# INTERSECTING SPERNER FAMILIES AND THEIR CONVEX HULLS 

Péter L. ERDŐS, Peter FRANKL and Gyula O. H. KATONA<br>Dedicated to Paul Erdős on his seventieth birthday

Received 26 January 1983

Let $\mathscr{F}$ be a family of subsets of a finite set of $n$ elements. The vector $\left(f_{0}, \ldots, f_{n}\right)$ is called the profile of $\mathscr{F}$ where $f_{i}$ denotes the number of $i$-element subsets in $\mathscr{F}$. Take the set of profiles of all families $\mathscr{F}$ satisfying $F_{1} \nsubseteq F_{2}$ and $F_{1} \cap F_{2} \neq \emptyset$ for all $F_{1}, F_{2} \in \mathscr{F}$. It is proved that the extreme points of this set in $\mathbf{R}^{n+1}$ have at most two non-zero components.

## 1. Definitions, results

1.1. Convex hull of the Sperner families. Let $X$ be a finite set of $n$ elements and $\mathscr{F}$ be a family of its subsets $\left(\mathscr{F} \subset 2^{X}\right.$ ). Then $\mathscr{F}_{k}$ denotes the subfamily of the $k$-element subsets in $\mathscr{F}: \mathscr{F}_{k}=\{A: A \in \mathscr{F},|A|=k\}$. Its size $\left|\mathscr{F}_{k}\right|$ is denoted by $f_{k}$. The vector $\left(f_{0}, f_{1}, \ldots, f_{n}\right)$ in the $(n+1)$-dimensional Euclidean space $\mathbf{R}^{n+1}$ is called the profile of $\mathscr{F}$.

If $\alpha$ is a finite set in $\mathbf{R}^{n+1}$, the convex hull $\langle\alpha\rangle$ of $\alpha$ is the set of all convex linear combinations of the elements of $\alpha$. We say that $e \in \alpha$ is an extreme point of $\alpha$ iff $e$ is not a convex linear combination of elements of $\alpha$ different from $e$. It is easy to see that $\langle\alpha\rangle$ is equal to the set of all convex linear combinations of its extreme points. That is, the determination of the convex hull of a set is equivalent to finding its extreme points.
$\mathscr{F}$ is a Sperner-family iff it contains no members $A, B$ with $A \subset B$ (Spernerproperty). Consider the set $\sigma$ of all profiles of the Sperner-families. The elements of $\sigma$ can be perfectly characterized by a sequence of complicated inequalities (see [2], [3]). Sometimes it might be more useful to determine a small convex set containing $\sigma$. The best one of them is, of course, $\langle\sigma\rangle$. We find $\langle\sigma\rangle$ determining its extreme points (the extreme points of $\langle\alpha\rangle$ are briefly called extreme points of $\alpha$ ):

Theorem 1. The extreme points of the set $\sigma$ of the profiles of the Sperner-families are

$$
\begin{align*}
& z=(0,0, \ldots, 0)  \tag{1}\\
& v_{i}=\left(0,0, \ldots, 0,\binom{n}{i}, 0, \ldots, 0\right) \quad(0 \leqq i \leqq n) .
\end{align*}
$$

AMS subject classification (1980): 05 C 35; 05 C 65 , 52 A 20

Proof. We will show that this is nothing else but the well-known LYM-inequality ([8], [9], [12]):

$$
\begin{equation*}
\sum_{i=0}^{n} \frac{f_{i}}{\binom{n}{i}} \leqq 1 \tag{2}
\end{equation*}
$$

We have to prove two statements:
(a) any element $\left(f_{0}, \ldots, f_{n}\right)$ is a convex combination of vectors of form (1),
(b) these latter ones are extreme points.
(a) means, by definition, that $\left(f_{0}, \ldots, f_{n}\right)$ is a linear combination of $z$ and $v_{i}$ with some non-negative coefficients $\lambda, \lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}$ satisfying

$$
i+\sum_{i=0}^{n} \lambda_{i}=1
$$

The choice $\lambda_{i}=f_{i} /\binom{n}{i}(0 \leqq i \leqq n), \quad \lambda=1-\sum_{i=0}^{n} f_{i} /\binom{n}{i}$ satisfies these conditions by (2). Part (b) is also easy. $z$ is an extreme point since all other elements of $\sigma$ have non-negative coordinates with at least one positive one. Their convex combination cannot be z. On the other hand, if $\mathscr{F}$ is a Sperner-family then $\left|\mathscr{F}_{i}\right| \leqq\binom{ n}{i}$ holds with equality only if $\mathscr{F}$ consists of all $i$-element subsets. Therefore, if $u \in \sigma$ then its $i$-th coordinate is $\leqq\binom{ n}{i}$ with equality only for $v_{i}$. Hence $v_{i}$ is an extreme point.
1.2. Intersecting Sperner-families. A family is an intersecting family if $A, B \in \mathscr{F}$ implies $A \cap B \neq \emptyset$. A classical theorem concerning intersecting families is the
Erdös-Ko-Rado theorem [1]. If $\mathscr{F}$ is an intersecting family of $k$-element ( $k \leqq n / 2$ ) subsets of an n-element set then

$$
\max |\mathscr{F}|=\binom{n-1}{k-1}
$$

Let $\mu$ denote the set of profiles of the intersecting Sperner-families. There exist some inequalities in the literature trying to give good necessary conditions for the elements of $\mu$. First Bollobás [1] proved

$$
\begin{equation*}
\sum_{1 \cong i \leqq n / 2} \frac{f_{i}}{\binom{n-1}{i-1}} \leqq 1 \tag{3}
\end{equation*}
$$

later Greene, Katona and Kleitman [5] found

$$
\begin{equation*}
\sum_{1 \leqq i \leqq n / 2} \frac{f_{i}}{\binom{n}{i-1}}+\sum_{n / 2<j \leqq n} \frac{f_{j}}{\binom{n}{j}} \leqq 1 \tag{4}
\end{equation*}
$$

for any $\left(f_{0}, f_{1}, \ldots, f_{n}\right)$. Both inequalities are far from describing the convex hull of $\mu$. The main aim of the present papel is to determine the convex hull or in other words the extreme points of $\mu$.

