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Let & be a family of subsets of a finite set of 7 elements. The vector (fy, .... /) Is called the
profile of # where f; denotes the number of i-element subsets i m #. Take the set of profiles of all
families F satlsfymg Fi4F, and Fi(\F,»0 for all F,, F,c%. It is proved that the extreme
points of this set in R"*! have at most two non-zero components.

1. Definitions, results

1.1. Convex hull of the Sperner families. Let X be a finite set of n elements and &
be a family of its subsets (F —2%). Then % denotes the subfamily of the k-element
subsets in F: F,={A: AcF, [A|=k}. lis size |F] is denoted by f,. The vector
(fos fi» ---» fu) in the (n4-1)-dimensional Euclidean space R"*! is called the profile

If « is a finite set in R"*?, the convex hull () of « is the set of all convex linear
combinations of the elements of «. We say that e€a is an extreme point of o iff
e is not a convex linear combination of elements of « different from e. It is easy to
see that (o) is equal to the set of all convex linear combinations of its extreme points.
That is, the determination of the convex hull of a set is equivalent to finding its
extreme points.

F is a Sperner-family iff it contains no members 4, B with 4 C B (Sperner-
property). Consider the set o of all profiles of the Sperner-families. The elements of ¢
can be perfectly characterized by a sequence of complicated inequalities (see [2], [3]).
Sometimes it might be more useful to determine a small convex set containing o.
The best one of them is, of course, (o). We find {(¢) determining its extreme points
(the extreme points of («) are briefly called exireme points of «):

Theorem 1. The extreme points of the set ¢ of the profiles of the Sperner-families are

(1) z=(0,0, ..., 0)

5 =[0,0 0, ['f],o, ...,oJ (0=i=n).
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Proof. We will show that this is nothing else but the well-known LY M-inequality
(8], 191, {12p:
) Z’L = 1.
i=o (1
()

We have to prove two statements:
(a) any element (fy, ..., f,) is a convex combination of vectors of form (1).
(b) these latter ones are extreme points.

(a) means, by definition, that (f;, ..., f,) is a linear combination of z and t;
with some non-negative coefficients 4, Ay, 4,, ..., 4, satisfying

ik A =1
i=0

The choice 2, :ﬁ/[’;) O=i=n), i=1-2f; (rlz] satisfies these conditions by (2).
i=0

Part (b) is also easy. z is an extreme point since all other elements of ¢ have non-nega-
tive coordinates with at least one positive one. Their convex combination cannot be
z. On the other hand, if & is a Sperner-family then |.%|>_—’(i] holds with equality
only if # consists of all i-element subsets. Therefore, if u€o then its /-th coordinate is
ny . . . .

= (1] with equality only for v;. Hence v; is an extreme point. J]

1.2. Intersecting Sperner-families. A family is an intersecting family if A, B€F
implies AMNB=P. A classical theorem concerning intersecting families is the

Erdos—Ko—Rado theorem [4]. [f F is an intersecting family of k-element (k=nj2)
subsets of an n-element set then

max [F| = (2:11] B

Let u denote the set of profiles of the intersecting Sperner-families. There
exist some inequalities in the literature trying to give good necessary conditions for
the elements of u. First Bollobas [1]} proved

fi
1§£n/2 (n—l) =1
i—1

later Greene, Katona and Kleitman [5] found

fi s Lo

léénm[ n } ul2<zj,§n(7]:
i—1 j

€)
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for any (fy, f1, ---» f5)- Both inequalities are far from describing the convex hull of
4. The main aim of the present pape is to determine the convex hull or in other words
the extreme points of u.

Theorem 2. The extreme points of the set u of the profiles of intersecting Sperner
families have at most two positive coordinates, more precisely, the extreme points are

z=(0,0, ..., 0),
L’j= 0; 0&“', (;)y :0] (?2/2<.1' é”),
1 F
)
w; = |0, 0, (’l‘:” ,0] (1 =i=nf2),
1 7 e
w; =10,0, ..., (’::11}, ‘.‘,(n;l), ...,0] (l=i=nf2, i+j=>n).

