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Let ~ be a family of subsets of a finite set of n elements. The vector (fo . . . . .  f , )  is called the 
profile o f ~  wbere f~ denotes the number of/-element subsets in ~.. Take the set of profiles of all 
families-~7 satisfying F~CFz and Fxf)Fz~O for all F~,F2E~. It is proved that the extreme 
points of this set in R "+~ have at most two non-zero components. 

1. Def ini t ions ,  results 

1.1. Convex hull o f  the Spernerfamilies. Let  X be a finite set o f  n elements  and  ~-  
be a fami ly  o f  its subsets  ( ~ - c 2 x ) .  Then ~-k denotes  the subfamily  of  the  k-e lement  
subsets  in J~:  .~%={A: A ~ ,  ]Al=k} .  Its size [J~k] is deno ted  b y f k .  The  vector  
()co, fx . . . .  , f , )  in the ( n + l ) - d i m e n s i o n a l  Eucl idean space R "+1 is cal led the profile 
o f  ~ .  

I f  ~ is a finite set in R "+1, the  convex hull (~) o f  ~ is the set o f  al l  convex l inear  
combina t ions  o f  the elements  o f  ~. W e  say tha t  eE~ is an ext reme po in t  o f  c~ iff 
e is no t  a convex l inear  combina t ion  o f  e lements  o f  ~ different f rom e. It is easy to  
see tha t  (~) is equal  to the  set of  all convex linear combina t ions  of  its ext reme points.  
Tha t  is, the de t e rmina t i on  o f  the convex hull  o f  a set is equivalent  to finding its 
ex t reme points .  

. ~  is a Sperner-family iff it  con ta ins  no  members  A, B with A c B  (Sperner- 
property). Cons ide r  the set a o f  all profiles o f  the Sperner-families. The  elements of  o- 
can be perfect ly  charac te r ized  by  a sequence o f  compl ica ted  inequal i t ies  (see [2], [3]). 
Somet imes  it might  be more  useful to  de te rmine  a small  convex set conta in ing  a. 
The best  one o f  them is, o f  course,  (a) .  W e  find (a )  de termining  its ext reme points  
(the ex t reme poin ts  o f  (c~) a re  briefly called ext reme poin ts  o f  c0: 

T h e o r e m  1. The extreme points o f  the set a o f  the profiles of  the Sperner-families are 

(1) z = (o, o . . . . .  o)  

= /0,0 ,0 /,:/ 0 n, 

AMS subject classification (1980): 05 C 35; 05 C 65, 52 A 20 
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Proof. We will show that this is nothing else but the well-known LYM-inequality 
([81, [91, [121): 

(2) .~  Ji ~ 1. 

We have to prove two statements: 
(a) any element (f0 . . . . . .  f,,) is a convex combination of vectors of form (1), 
(b) these latter ones are extreme points. 

(a) means, by definition, that (f~ . . . . .  f , )  is a linear combination of z and v i 
with some non-negative coefficients 2, 20, 2~ . . . .  ,2 ,  satisfying 

~r 

; - +  ~Y)~i = 1. 
i=0 

n (0~i-<n) '  2=l-i='~0fl  i satisfies these conditions by (2). The choice 2 i = f  i 

Part (b) is also easy. z is an extreme point since all other elements of a have non-nega- 
tive coordinates with at least one positive one. Their convex combination cannot be 

h %, 

z. On the other hand, if oj  is a Sperner-family then [o~/l~[n] holds with equality 

only if o ~ consists of all i-element subsets. Therefore, if u ~ a then its i-th coordinate is 

~ [n)  with equality only for vi. Hence vi is an extreme point. I 

1.2. Intersecting Sperner-fi~milies. A family is an intersecting family if A, BE~" 
implies A f~B#O. A classical theorem concerning intersecting families is the 

Erd~s--Ko---Rado theorem [4]. I f  "J is an h~tersecting family o f  k-element (k<=n/2) 
subsets o f  an n-element set the,~ 

1 "  II 

Let # denote the set of profiles of the intersecting Sperner-families. There 
exist some inequalities in the literature trying to give good necessary conditions for 
the elements of p. First Bollobfis [1] proved 

t 2  
(3) 2 " ' - -  ~: 1 n--1 - l~-i~-nl~(i__l ) 
later Greene, Katona and Kleitman [5] found 

f .  
(4) Z "' + Z L ___- 1 /"} 

.l 
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for  any  (f0, f~, -.., f , ) .  Both  inequalities are far  f rom describing the convex hull o f  
g. The  main  a im o f  the present  papel  is to determine the convex hull or  in other  words  
the ex t reme points  of /~ .  