Theorem 2. The extreme points of the set $\mu$ of the profiles of intersecting Sperner families have at most two positive coordinates, more precisely, the extreme points are

$$
\begin{aligned}
& z=(0,0, \ldots, 0), \\
& v_{j}=\left(0,0, \ldots,\binom{n}{j}, \ldots, 0\right) \quad(n / 2<j \leqq n),
\end{aligned}
$$

$$
\begin{aligned}
& w_{i}=\left(0,0, \ldots,\binom{n-1}{i-1}, \ldots, 0\right) \quad(1 \leqq i \leqq n / 2) \text {, } \\
& \hat{0} \hat{1} \ldots \quad \hat{i} \quad \ldots \quad \hat{n} \\
& w_{i j}=\left(0,0, \ldots,\binom{n-1}{i-1}, \ldots,\binom{n-1}{j}, \ldots, 0\right) \quad(1 \leqq i \cong n / 2, \quad i+j>n) \text {. } \\
& \begin{array}{lllllll}
\overline{0} & \ldots & \hat{i} & \ldots & \hat{j} & \ldots & \hat{n}
\end{array}
\end{aligned}
$$

There is another way to describe the convex hull $\langle\mu\rangle$. Namely, we could list the hyperplanes bordering it. Some of them are trivial because they separate the positive orthant from the other ones, only. The next theorem presents a set of inequalities. The inequalities representing the non-trivial bordering hyperplanes are among them. Sometimes they are more applicable than the form given in Theorem 2. Anyway, we will deduce Theorem 2 from this theorem:

## Theorem 3.

$$
\begin{equation*}
\sum_{1 \leqq i \leqq n / 2}\left(1-y_{n-i+1}\right) \frac{f_{i}}{\binom{n-1}{i-1}}+\sum_{n / 2<j \leqq n-1} y_{j} \frac{f_{j}}{\binom{n-1}{j}} \leqq 1 \tag{5}
\end{equation*}
$$

for any $\left(f_{0}, f_{1}, \ldots, f_{n}\right) \in \mu$ and for any sequence $y_{\llcorner n / 2 \downarrow+1} \geqq y_{\lfloor n / 2\lrcorner+2} \geqq \ldots \geqq y_{n} \geqq 0$ satisfying

$$
\begin{equation*}
y_{j} \leqq 1-\frac{j}{n} \quad(n / 2<j \leqq n) . \tag{6}
\end{equation*}
$$

Observe that (5) gives (3) and (4) in the cases $y_{\llcorner n!\perp \downarrow+1}=\ldots=y_{n}=0$ and $y_{j}=$ $=1-j / n(n / 2<j \leqq n)$, resp.
1.3. Weighted extremal hypergraphs. The classical theorem of Sperner [11] states that a Sperner-family on $n$ elements cannot have more than $\binom{n}{n / 2}$ members. The analogous question for intersecting Sperner-families was solved by Milner [10]. Their maximal size is $\binom{n}{\llcorner n / 2\lrcorner+1}$. Let $c(i)(0 \leqq i \leqq n)$ be a given real function. We may need to maximize $\sum_{i=0}^{n} c(i)\left|\mathscr{F}_{i}\right|$, rather than $|\mathscr{F}|=\sum_{i=0}^{n}\left|\mathscr{F}_{i}\right|$, for a certain class of
families $\mathscr{F}$. The solution of this question for Sperner-families was a folklore but it was formulated in [6]. We deduce it here from Theorem 1. (Earlier it was deduced from the equivalent (2).) Indeed, we have to maximize $\sum_{i=0}^{n} c(i) f_{i}$ for the elements of $\sigma$. The maximum is attained for at least one extreme point, hence

$$
\max \sum_{i=0}^{n} c(i) f_{i}=\max \left\{0, \max _{i} c(i)\binom{n}{i}\right\} .
$$

Analogously, Theorem 2 implies the next statement:
Theorem 4. Given a real function $c(i)(0 \leqq i \leqq n)$ max $\sum c(i)\left|\mathscr{F}_{i}\right|$ for intersecting Sperner-families $\mathscr{F}$ is attained for a family containing members of at most two different sizes, more precisely, for families with profiles listed in Theorem 2.
1.4. An application of Theorem 2 for extremal problems for directed hypergraphs. Let $X$ be a finite set of $n$ elements. A directed hypergraph on $X$ is a set of different sequences $\left(x_{1}, \ldots, x_{k}\right)\left(x_{i} \in X, x_{i} \neq x_{j}\right.$ if $\left.1 \leqq i, j \leqq k, i \neq j\right)$ where $k$ can vary from 0 (empty sequence) to $n$. The sequences are the edges of the directed hypergraph. The first possible extremal problem is the following: what is the maximum number of edges in a directed hypergraph if it does not contain two different edges $\left(x_{1}, \ldots, x_{k}\right)$ and $\left(y_{1}, \ldots, y_{l}\right)$ such that $\left(x_{1}, \ldots, x_{k}\right)$ is a subsequence of $\left(y_{1}, \ldots, y_{i}\right)$ (that is, $x_{i}=y_{j_{i}}$ $\left.1 \leqq j_{1}<\ldots<j_{k} \leqq l\right)$. We call these hypergraphs directed Sperner-hypergraphs.
Theorem 5. The maximum number of edges of a directed Sperner-hypergraph on $n$ elements is $n$ !.

Proof. If $x_{1}, \ldots, x_{n}$ is any permutation of the elements of $X$ then a directed Spernerhypergraph contains at most one edge from the sequence $\left(x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{1}, x_{2}, \ldots\right.$ $\left.\ldots, x_{n}\right)$. Hence it cannot contain more than $n$ ! edges. All the edges with $n$ or $n-1$ elements, resp. give equality in the theorem. One can easily see that these constructions are the only ones.

If $D$ is a sequence of different elements then $s(D)$ denotes the set of its elements. We may call $s(D)$ the undirected version of $D$. The next theorem answers a problem similar to that of Theorem 5 .
Theorem 6. The maximum number of the edges of a directed Sperner-hypergraph $\mathscr{H}$ satisfying the additional property

$$
\nexists D, E \in \mathscr{H}: s(D) \cup s(E)=X
$$

is $(n-1)!+1$.
Proof. Fix an element $x \in X$. The hypergraph consisting of $(x)$ and of all the sequences of length $n-2$ made from $X-x$ satisfies the conditions of the theorem and has $(n-1)(n-2)!+1$ members. We have to prove that $|\mathscr{H}|$ cannot be more.