- -
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)

There is another way to describe the convex hull {g). Namely, we could list
the hyperplanes bordering it. Some of them are trivial because they separate the posi-
tive orthant from the other ones, only. The next theorem presents a set of inequali-
ties. The inequalities representing the non-trivial bordering hyperplanes are among
them. Sometimes they are more applicable than the form given in Theorem 2. Any-
way, we will deduce Theorem 2 from this theorem:

Theorem 3.
Ji fi
5 — Yo : pj o = 1
( ) 1§i§1/2(1 )"_'+1)[n—1)+,,,2<é,,_1}1 (n_l)
i—1 Ji

for any (fo, f1s .- JD)Er and for any sequence ¥V we |<iZYV npj+2=... 2y, =0
satisfying
(6) v = 1—% (n/2 <j = n).

Observe that (5) gives (3) and (4) in the cases ¥y, ,+1=...=¥,=0 and y;=

=1—j/n (n/2<j=n), resp.

1.3. Weighted extremal hypergraphs. The classical theorem of Sperner [11] states
that a Sperner-family on » elements cannot have more than (”72) members. The
analogous question for intersecting Sperner-families was solved by Milner [10].

Their maximal size is [ . Let ¢(7) (0=i=n) be a givenreal function. We may

1)
Luf2+1

n
need to maximize 2 ¢(7)[%], rather than [#|= 2 |#l, for a certain class of
i=0 i=0
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families &#. The solution of this question for Sperner-families was a folklore but it
was formulated in [6]. We deduce it here from Theorem 1. (Earlier it was deduced

n

from the equivalent (2).) Indeed, we have to maximize 2’ c({)f; for the elements of
i=0
o. The maximum is attained for at least one extreme point, hence

max 2 ¢(i) f; = max {0, max c(i)(’:]}.
i=0 i 3
Analogously, Theorem 2 implies the next statement:

Theorem 4. Given a real function c(i) (0=i=n) max Jc({)|#]| for intersecting
Sperner-families F is attained for a family containing members of at most two dif-
ferent sizes, more precisely, for families with profiles lisied in Theorem 2.

1.4. An application of Theorem 2 for extremal problems for directed hypergraphs.
Let X be a finite set of n clements. A directed hypergraph on X is a set of different
sequences (x,, ..., ) (€ X, x;=x; if 1=/, j=k, i5j) where k can vary from 0
(empty sequence) to n. The sequences are the edges of the directed hypergraph. The
first possible extremal problem is the following: what is the maximum number of
edges in a directed hypergraph if it does not contain two different edges (x;, ..., x;)
and (3, ..., y,) such that (xq, ..., x;) is a subsequence of (yy, .... y)) (thatis, x;=y;
1=j,<...<j.=I). We call these hypergraphs directed Sperner-hypergraphs.

Theorem 5. The maximum number of edges of a directed Sperner-hypergraph on n
elements is nl.

Proof. If x,, ..., X, is any permutation of the elements of X then a directed Sperner-
hypergraph contains at most one edge from the sequence (x;), (¥, Xg), .., (X1, X3, .-
.... X,). Hence it cannot contain more than n! edges. All the edges with n or n—1
elements, resp. give equality in the theorem. One can easily see that these construc-
tions are the only ones. |

If D is a sequence of different elements then s(D) denotes the set of its elements.
We may call s(D) the undirected version of D. The next theorem answers a problem
similar to that of Theorem 5.

Theorem 6. The maxinum number of the edges of a directed Sperner-hypergraph 3
satisfying the additional property

PAD, Ee#: s(DYUs(E) = X
is(h—1D1+1.

Proof. Fix an element x€X. The hypergraph consisting of (x) and of all the se-
quences of length n—2 made from X —x satisfies the conditions of the theorem and
has (n—1)(n—2)!41 members. We have to prove that [#’| cannot be more.

