
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 392001 (10pp) doi:10.1088/1751-8113/42/39/392001

FAST TRACK COMMUNICATION

Degree-based graph construction

Hyunju Kim1, Zoltán Toroczkai1,2, Péter L Erdős2, István Miklós2

and László A Székely3

1 Interdisciplinary Center for Network Science and Applications (iCeNSA), and Department of
Phsyics, University of Notre Dame, Notre Dame, IN 46556, USA
2 Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest,
PO Box 127, H-1364, Hungary
3 Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

E-mail: toro@nd.edu

Received 28 May 2009
Published 11 September 2009
Online at stacks.iop.org/JPhysA/42/392001

Abstract
Degree-based graph construction is a ubiquitous problem in network modelling
(Newman et al 2006 The Structure and Dynamics of Networks (Princeton
Studies in Complexity) (Princeton, NJ: Princeton University Press), Boccaletti
et al 2006 Phys. Rep. 424 175), ranging from social sciences to chemical
compounds and biochemical reaction networks in the cell. This problem
includes existence, enumeration, exhaustive construction and sampling
questions with aspects that are still open today. Here we give necessary and
sufficient conditions for a sequence of nonnegative integers to be realized as
a simple graph’s degree sequence, such that a given (but otherwise arbitrary)
set of connections from an arbitrarily given node is avoided. We then use this
result to present a swap-free algorithm that builds all simple graphs realizing
a given degree sequence. In a wider context, we show that our result provides
a greedy construction method to build all the f -factor subgraphs (Tutte 1952
Can. J. Math. 4 314) embedded within Kn\Sk , where Kn is the complete graph
and Sk is a star graph centred on one of the nodes.

PACS numbers: 02.10.Ox, 02.50.Ey, 07.05.Tp, 89.75.Hc

1. Introduction and summary

In network modelling of complex systems [1, 2], one usually defines a graph with components
of the system, being represented by the nodes, and the interactions amongst the components
being represented as the links (edges) of this graph. This graph is usually inferred from
empirical observations of the system and it is uniquely determined if one can specify all
the connections in the graph. Occasionally, however, the data available from the system are
incomplete, and one cannot uniquely determine this graph. In this case there will be a set G of
graphs satisfying the data, and one is faced with the following problems: (1) construct a graph

1751-8113/09/392001+10$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/39/392001
mailto:toro@nd.edu
http://stacks.iop.org/JPhysA/42/392001

J. Phys. A: Math. Theor. 42 (2009) 392001 Fast Track Communication

from G, (2) count the number of elements (graphs) in G, (3) construct all graphs from G and
(4) construct a typical element of G, often interpreted as a uniform random sample taken from
G. Problems (1), (3) and (4) are construction type problems, whereas (2) is an enumeration
type problem. In this communication, we restrict ourselves to simple, undirected graphs, that
is, any edge connects a single pair of distinct nodes (no hypergraph, no self-loops) and there
is at most one edge incident on any pair of nodes (no parallel or multiple edges).

A rather important and typical situation is when the empirical data specify only the degrees
of the nodes, in the form of a sequence d = {d1, d2, . . . , dn} of positive integers, di � 1,
1 � i � n. (We exclude zero degree nodes, since they represent isolated points.) In the
following, we will refer to such cases as ‘degree-based’ construction (enumeration) problems.
There are numerous examples, we will mention only a few here. In epidemic studies of
sexually transmitted diseases [4] the data collected are from anonymous surveys, where the
individuals specify the number of different partners they have had in a given period of time,
without revealing their identity. In this case, the epidemiologist is faced with constructing
the most typical contact graph obeying the empirical degree sequence. Another example
comes from chemistry where the task is to determine the total number of structural isomers
of chemical compounds, such as alkanes. In this case, nodes represent chemical elements
(atoms) in the compound and a link represents a chemical bond. In the case of alkanes the
bond can be interpreted as a single link in the corresponding graph (no double bonds). Since
the valence of an atom is fixed, the formula of an alkane such as C4H10 (butane) will specify
only the degree sequence. Knowing all the possible graphs with this degree sequence provides
a starting point from which the feasible structures can be inferred. In particular, butane has 2,
octane (C8H18) has 18, C20H42 has 366 319 isomers, etc. Degree-based graph construction is
also found in many other network modelling problems, such as communications (the internet,
WWW, peer-to-peer networks), biology (metabolic networks, gene transcription, etc), ecology
(food webs) and social networks.

