
Graphs and Combinatorics 2, 123-134 (1986) 

Graphs and 
Combinatorics 
© Springer-Verlag 1986 

Convex Hulls of More-Part Sperner Families 

Prter  L. ErdSs and G.O.H. Ka tona  

Mathematical Institute of the Hungarian Academy of Science, P.O.B. 127, 1364 Budapest, 
Hungary 

Abstract. The convex hulls of more-part Sperner families is defined and studied. Corollaries of the 
results are some well-known theorems on 2 or 3-part Sperner families. Some methods are presented 
giving new theorems. 

1. Introduction 

In the last 25 years the well known Sperner Theorem [22] has been generalized 
in many directions. One of these directions are the so called more-part  Sperner 
families. 

The first result, proved independently by Katona  [13] and Kleitman [ 183 is the 
next one. 

2-part Sperner Theorem. Let X = X i U X 2, X 1 n X 2 = ~ and let o~ be a family 
of subsets of  X (i.e. o ~ _~ 2 x) such that Fi, F2 ~ o ~ and any of  the next two conditions 

F i N X 1 = F 2 n X 1 and F 1 n x 2 c F 2 ~ X 2 ,  (1) 
FI N X 1 c  FE N X1 and Fi N X2 = FE N Xz 

imply F 1 = F a. Then Iff l  < [n/2J and this is the best upper bound. 

If X 2 = N then this theorem gives the classic Sperner Theorem. Moreover, if 
X~ and X2 are non-empty then this theorem is a sharpening of it: the conditions of 
the 2-part Sperner theorem are weaker but the statement is the same. 

Let X = Xx U--- U X~  be a partition of X. ~.~ _~ 2 x is called an M-par t  Sperner 
family i f ~  does not contain two members E, F such that E n x i c F N Xi holds for 
some i while ENX~ = FNX~ for a l l j  # i. A simple example of [13] shows that a (") 3-part Sperner family may contain more than [n/2J members. Papers [17] and 

[11] found additional conditions to ensure this upper bound. The question of the 
maximum sized M-par t  Sperner family is not really solved. [8] and [12] give good 
asymtotic results. (See also [21].) The very recent [9] is a very good survey of M-par t  
Sperner type problems. 
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I f~-  is a family of subsets, its profile is the vector (P0, Pl, - - ' ,  Pn) where p~ is the 
number of/-element members of ~ .  Take the class of all families on X satisfying a 
certain property. The profiles of the families belonging to this class form a set of 
points in N"+~ having integer components. In [2-1, [3] and [7] the extreme points 
of this set are determined for several classes of families. 

The main aim of the present paper is to obtain analogous results for M-part  
Sperner families and other families given on the M-parts. Here the profile will be, 
howe~,er, an M-dimensional matrix whose i~i2...iMth entry is the number of 
members of the family satisfying [FNXj[ = i~ (1 < j  < M). Our Theorem 2.1 deter- 
mines the extreme points of the class of the M-part Sperner families. 

In Section 3 we prove this theorem in a much more general form (Theorem 3.2). 
Namely, we show that the extreme points (matrices) of many classes of families on 
M parts mimic the properties of the class. Griggs, Odlyzko and Shearer [12,1 proved 
that there are (sizewise) homogeneous families J~ maximizing 1~[ for M-part  
Sperner families. A consequence of Theorem 3.2 is that this is true for many other 
classes, too. 

In Section 4 several known results are deduced as consequences of the theorems 
of Sections 2 and 3. Theorem 4.2 is the above mentioned 2-part Sperner theorem. 
Theorems 4.3 [20,1 and 4.6 [10] consider Sperner families of subsets meeting the 
first part (of 2 parts) in at least I elements. 

Let us remark that the families themselves are really investigated only until the 
extreme points are determined. To deduce the above mentioned consequences in 
Section 4, we deal with "numbers", only. The families can be forgotten. 

