ANY FOUR INDEPENDENT EDGES OF A 4-CONNECTED GRAPH ARE CONTAINED IN A CIRCUIT

PÉTER L. ERDÖS and E. GYÓRI (Budapest)

L. Lovász [2] raised the following problem.

Conjecture. Suppose G is a k-connected graph ($k \geqq 2$), $e_{1}, e_{2}, \ldots, e_{k} \in E(G)$ are independent edges, and if k is odd then $G-\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ is connected. Then G contains a circuit using all the edges $e_{1}, e_{2}, \ldots, e_{k}$.

This conjecture is proved for $k=3$ by Lovász [3; 6. § 67]. In general, R. Häggkvist and C. Thomassen [1] proved a slightly weaker statement that the same conclusion follows if G is $(k+1)$-connected.

Now we prove that the conjecture of Lovász holds for $k=4$.
Theorem. In a 4-connected graph, any four independent edges are contained in a circuit.

This result effects on a conjecture of Erdős and Gallai. Using this theorem, L. Pyber [4] proved that every graph of n vertices can be covered by $1,5 n$ circuits or edges. (Without this result, a greater constant could be proved by the method of Pyber.)

Proof of the theorem. Let us fix the 4 -connected graph G and the independent edges $x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}, x_{4} y_{4} \in E(G)$. By 4-connectivity (using Menger's theorem), there exist four vertex-disjoint paths from the vertices $x_{1}, y_{1}, x_{3}, y_{3}$ to the vertices $x_{2}, y_{2}, x_{4}, y_{4}$. These paths $P_{1}, P_{2}, P_{3}, P_{4}$ with the edges $x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}, x_{4} y_{4}$ constitute one or two circuits. In the first case it is a desired circuit, so without loss of generality, we may suppose that the paths P_{1}, P_{2}, P_{3} and P_{4} lead from x_{1}, y_{1}, x_{3} and y_{3} to x_{2}, y_{2}, x_{4} and y_{4}, respectively; P_{1}, P_{2} and the edges $x_{1}, y_{1}, x_{2}, y_{2}$ constitute the circuit C_{1}, P_{3}, P_{4} and the edges $x_{3} y_{3}, x_{4} y_{4}$ constitute the circuit C_{2}.

Now again by 4 -connectivity and Menger's theorem, there exist four vertexdisjoint paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ from C_{1} to C_{2}. The circuits C_{1}, C_{2} and the paths Q_{1}, Q_{2}, Q_{3}, Q_{4} constitute a subgraph H. In what follows, we deal with this subgraph H.

We introduce some notation. The paths are denoted by the sequence of labelled vertices in them. For a path P from x to $y,[x y],[x y),(x y],(x y)$ denote the vertexsets $V(P), V(P)-\{y\}, V(P)-\{x\}, V(P)-\{x, y\}$, respectively. The subpaths of P_{1}, P_{2}, P_{3} and P_{4} are called arcs.

First make a very simple observation which however is used several times.
Fact 1. If two vertex-disjoint paths Q_{i} connect the same pair of paths P_{j} then deleting the inner points and the edges of the arcs between the endpoints of these paths we get a desired circuit.

So we may suppose that the paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ lead from the $\operatorname{arcs} P_{1}, P_{1}$, P_{2}, P_{2} to the arcs $P_{4}, P_{3}, P_{3}, P_{4}$, respectively. Let $w_{1}, w_{2}, z_{1}, z_{2} \in V\left(C_{1}\right)$, $z_{4}, w_{3}, w_{4}, z_{3} \in V\left(C_{2}\right)$ be the endpoints of the paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}$, respectively. If the vertices w_{3} and z_{4} do not separate the vertices w_{4} and z_{3} in C_{2} then the disjoint subpaths $w_{3} z_{4}$ and $w_{4} z_{3}$ of C_{2} with Q_{1}, Q_{2}, Q_{3} and Q_{4} constitute two paths. such that both paths can replace one arc of C_{1} and this new circuit is a desired one.