Let $\mathscr{H}$ denote the family of the maximal undirected versions of $\mathscr{H}$, that is, $\mathscr{H}=\{A:(A=s(D), D \in \mathscr{H}) \wedge \exists E E:(E \in \mathscr{H}, s(E) \supset A, s(E) \neq A)\}$. In the next row we use Theorem 5:

$$
\begin{equation*}
|\mathscr{H}|=\sum_{D \in \mathscr{H}} 1=\sum_{A \in \mu}|\{D: D \in \mathscr{H}, s(D) \subset A\}| \equiv \sum_{A \in M}|A|!. \tag{7}
\end{equation*}
$$

$\mathscr{A}$ is obviously a Sperner-family and $A, B \in \mathscr{H}$ imply $A \cup B \neq X$. Let $\mathscr{A}^{-}$denote the family of the complements of the members of $\mathscr{M}$. Then

$$
\begin{equation*}
\sum_{A \in \mathscr{M}}|A|!=\sum_{B \in \mathcal{M}}(n-|B|)!=\sum_{k=0}^{n}(n-k)!\left|\left(\mathscr{A}^{-}\right)_{k}\right| . \tag{8}
\end{equation*}
$$

Here $\mathscr{A}^{-}$is an intersecting Sperner-family. We may apply Theorem 4 with $c(i)$ $=(n-i)$ !. If we show that

$$
\begin{equation*}
\sum_{k=0}^{n}(n-k)!f_{k} \leqq(n-1)!+1 \tag{9}
\end{equation*}
$$

for any extreme point listed in Theorem 2 then (7), (8) and (9) prove the theorem. It is sufficient to prove (9) for $v_{j}(n / 2<j \leqq n)$ and $w_{i j}(1 \leqq i \leqq n / 2, i+j>n)$. If $\left(f_{0}, \ldots, f_{n}\right)$ $=v_{j}$ then we need the trivial inequality $(n-j)!\binom{n}{j} \leqq(n-1)!+1$. If $\left(f_{0}, \ldots, f_{n}\right)=w_{i j}$ then the left hand side of $(9)$ is $(n-i)!\binom{n-1}{i-1}+(n-j)!\binom{n-1}{j}=\frac{(n-1)!}{(i-1)!}+\frac{(n-1)!(n-j)}{j!}$ $\leqq \frac{(n-1)!}{(i-1)!}+\frac{(n-1)!(i-1)}{(n-i+1)!}$. If $i=1,2$, then this quantity is $\leqq(n-1)!+1$. If $3 \leqq i \leqq n / 2$ then $1 /(i-1)!\leqq 1 / 2$ and $(i-1) /(n-i+1)!\leqq 1 / 2$ (the case $n \leqq 4$ should be checked separately) are trivial and imply (9).

## 2. Proofs

2.1. Theorem 3 for cyclic permutations. We first prove Theorem 3. The method of cyclic permutations will be used. Let us fix a cyclic permutation of the elements of $X$ and consider only those sets having consecutive elements in this cyclic permutation. These are called consecutive sets. The idea of the method is to prove the statement for a given cyclic permutation with the consecutive sets and then we prove the original statement by some counting argument listing all cyclic permutations [7]. So let us prove now the analogue of Theorem 3:
Lemma. Let $\mathscr{G}$ be an intersecting Sperner-family of consecutive sets in a cyclic permutation of an $n$-element set and denote by $g_{i}$ the number of $i$-element members of $\mathscr{G}$. The inequality

$$
\begin{equation*}
\sum_{1 \equiv i \leq n / 2}\left(1-y_{n-i+1}\right) \frac{g_{i}}{i}+\sum_{n / 2<j \equiv n-1} y_{j} \frac{g_{j}}{n-j} \leqq 1 \tag{10}
\end{equation*}
$$

holds for any sequence $y_{\llcorner n / 2\lrcorner+1} \geqq \ldots \geqq y_{n} \geqq 0$ satisfying

$$
\begin{equation*}
y_{j} \leqq 1-\frac{j}{n} \quad(\lfloor n / 2\rfloor<j \leqq n) . \tag{11}
\end{equation*}
$$

Proof. Define $r=\min _{A \in \mathscr{G}}|A|$ and $s=n-\max _{A \in \mathscr{S}}|A|$. First we prove the lemma for $r-s \leqq 1$ (Part 1) then we prove it by induction on $r-s>1$ (Part 2).

We will suppose in the future that

$$
\begin{equation*}
r \leqq n / 2 . \tag{12}
\end{equation*}
$$

The opposite case $r>n / 2$ is easy. Indeed, the Sperner-property implies that at most one member of $\mathscr{G}$ can start from one point of $X$. Therefore $|\mathscr{G}|=\sum_{\lfloor n / 2 J<j \cong n-1} g_{j} \leqq n$ holds and hence (10) follows:

$$
\sum_{\lfloor n / 2\rfloor<j \leqq n-1} y_{j} \frac{g_{j}}{n-j} \leqq \sum_{\lfloor n / 2\lrcorner<j \leqq n-1}\left(1-\frac{j}{n}\right) \frac{g_{j}}{n-j}=\frac{1}{n} \sum_{\lfloor n / 2\lrcorner<j \leqq n-1} g_{j} \leqq 1
$$

Part 1. $r-s \leqq 1$. Let $A_{1}$ realize the size $r$, that is, $A_{1} \in \mathscr{G},\left|A_{1}\right|=r$. Denote the elements of $A_{1}$ by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ in the order of the fixed cyclic permutation. Since $\mathscr{G}$ is a Sper-ner-family it can contain at most two sets with $\alpha_{i}$ as an endpoint or starting point (along the permutation) (Fig. 1). Let us denote them by $E_{i}$ and $S_{i}$, resp. $\mathscr{G}$ is intersecting therefore if both $E_{i}$ and $S_{i+1}$ are defined then they must intersect "at their other end" (Fig. 2).


