A Ramsey-type Theorem (in Hungarian)

Péter L. Erdős

Matematikai Lapok, **27** (1976-79), 361–364.

Abstract - Math. Review 81e:05102

For pairwise disjoint finite sets H_1, H_2, \dots, H_m , let $[H_1, \dots, H_m]^t$ denote the family of all sequences (A_1, \dots, A_m) with $A_j \subset H_j$, $|A_j| = t$. The author proves the following theorem: For any natural numbers m, t, k, i_1, \dots, i_k there exists an $n = n_0(m, t, k, i_1, \dots, i_k)$ such that whenever $[H_1, \dots, H_m]^t$ is partitioned into k classes and $|H_j| \ge n$ for $j = 1, \dots, m$, then there exist Q_1, \dots, Q_m with $Q_j \subset H_j, |Q_j| = i_j$ such that $[Q_1, \dots, Q_m]^t$ lies entirely in one of the classes. This generalizes Ramsey's well-known theorem (the case m = 1). The proof uses multiple induction on m, t and k.

Peter Frankl

Corollary Let k be an integer, let R be an N-dimensional brick. Then there exists an integer n = n(k, R) such that for any k-coloration of the n-dimensional Euclidean space there exists a monochromatic copy (the vertices have the same color) of R.

EGY RAMSEY-TÍPUSÚ TÉTEL

ERDŐS L. PÉTER

F. P. Ramsey bizonyította be 1930-ban a következő tételt:

Ramsey-tétel: Legyenek t, k, $i_1, ..., i_k$ pozitív egész számok, ekkor létezik egy $r = R(t; k; i_1, ..., i_k)$ pozitív egész a következő tulajdonsággal: ha H halmazra $|H| \ge r$, $S = (S_1, ..., S_k)$ pedig egy k-színezése $[H]^t$ -nek (azaz H-nak t elemű részhalmazaiból álló halmaznak), akkor létezik olyan j, $1 \le j \le k$, amire H-nak létezik olyan legalább i_j elemű részhalmaza, aminek minden t-ese S_j -beli.

Ezt a tételt később igen sok irányban általánosították. Többek között Graham, Rothschild, Spencer, Nešetřil, Rödl, Choátal sok cikkében vizsgálta a kérdéskört ([4]—[11]). Ezek a cikkek elsősorban a különféle Ramsey-számok létezését bizonyították. Jó becslések a Ramsey-számokra csak speciális esetekre ismertek.

Ebben a dolgozatban bebizonyítjuk Erdős Pál ([1]), és Catherine V. Smallwood ([2]) tételeinek egy közös általánosítását, közben új bizonyítást is adunk rájuk. Noha az alábbi tétel egy szűkebb körben ismeretes volt, bizonyítását eddig senkisem közölte; jelen bizonyítás talán azért is érdemes közlésre, mert egy speciális esetre az eddig ismerteknél jobb becslést ad.

Tételünk kimondásához és bebizonyításához szükségünk van egy definícióra és egy lemmára!

Definíció: Legyenek $H_1, ..., H_m$ diszjunkt halmazok. Ezen halmazrendszer *t*-vektorainak az alábbi halmaz elemeit nevezzük:

$$[H_1, \ldots, H_m]^t := [H_1]^t \times \ldots \times [H_m]^t$$

azaz az olyan *m*-hosszú vektorok halmaza, amelyek *i*-ik koordinátája a H_i halmaz egy t elemű részhalmaza.

Lemma: Legyen $K_{n,n}$ az n+n pontú teljes páros gráf! Színezzük éleit két színnel (pl.: piros és kék színnel). Ekkor létezik olyan (<u>a</u>, <u>b</u>) él, hogy <u>a</u>-ból is, <u>b</u>-ből is további legalább $\left(\frac{n}{2}-1\right)$, (<u>a</u>, <u>b</u>) színével megegyező színű él indul ki.

