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1. Introduction

Given a directed graph G = (V, E) an independent set A C V is called quasi-kernel (quasi-sink) iff for each point v there
is a path of length at most 2 from some point of A to v (from v to some point of A). (The notions have a fairly extensive
literature: see, for example, [2-4].)

The starting point of our investigation was the following theorem:

Theorem 1.1 (Chvdtal-Lovdsz, [1]). Every finite digraph (directed graph) contains a quasi-kernel.

Our aim is to find similar theorems for infinite digraphs. The plain generalization of Theorem 1.1 fails even for infinite
tournaments, which is shown by (Z, <), where Z denotes the set of the integers, and (x, y) is an edge iff x < y.

However, not just for (Z, <) but for each tournament G = (V, E) either it has a quasi-kernel or there are two vertices
a and b such that V = Out(a) U In(b) (see Theorem 3.1). This situation is typical among the infinite digraphs as shown by
Theorem 2.1: Each directed graph G = (V, E) contains two disjoint, independent subsets A and B of V such that for each vertex
v there is a path of length at most 2 either from some point of A to v, or from v to some point of B.

Before finding the (easy) proof of the claim above we tried to disprove it. However, instead of finding counterexamples we
obtained “positive” statements. In Section 2 we prove some easy results showing that digraphs “resembling” finite graphs
have quasi-kernels.

In Section 3 we study tournament-like digraphs, and graphs which are built from simple blocks. Such a digraph G may
not have a quasi-kernel or quasi-sink but the vertices has a partition (Vp, V1) such that G[Vy] has a quasi-kernel and G[V]
has a quasi-sink.

These observations led to formulate the following conjecture.

Conjecture 1.2. Given any digraph G = (V, E) one can find a partition (Vy, V1) of the vertex set such that the induced subgraph
G[Vo] has a quasi-kernel and G[V1] has a quasi-sink.
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Section 4 studies the structure of infinite tournaments without quasi-kernels. For n € N denote by Out, the family of
digraphs G = (V, E) which have an independent set A C V such that for each point v there is a path of length at most n
from some point of A to v. Theorem 4.2 characterizes infinite tournaments in Out, for each n > 3. This characterization
implies immediately that the classes Outs, Outy, ... contain the same tournaments. To show that Out, and Out; contain
different tournaments (see Theorem 5.1), we developed a recursive method to construct infinite digraphs from certain finite
ones in Section 5. One might hope that this method may help to disprove our conjecture, but this is not the case, because
Theorem 5.7 claims that all digraphs obtained by this method also satisfy Conjecture 1.2.

We will use standard combinatorial and set-theoretical notations. If V is a set then V* denotes the family of finite
sequences of elements of V. If a,b € V* then a ~b is the concatenation of the two sequences. If A,B C V*letA~B =
{a~b:aeA,b e B). Whenever x € V* we write A ~x for A ~{x}. The family of two element subsets of V is denoted by [V ]°.

IfG = (V,E)isadigraphand W C V,the induced subgraph of G on W is denoted by G[W1],i.e. GIW] = (W, EN(W x W)).

To simplify the formulation of our results we introduce some terminology. Assume that G = (V, E) is a digraph and
A C V.Forn € N let us define

lnf(A) = {v € V : there is a path of length at most n which leads from v to some point of A}

and

Outg(A) = {v € V : there is a path of length at most n which leads from some point of A to v}.
Put

outS, (4) = |_J{out§(4) : n e N}
and

InS,(A) = [ J{In§(A) : n e N}

If A = {a} we write In$(a) for In{ ({a}), and Out(a) for Out$ ({a}). We will omit the superscript G whenever the digraph is
clear from the context.

Using this notation above the classes Dut,, Outs, .. ., Outy, Iny, Ins, ... and Ine, of digraphs are defined as follows. For
n € NU {oo} the digraph G = (V, E) is in Jn, iff there is an independent set A C V such that V = Inf(A), and G € Out, iff
there is an independent set B C V such that V = Outg(B). We say that “ A witnesses G € Jn,” and “ B witnesses G € Out,,”.

