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Abstract: P. L. Erdős and L. A. Székely [Adv. Appl. Math. 10 (1989), 488–496] gave a bijection

between rooted semilabeled trees and set partitions, which specializes to a bijection between

phylogenetic trees and set partitions with classes of size > 2. L. H.Harper’s results [Ann. Math.
Stat. 38 (1967), 410–414] on the asymptotic normality of the Stirling numbers of the second

kind translate into asymptotic normality of rooted semilabeled trees with given number of vertices,

when the number of internal vertices varies. The asymptotic normality of modified Stirling numbers

of the second kind that enumerate partitions of a fixed set into a given number of classes of

size > 2, which is shown in this paper, translates into the asymptotic normality of the number

of phylogenetic trees with given number of vertices, when the number of leaves varies. We also

obtain the asymptotic normality of the number of phylogenetic trees with given number of leaves

and varying number of internal vertices, which is more relevant for phylogeny. By the bijection,

this means the asymptotic normality of the number of partitions of n+m � 1 elements into m

classes of size > 2, when n is fixed and m varies. The proofs are adaptations of the techniques of

L.H.Harper [ibid.]. We provide asymptotics for the relevant expectations and variances with error

term O(1/n).
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221] Asymptotically normal distribution of some tree families 13

1. Asymptotic normality

Let S(a, b) (S⋆(a, b)) denote the Stirling number of the second kind, i. e. the

number of partitions of an a-element set into b classes, each with at least one (two)

elements. S(a, b) is the Stirling number of the second kind, and the Bell number

(see the sequence A000110 in [17]) is
X
b

S(a, b) = Ba . This paper proves central

and local limit theorems for the arrays S⋆(n, k) and Tn,m = S
⋆(n�1+m,m). Such

results for the array S(a, b) have been long known [12]. The technique used in this

paper is Harper’s method [12], who gave a very elegant proof for the asymptotic

normality of the array S(n, k). We follow the interpretation of Canfield [2] and

Clark [6], who clarified and explained the details of [12] while generalizing his

method, although our discussion is somewhat restrictive. These limit theorems are

relevant to phylogenetic tree enumeration by the bijection in [7]. We compute the

expectations and variances with O(1/n) error term, to support the phylogeneticists

who may use our results for approximation.

Let A(n, j) be an array of non-negative real numbers for j = 1, . . . , dn , and

define An(x) =

X
j

A(n, j)xj . Observe that
X
j

A(n, j) = An(1). Let Zn denote

the random variable, for which the probability P(Zn = j) =
A(n, j)

An(1)
. In terms of

An(x), there is a well-known [6] and easy to verify expression for the expectation

and variance of Zn :E(Zn) =
A0
n(1)

An(1)
and D2(Zn) =

A0
n(1)

An(1)
+

�
A0
n(x)

An(x)

�0����
x=1

. (1)

As E(Zn) and D(Zn) are determined by the array A(n, j), we will also write them

as E(A(n, .)) and D(A(n, .))

The array A(n, j) is called asymptotically normal in the sense of a central limit
theorem, if

1

An(1)

bxn
X
j=1

A(n, j)! 1p
2π

xZ�1 e�t2/2 dt, (2)

as n!1 uniformly in x, where

xn = E(Zn) + xD(Zn). (3)
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14 É. Czabarka, P. L. Erdős, V. Johnson, A. Kupczok, L. A. Székely [222

If all the roots of the polynomial An(x) are non-positive real numbers, and

lim
n!1D(Zn) = 1, (4)

then the array A(n, j) is known to be asymptotically normal, furthermore, by [2,13],

the following local limit theorem holds:

lim
n!1 D(Zn)

An(1)
A(n, bxn
) =

1p
2π
e�x2/2 (5)

uniformly in x. The fact that the convergence of the A(n, j) numbers to the Gaussian

function is actually uniform, implies that the number k = Jn maximizing A(n, k)

satisfies

Jn � E(Zn) = o(D(Zn)); (6)

and

A(n, Jn) � 1p
2π

An(1)Dn(Zn)
. (7)

