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a b s t r a c t

Given a directed graph G = (V , E) an independent set A ⊂ V is called quasi-kernel (quasi-
sink) iff for each point v there is a path of length atmost 2 from some point of A to v (from v
to some point of A). Every finite directed graph has a quasi-kernel. The plain generalization
for infinite graphs fails, even for tournaments. We study the following conjecture: for any
digraph G = (V , E) there is a a partition (V0, V1) of the vertex set such that the induced
subgraph G[V0] has a quasi-kernel and the induced subgraph G[V1] has a quasi-sink.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Given a directed graph G = (V , E) an independent set A ⊂ V is called quasi-kernel (quasi-sink) iff for each point v there
is a path of length at most 2 from some point of A to v (from v to some point of A). (The notions have a fairly extensive
literature: see, for example, [2–4].)

The starting point of our investigation was the following theorem:

Theorem 1.1 (Chvátal–Lovász, [1]). Every finite digraph (directed graph) contains a quasi-kernel.

Our aim is to find similar theorems for infinite digraphs. The plain generalization of Theorem 1.1 fails even for infinite
tournaments, which is shown by (Z, <), where Z denotes the set of the integers, and (x, y) is an edge iff x < y.

However, not just for (Z, <) but for each tournament G = (V , E) either it has a quasi-kernel or there are two vertices
a and b such that V = Out(a) ∪ In(b) (see Theorem 3.1). This situation is typical among the infinite digraphs as shown by
Theorem 2.1: Each directed graph G = 〈V , E〉 contains two disjoint, independent subsets A and B of V such that for each vertex
v there is a path of length at most 2 either from some point of A to v, or from v to some point of B.

Before finding the (easy) proof of the claim abovewe tried to disprove it. However, instead of finding counterexampleswe
obtained ‘‘positive’’ statements. In Section 2 we prove some easy results showing that digraphs ‘‘resembling’’ finite graphs
have quasi-kernels.

In Section 3 we study tournament-like digraphs, and graphs which are built from simple blocks. Such a digraph G may
not have a quasi-kernel or quasi-sink but the vertices has a partition (V0, V1) such that G[V0] has a quasi-kernel and G[V1]

has a quasi-sink.
These observations led to formulate the following conjecture.

Conjecture 1.2. Given any digraph G = (V , E) one can find a partition (V0, V1) of the vertex set such that the induced subgraph
G[V0] has a quasi-kernel and G[V1] has a quasi-sink.
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Fig. 1.

Section 4 studies the structure of infinite tournaments without quasi-kernels. For n ∈ N denote by Outn the family of
digraphs G = (V , E) which have an independent set A ⊂ V such that for each point v there is a path of length at most n
from some point of A to v. Theorem 4.2 characterizes infinite tournaments in Outn for each n ≥ 3. This characterization
implies immediately that the classes Out3, Out4, . . . contain the same tournaments. To show that Out2 and Out3 contain
different tournaments (see Theorem 5.1), we developed a recursivemethod to construct infinite digraphs from certain finite
ones in Section 5. One might hope that this method may help to disprove our conjecture, but this is not the case, because
Theorem 5.7 claims that all digraphs obtained by this method also satisfy Conjecture 1.2.

We will use standard combinatorial and set-theoretical notations. If V is a set then V ∗ denotes the family of finite
sequences of elements of V . If a, b ∈ V ∗ then a _b is the concatenation of the two sequences. If A, B ⊂ V ∗ let A _B =

{a _b : a ∈ A, b ∈ B}. Whenever x ∈ V ∗ wewrite A _x for A _{x}. The family of two element subsets of V is denoted by [V ]2.
IfG = (V , E) is a digraph andW ⊂ V , the induced subgraph ofG onW is denoted byG[W ], i.e.G[W ] = (W , E∩(W×W )).
To simplify the formulation of our results we introduce some terminology. Assume that G = (V , E) is a digraph and

A ⊂ V . For n ∈ N let us define

InG
n(A) = {v ∈ V : there is a path of length at most nwhich leads from v to some point of A}

and

OutGn(A) = {v ∈ V : there is a path of length at most nwhich leads from some point of A to v}.

Put

OutG
∞

(A) =

⋃
{OutGn(A) : n ∈ N}

and

InG
∞

(A) =

⋃
{InG

n(A) : n ∈ N}.

