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Abstract. The profile of a hypergraph on n vertices is (f0 ... . .  fn) where fi denotes the number of 
/-element edges. The extreme points of the set of the profiles are determined for Sperner hyper- 
graphs satisfying some additional conditions. The results contain some old theorems of extremal 
set theory as particular cases. 

1. Introduction 

Let X be a finite set of n elements and .~  be a family of  its subsets ( ~  c 2x). Then 
o~ denotes the subfamily of the k-element subsets in o~: ~ = {A ~ ~ , [A]  = k}. 
Its size [41  is denoted by fk. The vector  (fo . . . . .  fn) in the (n + 1)-dimensional 
Euclidean space R n+l is called the profile p(~) of ~ .  Let A be a set of families of 
subsets of  X, i.e. ~ c 22x. Denote  by 

/~(A) = { p ( ~ )  = ( fo , . . - , In) :  o~ e ~ )  

the set of  the profiles of the families belonging to N. Then #(A) is a finite set of points  
in R "+1. Let  @ ( ~ ) )  be the convex hull of/~(N) and e ( a ) t h e  set of  all extreme points 
(i.e. vertices of  ( # ( ~ ) ) ) .  It  is easy to see that  e(~)  _~/~(A). So we may  call the elements 
ofe(A) extreme points  of#(A).  It  is wel l -known that  any linear function over  @ ( A ) )  
at tains its m a x i m u m / m i n i m u m  at an extreme point. This means,  if we want  to 
maximize a linear expression of (fo . . . . .  fn) on the families belonging to A then it is 
enough to do it on the families with profiles equal to the extreme points  of  #(A). 
In mos t  cases this is simpler than  to maximize on the whole set ~ .  

We say that  .~  is a Sperner family if F, G e .~, F # G imply F ¢ G. The set of  
Sperner  families is denoted by 5. The extreme points  of  #(g)  are determined in [5], 
but  the p rob lem is equivalent  to the wel l -known LYM-inequal i ty .  

Theorem. 

{( ( ( n ) )  I e ( 5 ) =  0 , . . . ,0 ) ,  0 . . . . .  O, i ,0 . . . . .  0 , i = 0 , 1  . . . . .  n , .  

i 
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We say that the family ~ is intersecting, cointersecting, complement-free and 
complementary, iff 

F , G ~  implies F N G ¢ ~ ,  

F , G ~  implies F U G # X ,  

F ~  implies X - F ¢  

and 

F e ~  implies X - F e ~ ,  

respectively. The aim of the present paper is to determine the extreme points of three 
subfamilies of Sperner families: 
1) intersecting, cointersecting Sperner families, 
2) complementary Sperner families and 
3) complement-free Sperner families. 

2. Tools (Preliminaries) 

2,1. The method of [5] is applied in the present paper (see also [6]). The necessary 
definitions and results are repeated for sake of completeness. 

The set A c 2 2x is hereditary ifaJ c ~ E A implies ff ~ A. Denote by It*(A) the 
set of maximal profiles of A: it contains those elements (fo . . . . .  f ,)  of It(A)for which 
(go . . . .  ,g,) ~ It(A) and (go . . . . .  g,) > ( fo , - . . , f , ) ( tha t  is, go > fo , . . . , g ,  >-f . ) imply 
(fo . . . .  ,f ,) = (go . . . . .  g,). Furthermore let e*(A) -- it*(A)N e(A) be the set of the 
essential extreme points of it(A). 

Theorem A. Suppose that A is hereditary. Then any element of e(A) can be obtained 
by changing some coordinates of an essential extreme point of #(A) to zero. 

The theorem states that, for a given A, it is sufficient to determine the set e*(A). 
Replacing the components by zero in every possible way we obtain a set of vectors, 
these should be individually checked if they are extreme points. 