It is easy to see that not all integer sequences can be realized as the degrees of a simple graph
(the existence problem). For example, while {2, 1, 1} and {2, 2, 2} are the degree sequences
of a path (P3, •–•–•) and a triangle, there is no simple graph with degree sequence {3, 2, 1}
or {1, 1, 1} or {4, 4, 2, 1, 1}. Let G(V,E) denote a simple graph where V = {v1, v2, . . . , vn}
denotes the set of nodes and E the set of edges. Consider a sequence of positive integers
d = {d1, d2, . . . , dn} arranged in decreasing order, d1 � d2 � · · · � dn (for convenience
reasons, only). If there is a simple graph G(V,E) with degree sequence d, then we call the
sequence d a graphical sequence and in this case we also say that G realizes d. A second
observation is that given a graphical d (and thus, we know that a simple graph G exists with
this degree sequence), careless connections of pairs of nodes may not result in a simple graph.
For example, consider the sequence {2, 2, 2, 2} which is graphical (4-cycle). Making the
connections {(v1, v2), (v1, v3), (v2, v3)} however, will force us to make a self-loop {(v4, v4)}.
The degree-based graph construction problem for simple undirected labelled graphs thus can
be announced as follows:

Degree-based graph construction
Given a sequence of integers d = {d1, d2, . . . , dn}, d1 � · · · � dn � 1,

(A) Is there a simple graph G(V, E) on n-nodes realizing d?
(B) If the answer to (A) is yes, how can we build such a graph?
(C) Can we build all such graphs?
(D) Let G(d) be the set of all such graphs. How can we sample at uniform from G(d)?

There are two well-known theorems that answer question (A) above, namely the Erdős–
Gallai theorem [12] and the Havel–Hakimi theorem [13, 14], the latter also giving a

2

J. Phys. A: Math. Theor. 42 (2009) 392001 Fast Track Communication

construction algorithm for a graph with degree sequence d and thus answering question
(B) as well (see section 2). In principle, problem (C) can be resolved via the method of edge
swaps starting from the graph produced by the Havel–Hakimi procedure from (B) (called an
HH-graph from now on) and book-keeping the swaps (which gets rather involved). Given
two edges (v1, v2) and (v3, v4), they can be swapped into (v1, v3) and (v2, v4), or (v1, v4)

and (v2, v3) leaving the degree sequence unchanged. Due to a theorem by Ryser [5], if
G1 and G2 are two simple graphs with identical degree sequences, then there is a sequence
of edge swaps that transforms one into another [6, 7]. Edge swapping is also at the basis
of all sampling algorithms attempting to answer (D), using a Markov chain Monte Carlo
approach, the literature of which is too extensive to be reviewed here. The basic idea is to keep
swapping edges until the memory of the initial condition (HH-graph) is lost and one produces a
(pseudo)-random instance. This sampling method is approximative and it is not well controlled
in general (except for some specific sequences). A simple and direct (swap-free) construction
method to produce a uniformly sampled random graph from G(d) was presented by Molloy
and Reed (M–R) [8] (see section 5) and subsequently used to generate graphs with given
degree sequences [9], including those described by power-law degree distributions [10]. The
problem with the M–R algorithm is that it can become very slow due to rejections caused by
self-loops and parallel edges (see section 5).

Here we present a new approach to degree-based graph construction. First we prove
our main result that gives the sufficient and necessary conditions for a sequence of integers
to be graphical such that a given (but otherwise arbitrary) set of connections from a given
(but otherwise arbitrary) node is avoided. We then show how to use this result to present an
algorithm that builds all graphs from G(d) (question (C)). It is important to emphasize that our
algorithm does not use edge swaps, it is a direct construction method. Lastly, (section 5) we
show how our result improves on the M–R method of uniform sampling, allowing us to reject
some of the samples without getting to the point where the multi-edge conflicts would actually
occur (see section 5). We also make a connection with the renowned Tutte’s f -factor theorem
[3, 11], showing that our result provides a greedy algorithm for constructing all f -factors in
the case of Kn\Sk , where Kn is the complete graph on n nodes and Sk is a star graph with k
leaves centred on some arbitrary node.

