ANY FOUR INDEPENDENT EDGES OF A 4-CONNECTED GRAPH ARE CONTAINED IN A CIRCUIT

PÉTER L. ERDŐS and E. GYŐRI (Budapest)

L. Lovász [2] raised the following problem.

Conjecture. Suppose G is a k-connected graph $(k \ge 2)$, $e_1, e_2, ..., e_k \in E(G)$ are independent edges, and if k is odd then $G - \{e_1, e_2, ..., e_k\}$ is connected. Then G contains a circuit using all the edges $e_1, e_2, ..., e_k$.

This conjecture is proved for k=3 by Lovász [3; 6. § 67]. In general, R. Häggkvist and C. Thomassen [1] proved a slightly weaker statement that the same conclusion follows if G is (k+1)-connected.

Now we prove that the conjecture of Lovász holds for k=4.

THEOREM. In a 4-connected graph, any four independent edges are contained in a circuit.

This result effects on a conjecture of Erdős and Gallai. Using this theorem, L. Pyber [4] proved that every graph of n vertices can be covered by 1,5n circuits or edges. (Without this result, a greater constant could be proved by the method of Pyber.)

PROOF OF THE THEOREM. Let us fix the 4-connected graph G and the independent edges $x_1y_1, x_2y_2, x_3y_3, x_4y_4 \in E(G)$. By 4-connectivity (using Menger's theorem), there exist four vertex-disjoint paths from the vertices x_1, y_1, x_3, y_3 to the vertices x_2, y_2, x_4, y_4 . These paths P_1, P_2, P_3, P_4 with the edges $x_1y_1, x_2y_2, x_3y_3, x_4y_4$ constitute one or two circuits. In the first case it is a desired circuit, so without loss of generality, we may suppose that the paths P_1, P_2, P_3 and P_4 lead from x_1, y_1, x_3 and y_3 to x_2, y_2, x_4 and y_4 , respectively; P_1, P_2 and the edges x_1, y_1, x_2, y_2 constitute the circuit C_1, P_3, P_4 and the edges x_3y_3, x_4y_4 constitute the circuit C_2 .

Now again by 4-connectivity and Menger's theorem, there exist four vertexdisjoint paths Q_1 , Q_2 , Q_3 , Q_4 from C_1 to C_2 . The circuits C_1 , C_2 and the paths Q_1 , Q_2 , Q_3 , Q_4 constitute a subgraph H. In what follows, we deal with this subgraph H.

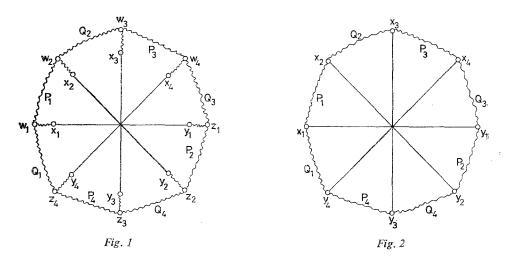
We introduce some notation. The paths are denoted by the sequence of labelled vertices in them. For a path P from x to y, [xy], [xy), (xy], (xy) denote the vertexsets V(P), $V(P) - \{y\}$, $V(P) - \{x\}$, $V(P) - \{x, y\}$, respectively. The subpaths of P_1 , P_2 , P_3 and P_4 are called arcs.

First make a very simple observation which however is used several times.

Fact 1. If two vertex-disjoint paths Q_i connect the same pair of paths P_j then deleting the inner points and the edges of the arcs between the endpoints of these paths we get a desired circuit.

So we may suppose that the paths Q_1 , Q_2 , Q_3 , Q_4 lead from the arcs P_1 , P_1 , P_2 , P_2 to the arcs P_4 , P_3 , P_3 , P_4 , respectively. Let $w_1, w_2, z_1, z_2 \in V(C_1)$, $z_4, w_3, w_4, z_3 \in V(C_2)$ be the endpoints of the paths Q_1 , Q_2 , Q_3 , Q_4 , respectively. If the vertices w_3 and z_4 do not separate the vertices w_4 and z_3 in C_2 then the disjoint subpaths w_3z_4 and w_4z_3 of C_2 with Q_1 , Q_2 , Q_3 and Q_4 constitute two paths such that both paths can replace one arc of C_1 and this new circuit is a desired one.

So we may suppose that the vertices w_3 and z_4 separate the vertices w_4 and z_5 in C_2 . Now without loss of generality, we may suppose that we have the subgraph H in Figure 1. (We drew the subgraph H so that the figure should show the large symmetry of the situation.) Of course, it may occur that $w_1=x_1$, $w_2=x_2$, $w_3=x_3$, $w_4=x_4$, $z_1=y_1$, $z_2=y_2$, $z_2=y_3$ or $z_4=y_4$.