Let .#¢ denote the family of the maximal undirected versions of #, that is,
M={A: (A=5(D), DEX)NFE: (Ec#, s(E)DA. s(E)#A)}. In the next row
we use Theorem 5:

) #l = 1= 3 {D:DeA s(D)C A} = 2 |4
De ¥ A4c.H A€l
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A is obviously a Sperner-family and A4, B€# imply AUB=X. Let .#~ denote
the family of the complements of the members of .#. Then

® 2 lAlt="2> (=|B)t = > (n—k) (A ),
A€ A Be - h=0

Here .#~ is an intersecting Sperner-family. We may apply Theorem 4 with ¢(7)

=(n—1i)!. If we show that

©) SRS, = (i=1)1+ 1
k=0

for any extreme point listed in Theorem 2 then (7), (8) and (9) prove the theorem. It is
sufficient to prove (9) for v; (n/2<j=n) and w;; (1=i=n/2, i+j>n). If (fo. ..., /)
=v; then we need the trivial inequality (n—/)! [';.]é(n—l)!-!-l, If (fo, .o f)=wy;
(=Dt (n—-1)n—))

then the left hand side of (9) is (n—z')![’;:i ) o -j)!("; 1)

Y J!
_(=D! =DG=1) S .
S T S TR If i=1, 2, then this quantity is =(n— D!+ 1. If 3s/=n/2

then 1/(/—1)!=1/2 and (/—1)/(n—i+1)!=1/2 (the case n=4 should be checked
separately) are trivial and imply (9). |

2. Proofs

2.1. Theorem 3 for cyclic permutations. We first prove Theorem 3. The method of
cyclic permutations will be used. Let us fix a cyclic permutation of the elements of X
and consider only those sets having consecutive elements in this cyclic permutation.
These are called consecutive sets. The idea of the method is to prove the statement for
a given cyclic permutation with the consecutive sets and then we prove the original
statement by some counting argument listing all cyclic permutations [7]. So let us
prove now the analogue of Theorem 3:

Lemma. Let 4 be an intersecting Sperner-family of consecutive setsin a cyclic permu-
tation of an n-element set and denote by g; the number of i-element members of %.
The inequality

- . o.
(10) S (-ren & 3oy B

l1=i=nf2 nj2<j=n—1 n—j

i

holds for any sequence y np 1=...=y,=0 satisfying

an Y= 1——}]?— (Lnf2<j=n).

Proof. Define I‘=E]i2 |4| and s=n—max |4|. First we prove the lemma for
€4

r—s=1 (Part 1) then we prove it by induction on r—s=1 (Part 2).
We will suppose in the future that

(12) r = nf2.
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The opposite case r=>nf2 is easy. Indeed, the Sperner-property implies that at most
one member of % can start from one point of X. Therefore |%|= 2 g;i=n

Lnuf2 |<jz=n—1
holds and hence (10) follows:

g

=

J) & 1
T

1
i s (i)
L2 <j=n—1 n—j a2 <j=n-1 n’n—j Laf2 ) <j=n—1

Part 1.r—s=1. Let A, realize the size r, that is, 4,€%, |A;|=r. Denote the elements
of A, by oy, &,, ..., a, in the order of the fixed cyclic permutation. Since 4 is a Sper-
ner-family it can contain at most two sets with «; as an endpoint or starting point
(along the permutation) (Fig. 1). Let us denote them by E; and §;, resp. ¢ is inter-
secting therefore if both E; and S;., are defined then they must intersect *‘at their
other end” (Fig. 2).

