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Abstract. The profile of a hypergraph on n vertices is (fg, ..., f,) where f; denotes the number of
i-element edges. The extreme points of the set of the profiles are determined for Sperner hyper-
graphs satisfying some additional conditions. The results contain some old theorems of extremal
set theory as particular cases.

1. Introduction

Let X be a finite set of n elements and # be a family of its subsets (# < 2*). Then
%, denotes the subfamily of the k-element subsets in F: %, = {4 € 7, |A4| = k}.
Its size | %] is denoted by f;. The vector (f;,...,f,) in the (n + 1)-dimensional
Euclidean space R"*! is called the profile p(%) of #. Let A be a set of families of
subsets of X, i.e. A < 22", Denote by

W(A) = (P(#) = (Jor-o- fo) & € A)

the set of the profiles of the families belonging to A. Then p(A)is a finite set of points
in R"™*. Let (u(A)) be the convex hull of u(A) and ¢(A) the set of all extreme points
(i.e. vertices of (u(A))). Itis easy to see that ¢(A) < u(A). So we may call the elements
of (A) extreme points of u(A). It is well-known that any linear function over (u(A))
attains its maximum/minimum at an extreme point. This means, if we want to
maximize a linear expression of (fy, ..., f,) on the families belonging to A then it is
enough to do it on the families with profiles equal to the extreme points of u(A).
In most cases this is simpler than to maximize on the whole set A.

We say that & is a Sperner family if F, G € #, F # G imply F ¢ G. The set of
Sperner families is denoted by S. The extreme points of u(S) are determined in [5],
but the problem is equivalent to the well-known LYM-inequality.

&(S) = {(O,...,0),(0,...,O,(?),O,...,O),i =0,1,...,n}.

Theorem.
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We say that the family % is intersecting, cointersecting, complement-free and
complementary, iff

F,Ge% implies FNG # ¢,
F,Ge% implies FUG # X,

Fe# implies X —F¢ F
and

Fe% implies X — Fe #Z,

respectively. The aim of the present paper is to determine the extreme points of three
subfamilies of Sperner families:

1) intersecting, cointersecting Sperner families,

2) complementary Sperner families and

3) complement-free Sperner families.

2. Tools (Preliminaries)

2.1. The method of [5] is applied in the present paper (see also [6]). The necessary
definitions and results are repeated for sake of completeness.

The set A < 2% is hereditary if ¢ = # e A implies 4 € A. Denote by p*(A) the
set of maximal profiles of A: it contains those elements (f;,.. ., f,) of g(A) for which
(go»---»gn) € (A) and (go,....9u) = (fo.-... f,) (that is, go = £, ..., g, = f,) imply
(fos-s/u) = (go>- .-, gn). Furthermore let e*(A) = u*(A)Ng(A) be the set of the
essential extreme points of p(A).

Theorem A. Suppose that A is hereditary. Then any element of ¢(A) can be obtained
by changing some coordinates of an essential extreme point of u(A) to zero.

The theorem states that, for a given A, it is sufficient to determine the set e*(A).
Replacing the components by zero in every possible way we obtain a set of vectors,
these should be individually checked if they are extreme points.

Theorem B. Suppose that A is hereditary, a set € = {eq,...,e,} < u(A) is given and

Y fi<1
i=0
holds for any fe u(A) and any y,, ..., y, satisfying y; = 0 (0 < i < n) and
€ Yo 1
: <
€/ \Vn 1

Then e*(A) < ¢.

2.2. Reduction to the circle. Take a cyclic permutation C of the underlying set X
and consider only those subsets of X whose elements are consecutive in C. These
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sets are called consecutive sets in C. If & is a family of subsets of X then #(C) is
defined by

F(C) = {F € #: F is consecutive in C}.
Similarly, let
A(C) = {F(C): Z e A}.

Assign the vector

with e = (eg, ..., ,).

Theorem C. (Blowing up the circle.) If e,, ..., e, are the extreme points of u(A(C))
for any given cyclic permutation C then

1(A) = <Tley),..., Tlen)
If T(ey), ..., Te,) € u(A), then these are the extreme points of A.

(This is true for the problems discussed in the present paper.)
Theorem D. Theorem B remains true if A is replaced by A(C) where C is any cyclic
permutation of X.
3. Intersecting, Cointersecting Sperner Families

Theorem 1. The set of essential extreme points of the set B of all intersecting,
cointersecting Sperner families is

e¥(B) = {u,i=1,...,[n/2];v;,n/2 < j < n}

a=(00-0(1 ) 0)
i—1

i

sz <0,...,0,<n-f 1),0,---,0>~
J

J

where

Remark. Both Theorems 1 and 2 can be proved very easily, without the general
theory. We chose the present way to unify the paper.

Proof. The families
5[['.—_—{ACX:|A|=I',X€X,}, i=1,-"9[n/2]’
Vi={AcX:|Al=j,x¢X,}, n2<j<n
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(where x is a fixed point of X) show that u;, u; € u(B). By Theorem C it is enough
to verify

Lemma 1. For any cyclic permutation C

e*(B(C)) = {u}i = 1,...,[n/2];v]

js

n/2 <j<n}

where

Proof. By Theorem D it is sufficient to show that

[n/2] g. n-1 .
iy y < (1)

i=1 1 pg<ih—j
holds for every intersecting, cointersecting Sperner family 4 of consecutive sets in
a cyclic permutation C.