If A = {a} we write InG
n(a) for In

G
n({a}), and OutGn(a) for Out

G
n({a}). We will omit the superscript G whenever the digraph is

clear from the context.
Using this notation above the classes Out2, Out3, . . ., Out∞, In2, In3, . . . and In∞ of digraphs are defined as follows. For

n ∈ N ∪ {∞} the digraph G = (V , E) is in Inn iff there is an independent set A ⊂ V such that V = InG
n(A), and G ∈ Outn iff

there is an independent set B ⊂ V such that V = OutGn(B). We say that ‘‘ A witnesses G ∈ Inn’’ and ‘‘ B witnesses G ∈ Outn’’.
For n, k ∈ N ∪ {∞} define the class Inn-Outk of digraphs as follows: G ∈ Inn-Outk if and only if there is a partition

(V1, V2) of the vertex set V such that G[V1] ∈ Inn and G[V2] ∈ Outk. We say that ‘‘(V1, V2) witnesses G ∈ Inn-Outk’’.
Using this new terminology we can reformulate the Theorem of Chvátal and Lovász and our Conjecture as follows:

Theorem 1.1. Every finite digraph is in Out2,

Conjecture 1.2. Every digraph is in In2-Out2.

2. Stepping-up theorems

Theorem 2.1. Each directed graph G = 〈V , E〉 contains two disjoint, independent subsets A and B of V such that V =

Out2(A) ∪ In2(B).

This result is a joint work with András Hajnal, and it is included with his kind permission.

Proof. Let F0 be a maximal independent subset in G, and let F1 be a maximal independent subset in G[V \ In1(F0)]. Put
A = F0 ∩ In1(F1) and B = F1 ∪ (F0 \ A), see Fig. 1.
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The sets A and B are clearly independent. Moreover,

In1(F0) = In1(F0 ∩ In1(F1)) ∪ In1(F0 \ In1(F1)) ⊂ In2(F1) ∪ In1(B) ⊂ In2(B). (1)

Since F1 ⊂ Out1(A) and so Out1(F1) ⊂ Out2(A) we have

V \ In1(F0) ⊂ Out1(F1) ∪ In1(F1) ⊂ Out2(A) ∪ In1(B) ⊂ Out2(A) ∪ In2(B). (2)

(1) and (2) together yield V = Out2(A) ∪ In2(B). �

By a standard application of Gödel’s Compactness Theoremone can get the following consequence of Theorem1.1 for infinite
graphs:

Corollary 2.2. If in a digraph G every vertex has finite in-degree then G has a quasi-kernel.

Next we prove two stepping-up theorems. The first will imply immediately that every finitely chromatic digraph has
quasi-kernel. The second one will be applied in the next section.

Definition 2.3. A directed graph G is hereditary in Outn (or hereditary in Inm-Outn) iff all induced subgraphs of G are in Outn
(or in Inm-Outn, respectively).

Theorem 2.4. Let G = (V , E) be a directed graph and let n ≥ 1. Assume that V has a partition (V0, V1, . . . , Vk) such that
(i) G[V0] is hereditary in Outn+1,
(ii) for 1 ≤ i < k G[Vi] is hereditary in Outn,
(iii) either k = 0 or G[Vk] is in Outn.
Then G is Outn+1.

Proof. By induction on k. For k = 0 the claim is trivial. Assume now that k ≥ 1, the statement is true for k − 1 and prove it
for k.

By (iii) Vk = OutG[Vk]
n (Ak) for some independent sets Ak ⊂ Vk. For 0 ≤ i < k let V ′

i = Vi \ OutG1(Ak) and put
V ′

=
⋃

{V ′

i : 0 ≤ i < k}. Then we can apply the inductive hypothesis for G′
= G[V ′

] because (i) and (ii) imply that
the partition (V ′

0, V
′

1, . . . , V
′

k−1) satisfies (i)–(iii). Thus, V
′ contains an independent set A′ such that V ′

= OutG[V ′
]

n+1 (A′).
Let Ā = A′

∪ (Ak \OutG1(A
′)). Then Ā is independent because OutG1(Ak)∩A′

⊂ OutG1(Ak)∩V ′
= ∅, moreover Ak ⊂ OutG1(Ā)

and so OutG1(Ak) ⊂ OutG2(Ā). Since n + 1 ≥ 2 it follows that V = OutGn+1(Ā). �

This result gives us the following generalization of the Chvátal–Lovász Theorem:

Corollary 2.5. If G has finite chromatic number then G ∈ Out2.

Proof. Indeed, the monochromatic classes are independent, so they are hereditary in Out1. Thus, we can apply Theorem 2.4
to obtain G ∈ Out2. �

The following generalization of Theorem 2.4 is mainly a technical tool to be used later.

Theorem 2.6. Let G = (V , E) be a directed graph and let `,m ≥ 1. Assume that V has a partition (V0, V1, . . . , Vk) such that
(i) G[V0] is hereditary in Inm+1-Out`+1,
(ii) for 1 ≤ i < k G[Vi] is hereditary in Inm-Out`,
(iii) either k = 0 or G[Vk] is in Inm-Out`.
Then G is in Inm+1-Out`+1.

Proof. Similarly to the proof of Theorem 2.4, we use induction on k. For k = 0 the statement is trivial. Assume that k ≥ 1,
the claim is true for k − 1 and prove it for k.