Bizonyítás: Legyenek $K_{n,n}$ osztályai A és B. Definiáljuk az A_1 és B_1 halmazt a következő módon:

$$A_1 := \left\{ \underline{a} \in A : \underline{a} \text{-ból legalább } \frac{n}{2} \text{ darab piros él indul ki} \right\}$$
$$B_1 := \left\{ \underline{b} \in B : \underline{b} \text{-ből legalább } \frac{n}{2} \text{ darab piros él indul ki} \right\}.$$

Legyen továbbá $A_2 := A - A_1$, $B_2 := B - B_1$! Világos, hogy A azon pontjai alkotják A_2 -t, melyekből legalább $\frac{n}{2} + 1$ kék él indul ki. (Hasonlóan B_2 -re.) Ha létezik olyan $a \in A_1$, $b \in B_1$ pontpár, amire az (a, b) él piros, akkor megtaláltuk a keresett élt. Ha most $|A_1| + |B_1| > n$, és mondjuk $|A_1| \ge |B_1|$, vagy $|A_1| + |B_1| = n$, de $|A_1| > |B_1|$, akkor $|A_2| < \frac{n}{2}$, így tetszőleges $b \in B_1$ -beli pontból kell piros élnek menni valamely $a \in A_1$ ponthoz, és ekkor ez az él megfelelő. (Az $|A_1| = n$, $|B_1| = 0$ eset nem fordulhat elő, mert ekkor A-ból $\ge n \cdot \frac{n}{2}$ piros él indulna ki, még B csak $< n \frac{n}{2}$ -t tudna elnyelni — és ez ellentmondás. Ez azt jelenti, hogy jogos $b \in B_1$ pontról beszélni.) Ha a fenti esetek valamelyike A_2 és B_2 halmarza teljesül, ugyanezzel az eljárással megfelelő kék élt tudunk találni. Végül is csak az n = 2k, $|A_1| = |B_1| = k$ eset marad, de ekkor vagy van köztük piros él, és akkor az megfelelő, vagy minden köztük futó él kék, és akkor ezek bármelyike megfelelő. Ezzel a Lemmát bebizonyítottuk. (A bizonyításból világos, hogy sok, a kívánt tulajdonsággal rendelkező él van, de ez számunkra jelenleg érdektelen.)

Tétel: Legyenek $H_1, ..., H_m$ tetszőleges, diszjunkt halmazok. Ekkor tetszőleges t, k, $i_1, ..., i_k$ természetes számokhoz $(i_1, ..., i_k \ge t)$ létezik $p = P_m(t; k; i_1, ..., i_k)$ pozitív egész a következő tulajdonsággal: ha minden $j=1, ..., m |H_j| \ge p$, akkor $[H_1, ..., H_m]^t$ tetszőleges $S = (S_1, ..., S_k)$ k-színezésére létezik f, $1 \le f \le k$, hogy létezik $Q_1, ..., Q_m$; $Q_j \subseteq H_j, |Q_j| = i_f$, és $[Q_1, ..., Q_m]^t$ S_f -beli.

A bizonyítást háromszoros teljes indukcióval végezzük (m-re, t-re és k-ra).

1. lépés: Vizsgáljuk az m=2, t=1, k=2 esetet. Ekkor az állítás a $K_{n,n}$ párosgráf éleinek 2-színezéséről szól. $P_2(1; 2; r, q)$ létét (r, q)-ra vonatkozó teljes indukcióval bizonyítjuk. Világos, hogy (r, 1) esetben p:=r, a (1, q) esetben pedig p:=qkielégíti a követelményeket. Tegyük fel, hogy minden $(r_1, q_1) < (q, r)$ (azaz $r_1 \le r$, $q_1 \le q$ és legalább az egyik helyen határozott az egyenlőtlenség) esetén létezik a $p(r_1, q_1)$. A Lemma szerint létezik egy ott leírt tulajdonságú (a, \underline{b}) él, a színe pl. piros. Legyenek ekkor A és B a \underline{b} , ill. \underline{a} pontból induló piros élek másik végpontjai. Az indukciós feltevés miatt létezik p(r-1, q), tehát ha $|A|, |B| \ge p(r-1, q)$, akkor vagy van $Q_1 \subseteq A, Q_2 \subseteq B, |Q_j| = q$, és $[Q_1, Q_2]^1 S_2$ -beli, azaz Q_1 és Q_2 közötti összes él kék; vagy $|Q_j| = r-1$, és köztük minden él piros, de akkor \underline{a} -t és \underline{b} -t hozzájuk véve megkapjuk a kívánt piros alakzatot. Azaz azt kaptuk, a p(r, q):=2p(r-1, q)+2választás megfelelő.