For n, k € N U {oo} define the class Jn,-Out, of digraphs as follows: G € Jn,-Out, if and only if there is a partition
(V1, V) of the vertex set V such that G[V;] € Jn, and G[V,] € Out,. We say that “(V;, V,) witnesses G € Tn,-Out;”.

Using this new terminology we can reformulate the Theorem of Chvatal and Lovasz and our Conjecture as follows:

Theorem 1.1. Every finite digraph is in Out,,

Conjecture 1.2. Every digraph is in Jny-Out,.
2. Stepping-up theorems
Theorem 2.1. Each directed graph G = (V, E) contains two disjoint, independent subsets A and B of V such that V =
Out, (A) U In,(B).
This result is a joint work with Andras Hajnal, and it is included with his kind permission.

Proof. Let Fy be a maximal independent subset in G, and let F; be a maximal independent subset in G[V \ In,(Fp)]. Put
A =FyNIn,(F)and B = F; U (Fy \ A), see Fig. 1.
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The sets A and B are clearly independent. Moreover,
In; (Fo) = In;(Fp N In;(F)) UlIn, (Fo \ In,(F;)) C In,(Fy) UlIn,(B) C In,(B). (1)
Since F; C Out, (A) and so Out, (F;) C Out,(A) we have
V \ In,(Fp) C Out,(F;) UIn,(F;) C Out,(A) UIn,(B) C Out,(A) U In,(B). (2)
(1) and (2) together yield V = Out,(A) UIn,(B). O

By a standard application of Godel’s Compactness Theorem one can get the following consequence of Theorem 1.1 for infinite
graphs:

Corollary 2.2. Ifin a digraph G every vertex has finite in-degree then G has a quasi-kernel.

Next we prove two stepping-up theorems. The first will imply immediately that every finitely chromatic digraph has
quasi-kernel. The second one will be applied in the next section.

Definition 2.3. A directed graph G is hereditary in Out, (or hereditary in Inp,-Out,) iff all induced subgraphs of G are in Out,
(or in Jny,-Outy, respectively).

Theorem 2.4. Let G = (V, E) be a directed graph and let n > 1. Assume that V has a partition (Vy, V1, ..., V}) such that
(i) G[Vo] is hereditary in Out, 1,

(ii) for 1 <i < k G[V;] is hereditary in Outy,

(iii) either k = 0 or G[V] is in Out,,.

Then G is Out,1.

Proof. By induction on k. For k = 0 the claim is trivial. Assume now that k > 1, the statement is true for k — 1 and prove it
for k.

By (iii) V, = Outg[v"](Ak) for some independent sets Ay C Vi. For 0 < i < kletV/ = V;\ Outf(Ak) and put
V' = [U{V/ : 0 < i < k}. Then we can apply the inductive hypothesis for G = G[V'] because (i) and (ii) imply that
the partition (V{, V1, ..., V;_,) satisfies (i)-(iii). Thus, V' contains an independent set A’ such that V' = Outgﬂq lan.

LetA = A'U (A, \ Out$(A")). Then A is independent because Out$ (Ay) NA" C Out$ (Ay) NV’ = @, moreover A, C Out$ (A)

and so Out (Ay) C Out§(A). Since n + 1 > 2 it follows that V = Out$, ;(A). O

This result gives us the following generalization of the Chvatal-Lovasz Theorem:

Corollary 2.5. If G has finite chromatic number then G € Out,.

Proof. Indeed, the monochromatic classes are independent, so they are hereditary in Out;. Thus, we can apply Theorem 2.4
toobtain G € Out,. O

The following generalization of Theorem 2.4 is mainly a technical tool to be used later.

Theorem 2.6. Let G = (V, E) be a directed graph and let £, m > 1. Assume that V has a partition (Vy, V1, ..., V}) such that
(i) G[Vo] is hereditary in Iny1-Outeyq,

(ii) for 1 <i < k G[V;] is hereditary in Jnp,-Outy,

(iii) either k = 0 or G[V] is in Iny,-Outy.

Then G is in Inp1-Outyyq.