Let (Xk, Yk) be an Inm-Out`-partition of G[Vk], i.e. Xk = OutG[Xk]
` (Ak) and Yk = InG[Yk]

m (Bk) for some independent sets Ak
and Bk.

Put V ∗
= (OutG1(Ak) ∪ InG

1(Bk)) \ Vk and V ′
= (V \ Vk) \ V ∗. For 0 ≤ i′ < k let V ′

i = Vi ∩ V ′.
Thenwe can apply the inductive hypothesis forG′

= G[V ′
] because the partition (V ′

0, V
′

1, . . . , V
′

k−1) satisfies (i)–(iii). Thus,

V ′ has a partition (X ′, Y ′) and there are independent sets A′
⊂ X ′ and B′

⊂ Y ′ such that X ′
= OutG[X ′

]

`+1 (A′) and Y ′
= InG[Y ′

]

m+1 (B
′).

Let (X, Y ) be a partition of V such that (X \ V ∗, Y \ V ∗) = (X ′
∪ Xk, Y ′

∪ Yk), X ∩ V ∗
⊂ OutG1(Ak) and Y ∩ V ∗

⊂ InG
1(Bk).

Then A = A′
∪ (Ak \ OutG1(A

′)) and B = B′
∪ (Bk \ InG

1(B
′)) are independent subsets of X and Y , respectively. Moreover,

X = OutG[X]

`+1 (A) and Y = InG[Y ]

m+1(B). �

The next corollary proves our conjectures for graphs which are built from simple blocks.

Corollary 2.7. Suppose G has a partition (A1, . . . , Ak) such that each G[Ai] is hereditary in In1-Out1 (for example, isomorphic to
one of (Z, <), (N, <), (N, >), or has no edges) then G ∈ In2-Out2.

Proof. Since every G[Ai] is hereditary in In1-Out1 apply Theorem 2.6 directly. �

Please cite this article in press as: P.L. Erdős, L. Soukup, Quasi-kernels and quasi-sinks in infinite graphs, Discrete Mathematics (2008),
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ARTICLE  IN  PRESS
4 P.L. Erdős, L. Soukup / Discrete Mathematics ( ) –

Fig. 2.

3. Tournament-like digraphs

Recall that (Z, <) 6∈ Out2 but it is in In1-Out1. We show that this remains true for arbitrary tournaments.

Theorem 3.1. An infinite tournament is either in Out2, or it is in In1-Out1.

Proof. Let G = (V , E) be a tournament, and x ∈ V be arbitrary. If y 6∈ Out2(x) then V = In1(x) ∪ Out1(y). Indeed, if
z 6∈ OutG1(y) then (z, y) ∈ E but xzy is not a directed path of length two in G by the choice of y, so (x, z) 6∈ E. Thus, (z, x) ∈ E,
i.e. z ∈ InG

1(x). Since z was arbitrary, we obtain G ∈ In1-Out1. �

If G = (V , E) is a digraph define the undirected complement of the digraph G̃ = (V , Ẽ) as follows: {x, y} ∈ Ẽ if and only if
(x, y) 6∈ E and (y, x) 6∈ E. The graph G̃ can be used to measure the difference between G and a tournament: the more edges
are in G̃, the larger the difference between G and a tournament is. For example, G is a tournament iff G̃ does not have any
edge.

Theorem 3.2. Let G = (V , E) be a directed graph. If Kn 6⊂ G̃ for some n ≥ 2 then G ∈ In2-Out2. Moreover, if G̃ is empty then
G ∈ Out2 ∪ In1-Out1, and if G̃ is triangle-free, then either G ∈ In1-Out2, or G ∈ In2-Out1.

Proof. By induction on n. If n = 2 then G̃ does not contain edges, i.e. G is a tournament and so we are done by the previous
theorem.

Assume now that the theorem is true for n−1 and prove it for n. Let A be amaximal independent set in G. If V = Out2(A)
then we are done.

If this is not the case, then let C be a maximal independent set in G[V \ Out2(A)]. Let L = In1(A) \ C , M = Out1(C) \ L
and N = V \ (L ∪ M), see Fig. 2.

Claim 1. There is no edge between N and C.

Proof of the Claim. Let x ∈ N . If a ∈ A then (x, a) 6∈ E because x 6∈ In1(A) but (a, x) ∈ E for some a ∈ A because A was
maximal. Moreover, for each c ∈ C we have (c, x) 6∈ E because x 6∈ Out1(C). But (x, c) 6∈ E as well otherwise the path
(a, x, c) witnesses that c ∈ Out2(A). �

Since C 6= ∅ we have that Kn−1 6⊂ G̃[N] (otherwise G̃ would contain Kn). Hence we can apply the inductive hypothesis
for G[N].
Case 1. n = 3.