Theorem B. Suppose that A is hereditary, a set e = {el . . . . .  e,,} c it(A) is given and 

holds for any f ~ it(A) and any Yo, (e:i 
Then e*(A) c_ e. 

n 

E fiYi ~ 1 
i = 0  

., y, satisfying Yl >- 0 (0 <_ i <_ n) and 

<_ 

i ?1 

2.2. Reduction to the circle. Take a cyclic permutation C of the underlying set X 
and consider only those subsets of X whose elements are consecutive in C. These 
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sets are called consecutive sets in C. If f is a family of subsets of X then i f (C)  is 

defined by 

i f (C)  = {F e f :  F is consecutive in C}. 

Similarly, let 

Assign the vector 

~(c)  = {~(c) :  ~ ~ ~}.  

e l l ( n ' l  . . . .  e , - , .~(n n l ) , e ,  ) r(e) = (eo, ~ \ l j  " 

with e = (eo, . . . ,  en). 

Theorem C. (Blowing up the circle.) I f  e l , . . . ,  em are the extreme points of  #(A(C)) 
for any given cyclic permutation C then 

/*(A) c_ ( r ( e l )  . . . . .  r(em)). 

If r(el) . . . . .  r(em) E #(A), then these are the extreme points of A. 

(This is true for the problems discussed in the present paper.) 

Theorem D. Theorem B remains true if A is replaced by A(C) where C is any cyclic 
permutation of X. 

3. Intersecting, Cointersecting Sperner Families 

Theorem 1. The set of essential extreme points of the set B of  all intersecting, 
cointersecting Sperner families is 

e*(U) = {ui, i = 1 . . . .  , I-n/2]; vj, n/2 < j < n} 

where 

,=(o, o,(: ,o) 
i 

, ( o  ..... 1),o .... ,o) 
J 

Remark. Both Theorems 1 and 2 can be proved very easily, without  the general 
theory. We chose the present way to unify the paper. 

Proof. The families 

qli = {A c X: lAl = i, x e X,  }, i =  1 . . . .  , [n/2], 

~ = { A c X : [ A [ = j ,  xq}X,} ,  n / 2 < j < n  
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(where x is a fixed point  of X) show that u,, uj e p(B). By Theorem C it is enough 
to verify 

Lemma 1. For  any  cyclic permutat ion  C 

e * ( • ( C ) )  = {u~ , i  = 1 . . . . .  [n/2];vj ,  n/2 < j < n} 

where 

ui=(o . . . . .  o , i , o  . . . . .  o)  

i 

v;=(o . . . . .  O , n - j , o  . . . .  ,o) .  

J 

Proof .  By Theorem D it is sufficient to show that  

In/2] gi + .-1 
E E gJ < 1 (1) 
i=1 i . ~ 2 < i n - j -  

holds for every intersecting, cointersecting Sperner family f# of consecutive sets in 
a cyclic permutat ion C. 

Let the cyclic permutat ion C be given by the ordering X = {xl . . . . .  x.}. By the 
Sperner property,  at most  one member  of f# can start or end, respectively, at any 
given element x i. If they exist, they are denoted by Si or El, respectively. As f# is 
intersecting and cointersecting, we have 

[{E, ,Si+l} Nf#l-< 1 (2) 

for every i = 1 . . . . .  n. Let r = min{lA]: A ~ (#}, n - 1 = max{Ia[ :  A e (#}. 

Case I. r < I. Suppose I A o I = r and A o = ( x l , . . . ,  x,). As (¢ is intersecting, either the 
starting or the endpoint  of every other  member  of (# is in Ao, therefore 

(~ - {Ao, El ,  $2 . . . .  , E,_a, S,}. 