2. Set partitions without singletons

Theorem 1. For the sequence A(n, j) = S⋆(n, j) the central limit theorem (2) and
the local limit theorem (5) hold withE(S⋆(n, .)) =

n

r
� r� 1

2r
+

1

2r(r+ 1)2
+O

�
1

n

�
, (8)D2(S⋆(n, .)) =

n

r(r+ 1)
� r+ 1� 2

r+ 1
� 1

2(r+ 1)2
� 1

2(r+ 1)3
+

+
1

(r+ 1)4
+ O

�
1

n

�
. (9)

In explicit terms, E(S⋆(n, .)) =
n

ln n
+
n
�
ln ln n+O

�
1

ln n

��
ln2 n

, (10)D2(S⋆(n, .)) =
n

ln2 n
+
n
�
2 ln ln n� 1 +O

�
1

ln n

��
ln3 n

. (11)
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223] Asymptotically normal distribution of some tree families 15

Furthermore, the number k = Jn that maximizes S⋆(n, k) satisfies

Jn =
n

r
+ o

�p
n

r

�
(12)

and

S⋆(n, Jn) =
rBn�1p
2nπ

(1 + o(1)). (13)

Proof. We start with some facts that we need. Set B⋆
n =

X
k

S⋆(n, k), the number

of all partitions of an n-element set not using singleton classes (see the sequence

A000296 in [17]). Becker [1] observed that 1)

Bn = B⋆
n+1 + B⋆

n. (14)

From Bi = B
⋆
i + B

⋆
i+1 for i = 1, 2, . . . , n, and B

⋆
1 = 0, we obtain B

⋆
n+1 =

=

nX
i=1

Bi(�1)n�i . As the Bn sequence is strictly increasing, we immediately obtain

Bt �Bt�1 < B⋆
t+1 =

tX
i=1

Bi(�1)t�i < Bt for t > 3, and with t = n� h the asymp-

totical formula

B
⋆
n+1 = Bn � Bn�1 + . . .+ (�1)hBn�h +O(Bn�h�1). (15)

In the special case h = 0, using (21), we obtain:

B⋆
n+1 = Bn � O(Bn�1) = Bn

�
1� O

�
r

n

��
. (16)

We obtain the recurrence relation

S
⋆(n, k) = (n� 1)S⋆(n� 2, k� 1) + kS

⋆(n� 1, k), (17)

according to the case analysis whether the nth element is in a doubleton class or

not. We define the polynomial sequence Sn(x) =

X
k

S
⋆(n, k)xk . It is easy to see

1) Identity (14) can be proved by the following bijection from the partitions with at least one singleton

class of an n-element set, [n], to the partitions without singleton classes of an n+1-element set, [n+1]:

build a new class from the elements of all singletons and n+ 1.
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16 É. Czabarka, P. L. Erdős, V. Johnson, A. Kupczok, L. A. Székely [224

that S1(x) = 0, S2(x) = x, and for n > 3 from (17),

Sn(x) = (n� 1)xSn�2(x) + xS
0
n�1(x). (18)

For the proof, first we compute E(S⋆(n, .)) and D(S⋆(n, .)) exactly and then asympto-

tically. The central and local limit theorems hinge on the relation D(S⋆(n, .))!1.

Salvy and Shackell [15] showed (10,11) originally for S(n, k), but not for S⋆(n, k).

However, it is shown in [4] thatE(S(n, .)) =
n

r
� 1 +

r

2(r+ 1)2
+ O

�
1

n

�
, (19)D2(S(n, .)) =

n

r(r+ 1)
+

r(r� 1)

2(r+ 1)4
� 1 + O

�
r

n

�
. (20)

Using these asymptotic expansions we obtain that E(S⋆(n, .)) � E(S(n, .)) = O(r)

and D2(S⋆(n, .))�D2(S(n, .)) = O(r). The explicit asymptotics follow from these

remarkably small differences. Formulae (12) and (13) follow from (6) and (7), where

B�
n is approximated with Bn�1 by (16).

We obtain from (1), using (18) repeatedly,E(S⋆(n, .)) =
B⋆
n+1

B⋆
n

� n
B⋆
n�1

B⋆
n

,D2(S⋆(n, .)) =
B⋆
n+2

B⋆
n

+ 2n
B⋆
n+1B

⋆
n�1

(B⋆
n)2

+ n(n� 1)
B⋆
n�2

B⋆
n

�� �B⋆
n+1

B⋆
n

�2 � n
2

�
B⋆
n�1

B⋆
n

�2 � n
B⋆
n�1

B⋆
n

� (2n+ 1).