Proof. Similarly to the proof of Theorem 2.4, we use induction on k. For k = 0 the statement is trivial. Assume that k > 1,
the claim is true for k — 1 and prove it for k.

Let (Xk, Yx) be an Jn,,-Out,-partition of G[Vi], i.e. X = Outg[x"](Ak) and Yy = lann[y"] (By) for some independent sets Ay
and By.

Put V* = (Out$ (Ay) UInS(By) \ Viand V/ = (V \ Vi) \ V*.For 0 < i < kletV/ =V;NV".

Then we can apply the inductive hypothesis for G = G[V'] because the partition (V{, V1, ..., V,_,) satisfies (i)-(iii). Thus,
V' has a partition (X', Y’) and there are independent sets A’ C X’and B’ C Y’ suchthatX’ = Outgﬂf{l (A)andY’ = Inﬂrﬂ (B)).

Let (X, Y) be a partition of V such that (X \ V*, Y \ V*) = (X' U X, Y/ U Yy), X N V* C Out$(A) and Y N V* C In§ (By).

Then A = A’ U (A \ Out$(A’)) and B = B’ U (B, \ In{(B')) are independent subsets of X and Y, respectively. Moreover,

X =outyX(A)andY = In 1 (B). O

The next corollary proves our conjectures for graphs which are built from simple blocks.

Corollary 2.7. Suppose G has a partition (A1, . .., Ay) such that each G[A;] is hereditary in Jni-Out; (for example, isomorphic to
one of (Z, <), (N, <), (N, >), or has no edges) then G € JIny-Out,.

Proof. Since every G[A;] is hereditary in Jn{-Out, apply Theorem 2.6 directly. O

Please cite this article in press as: P.L. Erdés, L. Soukup, Quasi-kernels and quasi-sinks in infinite graphs, Discrete Mathematics (2008),
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3. Tournament-like digraphs
Recall that (Z, <) & Out, but it is in Iny-Out;. We show that this remains true for arbitrary tournaments.

Theorem 3.1. An infinite tournament is either in Out,, or it is in Jn;-Out;.

Proof. Let G = (V, E) be a tournament, and x € V be arbitrary. If y ¢ Out,(x) then V = In,(x) U Out,(y). Indeed, if
z¢ Outf (y) then (z, y) € E but xzy is not a directed path of length two in G by the choice of y, so (x, z) & E. Thus, (z, x) € E,
ie.z € lnf(x). Since z was arbitrary, we obtain G € Jny-Out;. O

If G = (V, E) is a digraph define the undirected complement of the digraph C= (v, E) as follows: {x, y} € Eifand only if
(x,y) € E and (y, x) ¢ E. The graph G can be used to measure the difference between G and a tournament: the more edges
are in G, the larger the difference between G and a tournament is. For example, G is a tournament iff G does not have any
edge.

Theorem 3.2. Let G = (V, E) be a directed graph. If K, ¢ Efor some n > 2 then G € Iny-Out,. Moreover, if Gis empty then
G € Outy U Iny-Outy, and if G is triangle-free, then either G € Jn-Outy, or G € Jny-Outy.

Proof. By induction on n.If n = 2 then G does not contain edges, i.e. G is a tournament and so we are done by the previous
theorem.

Assume now that the theorem is true for n — 1 and prove it for n. Let A be a maximal independent set in G. If V = Out, (A)
then we are done.

If this is not the case, then let C be a maximal independent set in G[V \ Out,(A)]. Let L = In;(A) \ C, M = Out,(C) \ L
and N =V \ (LU M), see Fig. 2.

Claim 1. There is no edge between N and C.