Theorem 2. The extreme points o f  the set 12 oJ the profiles o f  intersecting Sperner 
.families have at most two positive coordinates, more precisely, the extreme points are 

= ( 0 ,  0 . . . .  , 0 ) ,  

 ,t00 ..... / 
~ 7 ... 7 ... - 

wl = {0,0, [ n - l ~  0) (l :4 i ~ n/2), 
.... t, i - - l J  . . . . .  

~ Y . . .  7 . . . .  

.... ~ , i -1  ) . . . .  ' j ' "  
"67 .-. 7 ... 7 ... ; 

i + j  > n). 

There  is ano ther  way to describe the convex hull @). Namely ,  we could list 
the hyperplanes  border ing  it. Some of  them are trivial because they separate  the posi- 
tive o r than t  f rom the other  ones, only. The  next  theorem presents a set o f  inequali- 
ties. The  inequalities representing the non-tr ivial  border ing hyperplanes  are among  
them.  Somet imes  they  are more  appl icable than the form given in Theorem 2. Any- 
way, we will deduce Theorem 2 f rom this theorem:  

Theorem 3. 

J; L- 
(5) ~ '  (1 -- Y,-i+2) + 2 YJ (n-- 1 ] ~ 1 

I ) t i - I  ! t j 

.for a , y  (fo,  .f~, ..., .[,)6IL 
satisfying 

(6) 

and .for ato' sequence yt_nl2j 4-1~YL,,I23 +2>=... ~)'n~O 

yj ~ l--J-- (n/2 <- j ~_ n). 
H 

Obselve  tha t  (5) gives (3) and (4) in the cases YL,q"j+l . . . . .  y , ,=0  and y j=  
= 1 --jilt (n/2<j<=n), resp. 

1.3. Weighted extremal hypergraphs. The classical theorem of  Sperner  [11] states 
/ \ 

that  a Sperner- family  on n elements cannot  have more  than [ n } members .  The n/2 
ana logous  question for intersecting Sperner-families was solved by Milner [10]. 

[ n ) Letc(i)(O<=i<=n)beagivenrealfunction. Wemay  Their  maximal  size is L_n/23 + 1 ' 

need to maximize  ,~  c(i)1.~[, rather  than I,N] = ~ ,  ]~ t ,  for a certain class of  
i = 0  i = 0  
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families ~ .  The solution of this question for Sperner-families was a folklore but it 
was fornmlated in [6]. We deduce it here from Theorem 1. (Earlier it was deduced 

from the equivalent (2).) Indeed, we have to maximize ~ '  c(i).~ for the elements of  
i = 0  

a. The maximum is attained for at least one extreme point, hence 

I • .  
/=0 

Analogously, Theorem 2 implies the next statement: 

Theorem 4. Given a real function c(i) (0Ni-<n) max Z e ( i ) I ~ I  for intersecting 
Sperner-families ~ is attained for a family conta#zing members of  at most two dif- 
ferent sizes, more precisely, for families with profiles listed in Theorem 2. 

1.4. An application o f  Theorem 2 for extremal problems for directed hypergraphs. 
Let X be a finite set of  n elements. A directed hypergraph on X is a set of  different 
sequences (x~, ..., Xk) (xi~X, x iCx j  if 1 ~-i, j<=k, i C j )  where k can vary from 0 
(empty sequence) to n. The sequences are the edges of the directed hypergraph. The 
first possible extremal problem is the following: what is the maximum number of 
edges in a directed hypergraph if it does not contain two different edges (x~ . . . . .  Xk) 
and (Yl . . . . .  Yl) such that (x~, ..., Xk) is a subsequence of (Yl . . . . .  y~) (that is, x~=yj., 
i -<jr . . . .  <./k~l). We call these hypergraphs directed Sperner-hypergraphs. 