Then G[N] is a tournament. If N = OutG[N]

2 (d) for some d ∈ N then L = InG[L]
1 (A) and V \ L = OutG[V\L]

2 (C ∪ {d}). Thus,
G ∈ In1-Out2.

Otherwise N has a partition P ∪ R and there are x ∈ P and y ∈ R such that P = OutG[P]

1 (x) and R = InG[R]
1 (y). Then

M ∪ P = OutG[M∪P]

1 (C ∪ {x})

and

L ∪ R = InG[L∪R]
2 ({y} ∪ {a ∈ A : (a, y) 6∈ E}).

Thus, G ∈ In2-Out1.
Case 2. n > 3.

By the inductive hypothesis G[N] is hereditary in In2-Out2 (since Kn 6⊂ G̃ is a hereditary property), moreover G[L∪M] ∈

In1-Out1, hence we can apply Theorem 2.6 for m = ` = 1, for the digraph G and for the partition (N, L ∪ K) to yield
G ∈ In2-Out2. �

Corollary 3.3. Let G = (V , E) be a directed graph. If G̃ has finite chromatic number then G is In2-Out2.

Indeed, if the chromatic number of G̃ is n then G̃ does not contain Kn+1.

Please cite this article in press as: P.L. Erdős, L. Soukup, Quasi-kernels and quasi-sinks in infinite graphs, Discrete Mathematics (2008),
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Remark. One can try to prove this corollary directly from Theorem 2.6. If G̃ has finite chromatic number then the vertex
set has a partition (V0, . . . , Vk) such that every G[Vi] is a tournament and so G[Vi] is hereditary in In1-Out2. Thus, applying
directly Theorem 2.6 one gets only G ∈ In2-Out3.

An undirected graph is called locally finite iff every vertex has finite degree.

Theorem 3.4. If G = (V , E) is a digraph such that G̃ is locally finite then G ∈ In2-Out2.

Proof. We prove the claim by transfinite induction on λ = |V |. If λ is finite then G ∈ Out2 by Theorem 1.1. We can assume
that λ = |V | is infinite and the claim is true for graphs of cardinality < λ. We distinguish two cases.
Case 1: There are x, y ∈ V such that the set U = OutG1(x) ∩ InG

1(y) has cardinality λ.
We will find a partition (X, Y ) of V such that X = OutG[X]

2 (x) and Y = InG[Y ]

2 (y). To this end fix an enumeration of the
vertices as V =

〈
vζ : ζ < λ

〉
. By transfinite induction on ζ < λ we construct disjoint subsets Xζ and Yζ of V such that

|Xζ | + |Yζ | ≤ ω + |ζ |, Xζ = Out
G[Xζ ]

2 (x) and Yζ = In
G[Yζ ]

2 (y).
Put X0 = {x} and Y0 = {y}. Assume that for all η < ζ we have already constructed Xη, Yη . If ζ is a limit ordinal put

Xζ =
⋃

{Xξ : ξ < ζ } and Yζ =
⋃

{Yξ : ξ < ζ }

If ζ is not a limit ordinal, i.e. ζ = η + 1, then we have Xη and Yη in such a way that Xη = OutG[Xη]

2 (x) and Yη = InG[Yη]

2 (y).
Let i = min{i′ : vi′ 6∈ Xη ∪ Yη}.

If |InG
1(vi) ∩ U| = λ then let

j = min{j′ : vj′ ∈ (InG
1(vi) ∩ OutG1(x)) \ (Xη ∪ Yη)},

and let Xζ = Xη ∪ {vi, vj} and Yζ = Yη .
If |InG

1(vi) ∩ U| < λ then |OutG1(vi) ∩ U| = λ because vi has finite degree in G̃. Let

j = min{j′ : vj′ ∈
(
OutG1(vi) ∩ InG

1(y)
)
\ (Xη ∪ Yη)},

and let Yζ = Yη ∪ {vi, vj} and Xζ = Xη . Put finally X = Xλ and Y = Yλ.
Case 2: |OutG1(x) ∩ InG

1(y)| < λ for each {x, y} ∈ [V ]2.
Fix the vertices x 6= y ∈ V arbitrarily, and put W = V \ (OutG1(x) ∪ InG

1(y)). Then W \ (InG
1(x) ∩ OutG1(y)) =

(W \ InG
1(x)) ∪ (W \ OutG1(y)) is finite because G̃ is locally finite. Thus, |W | < λ, hence G[W ] is hereditary in In2-Out2

by the inductive hypothesis. Moreover, V \ W = OutG1(x) ∪ InG
1(y), hence G[V \ W ] ∈ In1-Out1. Therefore, we can apply

Theorem 2.6 form = ` = 1, the digraph G and the partition (W , V \ W ) to yield G ∈ In2-Out2. �

4. Infinite tournaments

In this section we prove structural theorems for infinite tournaments.
For any cardinal κ let the digraph Tκ = (κ, ≥), i.e. (x, y) is an edge if and only if x ≥ y.

