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In this paper we investigate common generalizations of more-part
and L-Sperner families. We prove a BLYM inequality for M-part L-
Sperner families and obtain results regarding the homogeneity of
such families of maximum size through the convex hull method.
We characterize those M-part Sperner problems, where the maxi-
mum family size is the classical

( n
�n/2�

)
. We make a conjecture on

the maximum size of M-part Sperner families for the case of equal
parts of size 2� − 1 and prove the conjecture in some special cases.
We introduce the notion of k-fold M-part Sperner families, which
specializes to the concept of M-part Sperner families for k = 1, and
generalize some M-part Sperner results to k-fold M-part Sperner
families. We also approach the M-part Sperner problem from the
viewpoints of graph product and linear programming, and prove
the 2-part Sperner theorem using linear programming. This paper
can be used as a survey, as in addition to the new results, prob-
lems and conjectures, we provide a number of alternative proofs,
discuss at length a number of generalizations of Sperner’s theorem,
and for the sake of completeness, we give proofs to many simple
facts that we use.
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1. History and exposition

One of the central issues in extremal set theory is Sperner’s theorem [34] from 1928, and its
generalizations, like the well-known BLYM-inequality. A Sperner family is a family of sets such that
none of them is a proper subset of another. Sperner’s theorem asserts that a Sperner family on an
n-element set has at most

( n
�n/2�

)
elements. G.O.H. Katona [21] and D.J. Kleitman [25] discovered

independently and almost simultaneously that one can relax the condition of the Sperner theorem
while keeping its conclusion. They relaxed the definition of Sperner families to more-part Sperner
families, and showed that 2-part Sperner families still have at most

( n
�n/2�

)
elements.

To be more formal, let X = X1 � X2 � · · · � XM be a fixed partition of the underlying set X , where
|Xi| = ni , and |X | = n1 + n2 + · · · + nM = n. A family F of subsets of X is called an M-part Sperner
family if

∀E, F ∈ F , E � F ⇒ ∀i: F \ E � Xi .

As Sperner families are also M-part Sperner families for any M-partition of the underlying set, some
M-part Sperner families reach the size

( n
�n/2�

)
. Around 1965–1966, as we mentioned above, G.O.H. Ka-

tona and D.J. Kleitman discovered:

Theorem 1.1. (See 2-part Sperner theorem G.O.H. Katona [21] and D.J. Kleitman [25].) The size of a two-part
Sperner family cannot exceed

( n
�n/2�

)
.

Theorem 1.1 gives back Sperner’s theorem as a special case when one Xi is empty. G.O.H. Katona
and D.J. Kleitman found several two-part Sperner families achieving this bound. It took 20 years to
characterize all maximum size 2-part Sperner families. This work was completed by P.L. Erdős and
G.O.H. Katona using the convex hull method [10]. In 1996, S. Shahriari [33] found an alternative way
to describe all maximum size two-part Sperner families through chain decomposition.

In 2002, P.L. Erdős, Z. Füredi and G.O.H. Katona [12] came up with another way of doing the charac-
terization, based on a combination of the permutation and convex hull methods. In 2007, H. Aydinian
and P.L. Erdős [2] found the shortest and perhaps the last proof for the characterization of 2-part
Sperner families.

In 1973, G.O.H. Katona recognized that there are 3-part Sperner families exceeding the expected( n
�n/2�

)
bound [23]. For this fact, we will give a new, very simple construction in Example 4.1 in

Section 4.
The results cited above allowed the theory to develop in three directions: (a) finding conditions

under which the
( n
�n/2�

)
bound would still hold for M-part Sperner families; (b) find the actual max-

imum size of M-part Sperner families; (c) find analogues of the Sperner and 2-part Sperner theorem
for other structures.

G.O.H. Katona [23], J. Griggs [16], and J. Griggs and D. Kleitman [18] gave extra conditions to
achieve (a). In Section 4 we give a full characterization of the problems belonging to (a) (Theorem 4.5).

In Section 5 we introduce the notion of k-fold M-part Sperner families, which specializes to the
concept of M-part Sperner families for k = 1. We call a family F on an M-partitioned underlying set
an M-part k-fold Sperner family if for every E, F ∈ F with E � F we have that F − E is not a subset
of the union of any k partition classes. We show that the size of a k-fold M-part Sperner family may
exceed

( n
�n/2�

)
, give a range of k for which the maximum size of families is

( n
�n/2�

)
, and give close

upper and lower bounds on the maximum size, when k is outside this range. In a remarkable way,
for a range of problems the maximum size M-part k-fold Sperner families are still exactly all subsets
of size �n/2� or of size �n/2	.

Doing (b) proved to be the most difficult. In 1987, P.L. Erdős and G.O.H. Katona [11] determined
the maximum size of 3-part Sperner families under the condition that one class is a singleton, using
the convex hull method. Even in this case, the size of some families exceeds

( n
�n/2�

)
.

Not having much success at exact results towards (b), researchers tried to bound the ratio of
the maximum size of an M-part Sperner family and

( n
�n/2�

)
, making no assumptions on class sizes.
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To answer this relaxed question is still hard. In 1980 J. Griggs [17] showed that this ratio is at most
2M−2, and later in 1985 Z. Füredi [13] and independently J.R. Griggs, A.M. Odlyzko, and J.B. Shearer
[19] showed that the ratio is at most(

1 + o(1)
)√

M, (1)

as n → ∞; and also proved that this ratio, as M → ∞, is

(
1 + o(1)

)√ π M

4 log M
. (2)

For (c), Mark Huber in 1994 used the convex hull method to extend the 2-part Sperner theorem to
the poset of multisets [20], i.e. to the divisor lattice of a natural number.

Paul Erdős found another generalization of the Sperner theorem, which does not involve more
parts:

Theorem 1.2. (See Paul Erdős [7].) Assume that Hi (i = 1,2, . . . , t) are Sperner families on the underlying
set X , where |X | = n. If these families are pairwise disjoint, then

t∑
i=1

|Hi| �
t−1∑
i=0

(
n

�n+1−t
2 � + i

)
, (3)

where the sum includes the t largest binomial coefficients of the form
(n

i

)
.

For 0 < L � n, a family H is called an L-Sperner family, if no L + 1 sets in H form a chain for inclu-
sion. A dual Dilworth theorem for posets, attributed to P. Erdős and G. Szekeres (see [26, Ex. 9.32b]),
immediately implies that any L-Sperner family can be decomposed into the union of L pairwise dis-
joint Sperner families, therefore Theorem 1.2 gives a sharp upper bound on the size of L-Sperner
families.

In order to combine the two lines of generalization mentioned so far, assume that the underlying
set X is partitioned into X = X1 � X2 � · · · � XM , where |Xi| = ni . Introducing a new generalization,
we say that a family F is M-part (n1,n2, . . . ,nM; L1, . . . , LM)-Sperner, if there is no i such that an
increasing (Li + 1)-chain of F , say E1 � E2 � · · · � ELi+1 would have all its growth in a single Xi

only, i.e. we do not have ELi+1 \ E1 ⊆ Xi . To avoid degeneracy in this definition, we always assume
0 < Li � ni . If all Li ’s are equal, say Li = L, then we speak about an M-part L-Sperner family.

In Section 3 we extend the convex hull method from M-part L-Sperner families to M-part
(n1,n2, . . . ,nM; L1, . . . , LM)-Sperner families.

A family of subsets of an M-partitioned underlying set is called homogeneous, if for any set, the
sizes of its intersections with the partition classes already determine whether the set belongs to the
family or not.

In 1986, Z. Füredi, J. Griggs, A.M. Odlyzko, and J.M. Shearer [14], and independently P.L. Erdős
and G.O.H. Katona [9] discovered that there must exist homogeneous maximum size M-part L-Sperner
families. We will slightly generalize this result in Section 3. It is an important question, under what
conditions all maximum size M-part L-Sperner families are homogeneous, as the cases L = 1, M = 1
(strong Sperner theorem) and M = 2 (see [10], Theorem 5.2 in this paper) may suggest this phe-
nomenon. Homogeneous M-part L-Sperner families can be identified with a set of ordered M-tuples
of numbers, which list the intersection sizes with classes that occur. We call the sets of ordered M-
tuples of numbers corresponding to a homogeneous M-part L-Sperner family a transversal, and those
of them that have the largest possible cardinality a full transversal. Theorem 5.2 of P.L. Erdős and
G.O.H. Katona [10] shows that all maximum size 2-part Sperner families correspond to full transver-
sals. However, some maximum size homogeneous M-part Sperner families do not correspond to a full
transversal. Section 3 has several results and counterexamples on homogeneity and transversals.
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Another early generalization of the Sperner theorem is the BLYM (see Bollobás (1965) [5], Lubell
(1966) [27], Yamamoto (1954) [35] and Meshalkin (1963) [28]) inequality. If Pi(F ) denotes the num-
ber of i-element sets in the Sperner family F (the vector of these quantities will be called the profile
of the family later), then

n∑
i=0

Pi(F )(n
i

) � 1, (4)

which immediately implies Sperner’s theorem, as the largest denominator is
( n
�n/2�

)
. Surprisingly, the

BLYM inequality has a generalization into an identity, see R. Ahlswede and Z. Zhang [1]. Another
notable generalization of BLYM is due to C. Bey [4]. The following joint generalizations of the BLYM
inequality and Theorem 1.2 has been folklore and was first in print in [12].

Theorem 1.3. (Folklore, see Theorem 2.1 in [12].) Let F be an L-Sperner family on an n-element underlying
set. Then

n∑
i=0

Pi(F )(n
i

) � L,

with equality if and only if F contains every set of some L distinct sizes.