Theorem 5. The maximum number o f  edges of  a directed Sperner-hypergraph on n 
elements is n!. 

Proof. If x~ . . . .  , x,, is any pernmtation of the elements of  X then a directed Sperner- 
hypergraph contains at most one edge from the sequence (x0, (x~, x2) . . . . .  (x~, xz, ... 
.... x,). Hence it cannot contain more than n! edges. All the edges with n or n - 1  
elements, resp. give equality in the theorem. One can easily see that these construc- 
tions are the only ones. I 

If D is a sequence of different elements then s(D) denotes the set of its elements. 
We may call s(D) the undirected cersion of D. The next theorem answers a problem 
similar to that of  Theorem 5. 

Theorem 6. The maximum number o1" the edges o]a directed Sperner-hypergraph .~¢ 
satis['ying the additional property 

:j~D, EE.kf, : s( D) LJ s(E) = X 
i s ( n - - l ) ! +  1. 

Proof. Fix an element xEX. The hypergraph consisting of ix) and of all the se- 
quences of  length n - 2  made from X - x  satisfies the conditions of the theorem and 
has ( n - 1 ) ( n - 2 ) ! + l  members. We have to prove that [Jt °] cannot be more. 

Let MZ denote the family of the maximal undirected versions of 9f ,  that is, 
~/ /={A: (A=s(D),  DEo~)A-~E:  (EE.,~, s (E)DA,  s ( E ) / A ) } .  In the next row 
we use Theorem 5: 

(7) I,,~('! = ~ 1 = ~ ]{D: DEJg', s(D) c A}I ~ ~; IA]!. 
DE . ~  ,4 ~ ,:tl A g. ,II 
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J t  is obviously a Sperner-family and A, B~o~ imply A U B ~ X .  Let ,/ , '-  denote 
the family of  the complements of the members of  ~rt'. Then 

(8) Z IAI! = ~ (n-!gl)z : ~(n-/c)!l(~a'-)k!. 
a~,e e~ ~ -  ~=o 

Here ~¢t'- is an intersecting Sperner-family. We may apply Theorem 4 with c(i) 
= ( n - i ) ! .  I f  we show that 

(9) ~ ( n -  k) ! fk ~ (n-- 1 )! + I 
k=O 

for any extreme point listed in Theorem 2 then (7), (8) and (9) prove the theorem. It is 
sufficient to prove (9) for v i (n /2<j~n)  and w u (1 <=i~n/2, i + j > n ) .  If (f0 . . . . .  f , )  

i \ 

=Vy then we need the trivial inequality (n-j)[[n.J-<__(n-1)[+l. If (fo . . . .  , f.)=wo- 

thenthelef t  handsideof(9)is  ( n - i ) !  i -  1 I = ( i  - l)! -t- j! 

< ( n - l ) !  ( n -  1 ) ! ( i -  1) 
- ( i -  1)~ -~ ( n -  i + 1)! " If  i =  1, 2, then this quantity is N ( n -  1 ) !-F !. If 3 ~ i ~  n/2 

then I / ( i - I ) !~=1/2 and ( i -1 ) / (n- i+l ) ! -<=l /2  (the case n ~ 4  should be checked 
separately) are trivial and imply (9). | 

2. Proofs  

2.1. Theorem 3 for  o'clic permutations. We first prove Theorem 3. The method of 
cyclic permutations will be used. Let us fix a cyclic permutation of the elements of X 
and consider only those sets having consecutive elements in this cyclic permutation. 
These are called consecutive sets. The idea of the method is to prove the statement for 
a given cyclic permutation with the consecutive sets and then we prove the original 
statement by some counting argument listing all cyclic permutations [7]. So let us 
prove now the analogue of Theorem 3: 

