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The profile of a hypergraph on n vertices is (fo,Jl ..... f ,)  where f~ denotes the number of i- 
element edges. The extreme points of the set of profiles is determined for certain hypergraph classes. 
The results contain many old theorems of extremal set theow as particular cases (Sperner. Erd6s 
Ko--Rado. Daykin--Frankl---Green--Hilt on). 

i .  Introduction 

Let X be a fhaite set o f n  elements and 5 :  be a fmnily o f  its subsets ( .~c2X) .  
Then .~'~ denotes the subfamily o f  the k-element subsets in : :  , ~ =  {A" AE,ff, 
]A] =k}.  Its size ].~] is denoted byfk.  The vector ( f o , f l  . . . . .  f , )  in the (n-t- 1)-dimen- 
sional Enclidean space R "+~ is called the profile o f ~ .  

I f ~  is a finite set in R "+~, the convex hull (@ o f ~  is the set o f  all convex linear 
combinat ions  o f  the elements o f  c< We say that  eE~ is an extreme point of  a i f f e  is 
no t  a convex linear combinat ion  o f  elements o f  7 different f rom e. It is well-known 
that  (@ is equal to the set o f  all convex lh~ear combinat ions  o f  its extreme points. 
That  is, the determination o f  the convex hull o f  a set is equiwdent  to finding its extreme 
points. 

,~  is a Sperner-family iffi t  contains no members A, B with A c B. In the pre- 
vious paper we determined the extreme points o f  the set o f  profiles o f  all Sperner- 
families. This was an easy consequence o f  a well-known inequality. A family is 
intersecting if A, BE,"Y implies A N  B#(:J. The main result o f  [5] determines the 
extreme points o f  the set o f  profiles o f  the intersecting Sperner-families. 

On the other band, the present paper  starts a systematic t reatment  o f  the area. 
It tries to determine the extreme points o f  the set o f  profiles o f  the simplest known 
classes o f  families, using the methods o f  the previous paper. The effort is successful 
for 3 classes" 

1. intersecting thmilies, 
2. k-Sperner-families (there are no k + l  different members satisfying F t c . . .  

...c&+,). 

AMS subject classification (1980): 05 C 35; 05 C 65, 52 A 20 
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3. ,~  . . . . .  - f  are not necessarily disjoint families, where GE,~,, H E ~ ,  
i ¢ j ,  G C H  imply G ~ H .  

Moreover, the method of the previous paper is analyzed here. One of  the 
ideas of  the proofs is the following. A cyclic ordering (6~ is taken of  the underlying set 
X and consider only the sets containg consecutive elements in <g, Any problem of  the 
above type can be realized for these consecutive sets, as well. Their solution is easier 
but in some cases (in all the cases solved in these 2 papers) is sufficient. Theorem 4 
describes the connection between the sets of  extreme points of  the original problem 
and of  the "'consecutive" variant. An example will be given (F~, F2E,~ implies 
[F~f'I F.,_[ E l )  when the original problem is hopeless while the "consecutive" variant 
can be solved. Theorem 4 is, of  course, too weak in this case. 

We also list some known extremal theorems which are consequences of  our 
results. 

For instance in Case 3 our method gives a unified proof  of  3 different state- 
ments of  [I]. 

2. General results (=  tools) 

2.1. Essential ex t reme points. Let A be a class of  families of  subsets of  the n-element 
set X, that is, A c 2  z-'. tz(A) denotes the set o f  profiles of  the families belonging to A: 

The set of  extreme points of  It(A) is denoted by e(A). 
The A's considered in this paper are hereditary, that is, ( # c . ~ E A  implies 

~,#EA. For hereditary A's there is a way of  reduction of  the set of  extreme points. 
Before stating the theorem we have to introduce some more notations. It*(A) iS the 
set of  maximal  profiles: It* (A) contains those elements (fo . . . . .  f , )  o f  It(A) for which 
(go . . . . .  g,)~.lt(A) (&, . . . . .  g, , )~(f~ . . . . .  f , )  (it denotes go~fo ,  ..., g,,-~f,) imply 
(f~ . . . .  , .L)=(g0 . . . .  ,g,,). Furthermore let e* (A)=e(A) r~ I t* (A)  be the set of  the 
essential extreme points. 

Theorem 1. Suppose that A is hereditary. Then any element o f a ( A )  can be obtahwd 
By changing some coordinates o f  an elenwnt o f  c" (A) lo zero. I 

This fact is obvious. The proof  requires very simple technique, therefore it is 
omitted. 

The significance of  the theorem is that for a given A it is sufficie~t to determine 
the set a*(A). Changing the components to zero we obtakn a set of  vectors, these 
should be individually checked if they are extreme points. 

