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The profile of a hypergraph on u vertices is (fy, f1, ..., f,) where f; denotes the number of /-
element edges. The extreme points of the set of profiles is determined for certain hypergraph classes.
The results contain many old theorems of extremal set theory as particular cases (Sperner. ErdGs-—
Ko—Rado. Daykin—Frankl—Green—Hilton).

1. Introdaction

Let X be a finite set of n elements and & be a family of its subsets (# < 2%).
Then #, denotes the subfamily of the k-element subsets in F: F,=1{4: A€ 7,
|[A|=k}. ltssize |#,] is denoted by f,. The vector (fy, /1. ..., /) in the (124 1)-dimen-
sional Enclidean space R"*! is called the profile of #.

If o is a finite set in R"*Y, the convex hull () of a is the set of all convex linear
combinations of the elements of ¢. We say that eca is an extreme point of a iff e is
not a convex linear combination of elements of o different from e. 1t is weli-known
that («) is equal to the set of all convex linear combinations of its extreme points.
That 1s, the determination of the convex hull of a set is equivalent to finding its extreme
points,

F 1s a Sperner-family iff it contains no members 4, B with AC B. In the pre-
vious paper we determined the extreme points of the set of profiles of all Sperner-
families. This was an easy consequence of a well-known inequality. A family is
intersecting if A, BE#F implies AN B=B. The main result of [5] determines the
extreme points of the set of profiles of the intersecting Sperner-families.

On the other hand, the present paper starts a systematic treatment of the area.
It tries to determine the extreme points of the sct of profiles of the simplest known
classes of families, using the methods of the previous paper. The effort i1s successful
for 3 classes:

1. intersecting famihes.

2. k-Sperner-families (there are no k+ 1 different members satisfying F,C...
Ny I
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3. %, ... % are not necessarily disjoint families, where G¢%, Hc%,
ij, G=H imply Ga&H.

Moreover, the method of the previous paper is analyzed here. One of the
ideas of the proofs is the following. A cyclic ordering % is taken of the underlying set
X and consider only the sets containg consecutive elements in . Any problem of the
above type can be realized for these consecutive sets, as well. Their solution is easier
but in some cases (in all the cases solved in these 2 papers) is sufficient. Theorem 4
describes the connection between the sets of extreme points of the original problem
and of the “‘consecutive™ variant. An example will be given (F,, F,€ # implies
|F, Fy|=1) when the original problem is hopeless while the “consecutive” variant
can be solved. Theorem 4 is, of course. too weak 1n this case.

We also list some known extremal theorems which are consequences of our
results.

For instance in Case 3 our method gives a unified proof of 3 different state-
ments of [1].

2. General results (=tools)

2.1. Essential extrenie points. Let A be a class of families of subsets of the n-element
set X, thatis, A2, u(A) denotes the set of profiles of the families belonging to A:

) WA) = {(for o i) fi = |F ) FEA

The set of extreme points of p(A) 1s denoted by e(A).

The A’s considered in this paper are hereditary, that is, 9CF ¢ A implies
“c A. For hereditary A’s there is a way of reduction of the set of extreme points.
Before stating the theorem we have to introduce some more notations. p*(A) is the
set of maximal profiles: p*(A) contains those elements (f,., ..., f,) of (A) for which
(go- - g)1(A) (g ... 2)=(f4, .. ) (it denotes g,=fo, ..., & =f,) imply
(For o os )=(g0, ... g,). Furthermore let & (A)=2(A)u*(A) be the set of the
essential extreme points.

Theorem 1. Suppose thar A is hereditary. Then any element of €(A) can be obtained
by changing some coordinates of an element of ¢ (A) o zero. |

This fact is obvious. The proof requires very simple technique, therefore it is
omitted.

The significance of the theorem is that for a given A it is sufficient to determine
the set ¢"(A). Changing the components to zero we obtain a set of vectors, these
should be individually checked if they are extreme points.

If we want to prove that a certain set of points is ¢(A) then we have to show
that 1) any point of ;:(A) can be expressed as a convex linear combination of the
elements of £(A), and 2) the elements of &(A) are extreme points. To prove the first
condition an equality should be proved. The next thcorem reduces this equality for
an inequality. 1f ¢ is a set of vectors, ® denotes the set of vectors obtained by changing
the components of the vectors of ¢ for zero in all possible ways.