Fig. | Fig. 2

This implies
(13) |E| +1Si+4] = n.
Introduce the notation

if 1=j=n2
w(j) =

if n2<j=n-—1L

We shall prove the inequality
(14) WIED+w(ISi) = —

in several cases where w(|E;|) and w(]S;,,|) are considered to be 0 if E; and §;,
are not defined, resp.:

a) (14) is trivial if none of E; and S, is defined.
b) If one of them is defined, only (say E;), and it has a size =n/2 then

L~V ik, + |
w(E) = —==lt = -

follows from [Ejl=r and p,_ g +1=0.
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c) If one of them (say E;) is defined, only, and it has a size =n/2 then

w(B = 2L

follows by )iEzl— (sec (11n).

d) If both of them are defined and their sizes are =n/2 then w(|E]),
w(|S;+1])=1/n follow like before. Hence (14) is an easy consequence of (12).

e) Suppose now that both E, and §,,, are defined and one of them (say E;)
has a size =n/2. It follows by (13) that |S;.,|>#n/2. Then we can prove the weaker
inequality

(15) WUED+w (18w = + o
instead of (14).

_ 1“)’::—|E¢1+1 - 1‘)'n—|5i|+1
(16) w(lE) = IE] = "

is a consequence of the definition of r. (13) and the monotonity of y’s imply
(17 YiSiaal = Yu—|E|+1-
By the definition of s we have n—|S,,,|=s=r—1. Hence and from {17) we obtain

yu— E;|+1 lf

" n—|[S;f =

W(Sipql) = 2l =

=181l T - .
I t+1| FYrn—r+1 lf 12—|S,~+1| = pr—1.
r—1

The sum of (16) and this inequality gives (14) in the first case while in the se-
cond case we use Vn—|E)+1=Yu—rsy before the summation:

s - 1_)'11—r+1 Frn—r+1 _ ! Yn-r+1
w(ED+w(Si1]) = - TS T T +_r(r—1) .
(15) is proved.
As any member of 4 meets A4; and no other member can contain it, the pos-
sible members of ¢ are 4,, E,, S,, E;, Ss, ..., E,_1, S, (some of them might be
undefined). Hence, applying (15) we obtain the inequality

I —y,- -1 -
2 W(IAI) = W(IAI‘) (r—l)— Y ’r+1 — yn r+l+r +yn r+1 — 1

r r r
what is nothing else but the desired (10). We have proved the lemma for r—s=1.

Part 2. Suppose now that f=r—s>1 and that the lemma is proved for smaller
values of r—s. A subfamily A4, ..., 4, of ¥ is called a block if |4,|=...=|A,|=n—s
and there are consecutive elements «,, &, ..., %, ,- (In this order along the given
cyclic permutation) such that

Ai={o, o, Gun_s1)€% (1 =i=b)
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but
{aﬂv Apa ey an—s—l}g g’ {qb%—l 3 cets ab-{»n—s}& 4.

We have to distinguish two cases:

2a. b=s for any block in 9.

Define the family %*={B: (|B|=n—s—1)/A\(B consecutive) \(34: 4CY,
|A|=n—s, ADB)}. As ¥ is a Sperner-family ¥MN%"=0 follows. Let ¥’
=(%—%,_)U%* It is easy to see that ¥’ is a Sperner-family. On the other hand it
is intersecting: ANB#@ (4, B¢%’) is non-trivial only when one of them (say A)
is an element of ¥*. Then [4|=n—s—1, |B|=r and r—s=>1 imply [4|+|B|>n,
that is, ANB#H.

We will need the inequality
(18) G-l (s+1) = |§"|s.