($1 and E, are excluded by the Sperner property.) (2) implies  [ f f [<  r. Fur thermore  
r < l < n - IA[ (A e c~). Now the left hand side o f ( l ) c a n  be easily upperbounded:  

1 1 (# 
E - - +  X - - < - < 1 .  

a~*.IAI_<,t2 IA] Ae~,]A]>n/2 n --  ]A[ - r - 

Case 2. r > l. Consider  the family c~ = {A~ A e f#}. The left hand side of (1) is the 
same for (¢ or f#. c~ satisfies the conditions of Case 1. This proves (1), the lemma and 
the theorem. [ ]  

Remark .  The unique essential bordering hyperplane of (# (B) )  is 

t./~ f ,  . -1  f j  
E - - +  E - - < I .  i=1 (:--;) n/2<j(n-- 

(See Corol lary 1, later.) This hyperplane contains some points of #(B) which are not  
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extreme points: 

(o ..... ..... ..... o) 

i n - - i  

where 1 < i < n/2.  (If x and y are fixed distinct elements of X then the family 

{A = X : I A I = i ,  x a A ,  y q ~ A } U { B = X : [ B ] = n - i , x ,  yq~B} 

has this profile. 

4. Complementary Sperner Families 

Denote  by [I) c 2 2x the set of all complementary  Sperner families. 

Theorem 2. 

where  

and 

g*(D)  = t z i :  i = 1 . . . . . .  

..... o,(;:i) ,o, . . . ,o) 
i n - i  

1 _ < i <  , 

z,/2 = 0 . . . .  ,0, ,0 . . . . .  0 . 
n 

n 

P r o o f  Let ff be a complementary  Sperner family. Its profile has the form 

P( f f )  = ( fo  . . . . .  ~ . . . . .  f , - ,  . . . . .  f , )  

where fi = f , - i  (0 <_ i < In/2]). The family 

= F : F ~ ,  F [ <  or ] F [ = ~ , x E F  

is obviously an intersecting, cointersecting Sperner family with profile 

(fo, . . . . .  ,f( ,-i)/2,0 . . . . .  0) or (fo, . , f , / s ) - l , i f , / 2 , 0  . . . . .  0). 

By Theorem 1, this is a convex linear combinat ion  of the zero vector and u~ 
(1 <_ i <_ n/2). Then (fo . . . . .  f~ . . . . .  f,-~ . . . . .  f~) is a linear combinat ion of the zero 
vector and zl (1 <_ i <_ n/2). []  
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Corollary 1. (Bollobfis, [1]) I f  ~,~ is a complementary Sperner family then its profile 
satisfies the following inequality: 

t./21 fi .-1 f1 < 2. 

i = 1  - -  n j 

J 

Proof. The left hand side of the inequality is a linear expression of the profile p(~). 
So it attains its maximum for one of the extreme points. It is easy to check that the 
value of the expression is < 2 for all the extreme points. [] 

We saw in the proof of Theorem 2 that the complementary Sperner families are 
in fact variants of the intersecting, cointersecting ones. There is, however, one more 
variant. The subsets, F, G c X are called (following Marczewski, [10]) qualitatively 
independent if they divide X into 4 non-emptyparts (F - G, G - F, F f-) G, X - F - G 
are all non-empty). It is obvious that ~ is an intersecting, cointersecting, Sperner 
family iff any two members of ~ are qualitatively independent. This is the reason 
of the fact that the maximum size of such families, under different names, has been 
independently determined by several authors. 

Corollary 2. ([1 ], [2], [8], [9]) I f  ~ is an intersecting, co intersecting, Sperner family 
or a family of  qualitatively independent sets then 

Io~l <_ 

- 1  
\ 

I f  ~ is a complementary Sperner family then 

n - l )  
1~1_<2 

Proof. Check the inequalities for the extreme points in Theorems 1 and 2, resp. 
[] 

5. Complement-Free Sperner Families 

Let IF denote the set of all complement-flee Sperner families on n elements. 