Theorem 2. Suppose that A is hereditary and a set s={e,. ..., €.} S (A) is given.
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If for any fEp(A) there are constants 7y, ..., 2, =0, S’ A=1 satisfyving
i=1
@ [= 3
=1
then ¢"(A)Ss. |
This claim is useful, but trivial. (If g¢(u(A)) and 0=f=¢g then fe{u(A))).

2.2. Application of the duality theorem of linear programming. Using the transposed
forms fT and e of the column vectors fand ¢;, resp., (2) can be written like

) (s
3 @ .. en]h = |
ARV

where (ef...el) denates the (4 1) > m matrix with columns ef, ..., el Its constraints

Eme
are

@ A;z0 (1=izm)
and

Z /.‘l‘ —_ '

P=1

Our aim is to find for fsuch 4;’s. This can be formulated in the way that
m

) min 3 i,
i=1

should be found under the conditions (3) and (4) and the solution (5) of this linear
programming problem has to be = 1. The dual of this problem is

e ) » 1
®) el =1’
€n) \Vn 1
7 yi=0 (0=i=n)
(®) max 3 fiJi
i=o

By the duality theorem of linear programming (8) is equal to (5). (5)y=1iff (§)=1.
This latter inequality can easily be formulated as

e

i
<

fiyi=1



14 P. L. ERDOS, P. FRANKL, G. O. H. KATONA

for any ;s satisfving (6) and (7). Tt is worthwhile formulating this statement as a
theorem:

Theorem 3. Suppose that A is hereditary, a ser é={e,, ..., e,} S p(A) is given and

n
v y -~
2 fivi=1
i=o
holds for any vy, ...y, satisfving 7, =0 (0=i=n) and
€| e
V) _ 1
e!“ ),R 1

Then e*(A)se. |

2.3. Reduction to the circle. Take a cyclic permutation % of the underlying set X and
consider only such subsets of X whose elements are consecutive in %. These sets are
called consecutive sets in €. 1f F is a family of subsets of X, then # (%) is defined by
F(€)={F: FEF, F is consecutive in %}). Similarly, let A(®)={F (¥): FcA}.
It is well-known (see e.¢. [7)) that for some classes A it is enough to determine
max {|Z|: FEA®)} and max {|F|: F<A} can be obtained from it by a simple
counting argument. Of vourse, this extremal problem for A(%) is easier than for A.
This method is sometimes called as the permutation method.

Before stating the result we have to introduce a notation. If e=(e,, ¢, .... ¢,)

then let
T(e) = [ul,, e, (’;]/n, @y [;]/H s €, [n’_I 1]/11, (3,,] .

Theorem 4. ( Blowing up the circle.) If e,. .... ¢, are the extreme points of ,u(A(% ))
for any given cydlic permutation € then

(A € {{T(e)), ... T(e, )}

Proof. Let . # be an element of A, with profile (/;, f,. ....[,). Define the weight-
function

|

- —~
VE| "

w(l) = (0, 0, ..

=)

—-
0

Consider the sum > w(F) for all pairs (¥, F) where € is a cyclic permutation, FEF
and F is consecutive in €.
For a fixed ¥ wc have

1 . o
> n’(F):m(prohk of F(%)).

FeF6)

Here the profile of # (%) is in u(A(%)). therefore it is a convex linear combination
> 2:(®)e; of the extreme points ¢. ... ¢, of p(A(®)) (L(®€)=0. 3 L(®)=1).
i= i=1
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Hence
- ] m ” i .
S w(F)= X232 w(F)= 2 ———n"0 1), = J——=(2 A(F))e
2= 22 e = 25T & H9a = 2 5 (§ )
follows where 5"’ ! 2 4 (®)=1. We have proved that
=Sm—-D! £
©)] 2, w(F) is a convex linear combination of e, ..., &,.
é.r

On the other hand, summing in the other way around we obtain

(10) Sw(F) =3 3 w(F) = 3 (0, 0, %D—' ...~0)

<, F r &

= (o i3 oin () e )

where >’ denotes that (1,0, ..., ) and (0,0, ..., 0, 1) are taken for F=0 and F=X,
resp., as the number of cyclic permutations in which Fis consecutive is |F|!(n—|F|)!
for O<|F|=<n butitis (n—1)! for {F|=0, n. It follows by (9) that (10) is a convex
linear combination of ¢, ..., ¢,. This implies that (f;, f1, ..., f,} s a convex linear
combination of T(g). ..., T(e.). |

This theorem is really useful if T(e,), ..., T(e,)€#(A) holds. (This can easily
be checked.) Then ({T(ey), ..., T(e,)}) S u(A) and p(A)={{T(e)), ..., T(e,)}) obvi-
ously follow. T{e,), ..., T(e,) are the extreme points of A. Unfortunately, this is
not true in general. An example will be given when {({T(ey), ..., T(e,)}) is much
larger than (u(A)).