For L = 1, this theorem implies the so-called “strong” or “strict” Sperner theorem, which asserts
that the

( n
�n/2�

)
upper bound can be realized only with all �n/2� sized sets or with all �n/2	 sized

sets. Z. Füredi had a one-line “book proof” for the strong Sperner theorem, which was first published
in [12].

In Section 6 we prove a BLYM inequality for M-part (n1, . . . ,nM; L1, L2, . . . , LM)-Sperner families
(Theorem 6.1), and obtain some conditions that imply the homogeneity of all maximum size fami-
lies. However, we also exhibit non-homogeneous maximum size families for certain M-part Sperner
problems, even for L = 1. Our Theorem 6.2 is a direct generalization of the strong Sperner theorem.

In 1971, J. Schonheim in [31] generalized the L-Sperner problem of P. Erdős (and also the 2-part
Sperner problem, see our earlier reference [20]) to the poset of multisets, i.e. the divisor lattice of a
natural number. G.O.H. Katona [22] gave further generalization of the work of J. Schonheim [31].

In 1980, J. Griggs [17] showed that L2M−2
( n
�n/2�

)
an upper bound on the maximum size of M-part

L-Sperner families, where the maximization is over all possible class sizes. Later, in 1988, A. Sali [30]
obtained an upper bound for antichain sizes in products of symmetric chain orders, which lowered
the upper bound to cL

√
M
( n
�n/2�

)
with an unspecified c.

Z. Füredi, J.R. Griggs, A.M. Odlyzko, and J.M. Shearer [14] determined the maximum size of 2-
part 2-Sperner families, 2

( n
�n/2�

)
, where the maximization is extended over all class sizes, exactly,

and found that any maximum size 2-part 2-Sperner family is the union of 2 disjoint 2-part Sperner
families. They found that this result does not allow a pleasant direct generalization: M � 3, M-part
L-Sperner families are not always unions of L disjoint M-part 1-Sperner families. To see this, take
X1 = {1,2}, X2 = {3,4}, X3 = {5,6}, and consider the 3-part 2-Sperner family{∅, [2], [4], [6], {6}, {4,6}, {2,4,6}, {2,4,5,6}, {2,3,4,5,6}},
whose partition into two 3-part 1-Sperner families would yield a good 2-coloration of a 9-cycle
defined by the Hasse diagram of the above sets ordered by inclusion. Therefore they looked for asymp-
totic results for the maximum size of M-part L-Sperner families, where the maximization is extended
again over all class sizes, and obtained for fixed M, L and n → ∞ the asymptotics φL(M)

( n
�n/2�

)
; and

as M → ∞ the asymptotics φL(M) ∼ L
√

π M
4 log M , generalizing (1) and (2). In Section 4 we provide a

uniform bound (Theorem 4.6) that is very close to the asymptotic results of Z. Füredi, J.R. Griggs,
A.M. Odlyzko, and J.M. Shearer [14], in particular, for L = 1, to (1) and (2), providing a small constant
for Sali’s result.
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In Section 7 we give a conjecture on the maximum size of M-part Sperner families for the case of
equal parts of size 2� −1; and show that if our conjecture holds, then for these problems all maximum
size families are homogeneous. This is the first conjecture for an exact maximum value in a non-trivial
instance of the M-part Sperner problem. We prove our conjecture for the special cases � = 1,2 and
bring the conjectured maximum value to closed form. We also approach the M-part Sperner problem
from the viewpoints of graph product and linear programming, and give a new proof for the 2-part
Sperner theorem, in the case of the partition classes of equal size, using linear programming.

A comprehensive survey of Sperner theory can be found in K. Engel’s excellent book, [6].
We are indebted to Lincoln Lu and two anonymous referees for their useful comments.

2. Notation

We are going to use shorthand notations as [n] = {1, . . . ,n}, [i, j] = {i, i + 1, . . . , j − 1, j}, 2X for
the power set of the set X , and

(X
i

)
for the set of all i-element subsets of a set X . We use the

standard notation â to indicate that the term a under the hat is missing. For L-problems (in particular
for L = 1), we assume that the partition classes Xi of the underlying set X are ordered by size, i.e.
n1 � · · · � nM . However, we deviate from this convention when we carry out additive operations on
the ni numbers, like in (12), (13), (15).

For M-part (n1,n2, . . . ,nM; L1, L2, . . . , LM)-Sperner problems, we assume that the Xi partition
classes of the underlying set X are ordered by

L1

n1 + 1
� L2

n2 + 1
� · · · � LM

nM + 1
. (5)

The first, simpler convention is actually a special case of this more complicated convention.

3. Transversals and the convex hull method

This section contains a natural generalization of the convex hull method of [8] and [9] for M-part
(n1, . . . ,nM; L1, . . . , LM) Sperner families. Let X = X1 � X2 � · · · � XM be a partition of the n-element
underlying set X , where |Xi| = ni � 1 and n1 + · · · + nM = n. Let F ⊆ 2X be a family of sets. The
M-dimensional matrix P (F ) := (pi1,...,iM ): i j ∈ [0,n j] is called the profile-matrix of F , if

pi1,...,iM (F ) = ∣∣{F ∈ F : ∀ j |F ∩ X j| = i j
}∣∣.

This P (F ) can be viewed as a point of the Euclidean space RN , where N = (n1 +1)(n2 +1) · · · (nM +1);
and when it is convenient, we will consider it as a vector in this space as well.

Let α ⊆ RN be a finite point set. Let 〈α〉 denote the convex hull of the point set, and ε(α) its
extreme points. It is well known that 〈α〉 is equal to the set of all convex linear combinations of its
extreme points.

Let A ⊆ 22X
be a family of families of sets. Let μ(A) denote the set of all profile-matrices of the

families in A, i.e.

μ(A) = {
P (F ): F ∈ A

}
.

Then the extreme points ε(μ(A)) are integer vectors and they are profile-matrices of families from A.
The knowledge of ε(μ(A)) has tremendous impact on solving extremal problems for A. For any

linear objective function w whose variables are the entries of profile-matrices, w attains the value
max{w(p): p ∈ μ(A)} at some point of ε(μ(A)). Let W ⊆ ε(μ(A)) denote the set of extreme points,
where the maximum is attained. The objective function can be, for example, the cardinality of the
families of sets, since the cardinality of a family F is equal to the sum of all entries in its profile-
matrix, and therefore it is linear. A similar argument applies to the volume of the family, i.e. the total
sum of the cardinalities of the elements in the family.
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The following simple observations will be useful later:

Lemma 3.1.

(i) The profile-matrix P (F ) of any family F ∈ A, which maximizes w, is a convex linear combination of
profile-matrices of elements of W .

(ii) If a linear function f vanishes on all profile-matrices in W , then in every point of μ(A) maximizing w,
f vanishes as well.

P.L. Erdős and G.O.H. Katona developed in [9] a general method to determine the extreme points
in ε(μ(A)). To present their results, set Π = [0,n1] × · · · × [0,nM ], and let I denote a subset of Π .
Let T (I) denote the M-dimensional 0-1 matrix, in which

Ti1,...,iM (I) =
{

1, if (i1, . . . , iM) ∈ I,

0, if (i1, . . . , iM) /∈ I.

Furthermore, let S(I) be the M-dimensional matrix, in which

Si1,...,iM (I) =
{(n1

i1

) · · · (nM
iM

)
, if (i1, . . . , iM) ∈ I,

0, if (i1, . . . , iM) /∈ I,
(6)

and let

I(F ) := {
(i1, . . . , iM) ∈ Π : Pi1,...,iM (F ) �= 0

}
.

Recall that a family of subsets of an M-partitioned underlying set is called homogeneous, if for any
set, the sizes of its intersections with the partition classes already determine whether the set belongs
to the family or not. It is easy to see the equivalence of the following two definitions:

(i) a family F ⊆ 2X is homogeneous if and only if P (F ) = S(I) for a certain set I ⊆ Π ,
(ii) a family F ⊆ 2X is homogeneous if and only if P (F ) = S(I(F )).

Homogeneous families will play an important role later in this paper.
We call an I ⊆ Π a transversal, if there are no two elements of I differing in exactly one co-

ordinate. If F is a homogeneous M-part Sperner family, then I(F ) is a transversal. We call an
I ⊆ Π an (L1, L2, . . . , LM)-transversal, if there are no Li + 1 elements of I , any two of them differ-
ing from each other only in the ith coordinate, for any fixed i ∈ [M]. If F is a homogeneous M-part
(n1, . . . ,nM; L1, L2, . . . , LM)-Sperner family, then I(F ) is an (L1, L2, . . . , LM)-transversal.

Lemma 3.2. If I is an (L1, . . . , LM)-transversal, then for every i ∈ [M]

|I| � Li

ni + 1

M∏
j=1

(n j + 1). (7)

Proof. The statement is almost trivial: deleting the ith coordinate from the elements of I leaves at
most (n1 + 1) · · · (nM + 1)/(ni + 1) distinct elements. None of these elements may have more than Li
different pre-images, since otherwise I would fail being an (L1, . . . , LM)-transversal. �

We call an (L1, . . . , LM)-transversal I (and also the corresponding homogeneous M-part (n1, . . . ,nM;
L1, . . . , LM)-Sperner family) full if I shows equality in (7) for some i. In another paper with K. Engel
[3] we prove that full transversals always exist.

P.L. Erdős and G.O.H. Katona [9] characterized the extreme points of the convex hull of the profile-
matrices of M-part L-Sperner families.
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Theorem 3.3. (See [9, Theorem 3.6].) If A denotes the set of M-part L-Sperner families on X, then

ε
(
μ(A)

)= {
S(I): I is an L-transversal

}
.