If  we want to prove that a certain set of  points is a(A) then we have to show 
that 1) any point of  b'(A) can be expressed as a convex linear combination of  the 
elements of  a(A), and 2) the elements of  e(A) are extreme points. 1"o prove the first 
condition an equality should be proved. The next theorem reduces this equality for 
an inequality, l f e  is a set of  vectors, c ° denotes the set of  vectors obtained by changing 
the components of  the vectors of  a for zero in all possible ways. 

Theorem 2. Suppose that A is" hereditary and a set a= {e~ . . . . .  e,,}C=lt(A) is given. 
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I f  for any fE/l(A) there are constants ).~ . . . .  ,2,.->_0, ~ :oi ~ 1 satisJ):ing 
i=1 

(2) f:~ ~_, ,~iei 
i = l  

then ~*(A)=Ce. II 

This claim is useful, but trivial (If .q~(u(A)) and 0 ~ J ~ g  then !6(p(A))).  

2.2. Application of" the duality theorem o f  linear programming. Using the transposed 
forms .fr and _e~ of  the column vectors ] 'and ~-'i, resp., (2) can be written like 

(3) ( ¢ I . .  ~,,D 

where (e~...ei[) denotes the (n + 1)× m matrix with columns e ~ 1, . . . .  ¢,,~ . Its constraints 
a r e  

(4) , t , ~ 0  (! ~ i - ~ m )  

and 
tll 

i = 1  

Our aim is to find for f such  2is. This can be formulated in the way that 

(5) min ,~  A; 
i = 1  

should be ~bund under the conditions (3) and (4) and the solution (5) of this linear 
programming problem has to be -~ I. The dual of this problem is 

(6) e,, Yl 

~, Y,: 

(7) y ~ O  {O:~ i - :n )  

t~ 

(8) max ~ j; r~. 
i = O  

By the duality theorem of linear programming (8) is equal lo (5). (5)---- 1 iff (8)~1. 
This latter inequality can easily be formulated as 

tl 

Z Ay, ~ 1 
i = O  
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for any y;'s satisfying (6) and (7). It is worthwhile formulating this statement as a 
theorem: 

Theorem 3. Suppose  that A is heredi /arv  a set  a=  {_e~ . . . . .  _e,,,} ~ It(A) is given attd 

n 

27J;y~ ~ l 
i=O 

hold~ f o r  any 3"0 . . . . . .  V,, sati,sf~'ing 3'i :~ 0 (0 ~ i :~- n) and 

Then e*(A)~e. I 

I 
T 0  ] 

"1'1/i ~ 

k/'n t 

2.3. Reduct ion to the circle. Take a cyclic permutation c£ of the underlying set ,~( and 
consider only such subsets of X whose elmnents are consecutive in c& These sets are 
called consecut ire  se ts  in ~6=. If ~ is a family of subsets of X, then ,3r(g ~) is defined by 
,N(eg)= {F: FE~-, F is consecutive in ~'}. Similarly, let A(,Cg,)={.~-(~): ,~EA}. 
It is well-known (see eg. [7]) that for some classes A it is enough to determine 
max {1:~[: ,T¢~A((~')} :~nd max {I,Y'I: ~"~ A} can be obtained from it by a simple 
counting argument. Of course, this extremal problem for A(~) is easier than for A. 
This method is sometimes called as the permuta t ion  method.  

Before stating the result we have to introduce a notation. If ~_'=(eo, e~ . . . . .  e,) 
then let 

Theorem 4. (BIon'htg up the circle.)  I f  f~ . . . .  , L,,,, are the e x t r e n w  poin ts  ofp(A(Cg)) 
/'Mr any  given cyclic permuta t ion  c6' then 

I,(A) ~ ( { T ( e  0 . . . .  , r(e,,)}~,. 

Proof. Let .~ be an element of A. with profile ( f , , f x  . . . . . .  f,,,). Define the weight- 
function 

( , ) ~v(F)= 0, 0, .... (n_D---- ~ _ ,  . . . .  ,0 (FOX).  

Consider the sum ~ u,(F) for all paris (~d, FI where ~ is a cyclic permutation, F E J  
and F is consecutive in ((,. 

For a fixed ~" wc havc 
l 

~ ~ , ( F ) - - - ( p r o t i l e  of ,~'-(~)). 
v< .'~('e) ( n -  I)? 