Így végül azt kaptuk, hogy a $P_2(1; 2; r, q) := 2^{r+q+2}$ választás megfelelő. Megjegyzésre érdemes, hogy a valószínűségi módszerrel készített alsó becslés a $P_2(1; 2; r, r) > \frac{1}{2} r \cdot e^{r+1}$. Ezek a becslések lényegében megegyeznek az [1]-ben adottakkal.

2. lépés: A k-ra vonatkozó indukció értelmében tegyük fel, hogy m=2, t=1, k=r esetén létezik $P_2(1; r; i_1, ..., i_r)$, és lássuk be, hogy ekkor $P_2(1; r+1; i_1, ..., i_{r+1})$ is létezik. Legyen most $S=(S_1, ..., S_r, S_{r+1})$ a $[H_1, H_2]^1$ egy (r+1)-színezése, és készítsük el belőle $S'_r := S_r \cup S_{r+1}$ jelölés mellett az $S' = (S_1, ..., S_r)$, r-színezést. Az indukciós feltevés miatt létezik a $p:=P_2(1; r; i_1, ..., i_{r-1}, P_2(1; 2; i_r, i_{r+1}))$. Ha $|H_j| \ge p$ (j=1, 2), akkor vagy létezik f index; $1 \le f \le r-1$, hogy az S_f -ben megfelelő méretű $[Q_1, Q_2]^1$ halmaz van, és ekkor kész vagyunk, vagy az S'_r osztályban van egy

akkora $[Q_1, Q_2]^1$, hogy ennek elemei akárhogy is voltak felosztva S_r és S_{r+1} között, a $P_2(1; 2; i_r, i_{r+1})$ tulajdonságai miatt lesz kellő méretű $[Q_3, Q_4]^1$ valamelyik osztályban. Ezzel beláttuk a 2. lépés állítását is.

Ezzel a $P_2(1; k; i_1, ..., i_k)$ értékére olyan felső becslést nyertünk, aminek (k-1)-szer iterált 2-es alapú logaritmusa $\max_{i,h} \{i_i + i_h\} + 2$.

3. lépés: Tegyük most fel, hogy létezik $P_2(r; k; i_1, ..., i_k)$, és segítségével lássuk be, hogy létezik $p := P_2(r+1; k; i_1, ..., i_k)!$ Ezt $(i_1, ..., i_k)$ -ra vonatkozó teljes indukcióval végezzük. Ha $i_j = r+1$ $(1 \le j \le k)$, akkor a p := r+1 megfelelő választás. Tegyük fel, hogy minden $(i'_1, ..., i'_k) < (i_1, ..., i_k)$ igaz az állítás, és ennek segítségével lássuk be $(i_1, ..., i_k)$ -ra is. Legyen $p_v := P_2(r+1; k; i_1, ..., i_{v-1}, i_v-1, i_{v+1}, ..., i_k)$. Jelöljünk ki egy $\underline{a} \in H_1$ és egy $\underline{b} \in H_2$ pontot, és ezután $[H_1, H_2]^{r+1}$ színezéséből kiindulva színezzük a $[H_1 - \{a\}, H_2 - \{b\}]^r$ elemeit oly módon, hogy $(Q_1, Q_2) \in S'_j$ akkor és csak akkor, ha $(Q_1 \cup \{a\}, Q_2 \cup \{b\}) \in S_i$. Megmutatjuk, hogy a $P_2(r+1; k; i_1, ..., i_k) :=$ $:= P_2(r; k; p_1, ..., p_k) + 1$ választás megfelelő. Legyen ugyanis $|H_1|$ és $|H_2|$ legalább ekkora! Ekkor a definíció szerint létezik f, $1 \le f \le k$, és létezik $Q_i \subseteq H_i$, $|Q_i| = p_f$ (j=1, 2) és $[Q_1, Q_2]^r \subseteq S'_f$, azaz az \underline{a} , illetve \underline{b} pontot, továbbá Q_1 -ből, illetve Q_2 -ből r-r pontot tartalmazó (r+1) vektorai [H_1 , H_2]-nek S_f -beliek. De p_f definíciója szerint ekkor vagy valamelyik S_i -ben, $j \neq f$, van megfelelő méretű, azaz i_i nagyságú, D_1 és D_2 alkotta $[D_1, D_2]^{r+1}$, és ekkor készen avgyunk; vagy pedig van S_f -ben egy, $[D_1, D_2]^{r+1}$, ahol $|D_i| = i_f - 1$. De ez utóbbi esetben az <u>a</u>-t illetve <u>b</u>-t továbbá D_1 -ből, illetve D_2 -ből r-r pontot tartalmazó (r+1) vektorok, S'_{l} definíciója értelmében, szintén S_f -beliek, így megtaláltuk a kívánt alakzatot.