Proof of the Claim. Letx € N.Ifa € Athen (x,a) ¢ E because x ¢ In,(A) but (a,x) € E for some a € A because A was
maximal. Moreover, for each ¢ € C we have (c,x) ¢ E because x ¢ Out, (C). But (x,c) & E as well otherwise the path
(a, x, c) witnesses that ¢ € Out,(A). O

Since C # ¥ we have that K,_; ¢ (T[TV/] (otherwise G would contain K,). Hence we can apply the inductive hypothesis
for G[N].
Case 1.n = 3.
Then G[N] is a tournament. If N = Outgw] (d) forsomed € N then L = lnf[” (A)andV\L = Outg[v\” (C U {d}). Thus,
G € In-Outy.
Otherwise N has a partition P U R and there are x € P andy € R such thatP = Outf’“j] (x)andR = Inf[R] (¥). Then
M UP = outs™(c U {x})
and
LUR=InS"M((y)UlaeA: (ay) ¢E)).

Thus, G € Iny-Outy.

Case2.n > 3.

By the inductive hypothesis G[N] is hereditary in Jn,-Out; (since K, ¢ G is a hereditary property), moreover G[LUM] €
Jn1-Outy, hence we can apply Theorem 2.6 for m = ¢ = 1, for the digraph G and for the partition (N, L U K) to yield
G € Iny-Outy. O

Corollary 3.3. Let G = (V, E) be a directed graph. If G has finite chromatic number then G is Jny-Out,.

Indeed, if the chromatic number of G is n then G does not contain Kit1.

Please cite this article in press as: P.L. Erddés, L. Soukup, Quasi-kernels and quasi-sinks in infinite graphs, Discrete Mathematics (2008),
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Remark. One can try to prove this corollary directly from Theorem 2.6. If G has finite chromatic number then the vertex
set has a partition (Vq, ..., Vi) such that every G[V;] is a tournament and so G[V;] is hereditary in Jnq-Out,. Thus, applying
directly Theorem 2.6 one gets only G € Jny-Outs.

An undirected graph is called locally finite iff every vertex has finite degree.

Theorem 3.4. If G = (V, E) is a digraph such that Gis locally finite then G € Iny-Out,.
Proof. We prove the claim by transfinite induction on A = |V|. If A is finite then G € Out, by Theorem 1.1. We can assume
that A = |V| is infinite and the claim is true for graphs of cardinality < A. We distinguish two cases.
Case 1: There are x, y € V such that the set U = Outf(x) N lnf(y) has cardinality X.

We will find a partition (X, Y) of V such that X = OutglxJ (x)and Y = Ingm(y). To this end fix an enumeration of the
vertices as V = (v; 1< A). By transfinite induction on { < A we construct disjoint subsets X, and Y, of V such that

G[X, GlY,

IXc| + |Ye| <o+ [¢], X, = Outy " (x) and Y, = Ins ) (y).

Put Xo = {x} and Yy = {y}. Assume that for all < ¢ we have already constructed X,,, Y,. If ¢ is a limit ordinal put
Xe=UXe : & <¢tand Y, = [ UfYe 1 & < ¢} x -

If £ is not a limit ordinal, i.e. { = n + 1, then we have X, and Y, in such a way that X, = Outz[ " (x) and Y, = lnz[ ).
Leti = min{i' : vy € X, UY,}.

If |In§(v;) N U| = A then let

j=min{j’ : vy € (In$(v;) NOut§ (x)) \ (X, U Yy},

and letX, =X, U {v;, yj}and Y, =Y,. _

If |In§(v;) N U| < A then |Out§ (v;) N U| = A because v; has finite degree in G. Let

j=min{j’ : v; € (Out§(v)) NIn{(Y)) \ X, UY},

and let Y, =Y, U {v;, vj} and X; = X,,. Putfinally X = X, andY =Y,.
Case 2: |0ut$(x) N InS(y)| < A for each {x, y} € [V]%.

Fix the vertices x # y € V arbitrarily, and put W = V \ (Out{(x) U InS(y)). Then W \ (In%(x) N Out§(y)) =
(W \ In$(x)) U (W \ Out{(y)) is finite because G is locally finite. Thus, |W| < A, hence G[W] is hereditary in Jny-Out,

by the inductive hypothesis. Moreover, V \ W = Outf(x) U Inf(y), hence G[V \ W] € Jny-Outy. Therefore, we can apply
Theorem 2.6 for m = £ = 1, the digraph G and the partition (W, V \ W) toyield G € Tny-Out,. O

4. Infinite tournaments

In this section we prove structural theorems for infinite tournaments.
For any cardinal « let the digraph T, = («x, >), i.e. (x, y) is an edge if and only if x > y.