Here the profile of ,N(U,) is in p(A(+6)), therefore it is a convex linear combination 

).i(c6')_e, of  the extreme points f, . . . . .  _e,, of  p(A(C~)) ().i(~):~0. ~ ,:.+(V)= 1). 
i = 1  / = i  
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Hence  

.~ Z _~,(F) = '~,(~) Z (n -D!  - = _< = a , ( ~ ) ) e  
,<F 'e ~" ,~ ( n - l ) ! i  i=l 

m I 
follows where _~Y - ) ~ ' ) . ; (<¢)=  I. We have proved that  

i= ~  (n  - I ) .  <~ 

(9) ~" Lv(F) is a convex linear combination o f  el . . . . .  e~. 
c~, F 

On the o ther  hand,  s u m m i n g  in the o ther  way a r o u n d  we obtain 

(lO) Z w(*:)= Z Z_~(r)  = Z*  (o, o, IFI!(,,-IFI)! o) 
*,~: v ~ , " ' "  ( n - - l ) !  ' " ' "  

( ) = fo,  J i , f a n  . . . .  , f n  i ' .... f , , - , , f , ,  i 

where z~* denotes  that  (1, 0, ..., 0) and  (0, 0 . . . .  ,0 ,  1) are taken for  F = 0  and F = X ,  
resp., as the n u m b e r  o f  cyclic pe rmuta t ions  in which F i s  consecutive is IFI !(n-  IF[)! 
for  0 < l F [ < n  but it is ( n - l ) !  for  I F [ = 0 ,  n. It  fol lows by (9) tha t  (10) is a convex 
linear combina t ion  o f  _el . . . . .  g,,,. This implies tha t  (.[o,ft . . . .  , f , )  is a convex linear 
combina t ion  o f  T(et) . . . .  , T(_%). | 

This theorem is really useful i f  T(e 0 . . . . .  T(em)Cp(A) holds. (This can easily 
be checked.) Then ({T(_e 0 . . . . .  T(e_m)})c=p(A) and #(A)=({T(_ex) . . . .  , T(_e,,)}) obvi-  
ously follow. T(e~) . . . .  , T(_%) are the extreme points  o f  A. Unfor t tmate ly ,  this is 
not  true in general. An example  will be given when ({T(_e~) . . . . .  T(_e,,)}) is much  
larger than (p(A)) .  

3. k-Sperner-families 

Let S~ denote  the class o f  k-Sperner-famil ies  on an n-element  set. 

Theorem 5. The extreme points o f  (Sk) are the vectors whose i th components are either 

(7) o r O b u t  h a v e a t m o s t  knon-zerocomponents .  

Proof .  It  is trivial that  these vectors are in cL(SR). To  the vector  0, ..., h 

(n / Ol(l-~k)  onecan find a k-sperner-family .~-with this profile:  take  all 0 . . . .  , 0 ,  it , . . . ,  

/1 . . . .  , / t -e lement  subsets o f  X. (0 (n)  (°} Moreover ,  these points  are extreme. Let g =  0 . . . . . .  il ' 0 '  . . . ,0 ,  it ' 

0 . . . .  ,0) ;  (l<=k). It  is easy to check tha t  no  ~Cg is a convex linear combina t ion  
o f  the o ther  points  o f  p(Sk). 

On the o ther  hand,  we have to prove  tha t  any element o f  #(Sk) can be expres- 
sed as a convex linear combina t ion  o f  these vectors. Theo rem 4 can be appl ied if  we 
show that  the extreme points  o f  #(Sk(Cg)) are the vectors whose ith c o m p o n e n t s  a re  
ei ther n or  0 for  O < i < n  and either 1 or  0 for  i = 0 ,  n, but  have at most  k non-zero  
componen ts .  By T h e o r e m  1 it is sufficient to prove  tha t  e*(Sk(Cg)) iS the set o f  vec- 
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tors whose ith components are either n or 0 for 0 < i < n  and either I or 0 for i=0 ,  n, 
but have exactly k non-zero components. To prove this we apply Theorem 3. The 
inequality 

(11) ~ f~y~ -_=- 1 
i = 0  

has to be verified for any k-Sperner-family in rg with profile (f0 . . . . .  J;,) and for any 
system o f y ' s  satisfying yi>=O (O<=i-~n) and 

k 

(12) z~ e(ij)ny,~ ~ 1 
j = l  

for any choice O<=il<...<ik<=n where C(0)----0tn)=l/n 0(i)-----1 (l~i_-<n--l). 
Let us first show that (11) holds for the following simple systems of values: 

I 1 1 
Y o = ~  -, y~ . . . . .  y11_x=-~-, y,---~--, 

Y o = l ,  Yl . . . . .  y ~ = O  

1 
Y o = O , . . . , y i = n , . . . , y 1 1 = O  (1 <- i ~ n - 1 )  

and 
Y0 . . . . .  Y11-1----0, y11=1. 