Lemma. Let f9 be an intersecting Sperner-family o f  consecutive sets #z a cyclic permu- 
tation o f  an n-element set and denote by gi the number o f  i-element members o f  f¢. 
The inequaffty 

o ,  

(lo) Z ( l -y ._ ,+ , )g /+  Z yj ~ l  
i~i<__nl2 l n / 2 < j ~ = n _ l  D --j 

holds for any sequence YL,/2j+I ~ ... >=y,,-~O satisfyhlg 

(11) yj~_ l - J  ( k n / 2 i < j  @n). 
/7 

Proof. Define r = m i n l A  I and s = n - m a x ] A  i. First we prove the lemma for 
A E ~  A E ~  

r - s  <- 1 (Part 1) then we prove it by induction on r - s > l  (Part 2). 
We will suppose in the future that 

(12) r ~ n/2. 
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The opposite case r>n/2 is easy. Indeed, the Sperner-property implies that at most 
one member of ~ can start from one point of X. Therefore f~[= ~ gj ~n  kn/2J <j~n- -1  
holds and hence (10) follows: 

<= (l J)  gJ l ~ g, ~ l. 
Z y~ g~ Z - ~  ~ - J  = -fi L.I~ <~~,,-, Ln/2j  < . i ~ n - 1  n - j  Lnl2J -< j ~,'1-1 

Part 1. r - s ~ -  1. Let At realize the size r, that is, At(  f#, tall =r .  Denote the elements 
of At by cq, ~2 . . . .  , ~, in the order of  the fixed cyclic permutation. Since f# is a Sper- 
ner-family it can contain at most two sets with cq as an endpoint or starting point 
(along the permutation) (Fig. 1). Let us denote them by E~ and S~, resp. f9 is inter- 
secting therefore if both E~ and S~ ~ are defined then they must intersect "at  their 
other end" (Fig. 2). 

e" 

Si E i ~  Si. 

Fig. / F~e. 2 

This implies 

(13) IEel + [Si+l] > n. 
Introduce the notation 

1 if 1 ~ j ~  11/2 

"~J if n / 2 < j ~ n - - l .  

We shall prove the inequality 
1 

( 1 4 )  w ( ! E i t ) + w ( [ S i + 1 t  ) ~ - -  
F 

in several cases where w(IE;[) and w(lSi+x[) are considered to be 0 if Et and Si+ 
are not defined, resp.: 

a) (14) is trivial if none of E~ and Si+t is defined. 
b) If one of them is defined, only (say Ei), and it has a size <-n/2 then 

w([E,]) = l--'v"-IE'l÷a~ I 
IEi[ r 

follows from [Eil~r and y,_le, l + ~ 0 .  
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c) I f  one  o f  them (say E3 is defined, only,  and  it has a size :>n/2 then 

1 1 w(Ig~] ) = YlE, I ~ _ _ < _ _ _  
n - - I E ;  I - n - r 

.-IE;I 
follows by y l E d ~ - -  (see (Ii)). 

II 

d) If both of them are defined and their sizes are >n/2 then w(IEiD, 
w([Si+1[)<=I/n follow like before. Hence (]4) is an easy consequence of (12). 

e) Suppose now that both E~ and Si+~ are defined and one of them (say E~) 
has a size <:n/2. It follows by (13) that [Si+,l >n/2. Then we can prove the weaker 
inequality 

I _ ~  Y,,-,+I 
w(IED+w(lS,+d) ~- 

r r ( r - 1 )  
(15) 

instead o f  (14). 

(16) w(IEil) - I-Y"-IE'I+I-< 1 - ) ' " - I E ' I + I  
JEll - r 

is a consequence of  the definition o f  r. (13) and the monoton i ty  of  y ' s  imply 

(17) YI&+,! <- ) ' " -  I/hi +1" 

By the definition o f  s we have n-IS t+l l  >=s>=r-1. Hence and f rom (17) we obtain 

[ Y"-IsE.'l+~ if I I - - I S i + l [  > I" 

w([s:+ll) = Vls'+~t 
n- la i+l l  l y ' - ' + I  if n - I a i + a l  = " - I .  