2. Definitions, Notations and the Main Result 

In this section we introduce the necessary definitions, notations and formulate the 
main theorem. It will be analogous to [2] and [3,1. 

P u t X  = X1UX2U"'UXM, XIAXj = N(i C j), [S~[ = n~,lS[ = n. Let • c 2 x 
be a family of subsets. The M-dimensional matrix P(J~) := (p, ...... ~,) ij = 0 . . . . .  nj, 
is called the profile-matrix of ~t ~, where 

p,  . . . . . .  ,M(a¢):= I{H~aC:VjlHNXjt = i j}  l. 

The matrix P(~a¢ ~) can also be considered as a vector of(n1 + 1)(n2 + 1)...(nM + 1) 
components. If M = 1 then we obtain the profile P(.,~4 a) of ~ (see [2,1 or [3]). In 
this way P(aff) is a point of the Euclidean space ~,,+1)...(,.,+1) = Rt~. 

If a is a finite set in [R N, the convex hull (ct) of a is the set of all convex linear 
combinations of the elements of a. We say that e E a is an extreme point of a iff e is 
not a convex linear combination of elements of a different from e. The set of extreme 
points of a is ~(a). It is well-known that (a}  is equal to the set of all convex linear 
combinations of its extreme points. That  is, the determination of the convex hull 
of a set is equivalent to finding its extreme points. 

Suppose that the partition X = X~ U.." U XM is fixed. Let A c 2 2x be a class of 
families of subsets of X. Denote by/~(A) the set of all profile-matrices of the families 
belonging to A. (#(A) c R N is obvious~) 

A family ~ is called an M-part Sperner family if E, F ~ ~f'~, E f-) X~ ~ F f3 X~, and 
E f3 Xj = F f3 X i for all j # i (for all fixed i) imply E = F. Denote by SM the family 
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of all M-par t  Sperner  families for the given parti t ion. (The nota t ion  should contain 
X1 . . . . .  XM; they are omit ted for sake of brevity.) 

Theorem 2.1. The extreme points of  ( p ( s M ) )  are the matrices S(I) with the entries 

s ,  . . . . . .  . . .  

= nl nM otherwise, 
il iz iM 

where I is any set in (0, . . . ,  nl} x {0, . . . ,  n2} x . . .  × {0, . . . ,  riM} such that (il . . . . .  
ij, . . . ,  i u ) e I ,  (il, . . . ,  ij . . . .  , i u ) e I  imply i t = i;. 

3. Proof  of  the Main Theorem 

The proof  is analogous  to those of [2] and [3]. First we formulate  and prove a 
lemma similar to the cyclic permuta t ion  method  (see [15]) then we prove our  main 
theorem. 

We say that  £o is a product-chain of X = X1 U--" U XM if £,¢ = (x 1 . . . .  , x,)  is a 
permuta t ion  of  X and {xi: i = n I + " -  + nj_ 1 + 1 , . . . ,  nl + --" + nj} = Xj, that is, 
if the elements of  Xj are consecutive in £P for every j. Fur thermore ,  we say that a 
subset H c X is initial with respect to 5(' if 

HnX~ = { x . , + . . . + o , _ , + i  . . . . .  x , , + . - .  +o , ,+ j ,~nx~l} ,  

that is, equal to the set of the first ]H ~ Xil elements of Xj. If ~'~ c 2 then ~(£,a)  
denotes those members  of .,~ which are initial with respect to 5, a. It is easy to see 
that the profile-matrix P(ae'(~c~')) is a 0,1 matrix. 

Sometimes it is easier to use the set of places with entry 1 rather  than the 0,1 
matrix itself. Let  I be a subset of {0 . . . . .  n~ } x {0 . . . .  , n 2 } x - - -  x {0, . . . ,  n M}. Then 
T(I) denotes the matr ix having l 's in the place belonging to I and O's otherwise: 

f ;  if(il  . . . .  ' iM)EI '  
tl ...... iM(1) = , . -  if(ix . . . . .  iM)(!l. 