In other words we have to prove the inequalities 

n--1 
(13) f o .  x~ f i ,  f , ,  

TT11-z-'~ nk T k ~ 1 

(14) fo ~ 1 

(15) Ji -~n (I ~ i ~ n - 1 )  

(16) )"11 -<_ 1 

for the profile (f0 . . . .  ,f11) of any k-Sperner-family. (14)--(16) are tlivial. The real 
problem is (13). Suppose first that f ~ = f , = 0  and consider a fixed .~(~)  with this 
profile. Any element of X can be the "starting" point of at most k members of ~-(ca) 

I1--1 

because of the k-Sperner property. Thus ]o~(ca)] = ~ f/~2nk. (13) follows. If  exactly 
i = 1  

one off0 and fit is 1 then the number of members ~-(ca) "starting" with a fixed element 
is at most k - 1 .  (13) follows like above. The case f 0 = f , =  1 is analogous. 

Let us prove now (11) under the general assumption (12). Consider a fixed 
system of  y's and order o(i)yi: e(ll)yh>-...>=O(111+l)y~.+l where ll . . . .  ,111+1 

k 
is a permutation of 0, 1, ..., n. It follows by (12) that ~ o(li)ytj<= 1. If  there is a 

d = l  
strict inequality here, then multiply all the y's with a constant ( >  1) to achieve 

k 1 
(17) X 0 (1~) y,, = - - .  

j = l  r/ 



CONVEX t t U L L S  17 

It is easy to see that it is sufficient to prove (11) for such y's. (12) and (17) imply 

1 k--1 

0 ( 0 %  ~ - - -  ~ o~(ls)Ylj = o(lk)y,~ 
#l j = 1 

for any t ~ l ~ ,  ..., lk_ ~. Hence we have 

i = 0  j=l t i l l ,  . , . , l ie_ 1 

= .Z~ ~ tQ (I j )Yb--  0 ( l k ) Y J  + 
j=~ e( ls)  

For the latter row we obtain an upper estimate applying (13)--(16) and (17): 

k - - 1  

~- Z n ( e (ls)y o - o (l~) y J  + 0 (Ik)Yik n k 
j = i  

1 _ e (Ik)Yl,<| -- IT (k - 1) o (Ii,)3'1,, + n k e  (lk)Ylk = 
"l 

~ -  ivi --~ # 1 

We have proved that (11) holds for y's satisfying yi>=O ( O ~ i ~ n )  and (12). The 
application of  Theorem 3 finishes the proof. II 

The following theorem is an easy consequence of Theorem 5. 

Theorem 5a. The hyperplanes borderhlg (#(Sk)) are 

L > = O  ( O ~ i ~ n )  

i ~ k .  II 
i = 0  I ~, " 

11 

Theorem 5 makes it easy to maximize [~[ = ~ fi for families o ~ belonging 
i = 0  

to Sk. It is sufficient to look for this maximuln among the extreme points of  p(Sk). 

Theorem (Erd6s [3]) 

m a x  = Z • I 
E S u i~L(n--k+ 1)/21 

For  k = 1 this is the old Sperner theorem [8]. 

2* 
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4. Intersecting families 

A family ~- is called t-intersecting (1 ~ t ~ n) if  /71, F2C ~ implies [F~ (3 F~ I >= 
>=t. Let It denote the class of  t-intersecting families on an n-element set. The 1- 
intersecting families are called simply intersecting. In case t =  1, I is written rather 
than 1~. It seems to be too hard to determine the extreme points of  eL(It). W e  are 
able to do this only for t =  1. However, it can be done for l,(ga). Before formulating 
the result we prove some preliminary lemmas. 

Lemma 1. Suppose that At,  ..., A, are v-element consecutive sets along a cyclic per- 
mutation cg o f  an n-element set such that IA~ fq A~[ >=t >= 1 for any 1 ~ i<j '~  u where 
t<=v<=l/2(n+t-1). Then u ~ v - t + l  holds. 

Proof. Let A~ = {xx . . . .  , x~} and suppose that the elements are ordered in this way, 
Another A cannot meet A~ in both ends by the conditions. Therefore the possible 
endpoints for A are x t . . . . .  xo_~, while the possible starting points are xo . . . .  , x,,_t+~. 
However the set ending with x~(t-~ i ~  v - 1 )  and the one starting with x~_t+ z meet 
in t - I elements only. Hence at most one of  them can be among the A's. Consequently 
there are at most v - t  such A's. I 

Lemma 2. I f  A~ . . . . .  A. are v-element consecutive sets along a cyclic permutation o f a n  
n-element set then 

I L~ &[ >= min (n, u + v - 1 ) .  
i = l  

Proof. Suppose first that have is an A~ containing no starting point of  another A. 
Then the number of  starting points is u while the number of  other points of  Ai is 

v - l ,  that is, [ ~ ) A i l > - u + v - 1 .  On the other hand, if any A~ contains the starting 
i = I  

point of  another one then the union of  them is tile whole underlying set X, that is, 

IU A,I=,~. | 
i = 1  

Lemma 3. ~' Let (fo . . . . .  f,)Et'(lt(CS')), f i ¢ O  for  some i(t_~i<- n+ t -  t ) Suppose 

that t < = j < = n + t - l - i  holds for  some j. Then f j - < _ - j + i - f i - 2 ( t - l )  holds. 