Fig. 1


Fig. 2

This implies

$$
\begin{equation*}
\left|E_{i}\right|+\left|S_{i+1}\right|>n . \tag{13}
\end{equation*}
$$

Introduce the notation

$$
w(j)=\left\{\begin{array}{lll}
\frac{1-y_{n-j+1}}{i} & \text { if } & 1 \leqq j \leqq n / 2 \\
\frac{y_{j}}{n-j} & \text { if } & n / 2<j \leqq n-1
\end{array}\right.
$$

We shall prove the inequality

$$
\begin{equation*}
w\left(\left|E_{i}\right|\right)+w\left(\left|S_{i+1}\right|\right) \leqq \frac{1}{r} \tag{14}
\end{equation*}
$$

in several cases where $w\left(\left|E_{i}\right|\right)$ and $w\left(\left|S_{i+1}\right|\right)$ are considered to be 0 if $E_{i}$ and $S_{i+}$ are not defined, resp.:
a) (14) is trivial if none of $E_{i}$ and $S_{i+1}$ is defined.
b) If one of them is defined, only (say $E_{i}$ ), and it has a size $\leqq n / 2$ then

$$
w\left(\left|E_{i}\right|\right)=\frac{1-y_{n-\mid E_{i}+1}}{\left|E_{i}\right|} \leqq \frac{1}{r}
$$

follows from $\left|E_{i}\right| \geqq r$ and $y_{n-\left|E_{i}\right|+1} \geqq 0$.
c) If one of them (say $E_{i}$ ) is defined, only, and it has a size $>n / 2$ then

$$
w\left(\left|E_{i}\right|\right)=\frac{y_{\left|E_{i}\right|}}{n-\left|E_{i}\right|} \leqq \frac{1}{n} \leqq \frac{1}{r}
$$

follows by $y_{\left|E_{i}\right|}=\frac{n-\left|E_{i}\right|}{n} \quad(\sec (11))$.
d) If both of them are defined and their sizes are $>n / 2$ then $w\left(\left|E_{i}\right|\right)$, $w\left(\left|S_{i+1}\right|\right) \leqq 1 / n$ follow like before. Hence (14) is an easy consequence of (12).
e) Suppose now that both $E_{i}$ and $S_{i+1}$ are defined and one of them (say $E_{i}$ ) has a size $\leqq n / 2$. It follows by (13) that $\left|S_{i+1}\right|>n / 2$. Then we can prove the weaker inequality

$$
\begin{equation*}
w\left(\left|E_{i}\right|\right)+w\left(\left|S_{i+1}\right|\right) \equiv \frac{1}{r}+\frac{y_{n-r+1}}{r(r-1)} \tag{15}
\end{equation*}
$$

instead of (14).

$$
\begin{equation*}
w\left(\left|E_{i}\right|\right)=\frac{1-y_{n-\left|E_{i}\right|+1}}{\left|E_{i}\right|} \leqq \frac{1-y_{n-\left|E_{i}\right|+1}}{r} \tag{16}
\end{equation*}
$$

is a consequence of the definition of $r$. (13) and the monotonity of $y$ 's imply

$$
\begin{equation*}
y_{\mid S_{i+1}!} \leqq y_{n-\left|E_{i}\right|+1} \tag{17}
\end{equation*}
$$

By the definition of $s$ we have $n-\left|S_{i+1}\right| \geqq s \geqq r-1$. Hence and from (17) we obtain

$$
w\left(\left|S_{i+1}\right|\right)=\frac{y_{\left|S_{i+1}\right|}}{n-\left|S_{i+1}\right|} \leqq \begin{cases}\frac{y_{n-\left|E_{i}\right|+1}}{r} & \text { if } n-\left|S_{i+1}\right| \geqq r \\ \frac{y_{n-r+1}}{r-1} & \text { if } n-\left|S_{i+1}\right|=r-1\end{cases}
$$

The sum of (16) and this inequality gives (14) in the first case while in the second case we use $y_{n-\left|E_{i}\right|+1} \geqq y_{n-r+1}$ before the summation:

$$
w\left(\left|E_{i}\right|\right)+w\left(\left|S_{i+1}\right|\right) \leqq \frac{1-y_{n-r+1}}{r}+\frac{y_{n-r+1}}{r-1}=\frac{1}{r}+\frac{y_{n-r+1}}{r(r-1)} .
$$

(15) is proved.

As any member of $\mathscr{G}$ meets $A_{1}$ and no other member can contain it, the possible members of $\mathscr{G}$ are $A_{1}, E_{1}, S_{2}, E_{3}, S_{3}, \ldots, E_{r-1}, S_{r}$ (some of them might be undefined). Hence, applying (15) we obtain the inequality

$$
\sum_{A \in \mathscr{M}} w(|A|) \leqq w\left(\left|A_{1}\right|\right)+(r-1) \frac{1}{r}+\frac{y_{n-r+1}}{r}=\frac{1-y_{n-r+1}}{r}+\frac{r-1}{r}+\frac{y_{n-r+1}}{r}=1
$$

what is nothing else but the desired (10). We have proved the lemma for $r-s \leqq 1$.
Part 2. Suppose now that $t=r-s>1$ and that the lemma is proved for smaller values of $r-s$. A subfamily $A_{1}, \ldots, A_{b}$ of $\mathscr{G}$ is called a block if $\left|A_{1}\right|=\ldots=\left|A_{b}\right|=n-s$ and there are consecutive elements $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{b+n-s}$ (in this order along the given cyclic permutation) such that

$$
A_{i}=\left\{\alpha_{i}, \ldots, \alpha_{i+n-s-1}\right\} \in \mathscr{G} \quad(1 \leqq i \leqq b)
$$

but

$$
\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-s-1}\right\} \notin \mathscr{G}, \quad\left\{\alpha_{b+1}, \ldots, \alpha_{b+n-s}\right\} \notin \mathscr{G}
$$

We have to distinguish two cases:
2a. $b \leqq s$ for any block in $\mathscr{G}$.
Define the family $\mathscr{G}^{*}=\{B:(|B|=n-s-1) \wedge(B$ consecutive $) \wedge(\exists A: A \in \mathscr{G}$, $|A|=n-s, A \supset B)\}$, As $\mathscr{G}$ is a Sperner-family $\mathscr{G} \cap \mathscr{G}^{*}=0$ follows. Let $\mathscr{G}^{\prime}$ $=\left(\mathscr{G}-\mathscr{G}_{n-s}\right) \cup \mathscr{G}^{*}$. It is easy to see that $\mathscr{G}^{\prime}$ is a Sperner-family. On the other hand it is intersecting: $A \cap B \neq 0\left(A, B \in \mathscr{G}^{\prime}\right)$ is non-trivial only when one of them (say $A$ ) is an element of $\mathscr{G}^{*}$. Then $|A|=n-s-1,|B| \geqq r$ and $r-s>1$ imply $|A|+|B|>n$, that is, $A \cap B \neq \emptyset$.