The definition of S(I) given in Theorem 2.1 is analogous,  but 1 is replaced by 

(::)(::) 
If A c 2 2x, in t roduce the nota t ion A ( Y )  = {jg,(Z,a): J ~ 6 A }  for any product-  

chain £& Then,  by definition, #(A(£,¢)) = (p (~ (~a ) ) :  ~ E A}. As p ( j f ( £ a ) ) a r e  0,1 
matrices, the set of extreme points e(/~(£a)) = #(/~(.!~q')). 

The  next lemma plays a fundamental  role in the proof  of  Theorem 2.1 and is 
analogous to Theorem 4 (Blowing up the circle) of  [3]. It shows an impor tant  
connect ion between e ( A ) a n d  e(A(£¢)). 

Lemma 3.1. (Blowing up the product-chain). Suppose that e(A(~q~)) = # ( A ( ~ ) )  does 
not depend on ~ .  Then 

# (~ )  _~ ( {S(I): T(I)~ e(/~(£a))} > (2) 

holds. 
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Proof. To prove (2) it is enough to show that for every ~ ~ A there are coefficients 
#(I) (#(I) > O, }"r(,)~(~(l))/-t(/)= 1)such that P ( J g ) =  ~rm~(~(.~))#(l)S(1). 

Consider the sum 

Y P( {H})/nl ~n~ ! • • • nM~ (3) 

for all pairs (2,, H) where 2,  is a product-chain, H e 54( and H is initial with respect 
the product-chain £~a. We use double counting for this sum. 

1 

E P({H})/n,!...nM! = n,' n.! H i s i n i t i a l w i t h  (.L~', H )  . . . .  
r e s p e c t  to ..?' (4) 

1 
- Z~ nl ! . . .n ,~!e(~(e ' ) )"  

Observe that P(W(2,)) e p(A(2,)) = s(A(2,)), therefore for any 2 '  there is a unique 
I such that T(I) = p(jug(2")). Collect the equal terms on the right hand side of (4): 

1 
E n l ! . . . n M i P ( ~ ( 2 " ) )  = E ,~(I)T(I) (5) 

T(I) ~ e ( , ~ ( . ~ ) )  

where 2(1)is the proportion of the n 1 ! . . . h i !  permutations such that P(J:(2")) = 
T(I). Therefore the sum of the coefficients 2(0 is 1. Hence we have 

Z P({H})/nl! . . .  riM! (6) 
(Le,H) 

is a convex linear combination of the elements of ~(/~(2")). 
On the other hand, summing the other way around we obtain 

Z = 
(~,H) H 

= Z ii!(.i (7) 
n~ye nl! ..-riM! 

where [HfqXt[ = i t (1 <_j <_ M). il!(n 1 - ii)!...iM!(n M -  iM)! is the number of 
product-chains satisfying this condition and H is initial with respect to these 2". 
The last sum is equal to 

P({H}) = / P'""::- A~e) 't (8) 

\ i l /  \ i M /  il iM Vj:Ij=O ...... 

It follows by (6), (7) and (8) that the right hand side of (8)is a convex linear 
combination of the elements of e(f~(2")). This implies that P(~f) is  a convex linear 
combination of the matrices S(I)such that T(I)Es(Z(2")). [] 

Lemma 3.1 becomes really useful if S(1) e/1(/~) holds for all T(I) s ~( A(2") ). Then, 
by (2), any element of/~(A) is a convex linear combination of them. We use this idea 
to prove Theorem 2.1. 

Proof of Theorem 2.1. Lemma 3.1 will be applied with A = NM. 
The elements of #(~M(2")) are 0,I matrices. I = {0 . . . .  , nl} x {0 . . . . .  n2} × 

--. x {0 . . . . .  riM} is called a partial transversal if (i 1 . . . . .  ij . . . . .  iM)eI and ( i l , . . . ,  
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ij . . . . .  iM)6I imply ij = ij. It is easy to see that /z(•/(£,(')) = {T(I): I is a partial 
transversal). 