Theorem 4.1. For an infinite tournament G = (V, E) the following are equivalent:

(i) G & Outo,

(ii) for some regular cardinal « there is a surjective homomorphism ¢ : G — T,.

Proof. (ii) clearly implies (i): if ¢ (x) = k then ¢(y) < k foreachy € Outgo (x), and so Outgo (x) # V because ¢ is surjective.
Assume now that (i) holds, i.e. G & Out... By transfinite recursion construct a sequence <x,7 n < S) of vertices such that

(@) x, 0uts ({x, :n < ¢Hfor¢ <&,

(b) V = 0outS, ({x, : n < &}).

Since (x;, x,) € Eforn < ¢ < & we have OutS, ({x, : n < ¢}) = OutS (x;) for ¢ < £.S0if& = ¢ + 1thenV = OutS, (x,)

which contradicts G € Outy. Thus, £ is a limit ordinal. Let k = cf(£¢) and let <§,7 n < /c) be a strictly increasing cofinal

sequence in &.

Define ¢ : V — « by the formula ¢ (v) = min{n : v € Outgc (X¢,)}- The map ¢ is clearly a homomorphism onto T,
because ¢(xg,)) =n. O

Define the digraph T® = (w, E) as follows
E={xy :x>ylU{(x,x+ 1) :x € w}. (3)
T® can be obtained from T,, by adding the edges {(n,n + 1) : n € )}, see Fig. 3.

Theorem 4.2. For an infinite tournament G € Dut., the following are equivalent:
(i) G & Out,

(ii) G &€ Outy, foranyn > 3,

(iii) there is a surjective homomorphism ¢ : G — T,

Please cite this article in press as: P.L. Erdés, L. Soukup, Quasi-kernels and quasi-sinks in infinite graphs, Discrete Mathematics (2008),
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6 P.L. Erdés, L. Soukup / Discrete Mathematics I (1REN) IRE-EEN

0L 7<?\§ _(Kf;i.ﬁf
S BCRES S & O O

T. T

G R SN T T S
R L

Gy £ < 5o

Fig. 4.

Proof. (iii) clearly implies (ii): if ¢(x) = k then ¢(y) < k+ nforeachy € Outg(x).

To prove that (i) implies (ii) assume that G € Out, for some n > 3.Fixx € V such thatV = Outf(x). IfV # Outg(x) then
thereisak > 3 such that V = Out{ (x) but V # Out{_, (x).Picky € Out{ (x)\ Out?_, (x). We claim that V = Out$(y). Indeed,
Out{ ,(x) C Out{(y) because y ¢ Out{_, (x). Hence Out{_,(x) = Out®(Out{_,(x)) C Out5(y) and so finally we obtain that
V = Out{ (x) = Out®(Outy_,(x)) C Out§(y).

Finally assume that (ii) holds. Since G € Duty, thereisanx € V withV = Outgo(x). Define ¢ : V — N as follows:
@(y) = min{n : y € Outé(x)}. ¢ is clearly a homomorphism and it is onto because OutS(x) # V forn e N. O

Problem 4.3. Find a characterization of G ¢ Out, a la Theorem 4.2.

5. Infinite digraphs generated by a finite structure

Theorem 5.1. There is an infinite tournament in Outs \ Out,.

To prove this claim we develop a recursive method to construct infinite digraphs from certain finite ones and we
investigate the properties of the graphs which can be obtained in this way.

Definition 5.2. A terminated digraph is a triplet G = (N, E, T), where C = (N UT,E) is a digraph, NN T = @ and
T # (. The elements of T are the terminal vertices of G, the elements of N are the nonterminal vertices of G. For a terminated
digraph G = (N, E, T) write Vg = NUT,Egc = E, Tc = T and N; = N.

To simplify our notation we write Out$ (A) (or In{ (B)) for Out%(A) (or for In (B), respectively).