Theorem 4.1. For an infinite tournament G = (V , E) the following are equivalent:
(i) G 6∈ Out∞,
(ii) for some regular cardinal κ there is a surjective homomorphism ϕ : G → Tκ .

Proof. (ii) clearly implies (i): if ϕ(x) = k then ϕ(y) ≤ k for each y ∈ OutG
∞

(x), and so OutG
∞

(x) 6= V because ϕ is surjective.
Assume now that (i) holds, i.e. G 6∈ Out∞. By transfinite recursion construct a sequence

〈
xη : η < ξ

〉
of vertices such that

(a) xζ 6∈ OutG
∞

({xη : η < ζ }) for ζ < ξ ,
(b) V = OutG

∞
({xη : η < ξ}).

Since (xζ , xη) ∈ E for η < ζ < ξ we have OutG
∞

({xη : η ≤ ζ }) = OutG
∞

(xζ ) for ζ < ξ . So if ξ = ζ + 1 then V = OutG
∞

(xζ )

which contradicts G 6∈ Out∞. Thus, ξ is a limit ordinal. Let κ = cf(ξ) and let
〈
ξη : η < κ

〉
be a strictly increasing cofinal

sequence in ξ .
Define ϕ : V → κ by the formula ϕ(v) = min{η : v ∈ OutG

∞
(xξη )}. The map ϕ is clearly a homomorphism onto Tκ

because ϕ(xξη ) = η. �

Define the digraph T(3)
= 〈ω, E〉 as follows

E = {(x, y) : x ≥ y} ∪ {(x, x + 1) : x ∈ ω}. (3)

T(3) can be obtained from Tω by adding the edges {(n, n + 1) : n ∈ ω}, see Fig. 3.

Theorem 4.2. For an infinite tournament G ∈ Out∞ the following are equivalent:
(i) G 6∈ Out3,
(ii) G 6∈ Outn for any n ≥ 3,
(iii) there is a surjective homomorphism ϕ : G → T(3).

Please cite this article in press as: P.L. Erdős, L. Soukup, Quasi-kernels and quasi-sinks in infinite graphs, Discrete Mathematics (2008),
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Fig. 3.

Fig. 4.

Proof. (iii) clearly implies (ii): if ϕ(x) = k then ϕ(y) ≤ k + n for each y ∈ OutGn(x).
To prove that (i) implies (ii) assume that G ∈ Outn for some n ≥ 3. Fix x ∈ V such that V = OutGn(x). If V 6= OutG3(x) then

there is a k > 3 such that V = OutGk (x) but V 6= OutGk−1(x). Pick y ∈ OutGk (x)\Out
G
k−1(x). We claim that V = OutG3(y). Indeed,

OutGk−2(x) ⊂ OutG1(y) because y 6∈ OutGk−1(x). Hence OutGk−1(x) = OutG1(Out
G
k−2(x)) ⊂ OutG2(y) and so finally we obtain that

V = OutGk (x) = OutG1(Out
G
k−1(x)) ⊂ OutG3(y).

Finally assume that (ii) holds. Since G ∈ Out∞ there is an x ∈ V with V = OutG
∞

(x). Define ϕ : V → N as follows:
ϕ(y) = min{n : y ∈ OutGn(x)}. ϕ is clearly a homomorphism and it is onto because OutGn(x) 6= V for n ∈ N. �

Problem 4.3. Find a characterization of G 6∈ Out2 a la Theorem 4.2.

5. Infinite digraphs generated by a finite structure

Theorem 5.1. There is an infinite tournament in Out3 \ Out2.

To prove this claim we develop a recursive method to construct infinite digraphs from certain finite ones and we
investigate the properties of the graphs which can be obtained in this way.

Definition 5.2. A terminated digraph is a triplet G = (N, E, T ), where EG = (N ∪ T , E) is a digraph, N ∩ T = ∅ and
T 6= ∅. The elements of T are the terminal vertices of G, the elements of N are the nonterminal vertices of G. For a terminated
digraph G = (N, E, T ) write VG = N ∪ T , EG = E, TG = T and NG = N .

To simplify our notation we write OutGn(A) (or InG
k (B)) for Out

EG
n(A) (or for InEG

k (B), respectively).
Assume that we have two terminated digraphs G0 = (N0, E0, T0) and G1 = (N1, E1, T1). Construct a new terminated

digraph G0 � G1 = (N, E, T ) from G0 and G1 as follows: keep the terminal vertices of G0 and blow up each nonterminal
vertex v of G0 to a (disjoint) copy of G1. So we set

N = N0 × N1 and T = T0 ∪ (N0 × T1).
The edges will be ‘‘inherited’’ from G and H in a natural way.