It does not depend on £~', therefore the lemma can be applied. It follows by (2) 
that any element of#(5  u) is a convex linear combination of the matrices S(1) where 
I are partial transversals. 

For a partial transversal I take the family 

~ =  ~ { F : l F N X j [ = i ; f o r a l l l  < j < _ M } .  
( i l , . . . , i M ) E l  

which is obviously an M-Sperner family, that is, the matrices S(I) are all in #(~M). 
On the other hand, none of them is a convex linear combination of the other ones. 
Hence they are the extreme points of p(sM). [] 

Lemma 3.1 and the above (trivial) proof allow a much more general form: 

Theorem 3.2. Suppose that ~ ~ 2 2x satisfies the following two conditions: 

e(A(5()) =/~(A(S()) does not depend on £P, (9) 

T(1) ~ p(A (~q~)) implies S(I)~/~(A). (10) 

Then 

= { s ( 0 :  (11) 

that is, the extreme points of lz(~) are obtained by replacing the l's by i l "" iM 

in the i 1 . . . . .  iMth entries of the elements of/z(A(Aa)). 

In what follows, we show many consequences of this general theorem. 
A family g on X = X~ O.. .  U X i is called homogeneous i f F s ~  implies G e ~  

for all G ~ X satisfying [FNXfi = [GNXj] (for all 1 _<j _< M). Observe that the 
matrices S(I) in the theorem are profile-matrices of homogeneous families belonging 
to A. 

tl I tl M 

l g r  = E ' E p, . . . . . .  

i I = 0  i M = O  

where Pl ...... ~M are the entries of the profile-matrix P(~) .  This is a linear function 
ofpi ...... i,, so it assumes its maximum in one of the extreme points given in Theorem 
3.2. As we mentioned, these points are profile-matrices of homogeneous families. 
Therefore the following statement is true: 

Corollary 3.3. Suppose that ~ satisfies (9) and (10). Then there is a homogeneous 
c A maximizing l ~ [ i n  A. 

Of course, the proof of the corollary above shows that it is true for any linear 
function of the variables Pi ...... i~,. 

Griggs, Odlyzko and Shearer [12] proved Corollary 3.3 for the special case 
when ~ is 5 M, the class of all M-part Sperner families. In [9], jointly with Fi.iredi, 
they independently proved it for several other special cases. Of course, they used 
other means. 

The next theorem presents the extreme points of the set of the profile-matrices 
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of the Sperner  families ( =  1 - Sperner  families). Tha t  is, we consider the Sperner-  
condi t ion on X, but  the profi le-matrices are defined by the par t i t ion X = X 1 t5-..  U 
XM. Nt = 5 denotes  the set of  all Sperner  families on X. We call the set I 
{0 . . . . .  nl} x {0 . . . . .  n2} x --. x {0 . . . . .  riM} an antichain iff (i~, . . . ,  iu), (j~ . . . . .  

j ~ t ) e l  and i I -<Jl . . . . .  iu -<JM imply i 1 = J l  . . . . .  iM =JM- 

Theorem 3.4. 

e(5) = {S(I): I is an antichain}. 

The proof  is ana logous  to that  of  T h e o r e m  2.1. [ ]  

This theorem can be generalized toward  a theorem of Paul  Erd6s  [1]. A family 
c 2 x is called k-Sperner iff it contains  no k + 1 distinct members  satisfying 

F1 c F2 c . . -  ~ Fk+~. Similarly, a set I ~ {0 . . . .  , nl} x - - -  x {0 , . . . ,  nM} is a k- 
antichain iff it contains  no k + 1 distinct elements (i~ . . . .  , i~) . . . . .  (i k+l . . . . .  i k+i) 
such that  if < i 2 < - - "  < ?+1 holds for a l l j  (1 < j  < M). 