Let the cyclic permutation C be given by the ordering X = {x,,..., x,}. By the
Sperner property, at most one member of % can start or end, respectively, at any
given element x;. If they exist, they are denoted by S; or E,, respectively. As ¥ is
intersecting and cointersecting, we have

HEsSim}Ng1 <1 (2)
foreveryi=1,...,n Letr = min{|A|: Ae %}, n — | = max{|A|: A€ ¥}.

Case 1.r < L. Suppose |Ao| = rand Ay = (x;,...,X,). As ¢ is intersecting, either the
starting or the endpoint of every other member of ¢ is in A4,, therefore

4 <{A¢,E1,S,5,.. . E,4,8,}.

(S, and E, are excluded by the Sperner property.) (2) implies || < r. Furthermore
r<l<n—|A|(4e%) Now the left hand side of (1) can be easily upperbounded:

1 1 Y

R <
acof T Al acgipan—141 7 1

Case 2. r > 1. Consider the family 4 = {4: 4 € %}. The left hand side of (1) is the
same for & or %. ¢ satisfies the conditions of Case 1. This proves (1), the lemma and
the theorem. 3

Remark. The unique essential bordering hyperplane of {u(B)) is
n/2] ; n=1 ,
J J <1

;f n/22<jT_
GHE Y

(See Corollary 1, later.) This hypérplane contains some points of y(B) which are not
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-2 -2
(0,...,0,(’7 ),...,0,(" >00>
-1 n—i

i n—i

extreme points:

where 1 < i < n/2.(If x and y are fixed distinct elements of X then the family
{AcX:|Al=ixeAy¢ AJU{B<c X:|Bl=n—1ixy¢B)
has this profile.

4. Complementary Sperner Families
Denote by I = 2%” the set of all complementary Sperner families.

Theorem 2.

where

1 n—i
and
Zp=[0...,0,[ " },0,...,0
n
2
n
2

Proof. Let 4 be a complementary Sperner family. Its profile has the form

P(G) = (for--osfiseems fuminee s fi)
where f; = f,_, (0 < i < [n/2]). The family

7 = F: n _n
J—{F.Fe%<|F|<2> or <|F|—2,xeF>}

is obviously an intersecting, cointersecting Sperner family with profile

(for- s fine1y2:0se-s0) OF  (fon-- s fimzym1s 1 fo2: 0s-. ., 0).

By Theorem 1, this is a convex linear combination of the zero vector and y;
(1 i< n2). Then (fo,....fi-- s fucis---» f,) is @ linear combination of the zero
vector and z; (1 < i < n/2). O
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Corollary 1. (Bollobas, [1]) If & is a complementary Sperner family then its profile
satisfies the following inequality:

[n/2] f; n~1 f]’

My P My
"o =07

Proof. The left hand side of the inequality is a linear expression of the profile p(%).
So it attains its maximum for one of the extreme points. It is easy to check that the
value of the expression is <2 for all the extreme points. O

2.

We saw in the proof of Theorem 2 that the complementary Sperner families are
in fact variants of the intersecting, cointersecting ones. There is, however, one more
variant. The subsets, F, G = X are called (following Marczewski, [10]) qualitatively
independent if they divide X into 4 non-emptyparts(F — G,G — F,FNG,X —F - G
are all non-empty). It is obvious that & is an intersecting, cointersecting, Sperner
family iff any two members of & are qualitatively independent. This is the reason
of the fact that the maximum size of such families, under different names, has been
independently determined by several authors.

Corollary 2. ([1], [2), [81. [91) If & is an intersecting, cointersecting, Sperner family
or a family of qualitatively independent sets then

n—1

n

-1

H

If & is a complementary Sperner family then

\F| <

n—1

-

Proof. Check the inequalities for the extreme points in Theorems 1 and 2, resp.
4

|F| <2

5. Complement-Free Sperner Families
Let E denote the set of all complement-free Sperner families on n elements.

Theorem 3. If n is odd then

if n = 2k is even then
) ={u(i=0,...k —Lk+1..,no(i=1...k—)w(i=k+1,..,n—1)

where
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ul. = (0,...,0,(’?),09--'?())7
1

i

n—1 n—1
= ,0,...,0, ,0,...,0 1},
e (00 (1 Jooa " o)
k

i

_ —1
w,.=<o,...,0,<" 1),0,...,0,(" , >,o,...,o>.
k

k i

Proof. E< S is obvious. If n is odd then the elements of &(S) are in u(E). Hence
we obtain (E) = &(S).
The case n = 2k is not so trivial. The following constructions show that u;, v;,
w; € p(E):
U ={A: A< X,|A| =i} (i=0,....k—=1Lk+1,...,n),
Vi={A:AS X,|Al=i,xe AJU{A: A X,[A| =k x¢ A} (i=1,..k—1),
W ={A:ACS XAl =kxe AJU{A: AS X, |A|=i,x¢ A} (i=k+1,...,n—1).