Following the arguments of P.L. Erdős and G.O.H. Katona [9], it is not difficult to prove the following
slightly more general result.

Theorem 3.4. Let A denote the set of M-part (n1, . . . ,nM; L1, . . . , LM)-Sperner families on X. Then we have:

ε
(
μ(A)

)= {
S(I): I is an (L1, . . . , LM)-transversal

}
.

Proof. We say that L is a product-chain of X , if the ordered n-tuple L = (x1, . . . , xn) is a permutation
of X = X1 � X2 � · · · � XM such that

X j = {xi: i = n1 + · · · + n j−1 + 1, . . . ,n1 + · · · + n j}
that is L is a juxtaposition of permutations of X1, X2, . . . , XM , in this order. Furthermore, we say that
a subset H ⊆ X is initial with respect to L, if for all j = 1,2, . . . , M we have

H ∩ X j = {xn1+···+n j−1+1, . . . , xn1+···+n j−1+|H∩X j |},
i.e. H ∩ X j is an initial segment in the permutation of X j . If H ⊆ 2X then H(L) denotes those mem-
bers of H which are initial with respect to L. It is clear that the profile-matrix P (H(L)) is a 0,1
matrix. Similarly, for B ⊆ 22X

let B(L) := {H(L): H ∈ B}. Then clearly ε(μ(B(L))) = μ(B(L)) holds,
in other words, all profile-matrices from μ(B(L)) are extreme points, since no 0-1 vector is a convex
linear combination of other 0-1 vectors.

In order to find points defined by homogeneous families among the extremal points, the following
two results were proved by P.L. Erdős and G.O.H. Katona in [9]:

Theorem 3.5 (Blowing up the product-chain). (See [9, Lemma 3.1].) Suppose that B ⊆ 22X
such that

ε(μ(B(L))) = μ(B(L)) does not depend on the choice of L. Then

μ(B) ⊆ 〈{
S(I): T (I) ∈ ε

(
μ
(
B(L)

))
for some I ⊆ Π

}〉
(8)

holds, where 〈· · ·〉 denotes the convex hull.

Theorem 3.6. (See [9, Theorem 3.2].) Suppose that B ⊆ 22X
satisfies the following two conditions:

the set ε
(
μ
(
B(L)

))= μ
(
B(L)

)
does not depend on L, (9)

for all I ⊆ Π, T (I) ∈ μ
(
B(L)

)
implies S(I) ∈ μ(B). (10)

Then

ε(B) = {
S(I): T (I) ∈ μ

(
B(L)

)
for some I ⊆ Π

}
. (11)

To finish the proof of Theorem 3.4, recall that A is the set of M-part (n1, . . . ,nM; L1, . . . , LM)-
Sperner families on X , and let L be an arbitrary product-chain. By definition, there are no (Li + 1)

elements in A(L) that pairwise differ in Xi only. Therefore, for every F ∈ A, I(F (L)) forms an
(L1, . . . , LM)-transversal. As A is invariant to renumbering the elements of Xi , μ(A(L)) does not de-
pend on the choice of L, and condition (9) of Theorem 3.6 holds. Condition (10) also holds, since for
any (L1, . . . , LM)-transversal I the homogeneous system S(I) belongs to μ(A). Hence the conclusion
of Theorem 3.6, equality (11), also holds, so the extreme points of μ(A) are the profile-matrices of
homogeneous M-part (n1, . . . ,nM; L1, . . . , LM)-Sperner families. �
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0 1 2 3 4 5
0 1 1
1 25 50 25
2 100 100 50
3 50 100 100
4 25 50 25
5 1 1

Fig. 1. Maximum size homogeneous system without full transversal.

Corollary 3.7. There exist maximum size M-part (n1, . . . ,nM; L1, . . . , LM)-Sperner families that are homoge-
neous.

Which families are they? Lemma 3.1(i) guarantees that the profile-matrix of any maximum size
M-part (n1, . . . ,nM; L1, . . . , LM)-Sperner family is a convex linear combination of the profile-matrices
of some maximum size homogeneous ones. However, maximum size homogeneous systems do not
always correspond to full transversals.

Example 3.8. There are maximum size homogeneous systems that do not correspond to full transver-
sals.

Consider the following example: n1 = n2 = 5 and L1 = L2 = 3. Full transversals contain 18 ele-
ments, but (one of) the maximum size homogeneous system’s profile-matrix has only 16 entries (see
Fig. 1).

4. A new construction and two new results on M-part L-Sperner families

As we mentioned, G.O.H. Katona [21,23] and D. Kleitman [25] observed that the conclusion of the
Sperner theorem does not hold for M-part Sperner families for M � 3. Here we give a simple new
construction to show this fact.

Example 4.1. Consider an M-partitioned set X such that M � 3, |Xi| = m. Define a family of sets
F (M,m) as

F (M,m) =
{

E ⊆ X: |E| ≡
⌊

Mm

2

⌋
(mod m + 1)

}
.

Then F (M,m) is an M-part Sperner family, such that |F (M,m)| exceeds the middle level.

Indeed, if E � F , then |F \ E| = |F | − |E| � m + 1, and therefore E and F must differ on at least
two partition classes. Furthermore, F (M,m) contains the whole middle level in X , i.e.

( X
�Mm/2�

)
, and,

in addition, it also contains sets of size � Mm
2 � + m + 1 � Mm, since M > 2.

We obtain some new results below for the maximum size of M-part L-Sperner families using only
elementary tools, i.e. without convex hull theory.

Let f L(n1, . . . ,nM) be the maximum size of an M-part L-Sperner family, with given partition
classes of sizes n1 � · · · � nM � 1. For L = 1 we omit the subscript.

Let F L(n; M) denote the maximum size of an M-part L-Sperner family on an underlying set X of
size n. (Here we do not fix the M-partition or its class sizes.) For L = 1, again, we omit the subscript.

J.R. Griggs and D. Kleitman [18] made the following useful observation, originally for L = 1.
For i ∈ [M],

f L(n1, . . . ,nM) � 2 f L(n1, . . . ,ni−1,ni − 1,ni+1, . . . ,nM). (12)



710 H. Aydinian et al. / Journal of Combinatorial Theory, Series A 118 (2011) 702–725
We allow ni = 1 in (12), and in this case we delete the zeros from the argument of f on the
RHS of (12). Indeed, assume that F is a maximum size M-part L-Sperner family for a parti-
tion n1,n2, . . . ,nM . Fix an x ∈ Xi , and consider F1 = {F ∈ F : x /∈ F }, F2 = {F ∈ F : x ∈ F }, and
F ′

2 = {F \ {x}: F ∈ F2}. Now F1 and F ′
2 are both M-part L-Sperner families on the underlying set

X1 ∪· · ·∪ Xi−1 ∪ Xi \ {x}∪ Xi+1 ∪· · ·∪ XM ((M − 1)-part L-Sperner if ni = 1); |F2| = |F ′
2|, F = F1 ∪ F2

is a disjoint union, and for j = 1,2 we have |F j| � f L(n1, . . . ,ni−1,ni − 1,ni+1, . . . ,nM). Hence (12)
holds.

Furthermore, we note that (12) is tight in the following important special case:

Lemma 4.2. For M � 4,

f (

M︷ ︸︸ ︷
n1,n2,1, . . . ,1 ) = f (n1,n2,1)2M−3.

Proof. By (12), we only have to prove f (n1,n2,1, . . . ,1) � f (n1,n2,1)2M−3. This statement is vac-
uously true for M = 3, and it follows for all M � 4 from f (n1,n2, . . . ,nM−2,1,1) � 2 f (n1,n2, . . . ,

nM−2,1), which we show here.
Assume that F is a maximum size n1,n2, . . . ,nM−2,1 (M − 1)-part Sperner family with

XM−1 = {x}. Set F1 = {F ∈ F : x /∈ F }, F2 = {F ∈ F : x ∈ F }, F ′
1 = {F ∪ {x}: F ∈ F1}, F ′

2 = {F \ {x}:
F ∈ F2}, F ′ = F ′

1 ∪ F ′
2. Take XM = {y}, and the M-part Sperner family {F ∪ {y}: F ∈ F } ∪ F ′ on

X1 � X2 � · · · � XM−1 � XM . The cardinality of this family is 2 f (n1,n2, . . . ,nM−2,1). �
Another well-known general observation is that for M � 2,

f L(n1,n2, . . . ,nM) � f L(n1,n2, . . . ,nM−2,nM−1 + nM). (13)

Indeed, any (M − 1)-part L-Sperner family for the partition X1 � · · · � XM−2 � (XM−1 ∪ XM) is also an
M-part L-Sperner family for the partition X1 � X2 � · · · � XM−1 � XM .

P.L. Erdős and G.O.H. Katona [11] solved the 3-part Sperner problem in the special case n3 = 1
exactly:

Lemma 4.3. (See [11].) If n1 or n2 is odd, then

f (n1,n2,1) = 2

(
n − 1

�n−1
2 �

)
,

otherwise, if both of them are even,

f (n1,n2,1) = 2

(
n1 + n2

n1+n2
2

)
−
((

n1
n1
2

)
−
(

n1
n1
2 − 1

))((
n2
n2
2

)
−
(

n2
n2
2 − 1

))
.

This gives us a characterization of the 3-part Sperner problems where one of the partition sizes is
1 and the maximum size of the family is

( n
�n/2�

)
:

Lemma 4.4. f (n1,n2,1) = ( n
�n/2�

)
if and only if n is even, i.e. n1 + n2 is odd.