If x is a finite sequence of length n, then for i < n denote by x(i) the ith member of the sequence, i.e. x =〈
x(0), x(1), . . . , x(n−1)

〉
.

If x and y are finite sequences, none of them is an initial segment of the other, then let ∆(x, y) be the minimal i such that
x(i) 6= y(i). For example, if a 6= b then ab(0) = a, ab(1) = b, a(0) = a, ∆(aa, ab) = 1 and ∆(b, ab) = 0.

The elements of N ∪T are just finite sequences of length≤ 2, moreover none of them is an initial segment of some other.
Using this notation, let

E = {(x, y) ∈ (N ∪ T ) × (N ∪ T ) : (x(∆(x,y)), y(∆(x,y))) ∈ E∆(x,y)}.

See Fig. 4.
Observe that

G0[T0] is a induced subgraph of (G0 � G1)[T ]. (4)
Fix a terminated digraph G = (N, E, T ). Define the sequence 〈Gn : n ∈ N〉 of terminated digraphs as follows: G0 = G,

Gn+1 = Gn � G. Write Gn = 〈Nn, En, Tn〉 for n < ω. Then we have
G0[T0] ⊂ G1[T1] ⊂ G2[T2] ⊂ · · · (5)

Take

G∞
=

⋃
{Gn[Tn] : n ∈ N}. (6)

This was the informal definition of G∞. The formal definition is much shorter:
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Fig. 5.

Definition 5.3. If G = (N, E, T ) is terminated digraph, then define the digraph G∞
= (N∗ _T , F) as follows:

F = {(x, y) : (x(∆(x,y)), y(∆(x,y))) ∈ E},

where ∆(x, y) = min{i : x(i) 6= y(i)}.

We will write V∞ instead of V (G∞) and E∞ instead of E(G∞).
We will use the following convention: if G = (N, E, T ) is a terminated digraph, then V denotes N ∪ T .
First we prove two theorems which will give the example needed in Theorem 5.1.

Proposition 5.4. Let G = (N, E, T ) be a finite terminated digraph. Then the following are equivalent:

(i) G∞
∈ Out3,

(ii) G∞
∈ Out∞,

(iii) In1(v) 6= {v} for each v ∈ N.

Proof. Clearly (i) implies (ii).
Assume that (iii) fails: i.e. InG

1(v) = {v} for some v ∈ N . Define ϕ : V (G∞) → ω as follows: ϕ(s) = min{n : s(n) 6= v}.
Then ϕ is a surjective homomorphism from G∞ onto Tω , so G∞

6∈ Out∞ (See Theorem 4.1). Thus, (ii) implies (iii).
Assume (iii). Write V = N ∪ T . For v ∈ V define v′

∈ V∞ as follows: v′
= v for v ∈ T and v′

= v _t for v ∈ N , where
t ∈ T is arbitrary.

Let A ⊂ V be an independent subset such that V = OutG2(A). Put K = {a′
: a ∈ A}. Then K is clearly independent in G∞.

We claim that V∞
= OutG

∞

3 (K).
Let x ∈ V∞. Then there is a ∈ A and a directed path 〈s0, . . . , sn−1〉 from a to x(0) for some n ≤ 2. If n > 0 then〈

s′0, . . . , s
′

n−2, x
〉
is a directed path in G∞, and so we are done because s′0 = a′

∈ K .
Assume now that n = 0, i.e. x(0) ∈ A. If x(0) ∈ T then x = x(0) by the definition of V∞, and so x = x(0) = x(0)′ ∈ K .
If x(0) ∈ N then there is w ∈ V with (w, x(0)) ∈ E by (iii). Then there is an a ∈ A and a directed path 〈s0, . . . , sn−1〉 from

a to w for some n ≤ 2. Then
〈
s′0, . . . , s

′

n−1, x
〉
is a path from a′

∈ K to x of length at most 3. �

Fact 5.5. If (N ∪ T , E) is a tournament for some terminated digraph G = (N, E, T ), then G∞ is also a tournament.

Proposition 5.6. If G = (N, E, T ) is a finite terminated digraph, then following are also equivalent:

(i) V∞
= OutG

∞

2 (s) for some s ∈ V∞,
(ii) there is an a ∈ T with V = OutG2(a).

Proof. First of all observe that (ii) clearly implies (i): if V = OutG2(a) for some a ∈ T then V∞
= OutG

∞

2 (a).
Assume now that (ii) fails and let s ∈ V∞ be arbitrary, s = r _a, where r ∈ N∗ and a ∈ T . Since (ii) fails we can pick

b ∈ V \OutG2(a). Let u = r _b ∈ V∞ if b ∈ T , and let u = r _b _c ∈ V∞ for some c ∈ T if b ∈ N . We claim that u 6∈ OutG
∞

2 (s).
Clearly s 6= u and (s, u) 6= E∞ because a 6= b and (a, b) 6∈ E, respectively.