Proof. Suppose that ~,~El,(Cg) holds and its profile is (fo . . . . .  f ,) .  Let 4 =  {/7I . . . .  , 
...,F_r,}. Consider the family a#={A: IAt=n-j ,  IaNFi[>=i-t+l for some 1<=l~ 
<=i}. The starting points of  the (n- j ) -e lement  consecutive sets satisfying IA (3 Fx[ > 
>=i-t+ 1 for a fixed l form a consecutive set of  size • - j - i + 2 t -  1. Applying Lem- 
ma 2 the total number of these starting points is at least min (n, n - j - i +  2 t - 2  +fi). 
Therefore this is a lower bomad for I~l. A ~ ¢  implies that IX -A]  =j  and ] ( X - A )  f3 
D F I ~- t -  1. Hence we have at least min (n, n - j -  i +  2t - 2 +f~) j-element conse- 
cutive subsets X - A  not belonging to ~¢r. Therefore f j = l ~ l _ < - m a x ( 0 , j + i - f ~  - 
- 2 ( t - 1 ) ) .  | 

We remark that Lemma 1 ilnplies f < - i - t + l  hence j + i - f - 2 ( t - l ) > O .  
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Lemma 4. Oeo . . . . .  f , )~t( l , ( ,~))  (if" the following conditions are fidfille. 

0 8 )  1~ = 0 (0 :~ i < t), 

(19) f , ~ -  i - - t -F l  (t -_2- i ---- ( n + t - l ) / 2 ) ,  

(20) f j  ~ rain {j + i - - J j - - 2 ( t -  l)}((n + t -  1)/2 < j<--n) 

where the minimum is taken on all i satisfying 

(21) t - ~ i _ ~ n + t - l - j ,  f~<~O. 

I f  this set is empty  then (201) has the f i )rm .fj ~ n ( j <  n). f ,  ~1.  

P r o o L  (18) trivially follows from (Jo . . . . . .  f,,)C~ll(lt(~)) by the definitions. (19) and 
(20) are consequenses of Lemmas 1 and 3, respectively. 

Conversely we have to prove that if (18)--(20) hold than there is an 
.~-Elt(Cg) with profile (f~ . . . .  , J~). This will be done by a construction. Let x ,  . . . . .  x,, 
be the elements of X according their order in c~'. For t ~ i < - ( n + t  - I)/2, choose the 
consecutive sets with endpoints .r~, x;_, . . . .  ,x;_;,+~. On the other hand, if 
( n + t - l ) / 2 < i ,  take the sets with endpoints x,; x,+, . . . .  ,X t+y , - t .  This family ~- 
is trivially t-intersecting. | 

So we obtained a purely algebraic characterization of the polytope <p(l,(~, ))). 
Now the description of its essential vertices (kemma 5) requires only linear algebraic 
technique, so the proof of it will be sketched only. 

L e m m a  5. ~* (I, (g~)) consists o f  the follo wing vectors 

(22) 

(0 . . . . .  0, / c - / + l ,  k - t + 2  . . . . .  n - k ,  n . . . . .  n, 1) 

, ,+~-k , , -1  . t =. k ~ 

(0 . . . . .  0, , . . . . .  , ,  i) 

,,+t -, (n + t is even). 
"2 

Proof. (Sketch). It is clear that (22)~(S,(I,((6))) and they are convex linearly 
independent. 

If fE@(l,(C6'))) a vertex then it can be obtained as an intersection of (n+ 1) 
hyperp lanes ; f  the fO,"m (18)--(21). It is easy to check that if J~(#(I ,(~)))  and f 
satisfies (n+ 1) inequalities of  form (I 8)--(21) by equality t h e n - f c a n  be obtained 
from an element of(22) changing some components for zero. So (22) are the essential 
vertices of (l,(l,(~))>. | 
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I f  t =  1 we may apply Theorem 4, Lemma 6 and Theorem 1 to determine 
all the extreme points e o f  t~(l(c~)). The vectors T(_e) are 

(23) 

(0 0 " n • , t , , - k - , ) , ( , , - k + d  ... . .  ( , , - , ) , ' )  

k + l  In 

I I 1 I o . . . . . .  o . . . . .  

n+l n 

-T- 

and the vectors obtained by substituting 0"s into some components.  The vectors listed 
in (23) are in t/(I) as the following construction shows. Fix an element x of  the under- 
lying set X and take all the k-element, k + l - e l e m e n t  . . . .  , ( n - k ) - e l e m e n t  subsets 
containing x and take all ( n - k +  1)-element . . . . .  n-element sets. It  is easy to see that 
this is an intersecting family and its profile is tile desired vector. The same construe= 
tion works for the vectors with the zeros. This proves the following. 