Proof. From Lemma 4.3 we have that if n1 + n2 is odd, then f (n1,n2,1) = 2
( n−1
� n−1

2 �
) = ( n

�n/2�
)
, and

otherwise f (n1,n2,1) >
( n
�n/2�

)
. �

Now we are in a position to characterize the M-part Sperner problems, whose solution is the
classic formula

( n
�n/2�

)
.

Theorem 4.5. For M � 3, we have f (n1, . . . ,nM) = ( n
�n/2�

)
if and only if M = 3, n3 = 1 and n is even.
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Proof. First assume that M = 3, n3 = 1 and n even. Lemma 4.4 implies the required equality.
For the other direction of the equivalence, assume that f (n1, . . . ,nM) = ( n

�n/2�
)
. If n1 � �n/2	 − 1,

then �n/2� + (n1 + 1) � n, and the family

F = {
E ⊆ X: |E| ≡ �n/2� mod (n1 + 1)

}
is an M-part Sperner family with |F | >

( n
�n/2�

)
, contradicting the hypothesis that we have. Hence we

must have n1 � �n/2	.
The rest of the proof will take the form of a case analysis.

Case 0. M = 3 and n3 = 1. Lemma 4.4 handles this case.

Case 1. M = 3, n2 � n3 � 2. Take F ′ = ( X
�n/2�

)
. Now we will transform F ′ into a strictly bigger M-part

Sperner family. This will contradict the hypothesis that we have.
F ′ contains all those sets that contain X2 ∪ X3 as a subset and have exactly �n/2� − n2 − n3 ele-

ments from X1. To obtain F , remove all these sets from F ′ , but add all sets that contain X2 ∪ X3 and
has exactly �n/2�−n3 +1 elements from X1. We removed

( n1�n/2�−n2−n3

)
sets and put back

( n1�n/2�−n3+1

)
sets. Observe that F is a 3-part Sperner family with the given parts: indeed, if two members of F
have different cardinalities, then the difference in their sizes is n2 +1. Assume that one set is included
in another, and the difference falls into a single class Xi . By the size of the difference this class must
be X1. But then, by our construction, the smaller set is no longer in F . We are going to show that(

n1

�n/2� − n3 + 1

)
>

(
n1

�n/2� − n2 − n3

)
, (14)

which will conclude this case. Observe that �n/2� − n2 − n3 = �n1+n2+n3
2 � − n2 − n3 � n1−n2−n3

2 <
n1
2 .

We have either⌊
n

2

⌋
− n2 − n3 <

⌊
n

2

⌋
− n3 + 1 � n1

2
,

when we have (14), or⌊
n

2

⌋
− n2 − n3 <

n1

2
�
⌊

n

2

⌋
− n3 + 1.

In this alternative, (14) is equivalent to

n1

2
−
⌊

n

2

⌋
+ n2 + n3 >

⌊
n

2

⌋
− n3 + 1 − n1

2
,

which is equivalent to n1 + n2 + 2n3 − 1 = n + n3 − 1 > 2�n/2�. The last inequality can only fail for
n3 = 1 and n even.

Case 2. M � 4. We are going to show that f (n1,n2, . . . ,nM) >
( n
�n/2�

)
, and therefore we have nothing

to prove. Assume for contradiction that f (n1,n2, . . . ,nM) = ( n
�n/2�

)
, and we get by (13),(

n

�n/2�
)

= f (n1,n2, . . . ,nM) � f L(n1,n2, . . . ,nM−2,nM−1 + nM) �
(

n

�n/2�
)

. (15)

Reducing M by the repeated application of (15), joining the two smallest classes, we reach an
n′

1,n′
2,n′

3 3-part Sperner problem with f (n′
1,n′

2,n′
3) = ( n

�n/2�
)
. According to Case 1, we must have

n′
3 = 1. As this 1 was not added to any other ni in the last application of (15), the only possibility

is that n′
2 = 2 was obtained as a sum of two 1’s. Hence, before a single application of (15), we had

M = 4 and n2 = n3 = n4 = 1. We reach contradiction with (15): f (n − 3,1,1,1) = 2 f (n − 3,1,1) =
4
( n−2
� n−2

2 �
)
>
( n
�n/2�

)
, where the equalities hold by Lemmata 4.2 and 4.3, and the inequality holds as one

of n and n − 1 must be odd. �
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Recall that F L(n; M) is the largest size of an M-part L-Sperner family with unspecified class-sizes.
Griggs [16] showed that

F L(n; M) � L2M−2
(

n

�n/2�
)

. (16)

A. Sali [30] obtained a general Sperner-type bound for products of symmetric chain orders, which
in the special case of the Boolean lattice says that there exists a constant c > 0 such that

F L(n; M) � cL
√

M

(
n

�n/2�
)

. (17)

This has been the best upper bound. No specific value for the constant c was known. Z. Füredi,
J. Griggs, A.M. Odlyzko, and J.M. Shearer [14] proved that for fixed M and L, for n → ∞, the
asymptotic formula F L(n; M) ∼ φL(M)

( n
�n/2�

)
holds; and as M → ∞, the asymptotic formula φL(M) ∼

L
√

π M
4 log M holds.

We show next, through a series of simple observations, that one can take c < 1 in (17), making
a common generalization and strengthening of (1) and (17). Note that the asymptotic results of [14]
cited above do not provide a uniform bound for all values of n, M, L.

Theorem 4.6. For every n, M � 3,

F L(n; M) �

⎧⎪⎨⎪⎩
L
√

M
2 e

5
18n
( n
�n/2�

)
, if n even,

L
√

M(1+1/n)
2 e

5
18(n+1)

( n
�n/2�

)
, if n odd;

(18)

i.e. F L(n; M) < L
√

M
( n
�n/2�

)
in both cases.

Proof. Select n1,n2, . . . ,nM such that f L(n1, . . . ,nM) = F L(n; M). Start with the bound (12):

f L(n1, . . . ,nM) � f L(n1,n2)2n−n1−n2 . (19)

Combine (19) with

f L(n1,n2) � F L(n1 + n2;2) � L

(
n1 + n2

�n1+n2
2 �

)
, (20)

where we used (16) for the second estimate, to obtain

F L(n; M) � L

(
n1 + n2

�n1+n2
2 �

)
2n−n1−n2 . (21)

Robbins’ formula [29] gives uniformly valid and asymptotically tight bounds for the factorial:(
n

e

)n√
2πn · e

1
12n+1 < n! <

(
n

e

)n√
2πn · e

1
12n . (22)

Little calculation from (22) gives that for all even integers m � 1,

e− 5
18m

√
2

π

2m

√
m

�
(

m
m
2

)
�
√

2

π

2m

√
m

, (23)
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and for m odd, from
( m

m−1
2

)= 1
2

(m+1
m+1

2

)
and (23), we obtain

e− 5
18(m+1)

√
2

π

2m

√
m + 1

�
(

m
m−1

2

)
�
√

2

π

2m

√
m + 1

.

For n even, apply (23) to the RHS of inequality (21) to get

F L(n; M) � L
2n1+n2 · 2n−n1−n2

√
n1 + n2

� L

√
n√

n1 + n2
e

5
18n

(
n

�n/2�
)

. (24)

Since n1 � · · · � nM , we have n
n1+n2

� M
2 , and hence the result follows. For n odd, the last term in (24)

changes to L
√

n+1√
n1+n2

e
5

18(n+1)
( n
�n/2�

)
, and the inequality n+1

n1+n2
� M

2 (1 + 1/n) finishes the proof. �
Note that Theorem 4.6 is pretty tight for L = 1, as it is shown by (2).

Conjecture 4.7. For L1 = · · · = LM , the function F L(n, M) takes its maximum value when the numbers ni are
as equal as possible, i.e. n1 − nM � 1.

5. k-fold M-part Sperner property

Let us be given a partition of the underlying set X = X1 � X2 � · · · � XM into nonempty parts, and
F ⊆ 2X be a family of sets. For a k � 1, we say that F is a k-fold M-part Sperner family, if for every
E, F ∈ F , E � F implies that∣∣{i: (F \ E) ∩ Xi �= ∅}∣∣> k.

Thus for k = 1 we get back the definition of M-part Sperner families. Let us denote by g(n1, . . . ,nM;k)

the maximum size of a k-fold M-part Sperner family with class sizes n1, . . . ,nM , and

G(n, M,k) = max
n1,...,nM

g(n1, . . . ,nM;k)

with
∑

ni = n, i.e. unspecified class sizes.
Note that for 1 � k < M � n, any usual (i.e. 1-part) Sperner family is a k-fold M-part Sperner family

for any M-partition of X , thus

G(n, M,k) � g(n1, . . . ,nM;k) � F1(n;1) =
(

n

�n/2�
)

.

As the following theorem shows, equality holds if, in addition, we have M � 2k.

Theorem 5.1. For integers k,n, M satisfying 1 � k < M � min(2k,n), and for any positive integers n1, . . . ,nM

such that
∑

ni = n, we have

g(n1, . . . ,nM;k) = G(n, M,k) =
(

n

�n/2�
)

, (25)

and moreover, for k � 2 any maximum size family is
( X
�n/2�

)
or
( X
�n/2�

)
.