Assume on the contrary that 〈s, y, u〉 is a directed path of length 2 in G∞. Since r is a common initial segment of s and u
we have that r should be an initial segment of y, as well. Write y = r _d _z, where d ∈ V . Since (s, y) ∈ E∞ we have d 6= b.
Since (y, u) ∈ E∞ we have d 6= a. Thus, a, b and d are pairwise different vertices and so 〈a, d, b〉 should be a directed path
of length 2 in Gwhich contradicts b 6∈ OutG2(a). �

Proof of Theorem 5.1. After this preparation we are ready to construct an infinite tournament in Out3 \ Out2. Consider the
following terminated digraph: G = ({1, 2, 3}, E, {0}), where

E = {(0, 1), (1, 2), (2, 3), (3, 1), (3, 0), (2, 0)}.

See Fig. 5.
EG is a finite tournament, soG∞ is a tournament by Fact 5.5, and by Propositions 5.4 and 5.6wehaveG∞

∈ Out3\Out2. �

Theorem 5.7. If G = 〈N, E, T 〉 is a finite terminated digraph, then G∞
∈ In2-Out2. Moreover, if N is independent, then G∞

either has a quasi-kernel or a quasi-sink.
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Proof. We distinguish two cases depending on whether N is independent or not.
Case I: There is an edge (x, y) ∈ E ∩ (N × N).

Let A = InG
1({x, y}) ∪ OutG1({x, y}) and choose an independent set B ⊂ V \ A such that OutG[V\A]

2 (B) = V \ A. Write
BN = B ∩ N and BT = B ∩ T . Fix an element t ∈ T . Let

K = B∗

N
_xt, K ′

= B∗

N
_BT , L = K ∪ K ′ and M = B∗

N
_yt.

Clearly L andM are independent subsets in V∞.
We want to find a partition (P, S) of V∞ such that L is a quasi-kernel in G∞

[P], andM is quasi-sink in G∞
[S].

Fix a partition (X, Y ) of A such that

x ∈ X ⊂ InG
1(x) ∪

(
InG

1(y) \ {y}
)

and y ∈ Y ⊂
(
OutG1(x) \ {x}

)
∪ OutG1(y). (7)

LetW = (B∗

N
_A _V ∗) ∩ V∞ and define the partition (R, S) ofW as follows:

R = (B∗

n
_xt) ∪

(
(B∗

n
_Y _V ∗) ∩ V∞

)
\ (B∗

N
_yt) (8)

and

S = (B∗

n
_yt) ∪

(
(B∗

n
_X _V ∗) ∩ V∞

)
\ (B∗

N
_xt). (9)

Claim 2. K is a quasi-kernel in G[R], and M is a quasi-sink in G[S].

Proof. Let b ∈ B∗

N . Then

OutG[R]
1 (b _xt) ⊃

(
b _Y ∩ OutG1(x)

)
_V ∗. (10)

Since b _yxt ∈ R, (b _xt, b _yxt) ∈ E∞ and

OutG[R]
1 (b _yxt) ⊃

(
b _Y ∩ OutG1(y) \ {y}

)
_V ∗ (11)

we have

OutG[R]
2 (b _xt) ⊃ (b _Y ∩ OutG1(y) \ {y}) _V ∗ (12)

(10) and (12) together give R = OutG[R]
2 (K). S = InG[S]

2 (M) can be proved similarly. �

Now let Z = (V∞
\ W ) ∪ K .

Claim 3. Z = OutG
∞

[Z]

2 (L).

Proof. Let s ∈ V∞
\ W . Write s = s′ _p _s′′, where s′ ∈ B∗

N , p ∈ V \ BN and s′′ ∈ V ∗. Since s 6∈ W we have p 6∈ A. If p ∈ BT
then s = s′ _p ∈ K .

Hence we can assume that p ∈ V \ (A ∪ B). Thus, there is directed path 〈x0, . . . , xn〉 in G[V \ A] such that 1 ≤ n ≤ 2,
x0 ∈ B and xn = p. Let x0 = x0 if x0 ∈ T , and let x0 = x0 _xt if x0 ∈ N . Then s′ _x0 ∈ L and

〈
s′ _x̄0, s

〉
∈ E∞ if n = 1, or〈

s′ _x̄0, s′ _x1, s
〉
is a directed path in G∞ if n = 2. Thus, s ∈ OutG

∞
[Z]

2 (L). �

Let P = R ∪ Z . Then (P, S) is a partition V∞ and it witnesses that the digraph G∞ is in In2-Out2: L is a quasi-kernel in
G∞

[R ∪ Z], andM is a quasi-sink in G∞
[S] by Claims 2 and 3. This concludes Case I.