3. k-Sperper-families

Let S, denote the class of k-Sperner-families on an s-element set.

Theorem 5. The extreme points of (S,) are the vectors whose ith components are either
n
{i) or 0 but have at most k non-zero components.

Proof. It is trivial that these vectors are in u(Sy). To the vector (0, s (:l],
1

0,..,0, [Z) 5 res O] (!=k) one can find a k-sperner-family % with this profile: take all
Iy, ..., i-element subsets of X.
Moreover, these points are extreme. Let 6’:[0, vens 0, (Z], 0,..,0, [::),

0,...,0); ({=k). It is easy to check that no u€é is a convex linear combination
of the other points of u(Sy).

On the other hand, we have to prove that any element of u(S,) can be expres-
sed as a convex linear combination of these vectors. Theorem 4 can be applied if we
show that the extreme points of u(S;(%)) are the vectors whose ith components are
either n or 0 for O<i<n and either 1 or O for i=0, n, but have at most £ non-zero
components. By Theorem 1 it is sufficient to prove that ¢*(S.(%)) is the set of vec-

2
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tors whose ith components are either 1 or 0 for O<i<n and either 1 or 0 for i=0, n,
but have exactly k non-zero components. To prove this we apply Theorem 3. The
inequality

an ‘ ;;’ fiyi=1
has to be verified for any k-Sperner-family in ¢ with profile (f;, ..., f,) and for any
system of y’s satisfying ;=0 (0=i=n) and

k

(12) 2 elipny; =1

Jj=

[

for any choice 0=i,<...<i;=n where o0)=gow)=1/n ¢@)=1 (I=i=n-1).
Let us first show that (11) holds for the following simple systems of values:

1 T
yﬂ—k’ Y1

l

cor=Yp-1= —VTI;’ Vo = I’

1
Y,=0, e Vi = v Y,=0 (I=i=n-1)

and

Vo= = Y1 =0, ¥ =
In other words we have to prove the inequalities

f:) "ot iy fn —

(13) 7<—+£1 Pl
(14) =1
(15) fi=n (1=i=n-1)
(16) fi=1

for the profile (fg, ...,f,) of any k-Sperner-family. (14}—(16) are trivial. The real
problem is (13). Suppose first that f0 =f,=0 and consider a fixed & (%) with this
profile. Any element of X can be the “starting’ pomt of at most & members of F (%)

because of the k-Sperner property. Thus |F (¥)|= 2 fi=nk. (13) follows. If exactly

one of fy and £, is 1 then the number of members # ((g) “starting” with a fixed element
is at most k—1. (13) follows like above. The case fy=f,=1 is analogous.

Let us prove now (11) under the general assumption (12). Consider a fixed
system of )’s and order ¢()y;: o)y, = ...zg(l,,ﬂ)y,nﬂ where /4, ...,/

is a permutation of 0, 1, ..., . It follows by (12) that ‘2 o)y, =1. If there is a

strict inequality here, then multiply all the »’s with a constant (=1) to achieve

k 1
Qan %Q(lj)}’x,:-;-
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It is easy to see that it is sufficient to prove (11) for such y’s. (12) and (17) imply

1 k-1
ey =~ 2] ey, = all)y,
Jj=1

for any r#/,, ...,5,_,. Hence we have

no k—1 . f(
2 fyvi=s 2 fun+ 2 ey,

i=o =1 il by oD

2 j((‘;) (Q (! j).VI e (lk))’zk) + Qj(;) o( k)yi,c

For the latter row we obtain an upper estimate applying (13)—(16) and (17):

[iA

k-1
2; "(Q(lj)y', - Q(lk)ylk)+ Q (lk)ylk nk
j=

il

n [%— Q(lk)ylk)— n(k—1 oy, +nko(l)y, = 1.