Theorem 6. ~:~ (I) cm2sists o/" the cectors listed under (23). II 

The number  of  extreme points is exponentially large. However, if ~ Cif~ 
i = 0  

should be maximized, where C i ~ 0  then it is sufficient to consider e*(l). The size 
of  this set is linear. The most known consequence of  the above theorem is the 

E rdgs - -Ko~Rado  theorem [4]. I f  ',S is an intersecting family o f  k-element sub- 
/ 1 \  

This follows from Theorem 6 since no extreme point has a larger kth compo-  
nent. 

To determine max l;~-I over any intersecting t~amily ~ c 2" is trivial. However 

it can also be deduced from Theorem 6. ].N[--- ~ '  ./i implies that we have to consider 
i=o 

the sum of the components in the extreme points. It is easy to see that f . + £ , _ ~ =  

l )  ' /"]  -- n--in for any extreme point and 0~i~_(n- -  1)/2. Moreover, f ' / " =  9-2- n/2 holds. 

Hence 2 ./i = 2 " - L  In tile same way, it is easy to deduce max ]:T] for intersecting 
i=. 

families with any size constraint, max ,~ i .J~ c~m also be determined. For a further 
i = o  

application see [2]. 
I f  we try to combine Lemma 5 and Theorem 4 for t-intersecting families, then 

ti~e vectors T(e) will not belong to l~(i,), therefore they are not extreme points, 
either. To determine the cxtremepoints of/ t( l ,)  secms to be very hard. It would imply 
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the solution of  many open problems. Such an open problem, raised by Erdrs,  Ko and 
Rado, is to maximize the size of  a 2-intersecting family of  2n-element subsets o f  a 
4n-element set [4]. (Lemma 5 answers the same question for the circle.) Let us note 

/I 

that one extreme point of  It(l,) is "known, the one maximizing ISr[= Z ~ [6]. 

Finally we give a variant of  Theorem 6. It can be proved by the duality theo- 
rem. 

Theorem 6a. I f  (fo ...... f,)Ekt(O and Yo, Y:t . . . .  , y,=>0 satisfy the inequalities 

n--I (n~l)yk_x.+_.." 

l ( " I (hi ( ""+ n - k - 1  Y"-~+ n - k + l  ) ' .-k+l+...+ n y,,<=l l<=k ~ - 

then 
[+j (I 3' ,+1+. . -+ n y" ~ 1  

T 

~,£y;~ 1. I 
i=O 

( i f  n is odd) 

5. More families without inclusion among them 

Daykin, Frankl, Greene and Hilton [1] investigated the families with the fol- 
lowing properties. Let t ~ 2  be an integer and let ~ i ( l  <=i<=t) be a family of  distinct 
subsets of an n-element set X. The families are not necessarily disjoint but AiE~ ~, 
A j ~ Y  -i, i¢ j ,  Ai-~Aj imply Ai~A~. In notation: (.~-1 . . . . .  .~t)£W t. The profile 

t 

of  an element of  W, is (f0 . . . .  , f , )  where f =  ~ [,~JI. It can be considered as the 
j = X  

profile of ~ .~-J with multiplicities. The definitions and the results of  Section 2 
J = l  

can be repeated for families with nmltiplicities. W t is obviously hereditary, so it is 
enough to determine e*(Wt) instead of  e(Wt). Colour the sets occuring exactly ones 
or more times by green or red, resp. It is easy to see that a red set cannot be in inclu- 
sion with any other green or red set. Therefore a red set can be added to all .~-i 
without violating the conditions. In this way we associated to any (.f~ . . . . .  ~ t )EW,  
two families ;~ and ~ where no member of  ;~ is in inclusion with any member of  

U fq and the members of ~ have multiplicity 1 while the multiplicity of  any mem- 
ber of  ~ is between 1 and t. The set of  such pairs (.~, ~#) is denoted by Bt. It is easy to 
see that, conversely, the members of  any (.~, ff)EBf can be distributed into sets 
~1  . . . . .  j t  (Put all green sets into .:~, the copies of  the red sets into different 
.~-'s.) This shows /~(Wt)=#(B~). 
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Theorem 7. e*(W,)----~*(B,) 0_->2) consists o f  the vectors 

and additionally 

/o, ,o,,(;,1,o ..... o) 

((;), (;1, ,(:)) ,J ,,+, 
The proof is based on the following lemmas. 