Proof. If k = 1, then M = 2 and the statement is proved in Theorem 1.1. So assume k � 2.
The first part of the statement is almost trivial. Let F be a k-fold M-part Sperner family, given

partition sizes n1 � · · · � nM . Denote X ′ = X1 ∪ · · · ∪ Xk and X ′′ = X − X ′ . Note now that F is a 2-
part Sperner family with respect to the partition X ′ ∪ X ′′ . Hence |F | �

( n
�n/2�

)
, by the 2-part Sperner

theorem, Theorem 1.1. Thus we have G(n, M,k) �
( n
�n/2�

)
, which proves Eq. (25).
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Proof of characterization: Suppose that F is a maximum size k-fold M-part Sperner family on a
partition X = X1 � · · · � XM for some 2 � k < M � min(2k,n), and, contrary to our statement, F �=( X
�n/2�

)
and F �= ( X

�n/2	
)
. As we have seen before, F can be considered as a 2-part Sperner family with

a partition X = X ′ ∪ X ′′ , with |X ′| = N1 = n1 + · · · + nk , |X ′′| = N2 = n − N1, N1 � N2, where these
new classes are unions of some original classes. Maximum size 2-part Sperner systems have been
completely characterized: They are homogeneous families where the N2 + 1 levels of the smaller
partition class are paired with the largest N2 + 1 levels of the larger partition class in a “well-paired”
manner: larger level from one partition class is paired with larger level of the other partition class.
To be more precise, recall that I(F ) = {(|A ∩ X ′|, |A ∩ X ′′|): A ∈ F }, then:

Theorem 5.2. (See P.L. Erdős, G.O.H. Katona [10].) Every maximum size 2-part Sperner family is a homogeneous
family with full transversal I(F ) = {(ϕ(i), i): i ∈ [0, N2]}. Furthermore, F is “well paired” in the following
sense: values of ϕ(i) make an interval of N2 + 1 numbers corresponding to the N2 + 1 largest levels in 2[N1] ,
and

(N2
i

)
<
(N2

j

)
implies

( N1
ϕ(i)

)
�
( N1
ϕ( j)

)
, for all 0 � i, j � N2 .

Note that in particular Theorem 1.1 and the theorem cited above imply that ϕ(i) ∈ {�n/2� − i,
�n/2	 − i, N1 − �n/2� + i, N1 − �n/2	 + i} for all i ∈ [0,n2], and that our maximum size family F is
homogeneous.

Let us define a partial ordering between elements of Π := [0, N1] × [0, N2]. We say that (i1, j1) �
(i2, j2) iff i1 � i2 and j1 � j2. Thus, our homogeneous family F is an antichain iff I(F ) ⊆ Π is an
antichain.

For ease of argument, for any two sets A, B ⊆ X , define

t(A, B) := ∣∣{i: A ∩ Xi = B ∩ Xi}
∣∣.

Note that the fact that F is a k-fold M-part Sperner family can be restated as follows: for any
E, F ∈ F such that E � F we have t(F \ E,∅) = t(X \ (F \ E), X) = t(E, F ) < M − k =: r, where
1 � r � min(k,n − k); an observation, which we will use frequently.

For simplicity we identify 2X with 2X ′ × 2X ′′
, and use the notation S(i, j) = (X ′

i

)× (X ′′
j

)
.

We start with simple observations:

Claim 5.3. (�N1/2�, �N2/2	) or (�N1/2	, �N2/2�) ∈ I(F ).

Proof. When 2 � n or both N1, N2 are even, the claim directly follows from the well-pairing condition
in Theorem 5.2. If n is even and both N1 and N2 are odd, then the only extra possibility that The-
orem 5.2 allows and we need to exclude is when ( N1−1

2 , N2−1
2 ) and ( N1+1

2 , N2+1
2 ) are both in I(F ).

But in this case there are E � F such that E ∈ S( N1−1
2 , N2−1

2 ), F ∈ S( N1+1
2 , N2+1

2 ) and, since k � 2, we
have t(E, F ) � M − |F \ E| = M − 2 = r + k − 2 � r, which is a contradiction. �

Let

(�1, �2) ∈ I(F ) ∩ {(�N1/2�, �N2/2	), (�N1/2	, �N2/2�)}.
Define t0 := max t(F ,∅), t1 := max t(F , X), where the maximum is taken over all F ∈ S(�1, l,2 ). It is
not hard to see that the following is true.

Claim 5.4.

(i) If C ⊆ E � F ⊆ D, then t(E, F ) � t(C, D) = t(D − C,∅).
(ii) There exists (i, j) ∈ I(F ) such that (i, j) < (�1, �2) or (i, j) > (�1, �2).

(iii) Suppose (i, j) < (�1, �2) (resp. (i, j) > (�1, �2)). Then max t(F , E) � t0 (resp. max t(F , E) � t1) where
E ∈ S(i, j), F ∈ S(�1, �2), E � F .

(iv) t0, t1 � �k/2� + �r/2�.
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Proof. To see (i), observe that if C ⊆ E � F ⊆ D , then (D − C) ∩ Xi = ∅ implies that E ∩ Xi = F ∩ Xi .
Therefore

t(D − C,∅) = ∣∣{i: (D − C) ∩ Xi = ∅}∣∣� ∣∣{i: F ∩ Xi = E ∩ Xi}
∣∣= t(E, F ).

(ii) follows from the fact that I(F ) is well paired and F is not a single level of X .
Assume for the rest that (i, j) < (�1, �2) (the other direction is similar). For (iii), let E ∈ S(i, j),

F ∈ S(�1, �2) with E � F , and use part (i) with C = ∅ and D = F . We get that t(E, F ) � t(F ,∅), which
implies the statement.

To see (iv), note that
∑�k/2	

s=1 ns � �1 and
∑�r/2	

s=1 nk+s � �2. This implies that we can use part (i)

with C = E = ∅ and D = (
⋃�r/2	

s=1 Xs) ∪ (
⋃�s/2	

s=1 Xk+s), and an appropriate F ∈ S(�1, �2). Now

t0 � t(F ,∅) � t(D,∅) = ∣∣{i: D ∩ Xi = ∅}∣∣= �k/2� + �r/2�. �
Observe now that if t0 � r and (i, j) < (�1, �2) for some (i, j) ∈ I(F ), or t1 � r and (i, j) > (�1, �2)

for some (i, j) ∈ I(F ), then we are done, since we have an E, F ∈ F such that E � F and t(E, F ) � r,
which is a contradiction. If r < k or r = k is even, then t0, t1 � r. Thus, we have to concern ourselves
only with the case when M = 2k and k � 3 is odd, and the relevant (perhaps both) of t0, t1 is equal
to k − 1, which we assume for the rest of this proof.

Assume that there are (i0, j0) ∈ I(F ) such that (i0, j0) < (�1, �2) (the other case can be proved
similarly). We will use the following notation for brevity:

α1 = n1 + n2 + · · · + n k−1
2

,

β1 = n1 + n2 + · · · + n k−1
2

+ n k+1
2

= α1 + n k+1
2

,

α2 = nk+1 + nk+2 + · · · + n 3k−1
2

,

β2 = nk+1 + nk+2 + · · · + n 3k−1
2

+ n 3k+1
2

= α2 + n 3k+1
2

,

and for i = 1,2,

Ai =
(i−1)k+ k−1

2⋃
j=(i−1)k+1

Xi and Bi =
(i−1)k+ k+1

2⋃
j=(i−1)k+1

Xi = Ai ∪ X
(i−1)k+ k+1

2
.

This gives in particular that |Ai | = αi and |Bi | = βi .

Claim 5.5. . The following statements hold:

(i) α1 < �1 � β1 and α2 < �2 � β2 .
(ii) i0 < n k−1

2
� α1 and j0 < n 3k−1

2
� α2 .

(iii) β1 − �1 � �2 − α2 or �1 − α1 � β2 − �2 .
(iv) If β1 − �1 � �2 − α2 then (�1 + �2 − α2,α2) ∈ I(F ).
(v) If �1 − α1 � β2 − �2 then (α1, �1 + �2 − α1) ∈ I(F ).

Let F ∈ S(�1, �2) and we will have E � F .

Proof. (i): Suppose E ∈ S(i0, j0) (since (i0, j0) < (�1, �2), this can be done). Since n1 � n2 � · · · � nk
and Ni = n(i−1)k+1 + · · · + nik , we must have �1 � �N1/2	 � β1 and �2 � �N2/2	 � β2. If �1 � α1, then
we can assume that F ⊆ A1 ∪ B2. We use Claim 5.4(i) with C = ∅ and D = A1 ∪ B2, to obtain

t(E, F ) � t(A1 ∪ B2,∅) = k + 1

2
+ k − 1

2
= k,

which is a contradiction. The case �2 � α2 can be handled similarly.
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(ii): Suppose E ∈ S(i0, j0). If i0 � n k−1
2

, then we can assume that X(k−1)/2 ⊆ E ⊆ F ⊆ B1 ∪ B2.

We use Claim 5.4(i) with C = X(k−1)/2 and D = B1 ∪ B2, to obtain

t(E, F ) � t
(
(B1 ∪ B2) − X(k−1)/2,∅

)= k + 1

2
+ k − 1

2
= k,

which is a contradiction. The case j0 � n 3k+1
2

can be handled similarly.