We have proved that (11) holds for y’s satisfying y,=0 (0=i=n) and (12). The
application of Theorem 3 finishes the proof. ||

The following theorem is an easy consequence of Theorem 5.
Theorem Sa. The hyperplanes bordering {u(S))) are

fiz0 0O=i=n)
f/ ” =1 (0=

Saft)-

Theorem 5 makes it easy to maximize |¥|= > f; for families &
i=0
to S;. It is sufficient to look for this maximum among the extreme points of p(Sy).

Theorem (Erdds [3])

[1A

i)

belonging

F| 1(n+k2—'1)/21 (nJ .
max |[#| = ..
FES, i=tn =k 1j2) \!

For k=1 this is the old Sperner theorem [8].

22
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4. Intersecting families

A family & is called t-intersecting (1 =t=n) if Fy, F,€F implies |F\NFy|=
=1 Let 1, denote the class of t-intersecting families on an s-element set. The 1-
intersecting families are called simply intersecting. In case t=1, I is written rather
than I;. It seems to be too hard to determine the extreme points of u(I,). We. are
able to do this only for t=1. However, it can be done for I,(¥). Before formulating
the result we prove some preliminary lemmas.

Lemma 1. Suppose that Ay, ..., A, are v-element consecutive sets along a cyclic per-
mutation € of an n-element set such that |A;NA;|=t=1 for any 1=i<j=u where
t=v=1/2(m+1t—1). Then u=v—it+1 holds.

Proof. Let A,={x,, ..., x,} and suppose that the elements are ordered in this way,
Another A cannot meet A, in both ends by the conditions. Therefore the possible
endpoints for 4 are x,, ..., X,_, while the possible starting points are Xg, ..., Xp_s41-
However the set ending with x;(=i:=v—1) and the one starting with x;_,,, meet
in t — 1 elements only. Hence at most one of them can be among the A’s. Consequently
there are at most v—¢ such A’s. |}

Lemma 2. If 4;, ..., A, are v-element consccutive sets along a cyclic permutation of an
n-element set then

|

Aj| = min (n, u+v—1).

ic-

Proof. Suppose first that have is an A4; containing no starting point of another A.
Then the number of starting points is » while the number of other points of A; is

u

v—1, thatis, || 4}|=u+v—1. On the other hand, if any 4; contains the starting
i=1

point of another one then the union of them is the whole underlying set X, that is,

u
IU Ailzn. .
i=1

Lemma 3. T Let (fy, ..., )en(L(%)). fi50 for some i[téién——i—g—l—]. Suppose

that t=j=n+t—1—i holds for some j. Then f;=j+i—fi—2(t—1) holds.

Proof. Suppose that #€L(€) holds and its profile is (f;, ..., f;)- Let F={F, ...,
...; Fy,}. Consider the family &/={A4: |4d|=n—j, |[ANF|=zi—t+1 for some 1=I/=
=i}. The starting points of the (n—j)-element consecutive sets satisfying [4N Fj|=
=j—t+1 for a fixed ! form a consecutive set of size »—j—i+2t—1. Applying Lem-
ma 2 the total number of these starting points is at least min (r, n—j—i+2t—2-+f).
Therefore this is a lower bound for |/]. 4€57 impliesthat |[X—A4|=j and |(X—A)N
NF|=r—1. Hence we have at least min (n, n—j—i+2t—2+4f) j-element conse-
cutive subsets X—A not belonging to &. Therefore f;=|%;|=max (0,j+i—fi~

—-2¢t-D). 1
We remark that Lemma 1 implies f;=i—¢+1 hence j+i—f;—2(t—1)=0.
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Lemma 4. (fy, ..., £)ep(1(¥)) iff the following conditions are fulfille.

(18) i=0 (0=1i=<1),
(19) figi—t+1 (1=2i=m+i-1)/2),
(20) fi = min{j+i—fi=2(t=D}((n+1-1)2 = j=n)

where the minimum is taken on all i satisfying
1) t=iZati—1—j, fi#0.
If this set is empty then (20) has the form fi=n (j<=n). f,=1.

Proof. (18) trivially follows from (/. .... f,)€ u(L(%)) by the definitions. (19) and
(20) are consequenses of Lemimas 1 and 3, respectively.

Conversely we have to prove that if (18)—(20) hold than there is an
F€),(¥) with profile (fj, ..., f,). This will be done by a construction. Let xy, ..., X,
be the elements of X according their order in . For r=i=(n+1t—1)/2, choose the
consecutive sets with endpoints x;, X;_;. ..., X;_s, 1. On the other hand, if
(n+1—1)/2<i, take the sets with endpoints x,; X,.1..... X, p1- This family F
is trivially r-intersecting.