Theorem 3. I f  n is odd then 

e(E) = 

if n = 2k is even then 

e*(~_) = {ui(i = O,. . . ,k  - 1, k + 1 . . . . .  n),v~(i = 1 , . . . , k  - 1),wi(i : k + 1 . . . . .  n - 1)} 

where 
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, ( o  .... ,0,(7),0,,0), 
i 

~=(o, ,o,(:-:),o ..... o,(~),o ..... o), 
i k 

w~__(o ..... o , (~ , )o  ..... o,(~:,),o ..... o) 
k i 

Proof.  ~_ c_ g is obvious. If n is odd then the elements of e(N) are in #(IF). Hence 
we obtain e(~) = ~(5). 

The case n = 2k is not  so trivial. The following constructions show that ul, vi, 

wl ~ .(Et: 

~i={a:a~_x, lal=i} ( i = 0  . . . . .  k - l , k + l  . . . . .  n), 

~ = { Z : Z ~ _ X ,  l A l = i , x ~ Z } U { Z : Z ~ _ g ,  l a l = k , x ~ Z }  ( i = 1  . . . . .  k - l ) ,  

= {A:A  ~_ X,  IAI = k , x ~ A } U { A : A  ~_ X,  lZl = i, x C a } ( i =  k + 1 . . . . .  n -  1). 

By Theorem C it is enough to prove the following lemma. 

Lemma 2. Le t  C be a f i x e d  cyclic permutat ion o f  X .  Then  e*(~_(C)) = {u~(i = 0 . . . .  , 
k -  1,k + 1, . . . ,n) ,v~(i  = 1 . . . . .  k - 1),w[(i = k + 1 , . . . , n -  1)} where 

u; = (1 . . . .  ,0),  u• = ( 0 , . . . ,  1), 

u~=(o  . . . . .  0,n,0 . . . . .  0) ( i ~ 0 ,  k,n), 
i 

v ; = ( o  . . . . .  o, i ,o , . . . ,o ,k,o, . . . ,o) ,  
i k 

w[ = (0 . . . . .  O,k,O . . . . .  O,i ,O, . . . ,0) .  

k i 

The families realizing these profiles are analogous to the families q/i, ~ and ~q/~. 
By Theorem D, the following lemma implies the previous one. 

Lemma 3. ~7=o fiYi < 
satisfying 

1 holds for  any f ~ #(;c(C)) and any Yo . . . . .  y ,  >_ 0 

"Yo)  

with all vectors e listed in L e m m a  2. 

<_ 1. (31 
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Proof.  Write (3) component-wise: 

yo < 1, 

y , <  1, 

ny, < 1 ( i =  1 . . . . .  k -  1,k + l . . . . .  n -  1), 

iy, + ky  k <  1 ( i =  1 . . . .  , k -  1), 

kyk + (n -- i)y i <  1 (i = k + 1 . . . .  ,n  - 1). 

(4) results in 

1 
Yk <-k,  

(4) 

y~ _ m i n  , 

Yi<-min(~ 1' n - i / ---k-y-k') 

( i=  1 . . . . .  k -  1), (5) 

(i = k + l , . . . , n -  1). 

If fo is non-zero then it is 1. By the Sperner property all other fs are zero, the 
lemma trivially holds. Thus in the rest of the proof we suppose that fo = fn = 0. 

Note that the inequality in question is only slightly modified if f is supposed 
to be a Sperner family along C: 

i = 0  i = 0  F/ 

This inequality is known (see [5]), it is in strong connection with the theorem 
in the introduction. (Actually, it is a version of the LYM-inequality for cyclic 
permutations.) Our inequality is almost a consequence of this one, the only dif- 

1 1 
ference being that we have the condition Yk <-- 7 instead of Yk <-- --" SO, we are done 

K n 

if either fk = 0 or Yk < 1_ holds, in what follows, we will suppose that 
n 

1 1 
0 < f k  and - -<yk  < (6) 

(5) and (6)imply 

Y, < Yk (i ~ k). 