The communication is organized as follows. Section 2 recalls known fundamental
theorems for graph construction, and via a simple counter-example it shows that HH is
not sufficient to build all graphs from G(d); section 3 presents our main theorem with its proof
and section 4 describes the algorithm for building all graphs in G(d); section 5 is devoted to
discussions.

2. Previous results

For simplicity of the notation we will identify node vi by the integer i. There are two
well-known necessary and sufficient conditions for a sequence of nonnegative integers to be
graphical: one was given independently by Havel [13] and Hakimi [14], while the other is due
to Erdős and Gallai [12]. We now announce these results for later reference, however, without
proof, those can be found in the corresponding references.

Theorem 1 (Hakimi–Havel, HH). There exists a simple graph with degree sequence
d1 > 0, d2 � · · · � dn > 0 if and only if there exists one with degree sequence
d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn.

Theorem 2 (Erdős–Gallai, EG). Let d1 � d2 � · · · � dn > 0 be integers. Then they are the
degree sequence of a simple graph if and only if

3

J. Phys. A: Math. Theor. 42 (2009) 392001 Fast Track Communication

2

3 2 2 3

2

2 2

Figure 1. This graph cannot be obtained by the Havel–Hakimi procedure. The integers indicate
node degrees.

(i) d1 + · · · + dn is even;
(ii) for all k = 1, . . . , n − 1 we have

k∑
i=1

di � k(k − 1) +
n∑

i=k+1

min{k, di}. (1)

Note that theorem 1 provides a greedy algorithm (the HH-algorithm) to generate an actual
graph with the given degree sequence d while theorem 2 is an existence result. Tripathi and
Vijay have recently shown [15] that it is enough to check the inequalities (1) for 1 � k � s,
where s is determined by ds � s, ds+1 < s + 1, that is only as many times as many distinct
terms are in the degree sequence.

In the following, we will imagine the given degree sequence as a collection of stubs: at
each vertex i there are di stubs (‘half-edges’), anchored at the vertex, but the other ends are
free. Connecting two stubs at two distinct nodes will form an edge between those nodes. We
will call the residual degree the number of current stubs of a node.

The HH-algorithm for constructing a graph realizing a graphical sequence d proceeds as
follows: connect all stubs of a node to nodes that have the largest residual degrees and repeat
until no stubs are left. It is important to emphasize that one can choose any node to connect its
stubs, as long as we connect all its stubs to the other nodes with the largest residual degrees.
Clearly, if we always choose a high degree node (from the residual sequence) to connect its
stubs, the HH-algorithm will create a graph in which high degree nodes tend to be connected
to other high degree nodes, called assortative property [16]. However, if we always pick a
node with a low (residual) degree to connect, we will likely obtain a graph with dissassortative
property [17]. The HH-theorem is also a consequence (as a corollary) of our main result, see
section 3. Nevertheless, this is still not enough to produce all graphs realizing a graphical
sequence! To see that consider the graphical sequence d = {3, 3, 2, 2, 2, 2, 2, 2}. If the first
node to connect is a node with degree 3, then the HH-algorithm connects it to the other node
with degree 3 (highest degree). If the first node to connect has degree 2, then the HH-algorithm
connects both its stubs to nodes with degree 3. However, the graph in figure 1 does not have
any of the connections just mentioned (a 3–3 or 3–2–3 connection), and thus it cannot be
constructed with the HH-algorithm. In the following section, we introduce a theorem that
allows us to construct all labelled graphs with a given degree sequence.

The above results are naturally placed in the larger context of Tutte’s famous f -factor
theorem [3]. Given an integer function f : V → N∪{0}, the f -factor of a given simple graph
G(V,E) is a subgraph H of G such that dH (v) = f (v) for all v ∈ V . Here dH (v) is the degree
of v within H. Tutte gave sufficient and necessary conditions for the existence of an f -factor
for G [3] and later connected this to the problem of finding perfect matchings in bipartite
graphs [11]. It is not hard to see that taking G = Kn, that is the complete graph on n-nodes,
the f -factor problem is exactly question (A) of the degree-based construction problem with
d = {f (v1), . . . , f (vn)}. In this sense, the HH-algorithm is a greedy method for constructing
an f -factor on Kn.