Let %,_, be divided into blocks of lengths b, ..., b, where

(19) b, =19, = us
i=1

by the suppositions of this case. The block of length b; induces b;+1 members into

%*. No element of ¥* comes from two different blocks. Thus |%*|= 3 (b;+1).
i=1

(19) implies (s+ 1)[ Z'bj)g—sZ(bj+l) what 1s nothing else but (18).
j=1 =
The inequality

En-s . 19"
20 L Y ——
( ) )n 5 s = J’n s 1.5' ]

follows by (18) and y,_;=y,_;+1. (Observe that r—s>1 implies n—s—1=>n/2
unless r=(n/2)+1 which is excluded by (12).) We needed (20) for proving that the
left hand side of (10) is not less for % than for %:

(21) Z (l—.}’u—i+1)’g~—i+ 2 i gj-
r=i=n/2 1 n2<j=n—s n—j
_ & gj 19
- réi»ZE:1I2(l yn—i+1) i +n/2<jZ<n—syj ’l_j +yn—s—1 S+1 '

The largest sets in %’ have sizes n—s—1, thus s"=s+1, "=r—(s+1)<t. We may
apply the induction hypothesis: (10) holds for ¥’. Consequently, it also holds for ¥
by (21). Case 2a is settled.

2b. % contains a block with b=s.

Choose an 4,€% with |4;|=r. Let the elements of X be oy, oy, ..., &,
following the cyclic permutation and suppose that 4,={x,, ..., a,}. We can list all
(n—s)-element consecutive sets meeting but not containing A;:

{a2s (A ] '1,,_S+1}, {aaa KRS an—s+2}’ L] {as 3 ey an—l}v
{as+19 A ] an}) {as+27 AR {X", al}s (] {ar+l~ ooy Xy Oyy aney ar—s})

{04 2s ween Oy Os cen By g1y woes {0pss coes Cys Oay veey O}
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In each of the first and third rows there are s — 1 sets. On the other hand, the union of
A, and any set in the middle row is X. It follows from the supposition of this case
that some s--1 consecutive sets of the above sequence belong to 4. One of them be-
longs to the middle row. Call this set A,=1{o,, ..., %, &, .... Gys—1}. Summarizing:

(22) Al =r, |As] =n—s

(23) A, UAd, =X

(24) any point of X — A, is either a starting point or an endpoint of a set A€Y,
[A|=n—s.

It is easy to check that we can have one more assumption:

(25) A1NA, is a union of iwo non-empty intervals {={oy, ..., %, 1} and
J={a,, ..., o).

We shall prove the following statement:
(26) there are at most r—s+1 members of 4 containing X — A,.

Let A7 A; be a member of ¥ satisfying 4> X —A4,. One of the endpoints of 4
must be in JUSU{x, y,a,} otherwise one of the conditions ADX—4,,
AdG Ay, AD A; would be violated. Moreover, if both endpoints of 4 are in /UJ
U{et,—1, ®,—s} then they are both either in IU{x,_,} or in JU{x, ;}. Let ¢(4)
denote the endpoint of A being in IUJU{o,_. a,_,} if there is only one. If there
are two such endpoints let e(A) denote the one being “closer” to X — A4,, that is, the
endpoint with larger index in /U {«,_,} and with smaller index in JU{a,_,}. It
is easy to check that e(A) is an injection and that e(A4) cannot be oy or «,. Therefore
e(A) can have at most |[IUJ|=|A4,NA,|=r—s different values. Consequently, the
number of sets A=A, ADX—A,, A€¥ is at most r—s. Including A we obtain
the bound (26).
Let us show now that

27 Ac%  implies w(AD) = (L —y,—,.)/r

If |4|=n/2 then it is sufficient to substitute |[4]=r and y,_ 4 +1=}u- 11 into the

.. — 1
definition of w(|4|). If |4|>=n/2 then y!Alél—%,rén/Z andy,_, =1 _ ;+
lead to

w1 Lol b
W(IAI) 73-|AI = n = v " = 5 (1 yn—r+l)'

(27) is proved.

