy)

2 + dist(φ̂jx, φx)
2, (5.0.2)

f̂2 =
1

K

K∑
j=1

(λ̂j1 − λ1)2 + (λ̂j2 − λ2)2 + (λ̂j3 − λ3)2, (5.0.3)

f̂3 =
1

K

K∑
j=1

||A(λ̂j1, λ̂
j
2, λ̂

j
3, φ̂

j
z, φ̂

j
y, φ̂

j
x)− A(λ1, λ2, λ3, φz, φy, φx)||2. (5.0.4)

This is nothing else but calculating the sample means instead of the expected values that
define the loss functions f1, f2 and f3 (see (3.2.1), (3.2.2) and (3.2.3)).

It is a well-known property of the sample mean that

Ef̂i = fi and Var
(
f̂i

)
= O

(
1

K

)
(∀ i ∈ {1, 2, 3}). (5.0.5)

Therefore, f̂i is a good approximation of fi if K is large enough.
The empirical simulations were performed by Mathematica 8 [19]. The following

figures are to make the empirical results picturesque.
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Figure 5.1: (a) f̃1 and (b) f̂1. ϑx = τx = 0, 0 ≤ ϑz = τz, ϑy = τy ≤ π
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Figure 5.2: (a) f̃1 and (b) f̂1. ϑx = τx = π
4
, 0 ≤ ϑz = τz, ϑy = τy ≤ π.

Set λ1 = 0.8, λ2 = 0.65, λ3 = 0.5, N = 1000 and τ = ϑ. Then we can plot the functions
f̃1 and f̂1 with fixed parameters ϑx = τx = 0 and ϑx = τx = π

4
(Figure 5.1 and Figure 5.2,

respectively). To check the analytical results, one may plot the functions f̃2 and f̂2 with
fixed ϑx = τx = 0 and ϑx = τx = π

4
(Figure 5.3 and Figure 5.4).
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Figure 5.3: (a) f̃2 and (b) f̂2. ϑx = τx = 0, 0 ≤ ϑz = τz, ϑy = τy ≤ π
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Figure 5.4: (a) f̃2 and (b) f̂2. ϑx = τx = π
4
, 0 ≤ ϑz = τz, ϑy = τy ≤ π.
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