4

J. Phys. A: Math. Theor. 42 (2009) 392001 Fast Track Communication

3. Graphical sequences with constraints from a single node

Before we can announce and prove our main result, we need to introduce a number of
definitions and observations.

Definition 1. Let A(i) be an increasingly ordered set of di distinct nodes associated with
node i: A(i) = {ak | ak ∈ V, ak �= i, ∀k, 1 � k � di}.

Usually, this set will represent the set of nodes adjacent to node i in some graph G,
therefore we will refer to A(i) as an adjacency set of i.

Definition 2. If for two adjacency sets A(i) = {. . . , ak, . . .} and B(i) = {. . . , bk, . . .} we
have bk � ak for all 1 � k � di , we say that B(i) � A(i).

In this case we also say that B(i) is ‘to the left’ of A(i).

Definition 3. Let d1 � d2 � · · · � dn � 1 be a graphical sequence, and let A(i) be an
adjacency set of node i. The degree sequence reduced by A(i) is defined as

d ′
k|A(i) =

⎧⎨
⎩

dk − 1 if k ∈ A(i)

dk if k ∈ [1, n]\(A(i) ∪ {i})
0 if k = i.

(2)

In other words, if A(i) is the set of adjacent nodes to i in the graph G, then the reduced
degree sequence d′|A(i) is obtained after removing node i with all its edges from G.

Lemma 3. Let {d1, . . . , dj , . . . , dk, . . . , dn} be a non-increasing graphical sequence and
assume dj > dk. Then the sequence {d1, . . . , dj −1, . . . , dk + 1, . . . , dn} is also graphical (not
necessarily ordered).

Proof. Since dj > dk , there exists a node m connected to node j , but not connected to node
k. Let us cut the edge (m, j) and remove the disconnected stub of j . If we add one more stub
to k and connect this new stub to the disconnected stub of m, then we can see that the new
graph is also simple with degree sequence {d1, d2, . . . , dj − 1, . . . , dk + 1, . . . , dn}. �

Lemma 4. Let d = {d1, d2, . . . , dn} be a non-increasing graphical sequence, and let A(i),
B(i) be two adjacency sets for some node i ∈ V , such that B(i) � A(i). If the degree
sequence reduced by A(i) (that is d′|A(i)) is graphical, then the degree sequence reduced by
B(i) (that is d′|B(i)) is also graphical.

Proof. Let A(i) = {. . . , ak, . . .} and B(i) = {. . . , bk, . . .}, k = 1, . . . , di . Consider the
adjacency set B1(i) = {b1, a2, a3, . . . , adi

} (we replaced node a1 by node b1 � a1). If b1 = a1

then there is nothing to do, we move on (see below). If b1 < a1 then the conditions in
lemma 3 are fulfilled. Namely, b1 < a1 implies db1 � da1 > da1 − 1 and we know that
the sequence d′|A(i) = {. . . , db1 , . . . , da1 − 1, . . . , da2 − 1, . . .} is graphical by assumption.
Thus, according to lemma 3, the sequence {. . . , db1 − 1, . . . , da1 , . . . , da2 − 1, . . .} is also
graphical, that is the one reduced by the set B1(i). Next, we will proceed by induction.
Consider the adjacency set Bm(i) = {b1, . . . , bm, am+1, am+2, . . . , adi

} and assume that the
degree sequence reduced by it (from d) is graphical. Now, consider the adjacency set
Bm+1(i) = {b1, . . . , bm+1, am+2, am+3, . . . , adi

} (replaced am+1 by bm+1). If bm+1 < am+1,
lemma 3 can be applied again since bm+1 < am+1 implies dbm+1 � dam+1 > dam+1 − 1, showing
that the sequence reduced by Bm+1(i) is also graphical. The last substitution (m + 1 = di)
finishes the proof. �

5

J. Phys. A: Math. Theor. 42 (2009) 392001 Fast Track Communication

Definition 4. Let d = {d1, d2, . . . , dn} be a decreasing graphical sequence and consider
an arbitrary node i ∈ V , and an arbitrarily fixed integer m with 0 � m � n − 1 − di . Let
us fix a set of nodes X(i) = {j1, . . . , jm} ⊂ V \{i} and consider the set L(i) = {l1, . . . , ldi

}
containing the di lowest index nodes not in X(i) and different from i. We call L(i) the leftmost
adjacency set of i restricted by X(i). Accordingly, we call the set of nodes X(i) the set of
forbidden connections for i.