So we obtained a purely algebraic characterization of the polytope (u(I,(%)))-
Now the description of its essential vertices (Lemma 5) requires only linear algebraic
technique, so the proof of it will be sketched only.

Lemma 5. ¢*(1,(%)) consists of the following vectors

(22)
©,..., 0, k—t+1, k—r+2,..., n—k, n,.., #n 1
R =S e e I = I (R S
2
0, 0, n.o...,n, 1)
% £ (n+1 is even).

Proof. (Sketch). It is clear that (22)S (u(1,(%))) and they are convex linearly
independent. _

If fe{u(1,(%))) a vertex then it can be obtained as an intersection of (n+1)
hyperplanes of the form (18)—(21). It is easy to check that if fe{u(1,(%))) and f
satisfies (n+1) inequalities of form (18)—(21) by equality then fcan be obtained
from an element of (22) changing some components for zero. So (22) are the essential
vertices of (u(1(%))). B
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If t=1 we may apply Theorem 4, Lemma 6 and Theorem 1 to determine
all the extreme points ¢ of u(I1(%)). The vectors T(e) are

(23)
a—1 n—1 n—1
(0!~--»-0~ (k—l]'[ k )""-‘[n—l<—l)'(n-k+1) (1—1] )
0 n ol i Fmros 0 ( gkgﬁ]
2
n
o0, ... 0, |n+1 ""’(n]ll)‘ 1] (n is odd)
2
0 i )

and the vectors obtained by substituting 0's into some components. The vectors listed
in (23) are in u (1) as the following construction shows. Fix an element x of the under-
lying set X and take all the k-element, A+ l-element, ..., (n—k)-element subsets
containing x and take all (n —k+ 1)-clement, .... n-element sets. Tt is easy to see that
this is an intersecting family and its profile is the desired vector. The same construc-
tion works for the vectors with the zeros. This proves the following.

Theorem 6. &* (1) consists of the vectors listed under (23).
The number of extreme points is exponentially large. However, if C i

should be maximized, where C;=0 then it is sufficient to consider *(l) The size
of this set is lincar. The most knox\ n consequence of the above theorem is the

Erdés—Ko—Rado theorem [4). If F is an intersecting family of k-element sub-

n—1
sets of an n-element set and k=n/2 then max |/|—( k— 1]. |

This follows from Theorem 6 since no extreme point has a larger &th compo-
nent.
To determine max |# | over any inter: sectmg family # c2" is trivial. However
o

it can also be deduced from Theorem 6. |7 |= 2 /; implies that we have to consider

i==Q
the sum of the components in the extreme points. 1t is easy to see that fi+f,_;=

:[”” i] for any extreme point and 0==7=(n—1)/2. Moreover, _f,,,.z:%[ /2) holds.

"
Hence X f;=2""% In the same way, it is easy to deduce max |.#| for intersecting
i=0
"
families with any size constraint. max 2 i-/; cuan also be determined. For a further
i==0
application see [2].
If we try to combine Lemma 5 and Theorem 4 for t-intersecting families, then
the vectors T'(¢) will not belong to u(l,), therefore they are not extreme points,
cither. To determine the extreme points of u(1,) seems to be very hard. It would imply
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the solution of many open problems. Such an open problem, raised by Erdés, Ko and
Rado, is to maximize the size of a 2-intersecting family of 2n-element subsets of a
4n-clement set [4]. (Lemma 5 answers the same question for the circle.) Let us note

that one extreme point of p(l,) is known, the one maximizing |F|= 2 £ [6].

Finally we give a variant of Theorem 6. It can be proved by the duallty theo-
rem.

