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Abstract

We study edge coloring games de1ning the so-called game chromatic index of a graph. It has
been reported that the game chromatic index of trees with maximum degree � = 3 is at most
�+1. We show that the same holds true in case �¿ 6, which would leave only the cases �=4
and 5 open.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We consider edge coloring games de1ned as follows. Two players, A (Alice) and B
(Bob) are given a graph G=(V; E) with maximum degree � and a number k of colors.
A and B move in turns. Each move consists in (feasibly) coloring a yet uncolored
edge. (Passing is not allowed, though one may allow it in the special cases we study
here.)
Recall that the chromatic index 	′(G) is the smallest number k such that G can

be edge colored with k colors. By Vizing’s Theorem, this is either � or �+1.
(cf. [7,8,1]).
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We will be mainly interested here in the maker–breaker variant of the edge coloring
game, where A seeks to achieve a completely colored graph G (and B tries to prevent
this). The game chromatic index of G is the smallest number k(¿	′(G)) of colors
for which A has a winning strategy. Cai and Zhu [3] studied this parameter for certain
classes of graphs.
There is a corresponding notion of game chromatic number, de1ned similarly by

node coloring games, introduced by Bodlaender [2], which has received considerable
attention in the literature (cf. [4–6]).

Remark. To be precise, the game chromatic index (number) may depend on who is
to make the 1rst move. It is generally assumed that A moves 1rst, but this requirement
is irrelevant for the graphs (trees with �¿6) we study here.

The game chromatic index has 1rst been studied by Cai and Zhu [3], who show
that trees with maximum degree � have game chromatic index at most � + 2 (cf.
also Section 2) and mention that the class of trees with maximum degree 3 has game
chromatic index at most �+1=4. Our main result is the proof of this statement for
�¿6 and that the bound �+1 is sharp (Theorems 3.1 and 3.2). Assuming the afore-
mentioned results on �=3 to hold, only the cases �=4 and 5 remain open.
We remark that there is also another natural version of the coloring game in which

the role of A and B are symmetric: a player loses as soon as (s)he cannot make any
feasible move when it is his (her) turn, although there are still some uncolored edges.
In case the graph is completely edge-colored, this situation is considered as a tie.
Clearly, if A has a winning strategy for the maker–breaker variant (with respect to a
given number of colors), she can avoid losing the game in the second variant.

2. An outline of A’s strategy

It is natural to consider forests rather than trees. So assume F =T1 ∪ : : : ∪Tr is a
forest with tree components Ts and maximum degree �¿6. There are k =�+1 colors.
Suppose e∈Ts is the 1rst edge that receives a color. We then split Ts into the two

(unique) largest subtrees T ′
s and T

′′
s of Ts satisfying T ′

s ∩T ′′
s = {e}. So both T ′

s and T
′′
s

contain a colored copy of e. We may then consider the game as being continued in
the resulting forest with r + 1 components.
Continuing this way, we arrive after t¿0 moves at a forest with r + t components.

Each component Ts has a certain number �= �(Ts) of colored (leaf) edges, i.e., edges
incident with a leaf of Ts. We refer to such a component also as a �-component (�¿0).
Basically, A seeks to maintain �6� for all components. Note that a (�+1)-component

can be created only by splitting a �-component into a (�+1)-component and a (harm-
less) 1-component. As soon as B creates a (�+1)-component, A can split this into two
components with �6� each by coloring a suitable edge e separating the �+1 colored
edges (since � is the maximum degree). This procedure is much in the spirit of the
maker’s strategy in the node coloring game on trees (cf. [2]).
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This simple observation implies that the game chromatic index for trees (forests) is
at most

�+ 2:

To obtain the (as we will see) correct bound �+1, however, A’s strategy has to be
re1ned. Indeed, assume that A for example creates a �-component as indicated in Fig. 1
below, containing an uncolored edge e with � pairwise diKerent colors adjacent to it,
� − 1 on one side and 1 on the other. We refer to such an edge as a critical edge.
Then B may assign color �+1 to one of the uncolored edges adjacent to e and A has
lost the coloring game.
To describe A’s strategy in more detail, we introduce some notation. The induced

subtree of a component T consists of all colored edges together with the smallest
uncolored subtree of T joining them. A node v in T is a base node if it has degree
at least 3 in the induced subtree. We call T a star or star-like if T has a unique base
node v (i.e., the induced subtree is a topological star with center v). Clearly, a �-star
is a star with � colored edges.
A’s strategy will ensure that after each of her moves, every �-component with �¿3

is star-like. Note that this strategy ensures in particular that B has always a feasible
move left, unless the graph is already completely colored. Furthermore, A will win,
provided she can avoid creating a critical edge.
This observation suggests two things: First, we should concentrate on star compo-

nents in which the base node has large degree. We therefore call a star component T
(and its base node v) relevant if v has degree at least 6 in T (not necessarily in the
induced subtree).
Second, A should avoid critical edges. Suppose T is a star component with base

node v. A colored edge in T is then called matched if its color also occurs among
the colors on edges incident to v. (So in particular every colored edge incident to v
is automatically matched.) For example, the edge colored � in Fig. 1 is unmatched.
A seeks to minimize the number of unmatched (colored) edges. Ideally, every �-star
should be completely matched in the sense that it has no unmatched colored edges.
In Section 3 we show that A can always ensure the following properties to hold

after her move:
(S) Every �-component with �¿3 is a star.
(M) Every relevant �-star has at most max{5− �; 0} unmatched colored edges.
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In particular, since we assume �¿6, A will never create a critical edge (since a star
component as in Fig. 1 is relevant).