Lemma 5. If d = {d1, d2, . . . , dn} is a decreasing graphical sequence, and Y (i) =
{y1, . . . ydi

} is an adjacency set disjoint from X(i) ∪ {i}, then L(i) � Y (i).

Proof. This is immediate, since by definition 4, lj � yj , for all j = {1, . . . , di}. �

We are now ready for the main theorem.

Theorem 6 (Star-constrained graphical sequences). Let d1 � d2 � · · · dn � 1 be a sequence
of integers. For an arbitrary node i ∈ V define a set X(i) = {j1, . . . , jm} ⊂ V \{i} with
m � n − 1 − di , and consider L(i), the leftmost adjacency set of i restricted by X(i). Then
the degree sequence d = {d1, . . . , dn} can be realized by a simple graph G(V, E) in which
(i, j) �∈ E, for all j ∈ X(i), if and only if the degree sequence reduced by L(i) is graphical.

Proof. ‘⇐
’ is straightforward: add node i to the reduced set of nodes, then connect it with
edges to the nodes of L(i). Thus we obtained a graphical realization of d in which there are
no connections between i and any node in X. ‘
⇒’ In this case, d is graphical with no links
between i and X(i), and we have to show that the sequence obtained from d by reduction
via L(i) is also graphical. However, d graphical means that there is an adjacency set A(i)

(with A(i) ∩ X(i) = ∅) containing all the nodes that i is connected to in G. Thus, according
to lemma 5, we must have L(i) � A(i). Then, by lemma 4, the sequence reduced by L(i) is
graphical. �

Note that the forbidden set of connections form a star graph S|X(i)| centred on node i. Also
note that considering the empty set as the set of forbidden nodes, X(i) = ∅, we obtain the
Havel–Hakimi theorem 1 as corollary. Informally, theorem 6 can be announced as follows:

Let d = {d1, d2, . . . , dn}, be a decreasing graphical sequence and let i be a fixed, but an
arbitrary vertex. Assume we are given a set of forbidden connections in V incident on i. Then
there exists a realization of the degree sequence avoiding all forbidden connections if and only
if there also exists a realization where i is connected with vertices of highest degree among
the non-forbidden ones.

Since the forbidden connections emanating from a node i form a star graph Sk, k = |X(i)|,
theorem 6 provides sufficient and necessary conditions for the existence of an f -factor for
G = Kn\Sk . More importantly, it gives a greedy algorithm for finding such an f -factor.

4. Building all graphs from G(d)

As we show next, theorem 6 provides us with a procedure that allows for the construction of
all graphs realizing the same degree sequence.

Consider a graphical degree sequence d on n nodes. Certainly, we can produce all graphs
realizing this sequence by connecting all the stubs of a chosen node first, before moving on
to another node with stubs to connect (that is we finish with a node, before moving on). In
this vein, now choose a node i and connect one of its stubs to some other node j 1. Is the
remaining degree sequence d′ = {d1, . . . , di − 1, . . . , dj1 − 1, . . . , dn} still graphical such