Assume that we have two terminated digraphs Gg = (Np, Eo, Tp) and G; = (Nq, Eq, T1). Construct a new terminated
digraph Go © G; = (N, E, T) from Gy and G, as follows: keep the terminal vertices of G, and blow up each nonterminal
vertex v of Gy to a (disjoint) copy of G;. So we set

N=NOXN1 and T=TOU(NOXT]).
The edges will be “inherited” from G and H in a natural way.
If x is a finite sequence of length n, then for i < n denote by x; the ith member of the sequence, i.e. x =

X(0) X(1)s + - - s X(n—1) |-
( Ifxand y are ﬁnit>e sequences, none of them is an initial segment of the other, then let A(x, y) be the minimal i such that
X 7 Y- For example, if a # b then ab)y = a, ab;y = b, a) = a, A(aa, ab) = 1and A(b, ab) = 0.
The elements of N UT are just finite sequences of length < 2, moreover none of them is an initial segment of some other.
Using this notation, let

E={(xy) e NUT) x (NUT) : Xaxy): Yaxy)) € Eaxyl-

See Fig. 4.
Observe that

Go[To] is a induced subgraph of (Go ® G1)[T]. (4)

Fix a terminated digraph G = (N, E, T). Define the sequence (G, : n € N) of terminated digraphs as follows: Gy = G,
Gn+1 = G, © G. Write G, = (Np, E,, T,) for n < w. Then we have

GolTo]l C Gi[Ti] C G[TL] C - -+ (5)
Take
¢* = | J(GuITal s n e ). (6)

This was the informal definition of G*°. The formal definition is much shorter:

Please cite this article in press as: P.L. Erddés, L. Soukup, Quasi-kernels and quasi-sinks in infinite graphs, Discrete Mathematics (2008),
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Definition 5.3. If G = (N, E, T) is terminated digraph, then define the digraph G* = (N* ~T, F) as follows:

F={(xY): Xy Yarxy)) € E},
where A(x, y) = min{i : x4 # Y@ ).

We will write V*° instead of V(G*) and E* instead of E(G*).
We will use the following convention: if G = (N, E, T) is a terminated digraph, then V denotes N U T.
First we prove two theorems which will give the example needed in Theorem 5.1.

Proposition 5.4. Let G = (N, E, T) be a finite terminated digraph. Then the following are equivalent:

(i) G™ € Outs,
(ii) G* € Duty,,
(iii) In,(v) # {v} foreach v € N.

Proof. Clearly (i) implies (ii).

Assume that (iii) fails: i.e. [n?(v) = {v} for some v € N. Define ¢ : V(G*) — w as follows: ¢(s) = min{n : su # v}.
Then ¢ is a surjective homomorphism from G*™ onto T, s0 G*° & Out, (See Theorem 4.1). Thus, (ii) implies (iii).

Assume (iii). Write V. = N U T. For v € V define v € V* as follows: v = vforv € T and v' = v "t for v € N, where
t € T is arbitrary.

Let A C V be an independent subset such that V = Outg(A). Put K = {d’ : a € A}. Then K is clearly independent in G*°.
We claim that V® = Out§™ (K).

Let x € V. Then there is a € A and a directed path (sg, ..., S;—1) from a to x(0) for some n < 2.Ifn > 0 then
(sos - -+ Si_,. x) is a directed path in G*, and so we are done because s;, = a’ € K.

Assume now that n = 0, i.e. x(0) € A.Ifx(0) € T then x = x(0) by the definition of V°°, and so x = x(0) = x(0)' € K.

Ifx(0) € N then there is w € V with (w, x(0)) € E by (iii). Then there is an a € A and a directed path (s, . . ., S;,—1) from
a to w for some n < 2. Then <s{), ce S x) is a path from @’ € K to x of length at most 3. O

Fact5.5. If (N UT,E) is a tournament for some terminated digraph G = (N, E, T), then G* is also a tournament.

Proposition 5.6. If G = (N, E, T) is a finite terminated digraph, then following are also equivalent:

(i) V> = out$™ (s) for some s € V™,
(i) thereisana € T with V = Out$(a).