(iii): β1 −�1 < �2 −α2 and �1 −α1 < β2 −�2 together imply that n k+1
2

= β1 −α1 < β2 −α2 = n 3k+1
2

,

a contradiction.
(iv): Since I(F ) is well paired and (�1, �2) ∈ I(F ), for every j ∈ [N2] either (�1 + �2 − j, j) ∈ I(F )

or (�1 − (�2 − j), j) ∈ I(F ). Thus, if β1 − �1 � �2 − α2 and (iv) is false, then we must have (�1 − �2 +
α2,α2) ∈ I(F ). Now, (�1 − �2 + α2,α2) < (�1, �2), thus we can assume that E ∈ S(�1 − �2 + α2,α2),
A2 ⊆ E and F ⊆ B1 ∪ B2. We use Claim 5.4(i) with C = A2 and D = B1 ∪ B2, to obtain

t(E, F ) � t(B1 ∪ X(3k+1)/2,∅) = k − 1

2
+ 2(k − 1)

2
> k,

which is a contradiction. The case (v) can be handled similarly. �
To finish the proof of Theorem 5.1, observe that by part (iii) of Claim 5.5 we have β1 −�1 � �2 −α2

or �1 − α1 � β2 − �2.
If β1 − �1 � �2 − α2, then by parts (ii) and (iv) of Claim 5.5 we have j0 < α2 < �2 � β2 and

i0 < α1 < �1 < �1 + �2 − α2 < β1, and we can choose E ∈ S(i0, j0) and F ∈ S(�1 + �2 − α2,α2) such
that E � F ⊆ B1 ∪ A2. We use Claim 5.4(i) with C = ∅ and D = B1 ∪ A2, to obtain

t(E, F ) � t(B1,∪A2,∅) = k + 1

2
+ k − 1

2
= k,

which is a contradiction.
On the other hand if �1 − α1 � β2 − �2, then we get a contradiction similarly using parts (ii) and

(v) of Claim 5.5. Thus, we must have that, contrary to our initial assumption, F ∈ {( X
�n/2�

)
,
( X
�n/2	

)}
.

This finishes the proof of Theorem 5.1. �
Contrasting Theorem 5.1, it is not always the case that a k-fold M-part Sperner family has at most( n

�n/2�
)

elements. We follow the ideas of Example 4.1. Let N := n1 + · · · + nk , n = n1 + · · · + nM , and
assume N < �n/2�. Then we can define the family F as follows:

F = {
E ⊆ X: |E| ≡ �n/2� mod (N + 1)

}
.

It is easy to see that F is indeed a k-fold M-part Sperner family with more than
( n
�n/2�

)
elements. The

following Theorem 5.6 sets an upper bound on G(n, M,k) in the range that is the relative complement
of the range of Theorem 5.1.

Theorem 5.6. For given natural numbers k,n, M (2k < M � n) we have

G(n, M,k) �

⎧⎪⎨⎪⎩
√

M
2k e

5
18n
( n
�n/2�

)
, if n even,√

M(1+1/n)
2k e

5
18(n+1)

( n
�n/2�

)
, if n odd.

(26)

Proof. Assume F is a k-fold M-part Sperner family with M > 2k, and N1 := n1 + · · · + n2k . Then the
very same argument as in Theorem 4.6, together with equality (25), gives

|F | � G(N1,2k,k)2n−N1 =
(

N1

�N1/2�
)

2n−N1 .

The rest of the proof goes along the same lines as the proof of Theorem 4.6. �
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How good is the upper bound in Theorem 5.6? We have the following lower bound, which is off
by a

√
k factor:

Theorem 5.7. Fixing M, k, and letting n → ∞, there are k-fold M-part Sperner families of size

G(n, M,k) = Ω

((
n

�n/2�
)√

M

k

)
.

Proof. We are going to use equal partition sizes n1 = · · · = nM = m, thus n = mM . To simplify the cal-
culations we assume that

√
m/2 is an integer. The condition n → ∞ is equivalent to m → ∞. We will

use the notation N = [m
2 −

√
m

2 , m
2 +

√
m

2 ]. Define I = {(x1, . . . , xM): ∀i, xi ∈ N} and the homogeneous
family B = {A: ∀i, |A ∩ Xi| ∈ N}, i.e. P (B) = S(I). The asymptotic normality of binomial coefficients
imply that for m → ∞,∑

i∈N

(
m

i

)
= Θ

(
2m),

and we easily obtain that |B| = Θ(2n) = Θ(
( mM

mM/2

)√
mM ).

For all � ∈ N , set ϕ(�) = � + √
m/2 − m/2, such that 0 � ϕ(�) �

√
m. Define for j ∈ [0,k(

√
m + 1)],

I j =
{

(x1, . . . , xM) ∈ I:
M∑

i=1

ϕ(xi) ≡ j mod k(
√

m + 1) + 1

}
.

Define B j = {A: (|A ∩ X1|, . . . , |A ∩ XM |) ∈ I j}, i.e. B j is the homogeneous family with P (B j) = I j . It is
clear that

⋃
j I j = I and hence

⋃
j B j = B.

We claim that every B j is a k-fold M-part Sperner family. Indeed, if U , V ∈ B j and U ⊂ V , then
|U − V | = |U | − |V | � k(

√
m + 1) + 1, and in any single part U and V can differ in at most

√
m

elements. Therefore they must differ on at least k + 1 parts.
Finally, at least one B j is at least as large as their average size, i.e.

max
i

|Bi| � |B|
k(

√
m + 1) + 1

= Ω

((
n

�n/2�
)√

M

k

)
. �

6. BLYM and homogeneity results on M-part (L1, . . . , LM )-Sperner families

6.1. M-part generalization of the BLYM inequality

The next result is a direct M-part generalization of Theorem 1.3:

Theorem 6.1. Let F be an M-part (L1, . . . , LM)-Sperner family on the underlying set X = X1 � X2 � · · · � XM

with |Xi| = ni for i ∈ [M]. Then for every k we have

∑
i1,...,iM

P i1,...,iM (F )(n1
i1

) · · · (nM
iM

) � Lk

M∏
i=1, i �=k

(ni + 1). (27)

By (5), the best upper bound in (27) is obtained for k = 1.

Proof. Take an arbitrary k and F ⊆ X \ Xk , and assume f i = |F ∩ Xi | for i �= k. Define F ′(F ) := {E ⊆ Xk:
F ∪ E ∈ F }. Then F ′(F ) is a “classical”, i.e. 1-part Lk-Sperner family, and therefore Theorem 1.3 gives∑

E∈F ′(F )

1(nk|E|
) � Lk. (28)
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From this we can write for any fixed f1, . . . , fk−1, fk+1, . . . , f M ,∑
F : F⊆X\Xk|F∩Xi |= f i , i �=k

∑
E∈F ′(F )

1(nk|E|
)∏

i: i �=k

(ni
f i

) � Lk.

Finally, summing up:

n1∑
f1=0

· · ·
n̂k∑

fk=0

· · ·
nM∑

f M=0

∑
F : F⊆X\Xk|F∩Xi |= f i , i �=k

∑
E∈F ′(F )

1(nk|E|
)∏

i: i �=k

(ni
f i

) � Lk

M∏
i=1, i �=k

(ni + 1), (29)

and (29) is clearly equivalent to (27). �
6.2. Results on homogeneity

Theorem 6.2. If equality holds everywhere in (5), i.e. ni
Li+1 is constant for i = 1,2, . . . , M, the RHS of (27)

simplifies to Lk
nk+1

∏M
i=1(ni + 1) for every k. In this special case equality in (27),

∑
i1,...,iM

P i1,...,iM (F )(μ
i1

) · · · (μ
iM

) = Lk

nk + 1

M∏
i=1

(ni + 1) (30)

implies that the family is homogeneous. In particular, the conclusion holds for n1 = n2 = · · · = nM = μ and
L1 = L2 = · · · = LM = L.

Proof. In the described case of equality, we have equality in (28), and by Theorem 1.3, Lk full levels
provide the E ’s. For any k, any subset of X \ Xk , can be extended with nothing or with everything
from any particular level of Xk to obtain an element of F . This amounts to the homogeneity of F . �
Example 6.3. The conclusion of Theorem 6.2 may fail, even for 2-part Sperner families, if they sat-
isfy (30), but they are not of maximum size.

Take L = 1, X = X1 ∪ X2 with X1 = {1,2,3}, X2 = {4,5}, thus n1 = 3 and n2 = 2. In this setup the
RHS of inequality (27) is n2 + 1 = 3. Consider now the following 2-part Sperner family

F := {{1}, {2}, {3}, {4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}}.
F is not homogeneous, as {4} ∈ F but {5} /∈ F . Still, equality holds in (27):∑

i, j

P i j(F )(3
i

)(2
j

) = 1(3
0

)(2
1

) + 1(3
3

)(2
1

) + 3(3
1

)(2
0

) + 3(3
2

)(2
2

) = 3 = n2 + 1.

Unfortunately, the following tempting conjecture is false:

“Conjecture” 6.4. If a maximum size M-part (L1, . . . , LM)-Sperner family F on the underlying set X = X1 �
X2 � · · · � XM with |Xi| = ni for i ∈ [M] satisfies (27) with equality for k = 1, then F is homogeneous.

Support for this conjecture are the cases M = 1 with any L (Theorem 1.3), M = 2, L = 1 (in [2]),
and whatever is covered by Theorem 6.2, including arbitrary M , L with equal class sizes. However,

Claim 6.5. “Conjecture” 6.4 is false, even for L = 1.
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Example A. Consider the following example: M = 2, n1 = 3, n2 = 2, X1 = {1,2,3}, X2 = {4,5}, and
L1 = L2 = 3. The homogeneous family F = F (I) with the transversal

I = {
(1,0), (1,1), (1,2), (2,0), (2,1), (2,2), (0,0), (0,1), (0,2)

}
is of maximum size and equality (27) holds for F . To obtain F ′ , remove one out of two elements
of type (0,1), say {5}, and add the element {1,2,3,5} of type (3,1), which was not in F . The new
family F ′ is 2-part 3-Sperner; it is not homogeneous but has maximum size. Moreover, equality
in (27) holds for F ′ as well.

Example B. An even stronger example with M = 3 and L = 1 is as follows. Take n1 = 2k+1 sufficiently
large, and n2 = n3 = 2. Take F = F (I), where I is the transversal:

I = {
(k,1,1), (k + 1,1,0), (k − 1,1,2), (k + 1,0,1), (k − 1,0,0),

(k,0,2), (k − 1,2,1), (k,2,0), (k + 1,2,2)
}
.