Suppose that H is a subgraph as in Figure 1 such that the sum of the lengths of the arcs w_1x_1 , w_2x_2 , w_3x_3 , w_4x_4 , z_1y_1 , z_2y_2 , z_3y_3 , z_4y_4 is minimum. Suppose that e.g. $w_1 \neq x_1$. Then the path $w_1x_1y_1z_1$ contains inner vertices and there is a path in $G - \{w_1, z_1\}$ from $(w_1x_1y_1z_1)$ to the remaining part of $H - \{w_1, z_1\}$ by 4-connectivity. By symmetry, we may assume that this path leads from a vertex $u \in (w_1x_1]$. If this path leads to a vertex $v \in [w_1w_2] \cup [w_1z_4]$ then adding this path to H and deleting the inner vertices and the edges of the arc vw_1 we obtain a subgraph like in Figure 1 such that the path ux_1 is shorter than w_1x_1 , a contradiction. If this path leads to a vertex in $(w_3x_3]$, $(w_3w_4]$ or $[w_4x_4]$ $([y_4z_4), (z_4z_3]$ or $[y_3z_3]$, resp.) then this path and Q_2 (Q_1 resp.) are two vertex-disjoint paths from the arc P_1 to the arc P_3 (P_4 resp.) and we are done by Fact 1. If this path leads to a vertex vin (w_4z_1) $((z_3z_2)$, resp.) then the path uvw_4 (uvz_3 , resp.) and Q_2 (Q_1 , resp.) are two vertex-disjoint paths from P_1 to P_3 (P_4 , resp.) and we are ready by Fact 1 again. The other possibilities can be settled by the axial symmetry of Figure 1 with the axis $w_1x_1y_1z_1$.

So we may assume that $x_1 = w_1$, $x_2 = w_2$, $x_3 = w_3$, $x_4 = w_4$, $y_1 = z_1$, $y_2 = z_2$, $y_3 = z_3$, $y_4 = z_4$, like in Figure 2.

Acta Mathematica Hungarica 46, 1985

Now by 4-connectivity, there is a path P in $G - \{x_2, y_1, y_4\}$ from $(x_2 x_1 y_4)$ to the remaining part of $H - \{x_2, y_1, y_4\}$. By symmetry, we may assume that P leads from $[x_1 y_4)$. We distinguish two cases.

Case 1. P starts at x_1 .

If P leads to a vertex $v \in (x_3 x_4] \cup (x_4 y_1)$ then P or P together with the path. vx_4 and Q_2 are two vertex-disjoint paths from P_1 to P_3 and we are done by Fact 1. If P leads to $(y_3 y_2] \cup (y_2 y_1)$ then we are done by axial symmetry. So in this case P leads to a neighbouring subpath of the circuit $x_1 x_2 x_3 x_4 y_1 y_2 y_3 y_4 x_1$, i.e. to $(x_2 x_3]$ or $(y_4 y_3]$.

Case 2. P leads from a vertex $u \in (x_1y_4)$.

If P leads to a vertex v in (x_4y_1) ($[x_4x_3)$, resp.) the paths x_1u , P_1vx_4 (x_1u , P_2 , resp.) constitute a further path from P_1 to P_3 and we are done by Fact 1. If P leads to a vertex $v \in (x_2x_3]$ then the paths and edges P, vx_3 , x_3y_3 , y_3y_2 , y_2x_2 , x_2x_1 , x_1y_1 , y_1x_4 , x_4y_4 , y_4u constitute a desired circuit. If P leads to $[y_1y_2)$ or $[y_2y_3)$ then we are done by symmetry.

So in both cases, we obtained

Fact 2. Only neighbouring segments of the circuit $x_1x_2x_3x_4y_1y_2y_3y_4x_1$ are connected by any path openly disjoint to *H*.

Without loss of generality, we may assume that there is such a path P from $[x_1y_4)$ to $(y_4y_3]$. Let $u \in [x_1y_4)$ and $v \in (y_4y_3]$ be the points nearest to x_1 and y_3 in the path x_1y_4 and y_4y_3 , respectively, which occur as the endpoint of such a path. (It may happen that u and v belong to different paths.) Choose H (with the constraints $x_1=w_1, \ldots, y_4=z_4$) so that the sum of the lengths of paths ux_1 and vy_3 should be the minimum.

By 4-connectivity, there is a path R in $G - \{u, v, x_4\}$ from (uy_4v) to the remaining part of H. R does not lead from (y_4v) to $[x_1u)$ by the definition of u. If R leads from $x \in (uy_4]$ to $y \in [x_1u)$ then replacing the path xy of H by R we obtain a subgraph H_0 such that there is a path from y to $(y_4y_3]$ (via u), a contradiction to the choice of H. Similarly, R does not lead from (uy_4v) to $(vy_3]$. But according to Fact 2, only neighbouring segments can be connected by R. Without loss of generality, we may assume that R leads from $x \in (uy_n]$ to $y \in (x_1x_2]$. Now let R_1 be a path from $(y_4y_3]$ to u. (There exists such an R_1 by the definition of u.) If R and R_1 are vertex-disjoint then y_4x with R and R_1 with ux_1 are vertex-disjoint paths from P_4 to P_1 and we are finished by Fact 1. And if R and R_1 have a vertex in common then $R_1 \cup R_2$ contains a path from $(x_1x_2]$ to $(y_4y_3]$, a contradiction to Fact 2.

References

- R. Häggkvist—C. Thomassen, Circuits through specified edges, Discrete Mathematics, 41. (1982), 29—34.
- [2] L. Lovász, Problem 5, Period. Math. Hung., 4 (1974), 82.
- [3] L. Lovász, Combinatorial problems and exercises, North-Holland (1979).
- [4] L. Pyber, An Erdős-Gallai conjecture, Combinatorica, 5 (1984), 67-80.

(Received October 14, 1983)

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, REÁLTANODA U. 13—15 H-1053, HUNGARY