6

J. Phys. A: Math. Theor. 42 (2009) 392001 Fast Track Communication

that nodes i and j 1 avoid another connection in subsequent connections of the other stubs?
Certainly, as a necessary condition, d′ has to be graphical as a sequence, since all subgraphs
of a simple graph are simple, and thus if G is a simple graph realizing d with (i, j1) ∈ E,
then after removing this edge, the remaining graph is still simple. However, after making
some connections from a node, it is not sufficient that the residual sequence is graphical. One
might still be forced to make multiple edges, as illustrated by the following example. Consider
the graphical sequence {2, 2, 1, 1} (the path P4, •–•–•–•) as the degrees of the set of nodes
V = {u, v, x, y} (du = dv = 2, dx = dy = 1). Connect nodes u and v. We certainly have not
broken the graphical character yet, since we could still finish the path by connecting next u to
x (or to y) and v to y (or to x). The remaining sequence {1, 1, 1, 1} as a sequence of integers is
graphical (two edges). Next, connect node x to node y. The remaining (residual) sequence is
{1, 1} (emanating from node u and v, respectively), graphical on its own, however, we can no
longer connect nodes u and v, because the very first connection is already there. Thus, after
making one, or more connections from a node i, how can we check that the next connection
from i will not break the graphical character?

Theorem 6 answers this question if we think of the connections already made from node
i as forbidden connections. That is, after the first connection of i to j 1 take d′ as d in theorem
6 and X(i) = {j1}. Then, to test whether the sequence reduced by the corresponding L(i) is
graphical we can employ for example the Erdős–Gallai theorem 2, checking all the inequalities,
or the Havel–Hakimi theorem 1. If the test fails on the reduced sequence, one must disconnect
i from j 1 and reconnect it somewhere else. The graphical character of the original sequence
guarantees that there is always j 1 where the test will not fail. If, however, the remaining degree
sequence is graphical with the constraint imposed by X(i), we connect another stub of i to
some other node j 2 (different from j 1), adding an element to the forbidden set of connections
X(i). To check whether after the second connection the remaining sequence is still graphical
with the constraint imposed by the new set X(i) = {j1, j2}, we proceed in exactly the same
way, using theorem 6, repeating the procedure until all the stubs of node i are connected away
into edges. After this we can move on to some other node i (arbitrary) from the remaining
set of nodes and repeat the procedure. Note that this procedure is not a real procedure in the
sense that it does not prescribe which stubs to connect. It only tells us whether the connection
we just made (by whatever process) has broken the graphical character. Since every element
from G(d) can be realized by some sequence of connections, it is clear that if we specify a
systematic way of going through all the possible connections while employing theorem 6, we
will realize all elements of G(d). However, taking all possible connections would be very
inefficient. Next we present a version of a more economical algorithm that constructs every
labelled graph with degree sequence d, and only once. For simplicity of the notation we will
call the test for the graphical character via theorem 6, the ‘CG test’ (constrained graphicality
test). The algorithm also exploits lemma 4, which guarantees preservation of graphicality
for all adjacency sets to the left of a graphical one, thus avoiding costlier checks with EG or
HH theorems for those adjacency sets. Clearly, a labelled graph can be characterized by the
sequence of its adjacency sets G = {A(1), . . . , A(n)}. This algorithm creates all the possible
adjacency sets for node 1, then for each one of those repeats the same procedure on the reduced
sequence by that adjacency set (in sense of definition 3) of at most n − 1 nodes.

Algorithm 1 (All graphs). Given a graphical sequence d1 � d2 � · · · � dn � 1,

(I) Create the rightmost adjacency set AR(1) for node 1: connect node 1 to n (this never
breaks graphicality). Let k = n − 1.

(I.1) Connect another stub of 1 to k. Run the CG test.
(I.2) If it fails, make k = k − 1. Repeat I.1.

7

J. Phys. A: Math. Theor. 42 (2009) 392001 Fast Track Communication

(I.3) If it passes, keep (save) the connection, make k = k − 1, and if i has stubs left, repeat
from I.1.

(II) Create the set A(d) of all adjacency sets of node 1 that are colexicographically smaller
than AR(1) and preserve graphicality:

A(d) = {A(1) = {a1, . . . , ad1}, ai ∈ V |A(1) <CL AR(1), d′|A(1) − graphical}.
(III) For every A(1) ∈ A(d) create all graphs from the corresponding G(d′|A(1)) using this

algorithm, where d′|A(1) is the sequence reduced by A(1).