By Theorem C it is enough to prove the following lemma.

Lemma 2. Let C be a fixed cyclic permutation of X. Then ¢*(E(C)) = {ui(i = 0,...,
k—1Lk+ 1, nv(i=1._k-0w(i=k+1,...,n—1)} where

uy=(1,...,0), ©,....1),

u, =
u; =(0,...,0,n,0,...,0) (i # 0,k,n),
i

v =(0,...,0,50,...,0,k,0,...,0),

i k
w =(0,...,0,k,0,...,0,50,...,0).
k i

The families realizing these profiles are analogous to the families %;, ¥; and #;.
By Theorem D, the following lemma implies the previous one.

Lemma 3. Y7, fiy; < 1 holds for any f e p(E(C)) and any y,, ..., y, = 0
satisfying

[ Yo
el | <L (3)

with all vectors e listed in Lemma 2.
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Proof. Write (3) component-wise:
Yo <1,
W<l
np<l (=1, k—1Lk+1,...n—1), (4)
iyi+kye<1l  (i=1,....k—1),
kye+(n—i)y; <1 (i=k+1,..,n—1)
(4) results in

g
yk—kr

11— ky,

yismin<ﬁ, , ) (i=1,.. k—1), (5)

1

yigmin<~l~,ﬂ'i) (i=k+1,...,n—1).
non—i
If £, is non-zero then it is 1. By the Sperner property all other f; are zero, the
lemma trivially holds. Thus in the rest of the proof we suppose that f, = f, = 0.
Note that the inequality in question is only slightly modified if f is supposed
to be a Sperner family along C:

This inequality is known (see [5]), it is in strong connection with the theorem
in the introduction. (Actually, it is a version of the LYM-inequality for cyclic
permutations.) Our inequality is almost a consequence of this one, the only dif-

. .. 1. t
ference being that we have the condition y, < — instead of y, < —. So, we are done
n

1
if either f, =0or y, < - holds. In what follows, we will suppose that

1 1
d - - 6
0<f, an C<n<y (6)
(5) and (6) imply
i<y (i#k). (7)
Fix a system of y, satisfying (6) and choose a family # € E(C) maximizing
n—1
'—21 Sy

As f, > 0, there is an A € & with k elements, say 4 = {x4,...,x,}.
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Claim 1. Either {x,,..., X411} OF {Xps25- s Xy, X1 } IS i0 F.

Suppose that {x;,,..., X, X, } ¢ #. We trytoadd {x,,..., x4, } to #. The only
obstacle could be a member B of # which is either contained in {x,,..., X} or
contains {X,,..., X+ }. In the first case, B has to contain x,,, otherwise it would
be a subset of A. Thus B = {x;,...,x,4,} for some 2 <j < k + 1. Similarly, if B
contains {x,,...,x;.1} then B = {x,,...,x,} holds for some k+ 1 <!/ <n. It is
clear, by the Sperner property, that at most one of these possible sets B can be in
Z. Delete this Band add {x,, ..., X;, } to &. By (7), this change increases } /2! f,y:.
This contradiction proves the statement.

A pair of complementing, consecutive k-element subsets is called an equipar-
tition. We say that an equipartition is represented in % iff one of the parts
is a member of #. Claim 1 states that if an equipartition is represented in &
then the neighbouring equipartition is also represented. By induction, this results
in

Claim 2. All equipartitions are represented in #. That is, f, = k.

This leads to a new property of #.

Claim 3. Let F and G be members of F with sizes different fromk. Then FN G # (5.

Let |F| < |G| and G = {x,,...,x;}. First suppose j < k. By Claim 2 and the
Sperner property, we have {X;.1,..., X}, {Xps15--.,%,} € F. If F is disjoint to G
then it must be contained in the union of {x;,,...,%;,,} and {x,,,,...,x,}, but
neither one can contain it alone. Hence X, X;444; € F follows. The size of F is
>Jj, a contradiction. The case j > k is easier. The set {x;,,...,x,} covers the
complement of G, therefore F can not entirely be there, by the Sperner property,
again.

Claim 4. Let F and G be members of & with sizes different fromk. Then FUG # X.

Z satisfies all the conditions of Claim 3. However, Claim 3 with % is equivalent
to Claim 4 with #.
The last two claims result in

Claim 5. & — #, is an intersecting, cointersecting Sperner family.

Now we are able to prove the desired inequality. (5), Claim 2, Claim 5 and (1)
will be used.

k)’k " 1 —ky

2. fi

i=k+1 n—i

=ky, + (1 — kyk)<;1§+ nil J l) <ky+ (1 —ky)=1

i=k+1 B —

This proves Lemma 3, Lemma 2 and Theorem 3. o
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Corollary 3. [11] If & is a complement-free family on an n-element set then
n
2+
2

Proof. | F| = Y i, f;1s a linear expression of the profile, thus it is sufficient to check
this sum for the extreme points in Theorem 3, what is easy. O

7| <

Remark.In[7]itis proved that Corollaries 2 and 3 are, in fact, equivalent. Corollary
3 is proved for integer sequences in [3].
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