We will need the inequality

$$
\begin{equation*}
\left|\mathscr{G}_{n-s}\right|(s+1) \cong\left|\mathscr{G}^{*}\right| s \tag{18}
\end{equation*}
$$

Let $\mathscr{G}_{n-s}$ be divided into blocks of lengths $b_{1}, \ldots, b_{u}$ where

$$
\begin{equation*}
\sum_{i=1}^{u} b_{j}=\left|G_{n-s}\right| \leqq u s \tag{19}
\end{equation*}
$$

by the suppositions of this case. The block of length $b_{j}$ induces $b_{j}+1$ members into $\mathscr{G}^{*}$. No element of $\mathscr{G}^{*}$ comes from two different blocks. Thus $\left|\mathscr{G}^{*}\right|=\sum_{j=1}^{n}\left(b_{j}+1\right)$. (19) implies $(s+1)\left(\sum_{j=1}^{n} b_{j}\right) \leq s \sum_{j=1}^{u}\left(b_{j}+1\right)$ what is nothing else but (18).

The inequality

$$
\begin{equation*}
y_{n-s} \frac{g_{n-s}}{s} \equiv y_{n-s-1} \frac{\left|\mathscr{G}^{*}\right|}{s+1} \tag{20}
\end{equation*}
$$

follows by (18) and $y_{n-s}=y_{n-s+1}$. (Observe that $r-s>1$ implies $n-s-1>n / 2$ unless $r=(n / 2)+1$ which is excluded by (12).) We needed (20) for proving that the left hand side of (10) is not less for $\mathscr{G}^{\prime}$ than for $\mathscr{G}$ :

$$
\begin{gather*}
\sum_{r \leqq i \leqq n / 2}\left(1-y_{n-i+1}\right) \frac{g_{i}}{i}+\sum_{n / 2<j \leqq n-s} y_{j} \frac{g_{j}}{n-j}  \tag{21}\\
\leqq \sum_{r \leqq i \leqq n / 2}\left(1-y_{n-i+1}\right) \frac{g_{i}}{i}+\sum_{n / 2<j<n-s} y_{j} \frac{g_{i}}{n-j}+y_{n-s-1} \frac{\left|\mathscr{G}^{*}\right|}{s+1} .
\end{gather*}
$$

The largest sets in $\mathscr{G}^{\prime}$ have sizes $n-s-1$, thus $s^{\prime}=s+1, t^{\prime}=r-(s+1)<t$. We may apply the induction hypothesis: (10) holds for $\mathscr{G}^{\prime}$. Consequently, it also holds for $\mathscr{G}$ by (21). Case $2 a$ is settled.

2b. $\mathscr{G}$ contains a block with $b>s$.
Choose an $A_{1} \in \mathscr{G}$ with $\left|A_{1}\right|=r$. Let the elements of $X$ be $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ following the cyclic permutation and suppose that $A_{1}=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$. We can list all ( $n-s$ )-element consecutive sets meeting but not containing $A_{1}$ :

$$
\begin{gathered}
\left\{\alpha_{2}, \ldots, \alpha_{n-s+1}\right\},\left\{\alpha_{3}, \ldots, \alpha_{n-s+2}\right\}, \ldots,\left\{\alpha_{s}, \ldots, \alpha_{n-1}\right\}, \\
\left\{\alpha_{s+1}, \ldots, \alpha_{n}\right\},\left\{\alpha_{s+2}, \ldots, \alpha_{n}, \alpha_{1}\right\}, \ldots,\left\{\alpha_{r+1}, \ldots, \alpha_{n}, \alpha_{1}, \ldots, \alpha_{r-s}\right\}, \\
\left\{\alpha_{r+2}, \ldots, \alpha_{n}, \alpha_{1}, \ldots, \alpha_{r-s+1}\right\}, \ldots,\left\{\alpha_{r+s}, \ldots, \alpha_{n}, \alpha_{1}, \ldots, \alpha_{r-1}\right\} .
\end{gathered}
$$

In each of the first and third rows there are $s-1$ sets. On the other hand, the union of $A_{1}$ and any set in the middle row is $X$. It follows from the supposition of this case that some $s+1$ consecutive sets of the above sequence belong to $\mathscr{G}$. One of them belongs to the middle row. Call this set $A_{2}=\left\{\alpha_{u}, \ldots, \alpha_{n}, \alpha_{1}, \ldots, \alpha_{u-s-1}\right\}$. Summarizing:

$$
\begin{gather*}
\left|A_{1}\right|=r, \quad\left|A_{2}\right|=n-s  \tag{22}\\
A_{1} \cup A_{2}=X \tag{23}
\end{gather*}
$$

any point of $X-A_{2}$ is either a starting point or an endpoint of a set $A \in \mathscr{G}$, $|A|=n-s$.

It is easy to check that we can have one more assumption:
$A_{1} \cap A_{2}$ is a union of two non-empty intervals $I=\left\{\alpha_{1}, \ldots, \alpha_{u-s-1}\right\}$ and
$J=\left\{\alpha_{u}, \ldots, \alpha_{r}\right\}$.

We shall prove the following statement: there are at most $r-s+1$ members of $\mathscr{G}$ containing $X-A_{2}$.