Theorem 6a. If (f;, ..., f)eu(D) and y,, y.. ..., v.=0 satisfy the inequalities

n—1 n—1
E—1) Xt )t

N ST PO P
.. n—k—l yn—k n_k+l Yo—g+1t -0 n =

n
n+1
2

...
iIA
?-
lIA

(Y

N—

n
}’1{+"'+[71)y” =1 (if nis odd)
2

then

‘;;f;‘yié 1.1

5. More families without inclusion among them

Daykin, Frankl, Greene and Hilton [1] investigated the families with the fol-
lowing properties. Let t‘-2 be an integer and let F (1 =i=t) be a family of distinct
subsets of an n-element set X. The families are not necessarily disjoint but 4,6 #°,
A€ FI, i#], A;#A; imply A;dA4;. In notation: (£, ..., F)<W,. The proﬁle

t
of an clement of W, is (f;, ..., f,) where fi= 2’ |#1. Tt can be considered as the

profile of Z #4 with wmultiplicities. The definitions and the results of Section 2

I=

can be 1epeatcd for families with multiplicities. W, is obviously heredltdry so it is
enough to determine ¢*(W,) instead of g(W,). Colour the sets occuring exactly ones
or more times by green or red, resp. It is easy to see that a red set cannot be in inclu-
sion with any other green or red set. Therefore a red set can be added to all #/
without violating the conditions. In this way we associated to any (F7, ..., FHEW,
two families # and ¢ where no member of # is in inclusion with any member of
#U% and the members of 4 have multiplicity 1 while the multiplicity of any mem-
ber of Z is between 1 and ¢. The set of such pairs (%, ¢) is denoted by B,. 1t is easy to
see that, conversely, the members of any (2, 4)¢B, can be distributed into sets
F1L, ..., F. (Put all green sets into F3, the copies of the red sets into different
F7s.) This shows w(W,)=u(B,).
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Theorem 7. ¢*(W,)=¢*(B,) (1=2) consists of the vectors
n . .
(0,...,0, t(i], 0,...,,0] (0=ixz=n)

() () () o o=

The proof is based on the following lemmas.

Lemma 6. If (fy, ..., f)Eu(B,(¥)) then

and additionally

for any distinct iy, ..., 1i,.

Proof. Let (#,%)<B,(¥) and let (fy,...,f,) be its profile. Denote by r; and g;
the pumber of 7;-element red and green members in #U% resp. Hence

(24) S, =ritg;

holds. The i;-element grecn members and all the red ones in ZU% form a Sperner-

family, therefore
1
g+ 2n=n (1=j=1)
k=1
follows. Summing these inequalities we obtain
t
2 (g;+1r;) = .
=1

Hence (24) implies the validity of the lemma. [

Lemma 7. Suppose that ¢, ..., c, are non-negative reals. Then, under the conditions

25 z; ;17 O =i=n, tis an integer),
(26) Zi = ]:
=0
max > ¢;z; is attained for
i=o
|
Ty == 2= if n+l=¢

(27) .

(z,—lz.“:zic:—t—, z; = (j=14i) if n+l=1

Proof. It is trivial. []
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Lemma 8. Suppose that y,, ..., v,=0 satisfy the following inequalities:

I N L

(28) J'O:—r_a .‘i:E (l:-’ =~ ”)7 Yo = { *
n—1
29) Yoi-n Z yity, =1
Then (fy. ... fYeu(B(%)) implies
(30) Shnet
i=o

Proof. If f,740 then the empty set is either ared or a green member of ZU%. If
P€Z then there is no other member: f;=0 (1=i=n). j(, t and yy=1/t imply the
statement. If 0% then 2 is empty, therefore AH=L fi=n (1=2i<n), =1 (”9)

implies (30). I f,=0, the situation is analogous. WL nm) suppose that ﬁ,—f,,
Introduce the notations z;=ny;. ¢;=fi/n (l;1<11) (28), (29) and Zf ¥i

2
giveriseto z=1/t(1=i=n), > =1 and Z’ ¢;z;. We may apply Lemma 7:

i=1 e}
1 n-l |
— = — oaf on+t =g
:;—1 n—1 t i;; Y Z J:
_, V= 2’ ¢;z; = |
i=1 i . o
- ;;c,»j— py Zf‘, it n+1=1

4

This is at most [, in the first case trivially, in the second case by Lemma 6. (30) is
proved. |}

Proof of Theorem 7. The vectors (£.0....,0),(0....,0,11,0,...,0), (0,...,0,1)
and (1,n,..,n,1) are obviously in p(B,(%)). Consequently, Lemma 8 and
Theorem 3 imply that there vectors are the only candidates to be in &*(B,(%)).
Hence Theorem 1 gives the candidates for £(B(%)).

If tz=n+1 then (L, s, ..., =172, 0. ..., 00+ 3 i"20,...,0.1,0,...,00+
+1710, ..., 0, ) +(1 ~(n—+—1)t 1) (0, ...,0) shows that (1, n, n 1) is a convex
tinear combination of the other ones. The e\tneme points of [l(B ((/)) are (0, ..., 0),
(+.0,...,0), (0,...,0,1n,0,...,0) and (0, .