J r - - 1  

The sum of  (1.6) and  this inequality gives (14) in the first case while in the se- 
cond  case we use y,_l~d+l->y,,_r+a before the summat ion :  

w( l fe l )+w( ia i+ , ]  ) 1 - ) ; , _ , + ~  + y,,- ,+x 1 .v,,-~+, _<_ _ _ -  ~ . 
' r r -  1 r r ( r -  1 )  

(15) is proved.  
As any  m e m b e r  of  N meets At and no other  member  can contain  it, the pos- 

sible inembers  of  f# are X~, E l ,  S~, E,,, $3 . . . .  , E ,_ I ,  S, ( some of  them might  be 
undefined). Hence,  applying (15) we obtain  the inequality 

.~ w(IA]) <= w ( l A ~ l ) + ( r - 1 ) l +  Y"-'+-------L~ - l - y . _ , + ,  q- r - 1  -I Y"-'+-------~ - 1 
A E ~  r t" I" r 1" 

what  is nothing else but the desired (10). We have proved the lemma for r - s ~ _ l .  

Part 2. Suppose  now that  t = r - s > l  and  tha t  the lemma is p roved  for  smaller  
values o f  r - s .  A subfami ly  A1 . . . .  , Ab o f  f# is called a block if l-4~l . . . . .  IAbl = n - s  
and there are consecutive elements ~0, ~a . . . .  , ~h~ , - s  (in this order  along the given 
cyclic permuta t ion)  such tha t  

A; = {~i . . . . .  cq+,_~_,lEf~ (1 _~ i -~ b) 
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but 

We have to distinguish two cases: 

2a. b<=s for any block in ft. 
Define the family N*={B: (IBl=n-s-1)A(Bconsecutive)A(~A: AEff, 

tAl=n-s ,  ADB)}. As N is a Sperner-family NT)N*=O follows. Let N' 
=(N-.ff,_~)UN*. It is easy to see that N" is a Sperner-family. On the other hand it 
is intersecting: A(~B~O (A, BEN') is non-trivial only when one of them (say A) 
is an element of N*. Then I A I = n - s - l ,  IBl>=r and r - s > l  imply [AI+]B[>n, 
that is, A(~B¢O. 

We will need the inequality 

(18) [N,,_~l(s+ 1) ~ I~¢*ls. 
Let %,_~ be divided into blocks of lengths ba . . . .  , b. where 

II 

(19) Z b] = 1N,-~I ~ us 
.i = 1 

by the suppositions of this case. The block of length bj induces b j-I- 1 members into 
~t 

N*. No element of ~* comes from two different blocks. Thus IN*[= ~ ( b i + l ) .  
j = l  f , , ) ,  

(19) implies ( s + l )  ~ b  i : ~ s ~ ( b i + l )  what is nothing else but (18). 
\ j = l  j = l  

The inequality 

g,-~ IN*i 
Y,-s- t  (20) Y"-~ s s + l  

follows by (18) and ),_~, ~--_),_,+x, . (Observe that r - s > l  implies n - s - l > n ] 2  
unless r = ( n / 2 ) + l  which is excluded by (12).)We needed (20) for proving that the 
left hand side of (10) is not less for N' than for N: 

g1 (21) ~ (1--Y,,-,+0-~+ y~. 
H - - J  r<~i_~n/2 nl2 < j ~ _ n - - s  

Z ( l - y , , _ ~ + , ) ~ +  2 yj gj + y ° _ ~ _ I .  
, ~ i ~ / 2  t ~/2 < j  < . - ~  n - - j  s + 1 

The largest sets in N' have sizes n - s - l ,  thus s ' = s + l ,  t ' = r - ( s + l ) < t .  We may 
apply the induction hypothesis: (10) holds for N'. Consequently, it also holds for N 
by (21). Case 2a is settled. 