3. Star moves and split moves

We show that A can maintain (M) and (S) by induction on the number of moves.
Hence assume (M) and (S) hold after some move of A. In case they are also valid
after the subsequent move of B, then A has an easy job to do: In case there are
�-components with �62 and uncolored edges, 1nding a suitable move is trivial. If all
components that still contain uncolored edges are stars, A chooses one of them, say
�-star T with base node v. If all colored edges are incident to v (and hence the number
of unmatched edges is zero), she colors an uncolored edge adjacent to v. Then (M)
obviously holds for the new (�+1)-star. Finally, assume that T has some colored edge
e (either matched or unmatched) not incident to v. Then A colors the 1rst edge on the
path from v to e (with any feasible color). This leaves �= �(T ) unchanged and the
number of unmatched edges is certainly not increased. So (M) (and clearly also (S))
remain valid.
Now assume B’s move violates (S). So assume B colors an edge in a �-star T with

base node v, thereby creating a new (�+1)-component with a new additional base node
w of degree 3 in the induced subtree, cf. Fig. 2. (B has just assigned color i to the
edge indicated in Fig. 2.)
In this case, A performs a split move by coloring an edge on the uncolored path

P joining v and w. First note that such a split move is always possible. Indeed, the
only case where A cannot feasibly color an edge on P occurs when P= {e} consists
of a single edge with k =�+1 pairwise diKerent colors adjacent to it, � − 1 on one
side and 2 on the other. But in this case e would have been a critical edge before B’s
move, contrary to our assumption. So A can indeed perform a split move and (S) will
be satis1ed afterwards. We are to show that the split move can be carried out in such
a way that also (M) holds. We distinguish two cases

Case 1: P= {e} consists of a single edge.
In this case, A assigns any feasible color to e. This ensures that w has at least one

incident colored edge, so (M) holds with respect to the 3-star centered at w. Since �
remains unchanged for the star-component centered at v (and A’s move certainly does

w
v

i

j
P

Fig. 2.
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not increase the number of unmatched edges in this component), (M) also holds with
respect to v.

Case 2: P has at least two edges.

If the edge colored with j in Fig. 2 is not incident with w, then A colors the edge
on P incident with w with j. Then (M) holds relative to w and (since nothing changes
with respect to v) also for v.
If j in Fig. 2 is incident to w, A colors the edge on P that is incident with v

(with any feasible color). This coloration certainly does not increase the number of
unmatched edges in the v-component. So (M) holds for v as it did before. It also holds
for the 3-star centered at w since j is matched.
Next assume that (S) holds after B’s move but (M) does not. So B has just created

a (relevant!) new �′-star T ′ with base node v′ violating (M) (either by creating a new
3-star with 3 unmatched edges or by doing something odd to an existing �-star with
base node v′). In this case A responds by a star move (see the de1nition in the next
paragraph), reducing the number of unmatched edges by 2 in case there are at least
two such edges and to 0 otherwise. Note that this reaction re-installs (M) since in the
worst case B can have raised � to �′= �+1 and introduced one unmatched edge, so
there can be at most 2 “too many” unmatched edges in T ′.
If T ′ contains only one unmatched edge e, A colors the 1rst edge on the path from

v′ to e with any feasible color, thereby reducing the number of unmatched edges in T ′

to zero. Hence assume there are at least two unmatched edges. If two of them have
diKerent colors i and j, then A may color the 1rst edge on the path from v′ to the
j-colored edge with color i. Otherwise, if all unmatched edges have the same color i,
then A colors a non-induced edge adjacent to v′ with color i. Note that such an edge
necessarily exists: Indeed, since T ′ has two unmatched edges, one of them must have
been present before B’s move, implying that B’s move was made in a �-component
with �64. Hence �′65.
We have proved

Theorem 1. Any tree (forest) with maximum degree �¿6 has game chromatic index
at most �+1.

Remark. Although the assumption �¿6 is used only once in the proof, it seems to be
crucial for the strategy to work. Consider the tree depicted in Fig. 3 for �=5 where
B has just colored a second unmatched edge with 4 (the thin lines represent uncolored
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edges). It is not only impossible for A, here, to reinstall (M) but B has a winning
strategy. So A will lose.
The bound in Theorem 1 is easily seen to be sharp

Theorem 2. For any �¿2 there exists a tree with game chromatic index equal to
�+1.

Proof. It suOces to exhibit a tree T =T� such that A has no winning strategy for T
if the number of colors is k =�. For �=2 this is trivial: Take any suOciently long
path. (If B is to move 1rst, a path with at least 5 edges is needed.)
For �¿3 we let T =T� be the unique rooted tree of height 2 with �+1 nodes of

degree � and �(� − 1) leaves. Thus, the root v is incident with � “base edges” and
each base edge in turn is adjacent to �− 1 leaf edges.
For �=3 the claim is straightforward to check. (B can create a “critical edge” after

two moves of A, no matter who starts.) The case �¿4 can be solved similarly as
follows. In his 1rst moves B colors base edges in such a way that (after his move)
each of the remaining uncolored base edges has only uncolored adjacent leaf edges.
He proceeds this way as long as (after his move) there are still (at least) two such
uncolored base edges left. Then A will have lost in two further steps as in case �=3.
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