So we may suppose that the vertices w_{3} and z_{4} separate the vertices w_{4} and z_{3} in C_{2}. Now without loss of generality, we may suppose that we have the subgraph H in Figure 1. (We drew the subgraph H so that the figure should show the large symmetry of the situation.) Of course, it may occur that $w_{1}=x_{1}, w_{2}=x_{2}, w_{3}=x_{3}$, $w_{4}=x_{4}, z_{1}=y_{1}, z_{2}=y_{2}, z_{2}=y_{3}$ or $z_{4}=y_{4}$.

Fig. 1

Fig. 2

Suppose that H is a subgraph as in Figure 1 such that the sum of the lengths of the $\operatorname{arcs} w_{1} x_{1}, w_{2} x_{2}, w_{3} x_{3}, w_{4} x_{4}, z_{1} y_{1}, z_{2} y_{2}, z_{3} y_{3}, z_{4} y_{4}$ is minimum. Suppose that e.g. $w_{1} \neq x_{1}$. Then the path $w_{1} x_{1} y_{1} z_{1}$ contains inner vertices and there is a path in $G-\left\{w_{1}, z_{1}\right\}$ from $\left(w_{1} x_{1} y_{1} z_{1}\right)$ to the remaining part of $H-\left\{w_{1}, z_{1}\right\}$ by 4 -connectivity. By symmetry, we may assume that this path leads from a vertex $u \in\left(w_{1} x_{1}\right]$. If this path leads to a vertex $v \in\left[w_{1} w_{2}\right] \cup\left[w_{1} z_{4}\right]$ then adding this path to H and deleting the inner vertices and the edges of the are $v w_{1}$ we obtain a subgraph like in Figure 1 such that the path $u x_{1}$ is shorter than $w_{1} x_{1}$, a contradiction. If this path leads to a vertex in $\left(w_{3} x_{3}\right],\left(w_{3} w_{4}\right]$ or $\left[w_{4} x_{4}\right]\left(\left[y_{4} z_{4}\right),\left(z_{4} z_{3}\right]\right.$ or $\left[y_{3} z_{3}\right]$, resp.) then this path and $Q_{2}\left(Q_{1}\right.$ resp.) are two vertex-disjoint paths from the arc P_{1} to the arc $P_{3}\left(P_{4}\right.$ resp.) and we are done by Fact 1 . If this path leads to a vertex v in $\left(w_{4} z_{1}\right)\left(\left(z_{3} z_{2}\right)\right.$, resp. $)$ then the path $u v w_{4}\left(u v z_{3}\right.$, resp.) and $Q_{2}\left(Q_{1}\right.$, resp.) are two vertex-disjoint paths from P_{1} to $P_{3}\left(P_{4}\right.$, resp.) and we are ready by Fact 1 again. The other possibilities can be settled by the axial symmetry of Figure 1 with the axis $w_{1} x_{1} y_{1} z_{1}$.

So we may assume that $x_{1}=w_{1}, x_{2}=w_{2}, x_{3}=w_{3}, x_{4}=w_{4}, y_{1}=z_{1}, y_{2}=z_{2}, y_{3}=z_{3}$, $y_{4}=z_{4}$, like in Figure 2.

Now by 4 -connectivity, there is a path P in $G-\left\{x_{2}, y_{1}, y_{4}\right\}$ from $\left(x_{2} x_{1} y_{4}\right)$ to the remaining part of $H-\left\{x_{2}, y_{1}, y_{4}\right\}$. By symmetry, we may assume that P leads from $\left[x_{1} y_{4}\right)$. We distinguish two cases.

Case 1. P starts at x_{1}.
If P leads to a vertex $v \in\left(x_{3} x_{4}\right] \cup\left(x_{4} y_{1}\right)$ then P or P together with the path. $v x_{4}$ and Q_{2} are two vertex-disjoint paths from P_{1} to P_{3} and we are done by Fact 1 . If P leads to $\left(y_{3} y_{2}\right] \cup\left(y_{2} y_{1}\right)$ then we are done by axial symmetry. So in this case P leads to a neighbouring subpath of the circuit $x_{1} x_{2} x_{3} x_{4} y_{1} y_{2} y_{3} y_{4} x_{1}$, i.e. to $\left(x_{2} x_{3}\right]$ or $\left(y_{4} y_{3}\right]$.