Suppose now that r/n+] The set of possﬂnk extreme points of ;L(Bl(%))
s completed with (1, . .... n, 1) and with the vectors obtained by writing zeros in
the place of some components of (1, n, ..., , 1). However, if the number of non-zero
components is =7 then it is 2 convex ]inear combination of (0, ..., 0), (1,0, ...,0),
0,...,0,m,0,...,0) and (0, ..., 0, ¢). It is ecasy io see that the remaining ones are
all extreme pomts of u(B, (CF)) Applying Theorem 4 the obtained vectors are all
element of u(B,). Moreover they are all extreme points. This proves the theorem. [
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Theorem 7a. The hyperplanes bordering {u(B,)) are

fi=0 (0=i=n)

and
@3y f: =1 df = np+d,
i=o 7
_],
i
LS
32) =1 O=i <iy...~i,=n) if t=n+l.
A
i
Proof. Theorem 7 implies that for any (fy. ... £,)€u(B,) there are 4y, ..., 4,. 4,,,=0

n+1

satisfying 3 7,221 and
i=0

' [ (n n
fo ! (0] 0 0 (0]
n ) n
U BN N ’(1] THUREIYE IR R (1)
n n
A eg fo G )
where 4,.,=0 inthecase r2zn+1. This can be considered as a {inear programming
. . n+1 L. n
problem with the resalt min > 2,=1. The dual problem maximizes 2 f;y; under
i=0 i=0
(33) }_'—n ©i=n)
(3)
1 .
(34) 3(,))’ =1 if t=un+l.
i-0

that 1s, Z fiy;=1 holds under the conditions (33) an (34). Let us choose y;=
:(r[n]) O=i=m it t=n+1. 2 fivi=1 becomes (31). Suppose now f<n+|

-1
and choose y,=...=y; :[t[’;)) for some 0=/ =i,<...<i,=n. (33) and (34)

1
are statishied. This 1mphes (32). Applying Lemma 8 with z;=y; [) and ¢; —f( )

we obtain that if . f v;== 1 holds for the above special values of ¥’s (that is, if (31)

and (32) holds) then it holds for any system of non-negative s statifying (33) and
(34). The hyperplanes > f,y;:=1 different from (31) and (32) are superfluous. §
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Theorem 7 easily implies the first part of the theorem of [1]

2]
(35) _Zf,.gmax[r [lnﬂz] for (f. ... f)€B,.
i=0 E

n

—1
The same theorem allows us to maximize 2 f; (rlz) for (fo, ..., f)EB,:
i=0

(36) > -Z— = max (1. n+1).
i=0
(7

This is the third part of the result in [1]. Itis somewhat disturbing that (36)
does not imply (35). The reason is that (u(B,)) cannot be well characterized by an
arbitrarily chosen hyperplane.

To obtain the second part of the theorem of [1] the red and the green members
of (#. 9)¢B, should be separated in the profile. The colour profile (ry. .... 1, Zos -
s &) of (&, %) is defined by r;=|%,|. g;=1%| (0=i=n). y(B,) denotes the set of

colour profiles of all members of B,. The proof of the next theorem is left to the
reader.

Theorem 8. The essential extreme points of y(B,) arc

(o[’j]o 0, 0 ] 0 =i = n)
0 T C nt1
n n' 7
o o) () o)
In other words, for any profile (ry.....7,. gy, .... g, there are 4,. ..., 2,
n4-1
Jpr1 =0 satisfving 3 A;=1
i=0
P [8) 0 0 0
7 } ;
ol () : ;
"
~ G |
(37) sl =0 o [#4] o [+ 2| o [+ (8) .
n
30 [1)
n
Zn 0 . 0 0 (H)
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Summing up the inequalities ¥, =4; ( ] (0=/=n), we obtain

71‘,;‘2;/1 [[”J

L)

follows. Substituting this into (37). it is casy to see that

Hence

Agay = 2’)‘ =

[1"1

As the number of red sets with multiplicity is ¢, the middle part of the theorem of [1]
is proved: If the number of sets occuring at least twice in an (F* . ..., FHEW, is
r, then

> |-

,
i=0 I
i
2]
We are indebted to Z. Fiiredi for his many suggestions concerning the manu-
script.
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