We claim that F is an optimal 3-part Sperner family with L = 1. (This is not difficult to check with
brute force.) Consider now the subfamily E corresponding to (k − 1,1,2).

Partition E into E1 ∪ E2 where E1 = ([2k+1]
k−1

) × {2k + 2} × {2k + 4,2k + 5} and E2 = ([2k+1]
k−1

) ×
{2k + 3} × {2k + 4,2k + 5}.

Replace now E2 by the family G = ([2k+1]
k+2

)× {2k + 3} × {2k + 4,2k + 5}, obtaining a new 3-part
Sperner family F ∗ which is not homogeneous. Clearly |F | = |F ∗| and F ∗ satisfies (27) with equal-
ity. (Note that we could have done similar replacement for (k − 1,2,1) or for both (k − 1,1,2) and
(k − 1,2,1). The idea in general is simple: if in an optimal homogeneous family F , one of two sym-
metric levels is not used then we can do a similar replacement.)

The following Claim may be useful for positive results on homogeneity.

Claim 6.6. Assume that an X = X1 � X2 � · · · � XM with |Xi| = ni for i ∈ [M] satisfies (5) with equalities,
and that every homogeneous maximum size M-part (n1, . . . ,nM; L1, . . . , LM)-Sperner family satisfies equal-
ity (30). Then every maximum size M-part (n1, . . . ,nM; L1, . . . , LM)-Sperner family is homogeneous.

Proof. Assume that F is a maximum size (n1, . . . ,nM; L1, . . . , LM)-Sperner family on X . The cardinal-
ity of any family is the sum of the entries of its profile vector, |F | =∑

i Pi(F ). Due to Theorem 3.4
the extreme points of the (n1, . . . ,nM; L1, . . . , LM)-Sperner polytope are profile vectors of homoge-
neous families, and therefore P (F ) = ∑

� λ�P (H�). We have |F | = ∑
i Pi(F ) = ∑

i

∑
� λ�Pi(H�) =∑

� λ�|H�|. As F is of maximum size, so are all H� ’s. By the assumption, all P (H�)’s satisfy (30). By
linearity, so does P (F ), and Theorem 6.2 implies the homogeneity of F . �
7. An exact conjecture and some possible tools to prove it

7.1. Main conjecture—the case L = 1, ni = 2� − 1

We will describe a conjecture for M-part Sperner families, where the partition sizes are all equal
and of the form 2� − 1 for some natural number �. This in particular means that the number of levels
within a single partition class is a power of 2.

Assume that a,b are natural numbers written in binary representation. We define the number
a ⊕ b as follows: write a ⊕ b in binary representation as well, and make the coefficient of 2i equal
to 1, if the coefficient of 2i was 1 in exactly one of the binary representations of a and b, otherwise 0.
With other words, consider the binary representations of a,b as vectors in Zk

2 for some sufficiently
large k, and let a ⊕ b be the number whose binary representation is the sum of these two vectors
in Zk

2. (This operation is also known as NIM addition.)
For example (1 + 2 + 23) ⊕ (1 + 22 + 23 + 24) = 2 + 22 + 24. Clearly ⊕ defines a group structure

on N, where 0 is the identity, every element has order 2. For every �, the set [0,2� −1] is a subgroup.
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For natural numbers j, t , let | j ∩ t| denote the number of powers of 2 that occur in the binary
representation of both j and t . For example, |8 ∩ 4| = 0, but |7 ∩ 19| = 2.

Let �� be the set of permutations on [0,2� − 1] that put the numbers
(2�−1
π�(i)

)
into decreasing

order. The only freedom in such a permutation is whether
(2�−1

k

)
or
( 2�−1

2�−1−k

)
comes first, i.e. π ∈ ��

precisely when {π(2i),π(2i + 1)} = {2�−1 + i,2�−i − 1 − i} for each i ∈ [0,2�−1 − 1].
The group structure immediately implies that for any choice of �, M , permutations π1, . . . ,πM ∈

�� , and j ∈ [0,2� − 1],

I j(π1, . . . ,πM) = {
(x1, x2, . . . , xM): xi ∈ [0,2� − 1

]
, and

(π1)
−1(x1) ⊕ · · · ⊕ (πM)−1(xM) = j

}
(31)

is a full transversal, which corresponds to an M-part Sperner family. We define

I
(M)
j = {

I j(π1, . . . ,πM): πi ∈ ��

}
,

F
(M)
j = {

F : I(F ) ∈ I
(M)
j

}
.

It is easy to see that for any fixed j, any two elements of F
(M)
j have the same size. We leave it to the

reader to verify that for all i ∈ [0,2�−1 − 1] we have I
(M)
2i = I

(M)
2i+1, and also that for all F ∈ F

(M)
j we

have that for all π ∈ �� ,

|F | =
∑

i1⊕i2⊕···⊕iM= j

M∏
t=1

(
2� − 1

π(it)

)
. (32)

Let us see a few simple examples.
If � = 1, then the common size of the partition classes is 1. The elements of �1 are the two

permutations on the set {0,1}, I
(M)
0 = I

(M)
1 has two elements: the set of vectors whose coordinates

sum to an even number and the set of vectors whose coordinates sum to an odd number. F
(M)
0 =

F
(M)
1 = {{A: |A| is even}, {A: |A| is odd}}; so for F ∈ F

(M)
0 we have |F | = 2M−1.

If M = 1, then for j ∈ [0,2�−1 − 1] we have that I
(1)
2 j = I

(1)
2 j+1 = {{(2�−1 + j)}, {(2�−1 − 1 − j)}}, and

F
(1)
2 j = F

(2)
2 j+1 = {( X1

2�−1+ j

)
,
( X1

2�−1−1− j

)}
, in particular for F ∈ F

(1)
2 j we have |F | = ( 2�−1

2�−1+ j

)
.

We formulated a conjecture for the maximum size M-part Sperner family, if all parts have size
2� − 1:

Conjecture 7.1. For every M � 1 and every n1 = · · · = nM = 2� − 1,

(i) If F ∈ F
(M)
0 , then F is a maximum size M-part Sperner family.

(ii) If F is a homogeneous M-part Sperner family and F /∈ F
(M)
0 , then F is not of maximum size.

(iii) Furthermore, F (M(2� − 1); M), in which the class sizes are not given, is realized by F ∈ F
(M)
0 .

We have some limited evidence for this conjecture. For all M , it holds almost trivially for � = 1
(see Section 7.2), and we have a proof (see Theorem 7.3) that it holds for � = 2 as well. For M = 1
it is the so-called strong Sperner theorem, and for M = 2 it follows from Theorem 5.2. We verified
using computer that the conjecture holds for M = 3, � = 3. This conjecture is far from robust and
depends on having a product of binomial coefficients as weight in (6). Should we change the weight

Si1,...,iM (I) =∏M
t=1

(2�−1
π(it )

)
to
∏M

t=1 ait in (32), examples show that the transversal given in I
(M)
0 may

fail to maximize
∑

(i1,...,iM )∈I

∏M
t=1 ait , even if ak is a decreasing function of k and repeats every entry.

We believe (iii), as this is the case for M = 2.
Let F ∈ F

(M)

k . It is not difficult to bring |F | into closed form—assuming � is fixed and M varies.
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Theorem 7.2. For each k ∈ [0,2� − 1], let Fk ∈ F
(M)

k and set s(M)

k = |Fk|. Then we have that for any π ∈ �� ,

s(M)

k = 1

2�

2�−1∑
j=0

(−1)| j∩k|
(

2�−1∑
i=0

(−1)| j∩i|
(

2� − 1

π(i)

))M

,

or alternatively

s(M)
2 j = s(M)

2 j+1 = 2M−�

2�−1−1∑
h=0

(−1)| j∩h|
(

2�−1−1∑
i=0

(−1)|h∩i|
(

2� − 1

2�−1 + i

))M

.

Proof. Let a = (a0,a1, . . . ,a2�−1) be an arbitrarily fixed complex sequence, and set c(M)(a) = (c(M)
0 (a),

c(M)
1 (a), . . . , c(M)

2�−1
(a)), where

c(M)
j (a) =

∑
i1⊕i2⊕···⊕iM= j

M∏
s=1

ais .

Recall that the Fourier transform of the sequence a over Z2�

2 is the sequence A = (A0, A1,

. . . , A2�−1), where A j = ∑2�−1
i=0 (−1)|i∩ j|ai , and the inverse Fourier transform is described by

ak = 1
2�

∑2�−1
j=0 (−1)| j∩k| A j . Also recall that the jth component of the Fourier transform of the convo-

lution c(M)(a) is the Mth power of the jth component of the Fourier transform of a. Hence, applying
inverse Fourier transform to the Fourier transform of c(M)(a), we obtain

c(M)

k = 1

2�

2�−1∑
j=0

(−1)| j∩k|
(

2�−1∑
i=0

(−1)| j∩i|ai

)M

. (33)

Formula (33) can be further simplified somewhat if a2i = a2i+1 = bi for i ∈ [0,2�−1 − 1]. Namely,
terms in (33) with odd j are all zero, as

2�−1∑
i=0

(−1)|(2t+1)∩i|ai =
2�−1−1∑

i=0

(
(−1)|(2i)∩(2t+1)|bi + (−1)|(2i+1)∩(2t+1)|bi

)= 0.

Terms in (33) with even j also simplify, as

(−1)|(2i)∩(2t)|bi + (−1)|(2i+1)∩(2t)|bi = 2(−1)|i∩t|bi

and hence for j = 2t ,(
2�−1∑
i=0

(−1)| j∩i|ai

)M

= 2M

(
2�−1−1∑

i=0

(−1)|t∩i|bi

)M

.