Canfield and Harper [5], Canfield [3] made minor modifications on the asymptotics

of Moser and Wyman [14] to develop asymptotics for Bn+h , which holds uniformly

for h = O(ln n), using a single r = r(n) value, as n!1:

Bn+h =
(n+ h)!

rn+h

ee
r�1

(2πB)1/2
��1 +

P0 + hP1 + h2P2

er
+

+
Q0 + hQ1 + h2Q2 + h3Q3 + h4Q4

e2r
+O(e�3r)

�
, (21)

where B = (r2 + r)er , Pi and Qi are explicitly known rational functions of r.

We list and use in the Maple worksheet [18] their exact values from Canfield [4].
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225] Asymptotically normal distribution of some tree families 17

To obtain (8) and (9), we started with the closed forms above, used (15) for the

B
⋆ numbers, substituted the B numbers with (21), and changed e

�r to r/n. For

details, see the Maple worksheet [18].

Finally, Lemma 1 will provide the non-positive real roots of the generating

polynomial. By induction from (18) we see that for n > 2 one has

deg(Sn(x)) =

�
n

2

�
(22)

and the root x = 0 has multiplicity one. Hence S0n(0) > 0 for n > 2. �

Lemma 1. Apart from x = 0, the roots of S2n(x) and S2n+1(x) are negative real num-
bers and every root occurs with multiplicity one. Furthermore, if the roots of S2n(x) are
denoted by β(2n)

i in increasing order, and the roots of S2n�1(x), S2n+1(x) are denoted by

α
(2n�1)
i , α(2n+1)

i , both in increasing order, then the following interlacing properties hold:

β
(2n)
1 <α

(2n�1)
1 <β

(2n)
2 <α

(2n�1)
2 <. . .<β

(2n)
n�1<α

(2n�1)
n�1 =0=β

(2n)
n ,

β
(2n)
1 <α

(2n+1)
1 <β

(2n)
2 <α

(2n+1)
2 <. . .<α

(2n+1)
n�2 <β

(2n)
n�1<α

(2n+1)
n�1 <β

(2n)
n =0=α

(2n+1)
n .

We will use induction in n. The roots of S2(x) = S3(x) = x, S4(x) = 3x2 + x

(roots β
(4)
1 = �1/3 and β

(4)
2 = 0) and S5(x) = 10x2 + x (roots α

(5)
1 = �1/10 and

α
(5)
2 = 0) satisfy Lemma 1. The inductive step is provided by the following two

statements for n > 2:

(i) If the roots of S2n�2(x) and S2n�1(x) occur with multiplicity one and satisfy

β
(2n�2)
1 < α

(2n�1)
1 < β

(2n�2)
2 < α

(2n�1)
2 < . . . < α

(2n�1)
n�2 < β

(2n�2)
n�1 = 0 = α

(2n�1)
n�1 ,

then the roots β
(2n)
i of S2n(x) satisfy

β
(2n)
1 < α

(2n�1)
1 < β

(2n)
2 < α

(2n�1)
2 < . . . < β

(2n)
n�1 < α

(2n�1)
n�1 = 0 = β

(2n)
n .

(ii) If the roots of S2n�1(x) and S2n(x) occur with multiplicity one and satisfy

β
(2n)
1 < α

(2n�1)
1 < β

(2n)
2 < α

(2n�1)
2 < . . . < β

(2n)
n�1 < α

(2n�1)
n�1 = 0 = β(2n)

n ,

then the roots α
(2n+1)
i of S2n+1(x) satisfy

β
(2n)
1 <α

(2n+1)
1 <β

(2n)
2 <α

(2n+1)
2 <. . .<α

(2n+1)
n�2 <β

(2n)
n�1<α

(2n+1)
n�1 <β(2n)

n =0=α(2n+1)
n .
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18 É. Czabarka, P. L. Erdős, V. Johnson, A. Kupczok, L. A. Székely [226

First we prove (i). In our setting the identity (18) specifies to

S2n(x)

x
= (2n� 1)S2n�2(x) + S

0
2n�1(x), (23)

where the RHS is the sum of two polynomials of degree n�1 and n�2, respectively.