2b. N contains a block with b>s. 
Choose an A1EN with IAxl=r. Let the elements of X be a~, a., . . . . .  ~. 

following the cyclic permutation and suppose that A~ = {cq . . . .  , ~,}. We can list all 
(n-s)-element consecutive sets meeting but not containing Ax: 

{~,~ . . . .  , ~,-,+~}, {~,  ..., ~,,_,+~}, . . . ,  {~ . . . . . .  ~, ,_,},  
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In each of  the first and third rows there are s - 1  sets. On the other hand, the union of 
At and any set in the middle row is Jr. It  follows from the supposition of this case 
that  some s +  1 consecutive sets of  the above sequence belong to ~. One of them be- 
longs to the middle row. Call this set A2= {%, ..., c¢,, el . . . . .  ~,,-s-1}. Summarizing: 

(22) 1Axl = ,', lAd = , , - s  

(23) A1UA2 = X 

(24) any point o f  X A2 is either a starting point o1" an endpoint o f  a set AC ~, 
[AI  = n - s .  

It is easy to check that we can have one more assumption: 

(25) AIOA2 is a union of two non-empty intervals l={cq, - - . ,~ , , -~-a}  and 
j =  {~, ,  . . . ,  ~,}. 

We shall prove the following statement: 

(26) there are at most r - s +  l members o f  N containilg X--A.a. 

Let A~-At be a member of  N satisfying A D X - A 2 .  One of the endpoints of  A 
must be in ]UJU{C%_l,~u_s} otherwise one of the conditions A D X - A = ,  
AC-Az, A D A r  would be violated. Moreover, if both endpoints of A are in 1UJ 
U{c~,_~,cg,_,} then they are both either in IU{~,,_.~} or in JU{cg,_t}. Let e(A) 
denote the endpoint of A being in 1UJU {G,-1. ~,-s} if there is only one. If  there 
are two such endpoints let e(A) denote the one being "closer" to X--A2, that is, the 
endpoint with larger index in IU{~,_,} and with smaller index in JU{Ru_I}. It 
is easy to check that e(A) is an injection and that e(A) cannot be cq or ~,. Therefore 
e(A) can have at most {IUJl=lA~NAo[=r-s  different values. Consequently, the 
number  of  sets A ¢ A z ,  ADX-A .a ,  A6.~ is at most r - s .  Including A we obtain 
the bound (26). 

Let us show now that 

(27) A ~  implies w(}AI) ~_ ( l - y , _ , + x ) / r .  

> ' into the I f  IAl<=n/2 then it is sufficient to substitute tA]>=r and Y,,-,a)~ x=) , , - ,+z  

definitionofw(lAD. If  [A}>n/2 then y!al~l- lA---~],r~n/2 a n d y , _ , + , ~ l  n - r + l  
t l  1l 

lead to 

1 1 n - , ' +  1 1 ~  
w ( I A l ) -  Y{AI ~ _  ~ - -  < = - - t l - v , , - ~ + , ) .  

n - ) A I  - ,, - ," ' ,  " 
(27) is proved. 

I f  A ( f f  but AUA. ,¢X,  A~-A2 then one of  the endpoints of  A must be in 
X - A =  (otherwise either A tO A s = X  or A c A2 would follow). Since no member of  
contains another  one, any point of  X--A= is an endpoint (starting point) of  at most 
one member  of  ~. Altogether there are 2 ( s -  1) such sets AEN, A tOA2~X. A¢A., .  
s - 1  of  them are of  size n - s  by (24). For the rest we can use (27): 

(28) ,~  w(IAI) <-- ( s - - l )  l--y,,_,+~ +(s_l).y,._,~ . 
A E ~  r S 

AUA2~-X 
A#A= 
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Hence we obtain the next upper bound for the left hand side of  ( I 0 ) :  

~Yw(lal) = ~ '  w(lAl)+w(lA2l)+ Z w(tal) 
A ( ~  AEN 

.4(AA.=X AUA$~.g  
A ~ A ~  

t' 1 - - y . _ , + ~  y.__~ ----< ( r - - s + t )  t--y,,_,+~ + .  ,,_, + ( s - - l )  +(s- - l )  
I ° S r S 

= 1 -- y, _ ~ + 1 + Yn - .v 

where (26), (27) and (28) are used. r - s > l  implies n - r + l < n - s  and therefore 
y,_,+a>y,,_,, lndeed, we obtained 

Z w(1AI) ~ 1 - v , , _ . , + ) , . _ ~  ~- 1. I 

2.2. Proof o J" Theorem 3 using the cyclic permutations. Let ~ be a family with profile 
(0, f , ,  f2 . . . .  , f ,_  ~, 0). The following function will be defined for any cyclic permu- 
tation cg of X and for any A c X :  

/w(jAl) if A 6 N  and A is consecutive in c6', 
W(c~, A) /o otherwise. 