Thus, for j ∈ [0,2�−1 − 1], we have

c(M)
2 j = c(M)

2 j+1 = 2M−�

2�−1−1∑
h=0

(−1)| j∩h|
(

2�−1−1∑
i=0

(−1)|h∩i|bi

)M

.

Note that by (32), the actual s(M)

k that we want to compute is obtained in this way as c(M)

k from ai =(2�−1
π(i)

)
and bi = ( 2�−1

2�−1+i

)
. It is easy to derive special cases: for � = 2 we have s(M)

0 = 2M−2(4M + 2M);

and for � = 3 we have s(M)
0 = 2M−3(64M + 20M + 48M + 8M). �
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Theorem 7.3. Part (i) of Conjecture 7.1 holds for every M � 1 with � = 2.

Proof. Note that by Theorem 3.4 it is enough to prove the conjecture for homogeneous families. Let
s(M)

j = |F | for F ∈ F
(M)
j . Theorem 7.2 gives

s(M)
j =

{
4M−1(2M + 1), if j ∈ {0,1},
4M−1(2M − 1), if j ∈ {2,3}.

The above equations imply that for M � 2 we have

4s(M−1)
j + 23(M−1) = s(M)

j . (34)

To prove the theorem, we do induction on M (the base case M = 1 is clear). Assume that the size
of any homogeneous (M − 1)-part Sperner family is at most s(M−1)

0 and let E be a homogeneous
M-part Sperner family. Let π ∈ �2, and for i ∈ [0,3] let Ei = {A − XM : A ∈ E , |A ∩ XM | = π(i)}.
Then the Ei ’s are disjoint (M − 1)-part Sperner families, so

∑
i |Ei | � 23(M−1) and |Ei | � s(M−1)

0 . Since

the sets E ′
i = {A ∪ B: A ∈ Ei, B ∈ ( XM

π(i)

)} partition E , we have |E | � 3|E0| + 3|E1| + |E2| + |E3| =
2(|E0| + |E1|) + (|E0| + |E1| + |E2| + |E3|) � 4s(M−1)

0 + 23(M−1) = s(M)
0 . �

We hope that the linear programming approach of Section 7.2 would help, but so far we could not
succeed.

Perhaps Conjecture 7.1 holds in a more general way, when not all parts are equal, but ni = 2�i − 1.
In this case the conditions for (31) would change to xi ∈ [0,2�i − 1] and πi ∈ ��i . For example, we
know that for n1 = 2t + 1 odd and n2 = · · · = nM = 3, the analogue of (31) with x1 ∈ [0,2t], and for
i > 1, xi ∈ [0,3], is optimal. However, for n1 = n2 = n3 = 2, the natural analogue of (31) gives 20 sets,
while it is easy to construct 22 from the following transversal: (1,1,1), (0,0,1), (2,2,1), (0,1,2),
(2,0,2), (1,2,2), (2,1,0), (1,0,0), (0,2,0).

7.2. Graph theoretical and optimization reformulations

In this subsection we describe a graph theoretical reformulation of the M-part 1-Sperner prob-
lem. For that end, let F and G be undirected graphs. Their Cartesian or box product is F � G where
V (F � G) = V (F ) × V (G) and (uv, xy) ∈ E(F � G) iff u = x and (v, y) ∈ E(G) or (u, x) ∈ E(F ) and
v = y. It is easy to see that in the Cartesian product of M graphs the vertices are M-vectors of ver-
tices, and two M-vector is connected in the product if M − 1 coordinates of the vectors are equal
with each other, while the Mth coordinate forms an edge in the corresponding graph.

Consider now the graphs H1, . . . , HM where Hi is the comparability graph of the Boolean algebra
B|Xi |: its vertices are all the subsets in Xi (there are 2|Xi | vertices) and two are connected if one subset
contains the other one. It is easy to check that the independent subsets in the Cartesian product of
those graphs correspond to the M-part Sperner systems in the underlying set

⋃
Xi .

Take, for example, n1 = · · · = nM = 1. In this case Hi = P2, and the Cartesian product of the Hi ’s
is the M-dimensional hypercube. The M-dimensional hypercube is bipartite and its independence
number is 2M−1, so f (n1 = 1, . . . ,nM = 1) = 2M−1.

If we restrict our interest to homogeneous M-part Sperner families, as we can do by Theorem 3.4,
the graph theoretic problem simplifies to finding a maximum weight independent set in the Carte-
sian product of weighted paths Pni+1, i = 1,2, . . . , M; where the weights on the path vertices are(ni

0

)
,
(ni

1

)
, . . . ,

(ni
ni

)
in this order, and the weight of a vertex in the product graph is the product of the

weights of its components.
A good survey about this problem for the Cartesian product is S. Klavžar [24]. So far results on the

independence number of Cartesian product graphs have not yielded new results in Sperner theory.
The maximum size of the independent subsets in the Cartesian (or actually any graph) product is a
very hard problem in general.
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Furthermore, looking for the maximum size of M-part (n1, . . . ,nM; L1, . . . , Lm)-Sperner families for
a given partition of the underlying set X , we want an I ⊂ Π , such that for every j = 1,2, . . . , M:

∀i1, i2, . . . , î j, . . . , iM ,
∣∣{k: (i1, i2, . . . , i j−1,k, i j+1, . . . , iM) ∈ I

}∣∣� L j, (35)

and want to maximize
∑

i1,i2,...,iM
Si1,i2,...,iM (I). Note that for every fixed j, the collection of I ’s satis-

fying (35) makes the independent sets of a matroid over the underlying set Π . So our optimization
problem is a weighted matroid intersection problem. The general weighted matroid intersection prob-
lem is polynomially solvable for M = 2, and is NP-hard for M � 3 [15]. (This could be another reason
contributing to the difficulty with M � 3.) In particular, we can compute in polynomial time the
maximum size of 2-part (n1,n2; L1, L2)-Sperner families.

It is easy to formulate an integer program that finds the maximum size of M-part Sperner families.
For each (i1, . . . , iM) ∈ Π we define

Fi1,i2,...,iM = {
F ∈ F : |F ∩ X j| = ai j

}
,

f i1,i2,...,iM = |Fi1,i2,...,iM |,

ci1,...,iM =
M∏

j=1

(
n j

i j

)
,

xi1,i2,...,iM = f i1,i2,...,iM

ci1,...,iM

.

Clearly, for homogeneous families, finding the maximum size is equivalent to solving the following
integer program:

xi1,...,iM ∈ {0,1},

∀k, ∀ j �= k, i j ∈ [0,n j],
nk∑
j=0

xi1,...,ik−1, j,ik+1,...,iM � 1.

Maximize f =
∑

(i1,...,iM )∈Π

ci1,...,iM xi1,...,iM . (36)

Our conjecture is equivalent to a conjecture on what an optimal solution f opt to this integer pro-
gram is. Moreover, if f opt is an optimal solution for the real relaxation as well (i.e. when we only
require that 0 � xi1,...,iM � 1 obtaining our primal linear program), then we might be able to prove
the optimality by finding a solution gopt to the following dual problem:

For each k = 1,2, . . . , M and (i1, . . . , îk, . . . , iM) define variables y(k)

i1,...,îk,...,iM
, and have the dual

problem (see Schrijver [32] for the theory of duality):

0 � y(k)

i1,...,îk,...,iM
,

∀(i1, . . . , iM) ∈ Π,

M∑
k=1

y(k)

i1,...,îk,...,iM
� ci1,...,iM . (37)

Minimize g =
M∑

k=1

n1∑
i1=1

· · ·
nk−1∑

ik−1=1

nk+1∑
ik+1=1

· · ·
nM∑

iM=1

y(k)

i1,...,îk,...,iM
(38)

with the property that f opt = gopt . Clearly, if the optimal solutions to the integer-valued problems
are not optimal solutions in the primal linear extension, (or if our conjecture for the primal integer
program is incorrect), then this approach will not work. However, we have the following reason to
hope to use linear programming for Conjecture 7.1.



724 H. Aydinian et al. / Journal of Combinatorial Theory, Series A 118 (2011) 702–725
Proof of Theorem 1.1. (When n1 = n2.) Use the feasible solution y2
i = 1

2

(n1
i

)2
and y1

j = 1
2

(n2
j

)2
. The cru-

cial condition of the dual problem turns into the following trivial quadratic inequality

1

2

(
n1

i

)2

+ 1

2

(
n2

j

)2

= y2
i + y1

j � ci, j =
(

n1

i

)(
n2

j

)
.

As n1 = n2 = n
2 , we obtain

g =
n1∑

i=1

y2
i +

n2∑
j=1

y1
j = 1

2

(
2n1

n1

)
+ 1

2

(
2n2

n2

)
=
(

n

�n/2�
)

. �

It is not difficult to generalize the primal and dual linear/integer programming problems to M-
part (n1, . . . ,nM; L1, . . . , LM)-Sperner families. In the primal problem we have to require explicitly
xi1,...,iM � 1, which came for free earlier, and change 1 in the RHS of (36) to Lk . In the dual problem
we have to introduce extra non-negative variables wi1,...,iM � 0, change ci1,...,iM in the RHS of (37) to
ci1,...,iM − wi1,...,iM , and in (38), change the objective function to

g =
( n1∑

i1=1

· · ·
nM∑

iM=1

wi1,...,iM

)
+

M∑
k=1

n1∑
i1=1

· · ·
nk−1∑

ik−1=1

nk+1∑
ik+1=1

· · ·
nM∑

iM=1

Lk y(k)

i1,...,îk,...,iM
.
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