Set α
(2n�1)
0 = �1. The proof hinges on the following three claims:� the sign of S2n�2(x) alternates on α

(2n�1)
i , α

(2n�1)
i+1 for i = 0, 1, . . . , n� 3;� the sign of S02n�1(x) alternates on α

(2n�1)
i , α

(2n�1)
i+1 for i = 1, . . . , n� 2;� sign(S2n�2(α

(2n�1)
1 )) = sign(S02n�1(α

(2n�1)
1 )).

The first claim follows from the hypotheses.

The second claim follows from the fact that S02n�1(x) is a polynomial of de-

gree n� 2 and it has exactly one root in every interval
�
α
(2n�1)
i , α

(2n�1)
i+1

�
for

i = 1, 2, . . . , n � 2, as it must have a root between consecutive roots of S2n�1(x).

The third claim follows from the facts that

sign
�
S2n�2

�
α
(2n�1)
1

��
= � sign

�
S2n�2(�1)

�
= �(�1)n�1,

as S2n�2(x) has a single root, β
(2n�2)
1 , which is less than α

(2n�1)
1 ; and

sign
�
S
0
2n�1

�
α
(2n�1)
1

��
= sign

�
S
0
2n�1(�1)

�
= (�1)n�2,

as S02n�1(x) has no root less than α
(2n�1)
1 .

From the three claims and (23) it follows that the sign of S2n(x)/x, and hence

of S2n(x), alternates on α
(2n�1)
i , α

(2n�1)
i+1 for i = 1, . . . , n� 3; and this fact provides

the required root β
(2n)
i+1 between these numbers, i = 1, . . . , n� 3.

From theproof of the third claimand (23) it follows that sign
�
S2n(α

2n�1
1 )/α2n�1

1

�
=

=(�1)n. If we show that S2n(x)/x has a different sign at �1, then we provide

the required root β
(2n)
1 < α

(2n�1)
1 for S2n(x)/x, and hence for S2n(x). Indeed, the

degree of S2n�2(x) is greater than the degree of S02n�1(x), and therefore the sign of

S2n(x)/x at �1 is the sign of S2n�2(x) at �1, namely (�1)n�1 .

As S2n�2(α
(2n�1)
n�1 ) = S2n�2(0) = 0, the second and the third claim, and (23)

imply that S2n(x)/x alternates on α
(2n�1)
n�2 , α

(2n�1)
n�1 , providing the required root β

(2n)
n�1

between these numbers, also for S2n(x). Finally, the last root to find is β(2n)
n = 0.
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227] Asymptotically normal distribution of some tree families 19

Next we prove (ii). In our setting the identity (18) specifies to

S2n+1(x)

x
= 2nS2n�1(x) + S

0
2n(x), (24)

where the RHS is the sum of two polynomials of degree n� 1. The proof hinges on

the following three claims:� the sign of S2n�1(x) alternates on β
(2n)
i , β

(2n)
i+1 for i = 1, . . . , n� 2;� the sign of S02n(x) alternates on β

(2n)
i , β

(2n)
i+1 for i = 1, . . . , n� 1;� sign(S2n�1(β

(2n
1 )) = sign(S02n(β(2n)

1 )).

The first claim follows from the hypotheses.

The second claim follows from the fact that S02n(x) is a polynomial of degree

n� 1 and it has exactly one root in every interval with the endpoints β
(2n)
i , β

(2n)
i+1 for

i = 1, 2, . . . , n� 1, as it must have a root between consecutive roots of S2n(x).

The third claim follows from the facts that

sign
�
S2n�1

�
β
(2n)
1

��
= sign

�
S2n�1(�1)

�
= (�1)n�1,

and

sign
�
S02n�β(2n)

1

��
= sign

�
S0(2n)(�1)

�
= (�1)n�1,

as neither S02n(x) nor S2n�1(x) has a root less than β
(2n)
1 .

From the three claims and (24) it follows that the sign of S2n+1(x)/x, and

hence of S2n+1(x), alternates on β
(2n)
i , β

(2n)
i+1 for i = 1, . . . , n � 2; and this fact

provides the required root α
(2n+1)
i between these numbers, i = 1, . . . , n� 2.

As S2n�1(β
(2n)
n ) = S2n�1(0) = 0, the second and the third claim, and (24)

imply that S2n+1(x)/x alternates on β
(2n)
n�1, β

(2n)
n , providing the required root α

(2n+1)
n�1

between these numbers, also for S2n(x). Finally, the last root to find is α(2n+1)
n = 0.