For simplicity of the notation, we will drop the (1) from A(1), tacitly assuming that it
refers to the leftmost node 1. Observe that the ordering relation ‘<’ in definition 2 is a partial
order, while the colexicographic order ‘<CL’ is a total order over all adjacency sets, however,
‘<’ implies ‘<CL’. It is not hard to see that AR is colexicographically the largest (‘rightmost’)
sequence which still preserves graphicality. When constructing A(d), checking graphicality
with the EG or HH theorems is only needed for those adjacency sets, which are incomparable
by the ‘<’ relationship to any of the current elements of A(d), while for the rest graphicality
is guaranteed by lemma 4.

5. Discussion and outlook

Algorithm 1 proceeds by attempting to connect all stubs of the largest degree node as much
to the right as possible. Depending on the degree sequence, it might happen that the CG
test fails many times at step I, until it finds AR. However, in that case, AR is located more
towards the higher degree nodes (towards the left) and thus the number of adjacency sets that
preserve graphicality, namely |A| is smaller and accordingly, the algorithm has fewer cases
to run through in subsequent steps. The more heterogeneous a degree sequence is, the more
likely this will happen. Of course, it only makes sense to produce all graphs from G(d)

for small graphs (chemistry), or graphical sequences that do not admit too many solutions.
An interesting question would then be finding the conditions on the sequence d that would
guarantee a given upper bound C on the size of G(d), |G(d)| � C. A possible starting point
in this direction could be Koren’s [18] characterization of sequences uniquely realizable by
a simple graph. Sequences that admit only a small number of realizations (labelled simple
graphs) would likely be ‘close’ in some sense to these special sequences.

Algorithm 1 also provides a way to computationally enumerate all the labelled graphs
|G(d)| realizing a degree sequence d (problem (B) of section 1). Naturally, the following
recursion holds: |G(d)| = ∑

A∈A(d) |G(d′|A)|. Our graph construction process can be thought
of as happening along the branches of a tree T (d) of depth at most n − 1: the internal
nodes of this tree on the kth level are all the allowed adjacency sets (from the corresponding A
set) of the node with the largest residual degree (the leftmost node). The reason this tree is of
depth at most n − 1 is because some other nodes (other than the one with the largest residual
degree) in the process might loose all their stubs. A directed path towards a leaf of this tree
corresponds to a graphical realization of d, because we end up specifying all the adjacency
sets along this path. Based on this, during the realization of the graph, if we choose uniformly
at random at every level of the tree within the children of a node, from the corresponding set
A, the probability of a final realization G in this process will be given by the product:

P(G) =
∏
k=0

|A(d′|A(k))|−1, (3)

where A(k) is the randomly chosen adjacency set of the node with the largest residual degree,
on the kth level of T (d). By convention A(0) = ∅, and d′|A(0) = d. It is not hard to convince

8

J. Phys. A: Math. Theor. 42 (2009) 392001 Fast Track Communication

ourselves that the distribution in (3) is not uniform, and thus, this algorithm cannot be used in
this form to produce uniform samples from G(d). However, theorem 6 can be used to improve
on a well-known, direct uniform sampling process, the Molloy–Reed (M–R) algorithm [8].
In this process, one chooses between all the stubs uniformly at random, irrespective of what
node they belong to. This is repeated until either a self-loop, or a double edge is created, or
a simple graph is finished. When there is a self-loop or double edge, the process is stopped,
and the algorithm starts from the very beginning. The CG test can be used along the way
to test for graphicality after every connection just made. In particular, assume that we just
connected node i with node j . We then run the CG test centred on node i (adding the (i, j)

connection to the forbidden set from i). If it passes, we run the CG test on node j as well. If
it fails either on i or j , we can stop the process, before actually running into a conflict later.
Running into conflict usually happens towards the end, and this test can save us from possibly
many unnecessary calls to the random number generator, speeding up the sampling algorithm.
It is important to note that if the CG test passes on both i and j , we actually do not know
whether graphicality is broken or still preserved at that stage! If the CG test fails, however, we
know that graphicality was broken. The reason is because theorem 6 gives us the sufficient
and necessary conditions for the sequence to be graphical such that no multiple edges will
be made with the already existing connections emanating from the same node. It gives no
such information for connections already made elsewhere! Of course, for degree sequences
d for which there is only a small number of labelled graphs realizing it (compared to the total
number