If A€% but AUA, =X, A# A, then one of the endpoints of 4 must be in
X — A, (otherwise either 41U A4,=X or Ac A4, would follow). Since no member of ¥
contains another one, any point of X — 4, is an endpoint (starting point) of at most
one member of 4. Altogether there are 2(s— 1) such sets A€%, AU A, =X, A=~ A,.
s—1 of them are of size n—s by (24). For the rest we can use (27):

(28) 2 W(IA')é(_s—])_l_y';’H JI_(S_I)yn--s '
A€ I ;_

404,

A

)|

X

kS
M
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Hence we obtain the next upper bound for the left hand side of (10):
2Zwld) = 2 w(lAD+w(dD+ 2 w(4D)
Acs Ay

Ace
AUA,=X AUA =X
AxA,

L —Yurs Tn— 1—‘—1' 'n—s
é(?'—s-f-l) );i "1+}"SS+(5_1) .}'; -+-1_*_(S_<l)}’S

=1 _)"n-—r-l—1+yn—s

where (26), (27) and (28) are used. r—s>1 implies n—r+1<n—s and therefore
Vy—r+1>Vs—s. Indeed, we obtained

2 W(]AI) = 1_.}"lx—r+1 Thi-s = 1. l

A%
2.2, Proof of Theorem 3 using the cyclic permutations. Let % be a family with profile
(©, fis f2r s fo—1, 0). The following function will be defined for any cyclic permu-
tation € of X and for any AcCAX:

w(d) if A€¢# and A is counsecutive in €,
w(¥, A) = { .

0 otherwise.

We will evaluate the sum > w(%, A) in two different ways: first fixing 4, running
€A

€ and then in the opposite order.
29 2w(@ A= 2 w44t (n—]4])!

€, A AEF

follows from the fact that there are |A|!{n—]A|)! cyclic permutations in which A4 is
consecutive, On the other hand

Swie =3 3 w4
%, 4 I3 AT ACF
A cons. in %

can be written. Here the last sum is =1 by the Lemma. Consequently

(30 2w(@ A =m-Dl.

%, A
Comparing the right hand sides of (29) and (30)

wild) |
AEF (n—1)! -
1A (n—|AN!

can be obtained. Substituting the definition of w(]A4|} this inequality gives an equi-
valent form of (5). |

2.3. Proof of Theorem 2 using the duality theorem of linear programming. 1. First we
prove that if (fy, fi. .- Jo)EYU then there is a convex combination (g, &1» +.-» &) Of
z,v; (n2=<j=n) and w; (1=i=n[2, i+j=n) satisfying g;=f; (0=j=n).
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Let u, w2 41, .- Up—-1, 4, b€ a sequence of non-negative reals such that

1) u; = 1—% ()2 <j = n).

g

Then the sequence
y; = max u n2<j=n
=]

will be monotonic and preserves property (31) (e.g. (6)). On the other hand u;=y;
(n/2<j=n) holds, consequently (5) is true for these y and it implies

Ji

>
A

32 - : . = 1.
( ) 1§i2§:ll2 (1 "_ir”l}ftéxjé" uj) [’1—1] +nl2<j2§'n—1 uj (71—1]

i—1 j
Suppose that u;=1— max u; (1=/=n/2) or equivalently

n—it+l=j=n

(33) T

i fl

=1 (forall1=i=n/2, n—i+1=j=n).

Then we can substitute #; in the place of 1 —max u; in (32). We conclude that

w1 + 2 u Ji - |

1=i=n/2 i[n_l] nf2<j=n-1 (n_ ]
J

i—1
holds under conditions (31) and (33). The above statement can be formulated in
terms of linear programming:

A

It

. fi )=,

ax TP, — . =
" lééﬂﬂ i ("_1) +n/2<£n—1 i [ﬂ_lJ
i—1 j

under constraints (33) and

ij‘él W2<j=n-1)y u, =0, ;=0 (n2=j=n).

G -

Consider the dual problem. We associate the variables u; with constraints (34) and
v;; with (33):

(35) min( ¥ g+ Z 2> )=l

ni2<j=n—1 1=i=sn/2 n—i+1sj=n
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under the constraints

(36) n/2<j2§,n—l Vi = [n'_l) (1 == '1/~)’
i—1
n Ji L
gt — = —1— 2 =n—1),
@7 1§én/z Vit H n—j = (n—l) (n/2<j =n—1)
J
(38) Vin+ i, =0 and
1=i=n2
v;zZ0, ;=0 (1=i=n/2, nf2<j=n).