C. V. Smallwood [2]-ben $P_2(2; k; r, r, ..., r)$ létezését bizonyítja be. Ennek értékére olyan felső becslést ad, aminek k^{kr} -szer iterált (k+1)-es alapú logaritmusa 2*r*-rel egyenlő. A fenti bizonyításból $P_2(2; k; i_1, ..., i_k)$ -ra olyan felső becslés adódik, aminek az $(i_1+...+i_k)\cdot k$ -szor iterált 2-es alapú logaritmusa $k \cdot \max_j i_j$ -vel egyenlő, azaz a Smallwood vizsgálta esetben $k \cdot r$ -rel.

4. *lépés:* Eddig tehát bebizonyítottuk, hogy a tétel állítása m=2 mellett minden t-re és k-ra teljesül. Tegyük most fel, hogy m=r mellett is teljesül minden t-re, k-ra, és lássuk be ugyanezt m=r+1-re is. Ezt újra (t, k)-ra vonatkozó teljes indukcióval végezzük. Ehhez először is $P_{r+1}(1; 2; q, s)$ létezését mutatjuk meg. Legyen tehát $S = (S_1, S_2)$ a $[H_1, ..., H_{r+1}]^1$ -nek tetszőleges 2-színezése. Továbbá legyen H a H_{r+1} halmaz egy tetszőleges, q+s elemű részhalmaza, $H=\{h^1, \ldots, h^{q+s}\}$. Készítsük el ezután $[H_1, ..., H_r]^1$ egy 2^{q+s} -színezését a következő módon. A színek legyenek q+s hosszúságú vektorok. A $(h_1, ..., h_r) \in [H_1, ..., H_r]^1$ színe az a vektor, amelynek *j*-ik komponense aszerint kék vagy piros, hogy a $(h_1, ..., h_r, h^j)$ 1-vektornak mi volt a színe. Tegyük fel, hogy $q \ge s$. Ekkor a $P_{r+1}(1; 2; q, s) := P_r(1; 2^{q+s}; q, q, ..., q)$ megfelelő választás lesz. Valóban, ez utóbbi szám az indukciós feltétel szerint létezik. Másrészt, újra csak az indukciós feltevés miatt, az f-ik színvektorhoz létezik $Q_j \subseteq H_j, |Q_j| = q$, hogy $[Q_1, ..., Q_r]^1 \subseteq S'_f$. Az f színvektornak legalább q koordinátája piros, vagy ha nem, akkor legalább s kék. Teljesüljön mondjuk az első eset. S' definíciója szerint ez azt jelenti, hogy legalább q olyan eleme van H-nak, hogy bármelyikkel kiegészítve a $(h_1, ..., h_r) \in [Q_1, ..., Q_r]^1$ elemet, az S_1 osztályban lesz. A H fenti elemeinek Q_{r+1} halmazára tehát teljesül, hogy $[Q_1, ..., Q_{r+1}]^1 \subseteq S_1$. (Ha s db kék volt f koordinátái között, a $q \ge s$ miatt ugyan így kész vagyunk.) Világos, hogy tetszőleges k-ra hasonlóan nyerhető $P_{r+1}(1; k; i_1, ..., i_k)$ is, csak H egy $(i_1 + ...$ $\ldots + i_k$) elemű részhalmaz lesz, és ugyanilyen hosszú színvektorokkal színezzük a $[H_1, ..., H_r]^1$ elemeit, csak minden koordináta k színt vehet fel.

Világos, hogy a 2. lépéshez hasonlóan

 $P_{r+1}(1; k+1; i_1, \dots, i_{k+1}) := P_{r+1}(1; k; i_1, \dots, i_{k-1}, P_{r+1}(1; 2; i_k, i_{k+1}))$ alakban is nyerhetjük.