We will evaluate the sum ~ w(C~, A) in two different ways: first fixing A, running 

and then in the opposite order. 

(29) .~ w(<g, A) = .~ w(IA[)IAJ!(n--IAt)! 
~d , A A E rT 

follows from the fact that there are IAI !(n-]AI)!  cyclic permutations in which A is 
consecutive, On the other hand 

Z w(~, A) = Z 

can be written. Here the last sum is ~1 

Z w(lA[) 
A : A ( ~  

.4 cons. in 'g, 

by the Lemma. Consequently 

(30) ~ w(~, ,4) =< (1l-1)!. 
"¢,A 

Comparing the right hand sides of  (29) and (30) 

w(IA[) ~- l 
~ '  ( n - - l ) !  - 

!Al!(n-IAI)!  

can be obtained. Substituting the definition of  w(fA D this inequality gives an equi- 
valent form of (5). II 

2.3. Proof of  Theorem 2 ushlg the duality theorem o f  linear programming. 1. First we 
prove that i f  (fo, f l  . . . .  ,f,)El~ then there is a convex combination (go, gl, ..., g,) o f  
z, vj (n/2<j~n) and w~i (l~i=<n/2, i+ j>n)sa t i s fyhTg  gi>=fj (O<=j~n). 
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Let ut,,/,~j+a, ..., u.-x ,  u, be a sequence of non-negative reals such that 

(31) uj <= l---J (n/2 < j ~ n). 
I1 

Then the sequence 
yj = max Uk (n/2 < j <--_ n) 

k ~ j  

will be monotonic and preserves property (31) (e.g. (6)). On the other hand uj<=),j 
(n /2< j~n)  holds, consequently (5) is true for these y and it implies 

(32) .~ ( 1 -  max ul) , f~ . ,  + .~' uj f i  ~ 1 

~ i - - l  ) I, 

Suppose that u ~ l -  max u~ (l~i<=n/2) or equivalently 
n--i+l~j~n 

(33) u~+uj-<_ 1 (for all l _ ~ i ~  n/2, n - i + l  ~ j ~  n). 

Then we can substitute u~ in the place of 1 - m a x  u~ in (32). We conclude that 

:! A 

i-- 1 j 

holds under conditions (31) and (33). The above statement can be tbrmulated in 
terms of linear programming: 

,~ + ~ uj <_- 1 max ~ / 2  [ ~ i - - ]  1~ n 1 n/2<j<=n--I 

[ i - l )  

under constraints (33) and 

n ~ 1  ( n / 2 < j  ~ n - l )  u,,_-<0, u j ~ 0  ( n / 2 ~ j = <  n). (34) us n - j  

Consider the dual problem. We associate the variables pj with constraints (34) and 
v~j with (33): 

(35) min ( ~ t~j + ~ '  ~ '  v,i) ~ 1 
n /2<j~n- -1  1~_i~--.12 n - - i + l ~ j ~ _ n  
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under the constraints 

(36) ~ '  
nl2 < j ~_n- 1 

(1 " < i <  n/2) 

(37) . ~  vij-[-[,,l j - -  
,, f j  

" >- f , , - l - - -~  n - j  
(n/2 < j ~- n--l) ,  

(38) .~ v#,+p. ~ 0  and 
l ~_i~_nl2 

v u>=O, l~j >-0 (1 <- i_~n/2 ,  n / 2 < j = < n ) .  