Let $A \neq A_{1}$ be a member of $\mathscr{G}$ satisfying $A \supset X-A_{2}$. One of the endpoints of $A$ must be in $I \cup J \cup\left\{\alpha_{u-1}, \alpha_{u-s}\right\}$ otherwise one of the conditions $A \supset X-A_{2}$, $A \nsubseteq A_{2}, A \not A_{1}$ would be violated. Moreover, if both endpoints of $A$ are in $I \cup J$ $\cup\left\{\alpha_{u-1}, \alpha_{u-s}\right\}$ then they are both either in $I \cup\left\{\alpha_{u-s}\right\}$ or in $J \cup\left\{\alpha_{u-1}\right\}$. Let $e(A)$ denote the endpoint of $A$ being in $I \cup J \cup\left\{\alpha_{u-1}, \alpha_{u-s}\right\}$ if there is only one. If there are two such endpoints let $e(A)$ denote the one being "closer" to $X-A_{2}$, that is, the endpoint with larger index in $I \cup\left\{\alpha_{\mu-s}\right\}$ and with smaller index in $J \cup\left\{\alpha_{u-1}\right\}$. It is easy to check that $e(A)$ is an injection and that $e(A)$ cannot be $\alpha_{1}$ or $\alpha_{r}$. Therefore $e(A)$ can have at most $|I \cup J|=\left|A_{1} \cap A_{2}\right|=r-s$ different values. Consequently, the number of sets $A \neq A_{1}, A \supset X-A_{2}, A \notin \mathscr{G}$ is at most $r-s$. Including $A$ we obtain the bound (26).

Let us show now that

$$
\begin{equation*}
A \in \mathscr{G} \text { implies } w(|A|) \leqq\left(1-y_{n-r+1}\right) / r . \tag{27}
\end{equation*}
$$

If $|A| \leqq n / 2$ then it is sufficient to substitute $|A| \geqq r$ and $y_{n-|A|+1} \geqq y_{n-r+1}$ into the definition of $w^{\prime}(|A|)$. If $|A|>n / 2$ then $y_{|A|} \leqq 1-\frac{|A|}{n}, r \leqq n / 2$ and $y_{n-r+1} \leqq 1-\frac{n-r+1}{n}$ lead to

$$
w(|A|)=\frac{y_{|A|}}{n-|A|} \leqq \frac{1}{n} \leqq \frac{1}{r} \frac{n-r+1}{n} \leqq \frac{1}{r}\left(1-y_{n-r+1}\right) .
$$

(27) is proved.

If $A \in \mathscr{G}$ but $A \cup A_{2} \neq X, A \neq A_{2}$ then one of the endpoints of $A$ must be in $X-A_{2}$ (otherwise either $A \cup A_{2}=X$ or $A \subset A_{2}$ would follow). Since no member of $\mathscr{G}$ contains another one, any point of $X-A_{2}$ is an endpoint (starting point) of at most one member of $\mathscr{G}$. Altogether there are $2(s-1)$ such sets $A \in \mathscr{G}, A \cup A_{2} \neq X, A \neq A_{2}$. $s-1$ of them are of size $n-s$ by (24). For the rest we can use (27):

$$
\begin{equation*}
\sum_{\substack{A \in \mathscr{G} \\ A \cup A_{2} \neq X \\ A \neq A_{2}}} w(|A|) \leqq(s-1) \frac{1-y_{n-r+1}}{r}+(s-1) \frac{y_{n-s}}{s} . \tag{28}
\end{equation*}
$$

Hence we obtain the next upper bound for the left hand side of (10):

$$
\begin{aligned}
\sum_{A \in \mathscr{G}} w(|A|) & =\sum_{\substack{A \in \mathscr{A} \\
A\left(S A_{2}=X\right.}} w(|A|)+w\left(\left|A_{2}\right|\right)+\sum_{\substack{A \in s \\
A \in A_{2} \neq X \\
A \neq A_{2}}} w(|A|) \\
& \leqq(r-s+1) \frac{1-y_{n-r+1}}{r}+\frac{y_{n-s}}{s}+(s-1) \frac{1-y_{n-r+1}}{r}+(s-1) \frac{y_{n-s}}{s} \\
& =1-y_{n-r+1}+y_{n-s}
\end{aligned}
$$

where (26), (27) and (28) are used. $r-s>1$ implies $n-r+1<n-s$ and therefore $y_{n-r+1}>y_{n-s}$. Indeed, we obtained

$$
\sum_{A \in \mathscr{G}} w(|A|) \leqq 1-y_{n-r+1}+y_{n-s} \leqq 1
$$

2.2. Proof of Theorem 3 using the cyclic permutations. Let $\mathscr{F}$ be a family with profile $\left(0, f_{1}, f_{2}, \ldots, f_{n-1}, 0\right)$. The following function will be defined for any cyclic permutation $\mathscr{C}$ of $X$ and for any $A \subset X$ :

$$
w(\mathscr{C}, A)=\left\{\begin{array}{ll}
w(|A|) & \text { if } A \in \mathscr{F} \\
0 & \text { otherwise }
\end{array} \text { and } A \text { is consecutive in } \mathscr{C},\right.
$$

We will evaluate the sum $\sum_{\mathscr{C}, A} w(\mathscr{C}, A)$ in two different ways: first fixing $A$, running $\mathscr{C}$ and then in the opposite order.

$$
\begin{equation*}
\sum_{\mathscr{C}, A} w(\mathscr{C}, A)=\sum_{A \in \mathscr{Y}} w(|A|)|A|!(n-|A|)! \tag{29}
\end{equation*}
$$

follows from the fact that there are $|A|!(n-|A|)!$ cyclic permutations in which $A$ is consecutive. On the other hand

$$
\sum_{\mathscr{C}, A} w(\mathscr{C}, A)=\sum_{\mathscr{C}} \sum_{\substack{A: A \in \mathscr{G} \\ A \text { cons. in } \mathscr{C}}} w(|A|)
$$

can be written. Here the last sum is $\leqq 1$ by the Lemma. Consequently

$$
\begin{equation*}
\sum_{\mathscr{K}, A} w(\mathscr{C}, A) \leqq(n-1)! \tag{30}
\end{equation*}
$$

Comparing the right hand sides of (29) and (30)

$$
\sum_{A \in \mathscr{S}} \frac{w(|A|)}{\frac{(n-1)!}{|A|!(n-|A|)!}} \leqq 1
$$

can be obtained. Substituting the definition of $w(|A|)$ this inequality gives an equivalent form of (5).
2.3. Proof of Theorem 2 using the duality theorem of linear programming. 1. First we prove that if $\left(f_{0}, f_{1}, \ldots, f_{n}\right) \in \mu$ then there is a convex combination $\left(g_{0}, g_{1}, \ldots, g_{n}\right)$ of $z, v_{j}(n / 2<j \leqq n)$ and $w_{i j}(1 \leqq i \leqq n / 2, i+j>n)$ satisfying $g_{j} \geqq f_{j}(0 \leqq j \leqq n)$.