Theorem 3.5. 

l~(k-Sperner families) = {S(I): I is a k-antichain}. [] 

We need some more  definitions for ano the r  var iant  of  these theorems.  The  
family o~ c 2 x is an M-part  k-Sperner fami ly  iff there are no k + 1 distinct member s  
such that  1:1 c F 2 ~ . . .  ~ Fk+l and Fk+~ -- F1 c X~ holds for s o m e j  (1 _<j _< M). 
Analogously,  a part ial  k-transversal  I contains  no k + 1 distinct member s  in 
{0 . . . . .  n~} x - - - x  {0 . . . . .  nu} with M - 1 equal  components .  

Theorem 3.6. 

iz(M-part k-Sperner families) = {S(I): I is a partial k-transversal}. 

We ment ion  3 other  theorems determining max  { [~[ :  ~ e A} for some classes 
A on 2 and 3 parts.  1) [14] gives a c o m m o n  general izat ion of the 2-par t  Sperner  
theorem and Paul  Erd6s 's  k-Sperner  theorem.  2) [17] gives an addi t ional  condi t ion 

( n ) . 3 ) [ l l ] g i v e s a n i c e r a d d i t i o n c o n d i t i o n t o  to ensure the m a x i m u m  to be [n/2J 

ensure the same conclusion. In all these cases the extreme points  can be easily 
determined by Theo rem 3.2. 

We developed Theorem 3.2 for classes of  families on M parts,  however,  for our  
great  surprise, it gives new results for 1 part ,  too. Let  go, denote  the class of families 
~-  c 2 x ([XI = n) such that  F~ = F 2, F 1 ~ F 2 imply IF 2 - -  Vii _> k. max{[~ ' [ :  

e ~k} was determined for this class in [15]. T h e o r e m  3.2 allows us to describe the 
extreme points,  too. 

Theorem 3.7. The extreme points o f  the set I~(~:k) o f  the profile-vectors are o f  the form 

0, 0, , 0  . . . .  0, 0, .  0 where r > 0 and the non-zero 0 , . . . , 0 ,  il " " '  i~ ' i, ' . . . .  

components are separate with at least k - I zeros, 

This theorem was independently discovered and  proved  by our-friend P. F rank l  
[6], too. 
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Kteitman [19] observed, that the result maximizing Io~lin D: k can be generalized 
for other classes. This can be done here, again. If A c 2 2x is a class of families (no 
partition of X) and A is described by conditions of type (~F1, . . . ,  F,, e ~,~ such that 
F1 = Fz = " "  =Fm and [Fm - F , , - l l  . . . . .  IF2 -- Fll are in a certain set) then Theorem 
3.2 determines the extreme points, therefore maxIo~] can also be calculated. 

4.  A p p l i c a t i o n s :  O l d  T h e o r e m s  a s  C o n s e q u e n c e s  

In this section we will prove some old results using the previous theorems. 
Actually, Theorem 2.1 is nothing else but the determination of the possible 

constructions maximizing any given linear function of the entries pi ...... z~, of the 
profile matrix. However, the number of possible maximal constructions is too large 
for most of the functions. It is very hard to compare them to determine the really 
best one. 

The most interesting case, of course, when the linear function is just the sum 
p~ ...... ~,, that is, when loci has to be maximized. If M = 2 the above comparison 

can be done by the following lemma. 