Lemma 6. I f  (fo . . . .  ,f.)Elt(B,(CoO) then 

t 

27 f,~ -~ t,, 

f o r  any distinct i~, . .... i t. 

Proof. Let (~,  fa)EB,(~) and let ( f0 , - - . , f , )  be its profile. Denote by rj and gj 
the number of/t-element red and green members in #eUf# resp. Hence 

(24) f j  ~ tr~ + g1 

holds. The/j-element green members and all the red ones in ~UC~ form a Sperner- 
family, therefore 

g j +  ~ r  k ~  n (1 ~ j ~ - t )  
k = l  

follows. Summing these inequalities we obtain 

t 

Z (g~+trj) ~-~ to. 
j = l  

Hence (24) implies the validity of  the/emma.  II 

Lemma 7. Sttppose that co, . . . ,  c,, are tton-negative reaLg. Then, under the conditions 

1 
(25) zi ~ --[ (0 ~ i ~ n, t is an integer), 

~2 

(26) X zz ~ 1, 
i = 0  

max ~ clzi is attained f o r  
i = 0  

(27) 
1 

(zi~ . . . . .  zi~ = 7 '  

Proof. It is trivial. II 

z o = . . . =  z , , = - -  it" n + l  ~ t, 
t 

, ~ - 0  ( J = O  i/ n + l > t .  
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Lemma 8. Suppose that Yo . . . . . .  v ,~O satL~fy the following inequalities: 

l 1 I 
(28) y0 ~ 7 '  v" ~ ~ (1 ~_ i < ,,), Y" ~- --'t 

n - - 1  

( 2 9 )  Y0 + ,t , ~  y;  + y,, :~ I. 
i = I  

Then (fo . . . . . .  ~,),clt(Br(C~')) implies 

tl 

(30) Z f y ,  ~ I. 
i = 0  

Proof. If  f ,7/O then the empty set is either a red or a green member of .~Uf#. If 
0 ~  then there is no other member: f~=O ( l ~ i ~ n ) .  J'o<=t and y o ~ l / t  imply the 
statement. If  0¢c~ then ~ is empty, therefore J ~ ! ,  l i ~ n  (1 ~ i < n ) ,  f , ,~  1. (29) 
implies (30). If f,r-'O, the situation is analogous. We may suppose that fo=f ,=O.  

Introduce the notations z~=nyl, q= j i / n  ( l ~ i < n ) .  (28), ( 29 )and  ~ f l Y i  
i = 0  

IJ--L n - - 1  

# v e r i s e t o  z i ~ l / t ( l ~ i - ~ : n ) .  ~ z i ~ l  and ~ q z  i. We may apply Lemma 7: 
i = l  i = l  

l , , - t  _ l , ~ i  . 
+ Z ci ,__~ it" ,t-FI ~ t ,  

~ ' I Y ~ =  Z c,.z,.-~ 1 ' 

This is at most l, in the first case trivially, in the second case by Lemma 6. (30) is 
proved. II 

Proof  of Theorem 7. Tile vectors (t, 0 . . . . .  0), {0 . . . . .  O, tn, O, ..., 0), (0 . . . . .  O, t) 
and (1, n . . . . .  n, 1) are obviously in it(Bt(Ct~)). Consequently, Lemma 8 and 
Theorem 3 imply that there vectors ;ire the only candidates to be in d(B,(Cg)). 
Hence Theorem I gives the candidates for e(B~(~)). 

If  t ~ n + l  then (1, n . . . . .  n, l ) = t - l ( t ,  0 . . . . .  0 )+£~ t - l (0  . . . .  ,0,  tn, 0 . . . .  , 0 ) +  
+ t - t ( 0  . . . . .  0, t ) + ( l - ( n + l ) t  -1) (0 . . . . .  0) shows that (1, n . . . . .  n, 1) is a convex 
linear combination of  the other ones. The extreme points of / l(B,(~)) are (0, ..., 0), 
(t, O, ..., 0), (0, ..., O, tm 0 . . . .  , O) and (0 . . . . .  O, t). 