Let $u_{\llcorner n / 2\lrcorner+1}, \ldots, u_{n-1}, u_{n}$ be a sequence of non-negative reals such that

$$
\begin{equation*}
u_{j} \leqq 1-\frac{j}{n} \quad(n / 2<j \cong n) \tag{31}
\end{equation*}
$$

Then the sequence

$$
y_{j}=\max _{k \geqq j} u_{k} \quad(n / 2<j \leqq n)
$$

will be monotonic and preserves property (31) (e.g. (6)). On the other hand $u_{j} \leqq y_{j}$ ( $n / 2<j \leqq n$ ) holds, consequently (5) is true for these $y$ and it implies

$$
\begin{equation*}
\sum_{1 \leqq i \leq n / 2}\left(1-\max _{n-i+1 \leqq j \leqq n} u_{j}\right) \frac{f_{i}}{\binom{n-1}{i-1}}+\sum_{n / 2<j \leqq n-1} u_{j} \frac{f_{j}}{\binom{n-1}{j}} \leqq 1 \tag{32}
\end{equation*}
$$

Suppose that $u_{i} \leqq 1-\max _{n-i+1 \leqq j \leqq n} u_{j}(1 \leqq i \leqq n / 2)$ or equivalently

$$
\begin{equation*}
u_{i}+u_{j} \leqq 1 \quad(\text { for all } 1 \leqq i \leqq n / 2, n-i+1 \leqq j \leqq n) \tag{33}
\end{equation*}
$$

Then we can substitute $u_{i}$ in the place of $1-\max u_{j}$ in (32). We conclude that

$$
\sum_{1 \leqq i \leqq n / 2} u_{i} \frac{f_{i}}{\binom{n-1}{i-1}}+\sum_{n / 2<j \leqq n-1} u_{j} \frac{f_{j}}{\binom{n-1}{j}} \leqq 1
$$

holds under conditions (31) and (33). The above statement can be formulated in terms of linear programming:

$$
\max \left(\sum_{1 \leqq i \leqq n / 2} u_{i} \frac{f_{i}}{\binom{n-1}{i-1}}+\sum_{n / 2<j \leqq n-1} u_{j} \frac{f_{j}}{\binom{n-1}{j}}\right) \leqq 1
$$

under constraints (33) and

$$
\begin{equation*}
u_{j} \frac{n}{n-j} \leqq 1 \quad(n / 2<j \leqq n-1) \quad u_{n} \leqq 0, \quad u_{j} \geqq 0 \quad(n / 2 \leqq j \leqq n) . \tag{34}
\end{equation*}
$$

Consider the dual problem. We associate the variables $\mu_{j}$ with constraints (34) and $v_{i j}$ with (33):

$$
\begin{equation*}
\min \left(\sum_{n / 2<j \leqq n-1} \mu_{j}+\sum_{1 \leqq i \leqq n / 2} \sum_{n-i+1 \leqq j \leqq n} v_{i j}\right) \leqq 1 \tag{35}
\end{equation*}
$$

under the constraints

$$
\begin{gather*}
\sum_{n / 2<j \leqq n-1} v_{i j} \geqq \frac{f_{i}}{\binom{n-1}{i-1}} \quad(1 \leqq i \leqq n / 2),  \tag{36}\\
\sum_{1 \leqq i \leqq n / 2} v_{i j}+\mu_{j} \frac{n}{n-j} \geqq \frac{f_{j}}{\binom{n-1}{j}} \quad(n / 2<j \leqq n-1),  \tag{37}\\
\sum_{1 \leqq i \leqq n / 2} v_{i n}+\mu_{n} \geqq 0 \quad \text { and }  \tag{38}\\
v_{i j} \geqq 0, \quad \mu_{j} \geqq 0 \quad(1 \leqq i \leqq n / 2, n / 2<j \leqq n) .
\end{gather*}
$$

(38) is superfluous, (36) and (37) can be rewritten in the forms

$$
\begin{equation*}
\sum_{n-i+1 \leqq j \leqq n-1} v_{i j}\binom{n-1}{i-1} \leqq f_{i} \quad(1 \leqq i \leqq n / 2, n-i+1 \leqq j \leqq n) \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{1 \leqq i \leqq n / 2} v_{i j}\binom{n-1}{j}+\mu_{j}\binom{n}{j} \geqq f_{j} \quad(n / 2<j \equiv n-1) . \tag{40}
\end{equation*}
$$

Let us concise (39) and (40) into a vectorial form:

$$
\begin{equation*}
\sum_{1 \leqq i \leqq n / 2} v_{i j} w_{i j}+\sum_{n / 2<j \leqq n-1} \mu_{j} v_{j} \geqq\left(f_{1}, f_{2}, \ldots, f_{n-1}\right) \tag{41}
\end{equation*}
$$

(where $w_{i j}$ and $v_{j}$ are truncated; their first and last coordinates are omitted). We obtained that under constraint (41) (35) has a solution $\leqq 1$. In other words, there are non-negative $v$ 's and $\mu$ 's satisfying (41) with a sum $\leqq 1$. (41) can be easily completed with the Oth and $n$th coordinates: 1) $f_{0}=0$ since $\emptyset$ cannot be a member of an intersecting family $(\emptyset \cap \emptyset=\emptyset) ; 2)$ if $f_{n}=0$ then the situation is the same; if $f_{n}=1$ then $f_{0}=\ldots=f_{n-1}=0$ by the Sperner-property and hence $\mu_{n}=1$ is suitable.