L e m m a  4.1. Suppose that a I >_ . . .  >_ a, >_ 1 and b 1 >_ . . .  >_ bv >_ 1 are integers. Choose  

entries f r o m  the matr i x  (ai 'bj) l  <_i<_,,1 <j<_v, at most  one f r o m  each row and each 

column. Their  sum cannot  exceed 

min{u,v} 

2 ai'bi" 
i=1 

Proof .  The statement is proved by induction on min{u,v}. Let I c {1 . . . . .  u} × 
{ 1 . . . .  , v} be a set containing at most one element in each row and each column. 
We shall show that there is an I' containing (1, 1) and satisfying 

2 ai 'b j  <_ ~. ai 'bj .  (12) 
( i , j )el  (i,j)eI" 

Suppose first that I contains no element with 1 as a component. Then I' = 

I i3 {(1, 1)} satisfies the requirements. If(I, x)e I but (y, 1) ¢ I for all y then choose I' = 
(I - {(1,x)})U {(1, 1)}. Finally, i f (1 ,x)s / (y ,  1)eI, then let I' = (I - {(1,x),(y, 1)})U 
{(I, 1),(y,x)). 

To verify (12) take the difference of the two sides: 

Z a,-bj- Z ai'bj=albl+a,b -albx-a, b1=(al-a,)(bl-bx)>-O. 
(i,j)el" (i , j)~l 

This proves that (1, 1)e I can be supposed. The induction hypothesis, applied with 
a 2 . . . . .  a u and b2, . . . ,  by, proves the desired result. 

Apply this lemma with 

(r2i  i +1 
> (k ( f )  - + 1  - - -  

[] 

> ( 2i and 
) > > . . .  

1 - + 2  - 
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and place of the a's and b's, respectively. (12) is equal to 

( n l )  ( n 2 ) (  nl ) (  n2 1 ) (  nl ) 

• 

n 2 

L Jt+ 
in this case. 

Let ~ ~ 2  (X = X x U Xz,IXtl = nl,JX2l = n2,nl + n2 = n). By Theorem 2.1 
(or [12]) we know that 

I ~ [ < m a x  ~ (n )~(nz .~  
1 (i,j)~l\ l /\J / 

where the maximum is over all partial transversals I. By Lemma 4.1 and the above 

( ij) calculations this sum is at most 

Theorem 4.2. (Kleitman [18], Katona [13]) 

(Lij) max{[~[:  ~ s 5  2} = 

Now, let X be again partitioned X1 U X 2 and denote by S(l) the set of Sperner 
families o~ c 2 x (FI,F2 ~ o~, F1 ¢ F2 ~ F~ ¢ F2) satifying the additional condition 

F E ~  ~ [ F f 3 X I [  >_ I. 

Theorem 4.3. (Lih [20]) I f  0 < n 1 < n 2 then 

(Fi ) (i(1 max{l~J:  ~ g ( 1 ) }  = 

Pro@ I f ~  ~ S(1) then its profile-matrix P(~')  = (Pis) has only zeros in the 0th row. 
nt  n2 Hence [~-1 = ~i=1 ~;=o Po follows. The latter sum is a linear combination of the 

entries of P(~) .  It can be maximum only for the extreme points determined by 
Theorem 3.4. Therefore, we have to find 

where the maximum runs over all antichains I ~ {I . . . .  , nt} × {0 . . . . .  n2}. As an 
antichain isnecessarily a partial transversal, we may use Lemma 4.1 with binomial 

coefficients, again. The only difference is that ( ; 1 ) i s  missing now. Ifnl is odd, ( ;  ~) 
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is the last one in the above ordering. Its coefficient is 

(U~-]  n2 l -~-J)  " + 

The sum is smaller by this amount. On the other hand, if n 1 is even then (nl~ is 
\ J nl 

• (;1) the last number in the ordering, it leaps forward to replace . Therefore the 

coefficient of/\[nl], that is, 
\ n #  

(F l+i l .) 
• n 2  wil be eeted Inbothcasesthemissingte is fill ) [] 

Remark 4.4. Actually, we proved a sharper theorem than Lih's one. We used only 
the 2-part Sperner condition rather than the usual Sperner condition. On the other 
hand, we did not determine here the optimal families as Griggs [10] did. It could 
be done with the present method, but it is rather inconvenient. (See the analogous 
result on all 2-part Sperner families in [5].) 