Proof. First of all observe that (ii) clearly implies (i): if V = Out$(a) for some a € T then V> = Out$™ (a).

Assume now that (ii) fails and let s € V° be arbitrary,s = r ~a, wherer € N* and a € T. Since (ii) fails we can pick
be V\Out‘z;(a).Letu =r~beV®ifbeT,andletu=r"b~c € V*forsomec € T ifb € N.We claim thatu ¢ Outgw(s).
Clearly s # u and (s, u) # E* because a # b and (a, b) € E, respectively.

Assume on the contrary that (s, y, u) is a directed path of length 2 in G*. Since r is a common initial segment of s and u
we have that r should be an initial segment of y, as well. Writey = r ~d ~z, where d € V. Since (s, y) € E* we have d # b.
Since (y, u) € E* we have d # a. Thus, a, b and d are pairwise different vertices and so (a, d, b) should be a directed path
of length 2 in G which contradicts b ¢ Outg(a). O

Proof of Theorem 5.1. After this preparation we are ready to construct an infinite tournament in Out; \ Out,. Consider the
following terminated digraph: G = ({1, 2, 3}, E, {0}), where

E={0,1),(1,2),(2,3),3,1),(3,0), (2,0)}.
See Fig. 5.

Gis afinite tournament, so G* is a tournament by Fact 5.5, and by Propositions 5.4 and 5.6 we have G* € Out;\Out,. O

Theorem 5.7. If G = (N, E, T) is a finite terminated digraph, then G* € Jny-Out,. Moreover, if N is independent, then G*>
either has a quasi-kernel or a quasi-sink.
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Proof. We distinguish two cases depending on whether N is independent or not.
Case 1: There is an edge (x,y) € EN (N x N).
LetA = Inf({x,y}) @) Outf({x,y}) and choose an independent set B C V \ A such that Outg[vw (B) = V \ A. Write
By =BNNandBr =BNT.Fixanelementt € T. Let
K = By, "xt, K' = By, "Br, L=KUK and M =By “yt.

Clearly L and M are independent subsets in V.
We want to find a partition (P, S) of V*° such that L is a quasi-kernel in G*°[P], and M is quasi-sink in G*°[S].
Fix a partition (X, Y) of A such that

xeXcnfxU (i \{y}) and yeY C (Out§(x)\ {x}) UOut§(y). (7)
Let W = (By, A ~V*) N V™ and define the partition (R, S) of W as follows:
R= (B} “xt) U ((B; “Y ~V*)NV™)\ (B} ~yt) (8)
and
S=(B; ~yt) U ((B; "X "V )NV™)\ (By ~xt). 9)

Claim 2. K is a quasi-kernel in G[R], and M is a quasi-sink in G[S].

Proof. Let b € By. Then

out§™ b ~xt) > (b~Y NOut§ (v)) ~V*. (10)
Since b ~yxt € R, (b ~xt, b ~yxt) € E* and

outf™ b ~yxt) > (b-Y NnoutS(y) \ {y}) ~V* (11)
we have

outs® (b ~xt) > (b Y Nout(y) \ {y}) ~V* (12)

(10) and (12) together give R = Outg[R] (K).S = lngm (M) can be proved similarly. O
Now letZ = (V*° \ W) UK.

Claim 3. Z = outS” Z(L).

Proof. Lets € V> \ W.Writes =s' “p ~s”, wheres' € Bj;,p € V\ Byands” € V*.Sinces ¢ W we havep € A. If p € By
thens =s "p € K.

Hence we can assume that p € V \ (A U B). Thus, there is directed path (xo, ..., x,) in G[V \ Al suchthat1 < n < 2,
Xo € Band x, = p.LetXg = xo ifxo € T, and let X, = xo ~xt if X, € N.Thens' "xg € L and (s’ Ax'o,s) € E¥ifn = 1,or

(s %o, s' "x1,s)is a directed path in G* if n = 2. Thus, s € outS ¥y, o

Let P = RU Z. Then (P, S) is a partition V* and it witnesses that the digraph G* is in Jny-Out,: L is a quasi-kernel in
G*®[RU Z], and M is a quasi-sink in G*°[S] by Claims 2 and 3. This concludes Case I.