Ezután a *t*-re vonatkozó indukciót a 3. lépés teljes analógiájára végezhetjük. Így a Tétel bizonyítását lényegében befejeztük.

Végül megmutatunk egy példát a Tétel egy speciális esetének használatára. [3]-ban a szerzők bebizonyították a következő tételt:

Tétel: Legyen k természetes szám, R pedig egy N dimenziós tégla! Ekkor létezik n=n(k, R) természetes szám, hogy tetszőleges módon k-színezve egy n dimenziós euklideszi tér pontjait, keletkezik egyszínű, R-rel egybevágó idomot feszítő ponthalmaz.

Bizonyítást az N=2 esetre végezzük, tetszőleges N-re ugyanígy lehet végrehajtani. Legyenek az R téglalap oldalai c és d! Legyen továbbá $p:=P_2(1; k; 2, 2, ..., 2)!$ Jelöljük A_1 , illetve A_2 -vel a (p-1) dimenziós euklideszi tér c, illetve d élű szabályos szimplexét! Megmutatjuk, hogy a (2p-2) dimenziós euklideszi tér tetszőleges 2színezése esetén az $A_1 \times A_2$ ponthalmazból már ki tudunk választani R-rel egybevágó, egyszínű ponthalmazt. Ehhez rendezzük az (a_i, b_j) alakú vektorokkal reprezentált $A_1 \times A_2$ direktszorzat elemeit olyan $((c_{i_1}^1, c_{i_2}^2))=M$ kétdimenziós mátrixba, ahol $c_{i_j}^i$ az A_j szimplex i_j -ik csúcsa. Mivel két pont távolsága az $A_1 \times A_2$ szorzatban, ha csak az első koordinátában térnek el, c, ha a másodikban csak, akkor d, így az M mátrix 2×2 -es almátrixai éppen R-rel egybevágó ponthalmazokat reprezentálnak. A mátrix méreteinek választása miatt, ami éppen $p \times p$ -es, elemeinek tetszőleges kszínezése mellett van egyszínű 2×2 -es almátrixa, így a bizonyítást befejeztük. (Ez a bizonyítás kicsit egyszerűbb is az eredetinél.)

IRODALOM

- [1] ERDŐS P.: On extremal Problems of Graphs and Generalized Graphs, Israel J. of Math. 2 (1965) 189–190.
- [2] SMALLWOOD, C. V.: Partitions of sets of matrices, *Discrete Math.* Vol. 13 N. 3 (1975. nov.) 261-277.
- [3] ERDŐS P.—GRAHAM, R. L.—MONTGOMERY, P.—ROTHSCHILD, B. L.—SPENCER, J.—STRAUSS, E. G.: Euclidean Ramsey Theorems I., J. of Comb. Theory Ser A. 14 (1973) 341–363.
- [4] GRAHAM, R. L.-LEEB, K.-ROTHSCHILD, B. L.: Ramsey's Theorem for a Class of Categories, Advanced in Mathematics 8 (1972) 417-433.
- [5] GRAHAM, R. L.—ROTHSCHILD, B. L.: Ramsey's Theorem for *n*-parameter Sets, *Trans. A. M. S.* 159 (1971) 257–292.
- [6] GRAHAM, R. L.—ROTHSCHILD, B. L.: Ramsey's Theorem for *n*-dimensional arrays, Bull. A. M. S. 75 (1969) 418–422.
- [7] SPENCER, J. H.: Ramsey's Theorem for Spaces, Preprint.
- [8] BURR, S. A.-ERDŐS P.-LOVÁSZ L.: On Graphs of Ramsey Type, Ars Combinatoria Vol 1 (1976) 167-190.
- [9] NEŠETŘIL, J. and RÖDL, V.: Ramsey property of graphs with forbidden complete subgraphs *J. Combinatorial T. (B) 20* (1976) 243-249.
- [10] NEŠETŘIL, J. and RÖDL, V.: Type theory of partition problems of graphs in "Recent Advences of Graph Theory", Academia, Prague 1975, 405-412.
- [11] CHOÁTAL, V.: On Finite Polarized Partition Relations, Canad. Math. Bull. 12 (1969) 321-326.

ОДНА ТЕОРЕМА ТИПА РЕМСИ петер л. эрдош

A RAMSEY TYPE THEOREM P. L. ERDŐS