Case II: N is independent.
We show that G∞

∈ In2 ∪ Out2.

Lemma 5.8. If there is an independent set A ⊂ V with T ∩ A 6= ∅ such that OutG2(A) = V (or InG
2(A) = V) then G∞

∈ Out2 (or
G∞

∈ In2, respectively).

Proof of Lemma 5.8. We show that K = (A ∩ N)∗ _(A ∩ T ) is a quasi-kernel in G∞. The set K is clearly independent in G∞

because Awas independent.
Fix an element t ∈ T ∩ A. For x ∈ T let x = x and for x ∈ N let x = x _t .
Let s ∈ V∞. If s ∈ A∗ then s ∈ K , so we can assume that s = s′ _p _s′′, where p ∈ V \ A. Then there is an a ∈ A

such that either (a, p) ∈ E or there is an x ∈ V such that (a, x) ∈ E and (x, p) ∈ E. Then s′ _a ∈ K and in the first
case (s′ _a, s) is an edge in G∞, and in the second case (s′ _a, s′ _d, s) is a directed path of length 2 in G∞. Therefore,
s ∈ OutG

∞

2 (s′ _a) ⊂ OutG
∞

2 (K), as we claimed. �

Lemma 5.9. If T 6⊂ OutG1(N), then G∞
∈ Out2, and if T 6⊂ InG

1(N), then G∞
∈ In2.
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Proof of Lemma 5.9. Let t ∈ T \ OutG1(N), B = OutG1(t), and A′
⊂ V \ B be independent such that V \ B = OutG[V\B]

2 (A′). If
A = A′

∪ {t} is independent, then by Lemma 5.8 we are done.
Otherwise there is an a ∈ A′ with (a, t) ∈ E because OutG1(t) ∩ A = ∅. Then t ∈ OutG1(a) and so a 6∈ N , i.e. a ∈ T . Hence

A′ satisfies the assumptions of Lemma 5.8, and so G∞
∈ Out2. �

Thus, we may assume that

T ⊂ OutG1(N) ∩ InG
1(N). (13)

With this assumption,

if N ⊂ OutG1(T ), then G∞
∈ Out2. (14)

Indeed, we show that K = {y _t : y ∈ N} is a quasi-kernel in G∞, where t is an arbitrary element of T . K is independent,
as N is so.

Let s ∈ V∞. If s ∈ T , then by (13) we have (y, s) ∈ E for some y ∈ N and so s ∈ OutG
∞

1 (y _t) ⊂ OutG
∞

1 (K).
If s = x _s′ for some x ∈ N then there is a u ∈ T with (u, x) ∈ E by the assumption N ⊂ OutG1(T ). Then, by (13), there is

a y ∈ N with (y, u) ∈ E. Thus, 〈y, u, x〉 is a directed path of length 2 in G and so
〈
y _t, u, x _s′

〉
is a directed path of length 2

in G∞. Hence s ∈ OutG
∞

2 (K), as we claimed in (14).
Thus, we may assume that

N 6⊂ OutG1(T ) and N 6⊂ InG
1(T ). (15)

Let A = N \ OutG1(T ) and B = N \ InG
1(T ). Hence A 6= ∅ and B 6= ∅ by (15).

Since T 6= ∅ and T ⊂ InG
1(N) we have N ∩ OutG1(T ) 6= ∅ and so A 6= N . Similarly, B 6= N .

Let t ∈ T be fixed, and put K = A∗ _(N \ A) _t . We claim that K is a semi-kernel in G∞.
If p 6= q ∈ K then we have {p(∆(p, q)), q(∆(p, q))} ∈ [N]2 and so there is no edge between p and q in G∞. Hence K is

independent.
Let L = A∗ _T . Now we have

OutG
∞

1 (K) ⊃ L. (16)

Indeed, if x ∈ A∗ and s ∈ T then there is c ∈ N with (c, s) ∈ E because of (13). If c ∈ N \ A then x _c _t ∈ K and
(x _c _t, x _s) ∈ E∞. If c ∈ A then x _c _b _t ∈ K and (x _c _b _t, x _s) ∈ E∞ for any b ∈ N \ A 6= ∅.

Moreover, we claim that

OutG
∞

1 (L) = V∞. (17)

Indeed, let x ∈ V∞
\ L. Let n be maximal such that x � n ∈ An. Since x 6∈ L we have c = x(n) ∈ N \ A. Hence c ∈ OutG1(T ), so

we can pick s ∈ T with (s, c) ∈ E. Then (x � n) _s ∈ L and (x � n _s, x) ∈ E∞.
Hence OutG

∞

2 (K) ⊇ OutG
∞

1 (L) = V∞, i.e. K is a quasi-kernel G∞, as we claimed. This concludes Case II, so Theorem 5.7 is
proved. �
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