∏
i di! of graphs that it produces), the M–R algorithm would search for needles in a

haystack, and other (MCMC) methods will be necessary.
In summary, we have given necessary and sufficient conditions for a sequence of integers

d1 � · · · � dn � 1 to be graphical (realizable by simple, undirected graphs) avoiding multiple
edges with an arbitrary star graph (the forbidden graph) Sk(j), 0 � k < n − dj , centred on
a node j . In a more general context, our result gives for the first time a greedy construction
for Tutte’s f -factor subgraphs within Kn\Sk(j). It would be desirable if such a greedy
construction existed for an arbitrary forbidden graph F, not just for star graphs, however, at
this point this still seems to be a rather difficult problem. Such an algorithm (if greedy) would
further speed up the M–R sampling, because it would induce early rejections, as soon as they
are made. Our main theorem also led to a direct and systematic construction algorithm that
builds all graphs realizing a given degree sequence d. And finally, we mention that these
studies can be extended to simple directed graphs as well (there are two degree sequences
in this case), however, the computations are considerably more involved, and they will be
presented separately.

Acknowledgments

This project was supported in part by the NSF BCS-0826958 (HK and ZT), HDTRA 201473-
35045 (ZT) and by Hungarian Bioinformatics MTKD-CT-2006-042794, Marie Curie Host
Fellowships for Transfer of Knowledge (LAS and ZT). ELP was partly supported by OTKA
(Hungarian NSF), under contract nos NK62321, AT048826 and K 68262 and LAS by NSF
DMS-0701111. IM was supported by a Bolyai postdoctoral stipend and OTKA grant F61730.

References

[1] Newman M E J, Barabasi A L and Watts D J 2006 The Structure and Dynamics of Networks (Princeton Studies
in Complexity) (Princeton, NJ: Princeton University Press)

[2] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D-U 2006 Phys. Rep. 424 175

9

http://dx.doi.org/10.1016/j.physrep.2005.10.009

J. Phys. A: Math. Theor. 42 (2009) 392001 Fast Track Communication

[3] Tutte W T 1952 Can. J. Math. 4 314
[4] Liljeros F, Edling C R, Amaral L A N, Stanley H E and Åberg Y 2001 Nature 411 907
[5] Ryser H J 1957 Can. J. Math. 9 371
[6] Brualdi R A 1980 Linear Algebr. Appl. 33 159
[7] Taylor R 1982 SIAM J. Algebr. Discrete Methods 3 115
[8] Molloy M and Reed B 1995 Random Struct. Algorithms 6 161
[9] Newman M E J, Strogatz S H and Watts D J 2001 Phys. Rev. E 64 026118

[10] Aiello W, Chung F and Lu L 2000 Proc. 30 s Ann. ACM Symp. Theor. Comput. p 171
[11] Tutte W T 1954 Can. J. Math. 6 347
[12] Erdős P and Gallai T 1960 Mat. Lapok 11 264 (in Hungarian)
[13] Havel V 1955 Časopis Pěst. Mat. 80 477 (in Czech)
[14] Hakimi S L 1962 J. SIAM Appl. Math. 10 496
[15] Tripathi A and Vijay S 2003 Discrete Math. 265 417
[16] Newman M E J 2002 Phys. Rev. Lett. 89 208701
[17] Newman M E J 2003 Phys. Rev. E 67 026126
[18] Koren M 1976 J. Comb. Theory B 21 235

10

http://dx.doi.org/10.1038/35082140
http://dx.doi.org/10.1016/0024-3795(80)90105-6
http://dx.doi.org/10.1137/0603011
http://dx.doi.org/10.1103/PhysRevE.64.026118
http://dx.doi.org/10.1137/0110037
http://dx.doi.org/10.1016/S0012-365X(02)00886-5
http://dx.doi.org/10.1103/PhysRevLett.89.208701
http://dx.doi.org/10.1103/PhysRevE.67.026126
http://dx.doi.org/10.1016/S0095-8956(76)80007-X

	1. Introduction and summary
	2. Previous results
	3. Graphical sequences with constraints from a single node
	4. Building all graphs from G(d)
	5. Discussion and outlook
	Acknowledgments
	References