In some further investigations the following inequality will be needed. We think 
it is interesting in its own right, too. 

Lemma 4.5. I f l  c {0 . . . . .  nl} x {0 . . . . .  n2} is an antichain then 

S" \ i / \ j /  < 
( i ,~  (n--~ + n2~-- ~ _1 

\ i + j J  
holds. 

(13) 

holds iff nz 
n l + l  

the change 

(n~(nz~ (i nl i / \ j /  + l ) ( t ~  z)  
< 

+j / 1 +j,] 

J < / ~ - i "  In this case the sum (13) is increased. We say briefly that 

Proof. Let I be an antichain. Suppose that (i,j)~I and that (I - {i,j}) U {(i + 1,j)} 
is also an antichain. An easy calculation shows that 
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(i,j) ~ (i + 1,j)is increasin 9 iff n2 J 
n ~ + l  i + 1  

One can see in the same way that 

and 

(14) 

(i,j) ~ (i 1,j) is" . . nz j (15) -- increasing l f f ~  > _, 

(i,j) ~ (i,j + 1)is increasing iff nz+lnl < J  + l ' i  (16) 

(i,j) ~ (i,j - 1) is increasing iff nl > -.i (17) 
n 2 + l  j 

Suppose that I is an antichain maximizing the left hand side of (13). We will 
show that I consists of all pairs with a constant i + j. 

Order the elements of /according to their first components. It is easy to see that 
the second components are then ordered backwards. Let (i,j) and (i + k,j - l), 
k > 1,1 _> 1, be two neighbouring elements of I in this order. Suppose first that 
k _> 2. The change (i,j)-+ (i + 1,j) cannot be increasing by the optimality of I. 

Therefore nz j nz j -  l - - >  must hold by (14). Hence > follows, con- 
nx+l - i + 1  n l + t  

sequently (i + k,j -- l) (i + k -- 1,j - l) is an increasing change by (15). This con- 
tradiction proves k = 1. 

Suppose now I _> 2. The change (i,j) ~ (i,j - 1) cannot be increasing by the 

optimality of / .  Therefore nl z ( ) i  n 1 < - - i +  1 nz + i- N j  must h°ld by-17." Hence 
n 2 + l  j - l + 1  

follows, consequently (i + 1,j - l) ~ (i + 1,j - 1 + 1) is an increasing change by 
(16). This contradiction proves l = 1. 

We have proved that the neighbouring elements of I are of the form (i,j) and 
(i + 1,j - 1). Consequently, there is a constant e such that the optimal I consists of 
all elements (i,j) satisfying i + j = c. For such an I (13) holds with equality, whence 
it holds for any antichain. [] 

It will be easy to prove the next theorem after this lemma. 

Theorem 4.6. (Griggs 1-103)~ ~ ~ (l) implies the inequality 

1 C FNXI[ ) I  
_ 1. (18) 

Proof. If o~ ~ 5(0 then its profile-matrix P(o~) = (Po) has only zeros in the 0th, 1st, 
. . . .  (l - 1)st rows. (18) can be rewritten into the form 

E E Pij/ - -  < 1. (19) 
,=,j=0 ~ n- l i+j_l ) ( l l )  - 
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The left hand  side of  (19)is a linear combina t ion  of  the entries of P(ff ) .  It attains 
its max imum for one of  the extreme points  determined by Theorem 3.4. Therefore, 
we have to prove (19) only for these extreme points: 

should be proved for any antichain (not conta in ing elements with a first componen t  
< l). It is easy to check that this is equivalent  to 

v + , ,  - q - 1 

\ i+j-- l  / 

This latter inequality is a consequence of  (13). [ ]  

Of  course, the original p roof  in [10] is easier and shorter  than ours, which 
however  shows some new connections.  

We are indebted to the referees for their suggestions. 
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