3. Semilabeled trees and set partitions

Let F(n, k) denote the number of rooted semilabeled trees with k uniquely labeled

leaves and n non-root vertices. Such trees have a root, which may or may not have

degree one, and is not being counted as vertex or leaf; and have k leaves. Two such

trees are identical, if there is a graph isomorphism between them that maps root to

root and every leaf label to the same leaf label.

02-czabarka.tex



20 É. Czabarka, P. L. Erdős, V. Johnson, A. Kupczok, L. A. Székely [228

Erdős and Székely in [7] established a bijection between the trees counted by

F(n, k) and partitions of an n-element set into n � k + 1 classes, under which

out-degrees of non-root vertices and the root correspond to class sizes in the

partition. (Their result immediately implies that F(n, k) = S(n, n � k + 1).) We

use the term phylogenetic tree for semilabeled trees, in which the root degree is

> 2 and every internal vertex has degree > 3. Let F ⋆(n, k) denote the number

of phylogenetic trees with k leaves and n non-root vertices. The bijection provides

F
⋆(n, k) = S

⋆(n, n� k+ 1) and S⋆(n, i) = F
⋆(n, n� i+ 1).

Any information available on the S (S⋆) numbers kind can translate to infor-

mation on the F (F ⋆) numbers. The central and local limit theorems for S(n, k)

[12] translate into such for F(n, k) (with E(F(n, .)) = n + 1 � E(S(n, .)) andD(F(n, .)) = D(S(n, .))); the central and local limit theorems for S⋆(n, k) (Theo-

rem 1) translate into such for F ⋆(n, k) (with E(F ⋆(n, .)) = n+ 1� E(S⋆(n, .)) andD(F ⋆(n, .)) = D(S⋆(n, .))).

Felsenstein [9,10], and also Foulds and Robinson [11] investigated the numbers

Tn,m . Tn,m is the number of rooted trees with n labeled leaves, m unlabeled internal

vertices (the root is one of them), where the root has degree at least 2 and no other

internal vertices have degree 2. Clearly,

Tn,m = F
⋆(n+m� 1, n) = S

⋆(n+m� 1,m). (25)

If we are interested only in evaluating certain Tn,m numbers, formula (25) would

suffice. However, the Tn,m notation suggests that the distributions of F(n, k) and

F ⋆(n, k) for a large but fixed number of vertices n and a varying number of leaves k,

being mathematically interesting, is not however relevant for phylogenetics. The

distribution relevant for phylogenetics corresponds to large but fixed number of

leaves n, and varying number of internal vertices, with which the total number of

vertices varies as well. Let tn =

X
k

Tn,k denote a number of all phylogenetic trees

with n labeled leaves. This sequence is A000311 in [17], which is the solution to

Schroeder’s fourth problem [16]. Next we prove central and local limit theorems for

the array Tn,k .

4. Phylogenetic trees and set partitions in another distribution

Theorem 2. For the array A(n, j) = Tn+1,j , the central limit theorem (2) and the
local limit theorem (5) hold with
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1� ρ

2ρ
n+

3
4 � ln 2

ρ
+O

�
1

n

�
and D2(Tn+1,.) =

n

4

�
1

ρ2
� 2

ρ
� 1

�
+

1 + 4 ln 2� 8 ln2 2

8ρ2
+O

�
1

n

�
,

where ρ = �1+2 ln 2. Furthermore, the number k = Jn that maximizes Tn+1,k satisfies

Jn =
1� ρ

2ρ
n+ o(

p
n), (26)

and

Tn+1,Jn =
n!(1 + o(1))

π
p
2nρn+1/2

s�
1

ρ2
� 2

ρ
� 1

� . (27)

Proof. Felsenstein [9, 10] proved the recurrence relation 2)

Tn,k = (n+ k� 2)Tn�1,k�1 + kTn�1,k (28)

for k > 1 with the initial condition Tn,1 = 1 for n > 1. Consider the polynomials