(38) is superfluous, (36) and (37) can be rewritten in the forms 

(39) ,~  v i j I n -1  ) 
n _ i + l ~ j ~ ; r t _ l  i--  1 ~ f (l ~ i _~ n/2, n -  i +  I -< j ~ n) 

and 

(4o) ~' v;j +& _->J) (n/2 < j  :~ n - l ) .  
1~_i~_.1~. J J 

Let us concise (39) and (40) into a vectorial form: 

(41) ~ VuWu+ 
1 ~_ i ~_n/2 n/2 < j  ~_n-- 1 

uj v; ~ ( f , ,  k . . . . .  L -  1) 

(where w u and v i are truncated; their first and last coordinates are omitted). We ob- 
tained that under constraint (41) (35) has a solution -<_1. In other words, there are 
non-negative v's and / l ' s  satisfying (41) with a sum =<1. (41) can be easily completed 
with the Oth and nth coordinates: 1) f0=O since 0 cannot be a member of an inter- 
secting family (OfqO=O); 2) if f , = O  then the situation is the same; if f , = l  then 
)c0=... = f , _ l = O  by the Sperner-property and hence p , =  1 is suitable. 

Multiplying all vii and/~i with the appropriate constant (->_1) their sum will 
be equal to 1 as desired. 

2. In the first part  of  the proof  we proved that there is a convex combination 
(go . . . . .  g,) of  the vectors v i and w u for any given (f0 . . . . . .  f,) such that 

(42) gi =>f ( 0 ~  i ~ n). 

Choose (go . . . .  , gn) maximizing the number of  coordinates with equality in 
(42). Suppose that this number is < n + l  and g ,> f t .  The vector (go, . . . , & - l ,  
0, &+l,  ..., g,) is also a convex combination of the vectors z, vj,wl, Wu: we have to 
change the tth coordinate of each vector for 0; the set z, v j, wi, wid is closed under 
this operation. (This is the first place where the vectors z and wl are used.) (go . . . .  
.... & - l ,  .[~, &+l ,  ..., g,) is a convex combination of  (go, ... ,gt-1, 0, g , + l  . . . . .  gn) 
and (go, -.., g,) (since 0_~f=<&), therefore it is a convex combination of  z, vj., wl 
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and wij. This new vector (go . . . .  , g ,-x,  f t ,  g,+l,  ..-, gn) has more common coordina- 
tes with (f0 . . . . .  fn) than (go . . . .  , g,,) does. This contradiction leads to the statement 
that  (fo . . . . .  f~) i tsel f  is a convex cornbh~ation o f  the vectors z, vi, w~ and wit. 

3. In the second part  of  the proof  we proved that only the vectors listed in 
Theorem 2 can be extreme points of  It. Now we have to verify that they are really 
extreme points. This is trivial for z. 

It  is easy to construct an intersecting Sperner-family with profile wi (1 _~i -< _ 
~_n/2): take all the / -e lement  subsets containing a fixed element of  the ground set. 
On the other hand, the E r d 6 s - - K o - - R a d o  theorem implies that if (f0, -.., f , )E# 

( n - l )  
then f ~  i -  1 " Hence if wt is a convex combination of  some vectors f rom/z  then 

n -  1 ) their other coordinates 0. they all must have f i  = i - 1  ." Similarly, are necessarily 

The only such vector is w~. One can see in the same way that vj (n/2<j<-n) is in 
Ct and it is an extreme point of  p. 

The construction of  an intersecting Sperner-family with profile w~j: take all 
/-element subsets containing a fixed element x and all j-element subsets not contain- 
ing x. Suppose that w~j is a convex combination of some elements of  IL. As above, 

n - l )  in the ith coordinate. The all o f  them must have i - 1  only intersecting Sperner- 

" "11~-11 i-element sets is family with . 1 the above construction of  all i-element subsets 

containing x. No j-element set can contain x. It  would then contain an/-element  set 

a s a s u b s e t .  H e n c e ( f o  . . . . .  )'~,)Cp and f / = [ i - 1  imply ~ j . 

t h e v e c t o r s i n t h e c o n v e x c o m b i n a t i o n m u s t h a v e  ( n - l )  j as. / th coordinate. Like 

above, the other coordinates are 0. w~j is the only such vector, therefore it is really 
an extreme point o f  I~. 
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