Case II: N is independent.
We show that G® € Jn, U Out,.

Lemma 5.8. If there is an independent set A C V with T N A # () such that Out$(A) = V (or In§(A) = V) then G € Out, (or
G € Ty, respectively).

Proof of Lemma 5.8. We show that K = (AN N)* ~(ANT) is a quasi-kernel in G*. The set K is clearly independent in G*®
because A was independent.

Fix an elementt € TNA.Forx € T letx = xand forx € N letx = x "t.

Lets € V*.Ifs € A* thens € K, so we can assume thats = s’ "p ~s”, where p € V \ A. Then thereisana € A
such that either (a,p) € E or there isanx € V such that (a,x) € E and (x,p) € E.Thens' ~a € K and in the first
case (s’ ~a, s) is an edge in G, and in the second case (s’ ~a, s’ ~d, s) is a directed path of length 2 in G*. Therefore,
seoutS (s ~a) c outS (K),as we claimed. O

Lemma5.9. If T ¢ Out$§(N), then G* € Outy, and if T ¢ In{(N), then G* € Jn,.
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Proof of Lemma 5.9. Let t € T \ Out$(N), B = OutS(t),and A’ C V \ B be independent such that V \ B = Outs" "/ (4"). If
A = A" U {t} is independent, then by Lemma 5.8 we are done.

Otherwise there is an a € A" with (a, t) € E because Outf(t) NA=0.Thent € Out?(a) andsoa ¢ N, i.e.a € T. Hence
A’ satisfies the assumptions of Lemma 5.8, and so G*® € Out,. O

Thus, we may assume that
T C Out®(N) NIn§(N). (13)
With this assumption,

if N C Out§(T), then G € Outy. (14)

Indeed, we show that K = {y ~t : y € N} is a quasi-kernel in G°°, where t is an arbitrary element of T. K is independent,
as N is so.

Lets € V.Ifs € T, then by (13) we have (y, s) € E for somey € N and sos € Out$™ (y ~t)  Out$™ (K).

If s = x ~s' for some x € N then there is au € T with (u, x) € E by the assumption N C Out?(T). Then, by (13), there is
ay € N with (y, u) € E. Thus, (y, u, x) is a directed path of length 2 in G and so (y “tou, X ”s/) is a directed path of length 2
in G*°. Hence s € OutgOo (K), as we claimed in (14).

Thus, we may assume that

N ¢ Out$(T) and N ¢ In§(T). (15)

LetA = N\ Out$§(T) and B = N \ In§(T). Hence A # ¢ and B # ¢ by (15).

Since T # @and T C In§(N) we have N N Outé(T) # @ and so A # N. Similarly, B # N.

Let t € T be fixed, and put K = A* ~(N \ A) ~t. We claim that K is a semi-kernel in G*°.

If p # q € K then we have {p(A(p, q)), g(A(p, q))} € [N]* and so there is no edge between p and q in G*. Hence K is
independent.

Let L = A* ~T. Now we have

out$” (K) O L. (16)

Indeed, if x € A* and s € T then there is c € N with (c,s) € E because of (13).Ifc € N\ Athenx ~c~t € K and
(x~c~t,x"s) e E®.Ifce Athenx ~c~b~teKand (x c~b"t,x"s) e E°foranyb e N\ A # (.
Moreover, we claim that

outé™ (1) = v=. (17)

Indeed, let x € V°° \ L. Let n be maximal such thatx | n € A". Since x ¢ L we have ¢ = x(n) € N \ A.Hencec € Outf(T), S0
we can picks € T with (s,c) € E.Then (x | n) ~s € Land (x | n s, X) € E*.

Hence 0ut§°° (K) 2 Outfoo (L) = V*°,i.e.K is a quasi-kernel G*, as we claimed. This concludes Case II, so Theorem 5.7 is
proved. O
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