Fix a system of Ys satisfying (6) and choose a family o~ ~ ~(C) maximizing 
n--1 

Z f,y,- 
i=1  

As f~ > O, there is an A e ~ with k elements, say A = {xl . . . . .  xk}. 

(v) 
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Claim 1. Either {x 2 . . . . .  Xk+I } o r  {"Yk+2,"'', Xn, X1 } is in o ~. 

Suppose that  {Xk+ 2 . . . . .  Xn, X~ } ~ : .  We try to add {x2, . . . ,  XR+ ~ } to : .  The only 
obstacle could be a m e m b e r  B of ~ which is either contained in {x2 . . . .  , Xk+l } or 
contains {x2 . . . . .  Xk+l }. In the first case, B has to contain Xk+I, otherwise it would 
be a subset of A. Thus  B = {X~,...,Xk+I} for some 2 _< j _< k + 1. Similarly, if B 
contains {x2 . . . .  ,Xk+l} then B = {x 2 . . . .  ,x~} holds for some k + 1 _< l _< n. It  is 
clear, by the Sperner  proper ty ,  that  at mos t  one of these possible sets B can be in 
: .  Delete this B and add  {x 2 . . . . .  Xk+I } to ~-. By (7), this change increases ~7=:  f~Y~- 
This contradic t ion proves  the statement.  

A pair  of  complement ing,  consecutive k-element subsets is called an equipar- 
tition. We say that  an equipart i t ion is represented in : iff one of the parts  
is a m e m b e r  of  : .  Claim 1 states that  if an equipar t i t ion is represented in 
then the neighbouring equipar t i t ion is also represented. By induction,  this results 
in 

Cla im 2. All equipartitions are represented in ~ .  That is, fk = k. 

This 'teads to a new proper ty  o f ~ .  

Cla im 3. Let F and G be members of  ~ with sizes different from k. Then F N G ~ ~ .  

Let IF] _< ]G[ and G = {x 1 . . . . .  xj}. First suppose j < k. By Cla im 2 and the 
Sperner  proper ty ,  we have {xj+ 1 . . . . .  Xj+k}, {Xk+I . . . . .  X,} ~ ~ .  If  F is disjoint to G 
then it must  be conta ined in the union of {xj+l . . . . .  Xj+k} and {Xk+I . . . . .  X,}, but  
neither one can contain it alone. Hence Xk, " ~ j + k + l  ~ F follows. The size of F is 
> j ,  a contradict ion.  The case j > k is easier. The  set {Xk+I . . . . .  X,} covers the 
complement  of  G, therefore F can not  entirely be there, by the Sperner  property ,  
again. 

Claim 4. Let  F and G be members of o~ with sizes different from k. Then F U G ~ X.  

satisfies all the condit ions of Claim 3. However ,  Claim 3 with J is equivalent  
to Claim 4 with ~-. 

The last two claims result in 

Cla im 5. ~ - o~ k is an intersecting, cointersecting Sperner family. 

N o w  we are able to 
will be used. 

,n--1 k-1 1 -- ky k n-1 1 -- ky k 
Z flYi ~-- kyk + Z fii + ~'. f i - -  
i=1 i=1 i i = k + l  n - -  i 

= ky k + (1 -- 

prove  the desired inequality. (5), Claim 2, Claim 5 and (1) 

) ky f~ f' (1 ~) 7 + <ky~+ -ky~)= l .  
i i=k+l  ~ - -  

This proves  L e m m a  3, L e m m a  2 and  Theo rem 3. [ ]  
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Corollary 3. [11] I f  ~ is a complement-free family  on an n-element set then 

(L i lYI_< 
+ 1  

Pro@ I~1 = ~%0f~ is a linear expression of the profile, thus it is sufficient to check 
this sum for the extreme points in Theorem 3, what  is easy. [ ]  

Remark.  In [7] it is proved that Corollaries 2 and 3 are, in fact, equivalent. Corol lary 
3 is proved for integer sequences in [3]. 
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