Suppose now that t < n + l .  The set of possible extreme points of /l(B~(~)) 
is completed with (1, n . . . . .  n, I) and with the vectors obtained by writing zeros in 
the place of some components of (1, zt . . . .  , lz, I). However, if the number of non-zero 
components is ~ t  then it is a convex linear combination of  {0 . . . . .  0), (t, 0 . . . .  ,0),  
(0, ..., O, tn, 0 . . . . .  0) and (0 . . . .  ,0,  t). It is easy to see that the remaining ones are 
all extreme points of t , (B /~) ) .  Applying Theorem 4 the obtained vectors are all 
element of/t(Bt). Moreover they are all extreme points. This proves the theorem. II 
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Theorem 7a. The hyperplanes bordering (It(B,)) are 

. f ~ 0  ( 0 ~ i _ ~ n )  
and 

(3,) ,,o (71 t 

(32) z~ ~ 1 (0 ~ i, < i : . . .  <i ,  ~ n) ~ t < n +  1. 
'=x(n} t 

Proof. Theorem 7 implies that for any (.fo . . . . . .  £,)E/t(B,) there are 2o . . . . .  ;~,,. 2 n q . l ~ 0  
n + l  

satisfying ~Y 2;--:1 and 
i = 0  

/ot (;/ 
0 +2z 

0 
°, I I ° , ( 7 - + ~ o  i 

o j ~,(::) 
+ 2,.~ I 

/:)l 
where 2, ._~=0 in the case t>:n + 1. This can be considered as a linear programming 

n + l  
problem with the result rain ~ 21~ I. The dual problem maximizes ,~  flYi under 

i - -O f = O  

I 
(33) y ~ : - -  (0:~ i ~ n )  ~{:,) 

,(:,) (34) i.2_)~ 3,~- I i f t < / / + l .  

that is, £" f/yi~l holds under the conditions (33) an (34). Let us choose y~= 
i=O 

= t (O:~i~n) if t~=,l+l. .~.V;~I becomes (31). Suppose now t < n + l  
/ = 0  

{{,;)) ~ and choose .vi~ . . . . .  .vi~= t for some O~i~<i~-<...<i,-~n. (33) and (34) 

[~) (','1 ' are statisfied. This implies (32). Applying Lemma 8 with zi=3'i i and Q=fi  
Ii 

we obtain that if ~ f.v,.,: 1 holds for the above special valves o fy ' s  (that is, if (31) 
i = 0  

and (32) holds) then it holds for any system of non-negative y's statifying (33) and 
(34). The hyperplanes ._,Y.f/yi~l different from (31) and (32) are superfluous. | 
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Theorem 7 easily implies the first part  o f  the theorem of  [I] 

(35) , ~ f ~ m a x  t , 2" for  (.~, . . . , f . )EB, .  i=0 
" { n ~ - a  

The same theorem allows us to maximize ~ '  f,. / i |  for (fo . . . .  , f , )E  B,: 
i=0 \ ! 

(36) ".f~ Z - -  ~ max (t, n + 1). 

-(7) 
This is the third par t  o f  the result in [1]. it  is somewhat  disturbing that (36) 

does not  imply (35). The  reason is that  (#(B,)) cannot  be well characterized by an 
arbitrari ly chosen hyperplane.  

To obtain the second part  o f  the theorenl o f  [ 1 ] the red and the green mere hers 
o f  (~ ,  (#)EB, should be separated in the profile. The  colourprofi le  (ro . . . . .  r,,, go . . . .  
.... g,,) of  (~ ,  f#) is defined by r i=  ]~i]. gi-:  I~il ( O ~ i ~ n ) .  z(Bt) denotes the set o f  
colour  protiles o f  all members  o f  B,. The  p r o o f  o f  the next theorem is left to the 
reader.  

Theorem 8. The essential ex t reme points o f  7.(Bt) are 

(o .. . . .  I';) . . . . .  o , o  . . . . .  o),o~,~,,, 
7 . . . . . .  n n !-1 2 n + l  

(o ..... o, (;1, {';i ..... ( : ) 1 . ,  
any profile (r0 . . . . .  r,,,.% . . . . .  g,) there are J.,, . . . .  , ).,,. In other words, for 

n+l 

L,, ~ ~ 0  satisfying ~ '  2i~- I 

(37) 

1"0] 

1"#3 

go 

[ g" 

)̧ ] 
2 o 0 

0 

+21 
i, ,i 

q- ... + 2 ,  

0 

0 

0 

+2,,+1 

o i 

( ~  

t°) I (':) 

(:)lJ 
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) bfi Summin~ up the inequalit ies r;-z ~[ , i l  ( 0 ~ i ~ n ) ,  we obtain 

i = o  i = 0  i = o  

Hence 

),~+1 ~ 1 - - ~ 2  i ~  1 

° I(i l 
follows. Subst i tut ing this into (37). it is easy to see that  

i = 0  i II 

As the n u m b e r  of red sets with multiplici ty is rt, the middle  part  of  the theorem of [1] 
is proved : I f  the number o f  sets occm'ing at least twice in an ( . ~  . . . . .  , ~ ' ) E W ,  is 
r, then 

N " r 2" 
i = 0  I~ 

We are indebted to Z, Fiiredi for his many  suggestions concerning the m a n u -  
script. 
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