(38) is superfluous, (36) and (37) can be rewritten in the forms

(39) Vij[’-i—l)zf,: l=i=n2 n—i+l=j=n)
w—it1=jsn—1 i—1

and

(40) Z V,'j(n . ]+,Uj(n] éfj (71/2 <] = 11—1).
1=i=n2 J J

Let us concise (39) and (40) into a vectorial form:

41) 2 viwt+ 2 muy; =L fos s faod)
1=i=n/2 n2<j=n—1

(where w;; and v; are truncated; their first and last coordinates are omitted). We ob-
tained that under constraint (41) (35) has a solution =1. In other words, there are
non-negative v's and u’s satisfying (41) with a sum =1. (41) can be easily completed
with the Oth and nth coordinates: 1) f,=0 since @ cannot be a member of an inter-
secting family (AN@=0A); 2) if f,=0 then the situation is the same; if f,=1 then
Jo=...=f,-1=0 by the Sperner-property and hence p,=1 is suitable.

Multiplying all v;; and y; with the appropriate constant (=1) their sum will
be equal to 1 as desired.

2. In the first part of the proof we proved that there is a convex combination
(%0, ---. &) of the vectors v; and w;; for any given (f;, ..., f,) such that

(42) g=f0=i=n).

Choose (gg; ---» &) maximizing the number of coordinates with equality in
(42). Suppose that this number is <n+1 and g,>f;. The vector (g, ..., &_1,
0,841, ---» &) is also a convex combination of the vectors z, v;,w;, w;;: we have to
change the tth coordinate of each vector for 0; the set z, v;, w;, w; ; is closed under
this operation. (This is the first place where the vectors z and w; are used.) (g, ...
cees 8t-1s [ty 81y -5 Bn) 18 @ convex combination of (gg, .- &1-150, &1r1s -+ &n)
and (go, ..., &,) (since 0=f;=g,), therefore it is a convex combination of z, v;, w;
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and w;;. This new vector (g, ..., 81 fi» §t+1+ ---» §») has more common coordina-
tes with (fy, --., /) than (g, ..., g,) does. This contradiction leads to the statement
that (fs, ..., f) itself is a convex combination of the vectors z, v;, w; and w;;.

3. In the second part of the proof we proved that only the vectors listed in
Theorem 2 can be extreme points of u. Now we have to verify that they are really
extreme points. This is trivial for z.

It is easy to construct an intersecting Sperner-family with profile w; (1=/=
=n/2): take all the i-element subsets containing a fixed element of the ground set.
On the other hand, the Erd6s—Ko—Rado theorem implies that if (fy, ..., f,)¢u

n—1 . . N
then f,é(i I ] Hence if w; is a convex combination of some vectors from g then

—1 . . . .
they all must have f;= (}: 1]. Similarly, their other coordinates are necessarily 0.
The only such vector is w;. One can see in the same way that v; (#/2<j=n) is in
i and it is an extreme point of u.

The construction of an intersecting Sperner-family with profile w;;: take all
i-element subsets containing a fixed element x and all j-element subsets not contain-
ing x. Suppose that w;; is a convex combination of some elements of . As above,

all of them must have 'Z:;] in the ith coordinate. The only intersecting Sperner-

n—1
i—1
containing x. No j-element set can contain x. It would then contain an /-element set

—1y . —
as a subset. Hence (f, ..., f;)€p and f‘:['il—l] imply f}é(n }_1]. Therefore all

family with [ ] i-element sets is the above construction of all /-element subsets

. . n—1 . . .
the vectors in the convex combination must have [ . ] as jth coordinate. Like

above, the other coordinates are 0. w;; is the only such vector, therefore it is really
an extreme point of .
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