Case 2. P leads from a vertex $u \in\left(x_{1} y_{4}\right)$.
If P leads to a vertex v in $\left(x_{4} y_{1}\right)\left(\left[x_{4} x_{3}\right)\right.$, resp.) the paths $x_{1} u, P_{1} v x_{4}\left(x_{1} u, P_{,}\right.$, resp.) constitute a further path from P_{1} to P_{3} and we are done by Fact 1. If P leads to a vertex $v \in\left(x_{2} x_{3}\right]$ then the paths and edges $P, v x_{3}, x_{3} y_{3}, y_{3} y_{2}, y_{2} x_{2}, x_{2} x_{1}, x_{1} y_{1}$, $y_{1} x_{4}, x_{4} y_{4}, y_{4} u$ constitute a desired circuit. If P leads to $\left[y_{1} y_{2}\right)$ or $\left[y_{2} y_{3}\right.$) then we are done by symmetry.

So in both cases, we obtained
Fact 2. Only neighbouring segments of the circuit $x_{1} x_{2} x_{3} x_{4} y_{1} y_{2} y_{3} y_{4} x_{1}$ are connecied by any path openly disjoint to H.

Without loss of generality, we may assume that there is such a path P from $\left[x_{1} y_{4}\right)$ to $\left(y_{4} y_{3}\right]$. Let $u \in\left[x_{1} y_{4}\right)$ and $v \in\left(y_{4} y_{3}\right]$ be the points nearest to x_{1} and y_{3} in the path $x_{1} y_{4}$ and $y_{4} y_{3}$, respectively, which occur as the endpoint of such a path. (It may happen that u and v belong to different paths.) Choose H (with the constraints $x_{1}=w_{1}, \ldots, y_{4}=z_{4}$) so that the sum of the lengths of paths $u x_{1}$ and $v y_{3}$ should be the minimum.

By 4-connectivity, there is a path R in $G-\left\{u, v, x_{4}\right\}$ from $\left(u y_{4} v\right)$ to the remaining part of H. R does not lead from $\left(y_{4} v\right)$ to $\left[x_{1} u\right)$ by the definition of u. If R leads from $x \in\left(u y_{4}\right]$ to $y \in\left[x_{1} u\right)$ then replacing the path $x y$ of H by R we obtain a subgraph H_{0} such that there is a path from y to ($y_{4} y_{3}$] (via u), a contradiction to the choice of H. Similarly, R does not lead from $\left(u y_{4} v\right)$ to $\left(v y_{3}\right]$. But according to Fact 2 , only neighbouring segments can be connected by R. Without loss of generality, we may assume that R leads from $x \in\left(u y_{n}\right]$ to $y \in\left(x_{1} x_{2}\right]$. Now let R_{1} be a path from $\left(y_{4} y_{3}\right.$] to u. (There exists such an R_{1} by the definition of u.) If R and R_{1} are vertex-disjoint then $y_{4} x$ with R and R_{1} with $u x_{1}$ are vertex-disjoint paths from P_{4} to P_{1} and we are finished by Fact 1. And if R and R_{1} have a vertex in common then $R_{1} \cup R_{2}$ contains a path from $\left(x_{1} x_{2}\right]$ to $\left(y_{4} y_{3}\right]$, a contradiction to Fact 2.

References

[1] R. Häggkvist-C. Thomassen, Circuits through specified edges, Discrete Mathematics, 41. (1982), 29-34.
[2] L. Lovász, Problem 5, Period. Math. Hung., 4 (1974), 82.
[3] L. Lovász, Combinatorial problems and exercises, North-Holland (1979).
[4] L. Pyber, An Erdös-Gallai conjecture, Combinatorica, 5 (1984), 67-80.
(Received October 14, 1983)