Pn(x) =

X
k

Tn+1,kx
k . Then Pn(1) = tn+1 and the degree of Pn(x) is n. Felsen-

stein’s recurrence relation (28) implies the identity

Pn(x) = nxPn�1(x) + (x+ x
2)P 0

n�1(x) (29)

with the initial term P0(x) = 1, P1(x) = T2,1x = x. We get for the expectation and

variance, from (1), using (29) repeatedly,E(Tn+1,.) =
tn+2

2tn+1
� n+ 1

2
, (30)D2(Tn+1,.) =

tn+3

4tn+1
� t2n+2

4t2n+1

� tn+2

2tn+1
� n+ 1

4
. (31)

2) The recurrence is based on a case analysis whether the nth leaf is to be grafted into an edge or to

be joined to an internal vertex of an already existing tree with n� 1 leaves.
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Consider the following bivariate generating function for Tn,k :

H(x, z) =

X
n>1

X
k

Tn,kx
k z

n

n!
=

X
n>1

Pn�1(x)
zn

n!
, (32)

in particular, H(1, z) =
z

1!
+
z2

2!
+

4z3

3!
+

26z4

4!
+ . . . . Flajolet [8] observed the func-

tional equation

H(x, z) = z+ x
�
eH(x,z) � 1�H(x, z)

�
, (33)

which immediately follows from the Exponential Formula, and obtained from this

equation an expression for H(1, z) in terms of the Lambert function:

H(1, z) = �LambertW

�� 1

2
e(z�1)/2

�
+
z � 1

2
.

He also observed that H(1, z), the EGF of the tn sequence, has a singularity at

ρ = �1 + 2 ln 2, and it is the only singularity at this radius; and furthermore, forjzj < ρ, there is a singular expansion of H(1, z) in terms of ∆ =

p
1� z/ρ, of

which the first few terms are

H(1, z) = ln 2�pρ∆ +

�
1

6
� 1

3
ln 2

�
∆2 � ρ3/2

36
∆3

+O(∆4). (34)

Flajolet [8] used (34) to obtain an asymptotic formula for tn and noted that an

asymptotic expansion can be obtained by this method. Using Maple, we went further

and obtained the following asymptotic expansion:

tn � n!p
πρn�1/2

�
1

2n3/2
+

3

16n5/2
+

25

256n7/2
+ O

�
1

n9/2

��
. (35)

Combining (30) and (31) with (35), one obtains the asymptotics for the expectation

and the variance in Theorem 2. The details are on a Maple worksheet [19]. �

Lemma 2. For n > 1, the polynomial Pn(x) has n distinct real roots, one of them
is zero, and the other n� 1 roots are in the open interval (�1, 0).
We prove the theorem by induction on n. The small cases above are easy to verify.

It is easy to see (by a different induction) that P1(�1) = �1 and from (29),
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Pn(�1) = (�n)Pn�1(�1), thus
sign(Pn(�1)) = (�1)n. (36)

Using the induction hypothesis, let the roots of Pn(x) be �1 < α1 < � � � <
αn�2 < αn�1 < αn = 0. By Rolle’s theorem, P 0

n(x) has a root βi in (αi, αi+1) for

i = 1, 2, . . . , n�1. From (29) we observe that sign(Pn+1(βi)) = � sign(Pn(βi)). As

the sign of Pn(x) must alternate on the βi , so does Pn+1(x), and therefore Pn+1(x)

has a root in (βi, βi+1) for i = 1, 2, . . . , n � 2. We have to find three more roots:

one is x = 0, and we will show that the other two are in the intervals (�1, β1) and

(βn�1, 0), respectively.

Indeed, sign(Pn(x)) differs in �1 and β1 , since Pn(x) has a single root α1

between. Also, sign(Pn+1(�1)) = � sign(Pn(�1)) by (36) and sign(Pn+1(β1)) =

= � sign(Pn(β1)) by our earlier observation. Hence sign(Pn+1(x)) differs in �1
and β1 , and therefore, Pn+1(x) has a root in (�1, β1).

Observe that (29) together with the induction hypothesis imply that for n > 1

the coefficient of xn in Pn(x) is positive. On one hand, for negative x sufficiently

close to zero we have sign(Pn+1(x)) = �1. On the other hand, sign(Pn+1(β1))=

=� sign(Pn+1(�1))=(�1)n , sign(Pn+1(βi))=(�1)n+i�1 , and sign(Pn+1(βn�1))=

=1. Therefore, Pn+1(x) has a root in (βn�1, 0).
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