Multiplying all $v_{i j}$ and $\mu_{j}$ with the appropriate constant ( $\geqq 1$ ) their sum will be equal to 1 as desired.
2. In the first part of the proof we proved that there is a convex combination $\left(g_{0}, \ldots, g_{n}\right)$ of the vectors $v_{j}$ and $w_{i j}$ for any given $\left(f_{0}, \ldots, f_{n}\right)$ such that

$$
\begin{equation*}
g_{i} \leqq f_{i}(0 \leqq i \leqq n) \tag{42}
\end{equation*}
$$

Choose ( $g_{0}, \ldots, g_{n}$ ) maximizing the number of coordinates with equality in (42). Suppose that this number is $<n+1$ and $g_{t}>f_{t}$. The vector ( $g_{0}, \ldots, g_{t-1}$, $0, g_{t+1}, \ldots, g_{n}$ ) is also a convex combination of the vectors $z, v_{j}, w_{i}, w_{i j}$ : we have to change the $t$ th coordinate of each vector for 0 ; the set $z, v_{j}, w_{i}, w_{i, j}$ is closed under this operation. (This is the first place where the vectors $z$ and $w_{i}$ are used.) ( $g_{0}, \ldots$ $\left.\ldots, g_{t-1}, f_{t}, g_{t+1}, \ldots, g_{n}\right)$ is a convex combination of $\left(g_{0}, \ldots, g_{t-1}, 0, g_{t+1}, \ldots, g_{n}\right)$ and $\left(g_{0}, \ldots, g_{n}\right)$ (since $0 \leqq f_{t} \leqq g_{t}$ ), therefore it is a convex combination of $z, v_{j}, w_{i}$
and $w_{i j}$. This new vector $\left(g_{0}, \ldots, g_{t-1}, f_{t}, g_{t+1}, \ldots, g_{n}\right)$ has more common coordinates with $\left(f_{0}, \ldots, f_{n}\right)$ than $\left(g_{0}, \ldots, g_{n}\right)$ does. This contradiction leads to the statement that $\left(f_{0}, \ldots, f_{n}\right)$ itself is a convex combination of the vectors $z, v_{j}, w_{i}$ and $w_{i j}$.
3. In the second part of the proof we proved that only the vectors listed in Theorem 2 can be extreme points of $\mu$. Now we have to verify that they are really extreme points. This is trivial for $z$.

It is easy to construct an intersecting Sperner-family with profile $w_{i}(1 \leqq i \leqq$ $\equiv n / 2$ ): take all the $i$-element subsets containing a fixed element of the ground set. On the other hand, the Erdős-Ko-Rado theorem implies that if $\left(f_{0}, \ldots, f_{n}\right) \in \mu$ then $f_{i}=\binom{n-1}{i-1}$. Hence if $w_{i}$ is a convex combination of some vectors from $\mu$ then they all must have $f_{i}=\binom{n-1}{i-1}$. Similarly, their other coordinates are necessarily 0 . The only such vector is $w_{i}$. One can see in the same way that $v_{j}(n / 2<j \leqq n)$ is in $\mu$ and it is an extreme point of $\mu$.

The construction of an intersecting Sperner-family with profile $w_{i j}$ : take all $i$-element subsets containing a fixed element $x$ and all $j$-element subsets not containing $x$. Suppose that $w_{i j}$ is a convex combination of some elements of $\mu$. As above, all of them must have $\binom{n-1}{i-1}$ in the $i$ th coordinate. The only intersecting Spernerfamily with $\binom{n-1}{i-1} i$-element sets is the above construction of all $i$-element subsets containing $x$. No $j$-element set can contain $x$. It would then contain an $i$-element set as a subset. Hence $\left(f_{0}, \ldots, f_{n}\right) \in \mu$ and $f_{i}=\binom{n-1}{i-1}$ imply $f_{j} \equiv\binom{n-1}{j}$. Therefore all the vectors in the convex combination must have $\binom{n-1}{j}$ as $j$ th coordinate. Like above, the other coordinates are $0 . w_{i j}$ is the only such vector, therefore it is really an extreme point of $\mu$.

## References

[1] B. Bollobás, Sperner systems consisting of pairs of complementary subsets, J. Combinatorial Theory A 15 (1973), 363-366.
[2] G. F. Clements, A minimization problem concerning subsets of a finite set, Discrete Math. 4 (1973), 123-128.
[3] D. E. Daykin, J. Godfrey and A. J. W. Hilton, Existence theorems for Sperner families, J. Combinatorial Theory a 17 (1974), 245-251.
[4] P. Erdós, Chao Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2) 12 (1961), 313-318.
[5] C. Greene, G. O. H. Katona and D. J. Kleitman, Extensions of the Erdós-Ko-Rado theorem, SIAM 55 (1976), 1-8.
[6] G. O. H. Kafona, Two applications of Sperner type theorems, Periodica Math. Hungar. 3 (1973), (3) 19-26.
[7] G. O. H. Katona, A simple proof of Erdós-Ko-Rado theorem, J. Combinatorial Theory B 13 (1972), 183-184.
[8] D. Lubell, A short proof of Sperner's Lemma, J. Combinatorial Theory 1 (1966), 299.
[9] L. D. Mesfalkin, A generalization of Sperner's theorem on the number of subsets of a finite set, Teor. Verojatnost. i Primen. 8 (1963), 219-220 (in Russian).
[10] E. C. Milner, A combinatorial theorem on systems of sets, J. London Math. Soc. 43 (1968), 204-206.
[11] E. Sperner, Ein Satz über Untermenge einer endlichen Menge, Math. Z. 27 (1928), 544-548.
[12] K. Yamamoto, Logarithmic order of free distributive lattices, J. Math. Soc. Japan 6 (1954), 343-353.

Péter L. Erdős
Institute of Mathematics and Computer Science
K. Marx University of Economics

Budapest. Pf. 482, H-1828. Hungary
Gyula O. H. Katona Mathematical Institute of the Hungarian Academy of Sciences Budapest, Pf. 428, H-1395. Hutgary

Peter Frankl
CNRS
15 Quai Anatole France
75007 Paris, France

