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Abstract: P.L. ErdSs and L. A. Székely [Adv. Appl. Math. 10 (1989), 488—496] gave a bijection
between rooted semilabeled trees and set partitions, which specializes to a bijection between
phylogenetic trees and set partitions with classes of size > 2. L. H. Harper’s results [Ann. Math.
Stat. 38 (1967), 410—414] on the asymptotic normality of the Stirling numbers of the second
kind translate into asymptotic normality of rooted semilabeled trees with given number of vertices,
when the number of internal vertices varies. The asymptotic normality of modified Stirling numbers
of the second kind that enumerate partitions of a fixed set into a given number of classes of
size > 2, which is shown in this paper, translates into the asymptotic normality of the number
of phylogenetic trees with given number of vertices, when the number of leaves varies. We also
obtain the asymptotic normality of the number of phylogenetic trees with given number of leaves
and varying number of internal vertices, which is more relevant for phylogeny. By the bijection,
this means the asymptotic normality of the number of partitions of n + m — | elements into m
classes of size > 2, when n is fixed and m varies. The proofs are adaptations of the techniques of
L. H. Harper [ibid.]. We provide asymptotics for the relevant expectations and variances with error
term O(1/n).
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1. Asymptotic normality

Let S(a,b) (S*(a,b)) denote the Stirling number of the second kind, i.e. the
number of partitions of an a-element set into b classes, each with at least one (two)
elements. S(a, b) is the Stirling number of the second kind, and the Bell number

(see the sequence A000110 in [17]) is Z S(a,b) = B,. This paper proves central
b
and local limit theorems for the arrays S*(n, k) and T, ,,, = S*(n— 1 +m, m). Such

results for the array S(a, b) have been long known [12]. The technique used in this
paper is Harper’s method [12], who gave a very elegant proof for the asymptotic
normality of the array S(n, k). We follow the interpretation of Canfield [2] and
Clark [6], who clarified and explained the details of [12] while generalizing his
method, although our discussion is somewhat restrictive. These limit theorems are
relevant to phylogenetic tree enumeration by the bijection in [7]. We compute the
expectations and variances with O(1/n) error term, to support the phylogeneticists
who may use our results for approximation.

Let A(n, j) be an array of non-negative real numbers for j = 1,...,d,, and
define A,(z) = Z A(n, j)a’. Observe that Z A(n, j) = An(1). Let Z, denote
J J
A(n, j)

. In terms of

the random variable, for which the probability P(Z, = j) = 4,01
n

A, (), there is a well-known [6] and easy to verify expression for the expectation
and variance of Z,:

£z = 2 ana p(z,) - 38; * (ig)

As &(Z,) and D(Z,) are determined by the array A(n, j), we will also write them
as £(A(n, .)) and D(A(n,.))
The array A(n, j) is called asymptotically normal in the sense of a central limit

(1)

=1

theorem, if

7 2 Al = \/%7 / e dt, 2)

j=1

as n — oo uniformly in x, where

z, = E(Zy) + zD(Z,). (3)
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If all the roots of the polynomial A, (z) are non-positive real numbers, and

lim D(Z,) = oo, 4)
n—oo
then the array A(n, j) is known to be asymptotically normal, furthermore, by [2, 13],
the following local limit theorem holds:

im 2(Zn)
1m

tim A La,) = e )

V2T

uniformly in z. The fact that the convergence of the A(n, j) numbers to the Gaussian
function is actually uniform, implies that the number k = J, maximizing A(n, k)

satisfies
Jn — g(Zn) = O(D(Zn)); (6)
and
LA
A(n, Jp) ~ Tz (7)

2. Set partitions without singletons

THEOREM 1. For the sequence A(n,j) = S*(n, j) the central limit theorem (2) and
the local limit theorem (5) hold with

g(s*(n,.))zg—r—%+Tl+l)2+o(%>, (8)
DS (n, ) = r(rT—li—l) mrels ril B 2(7~41r1)2 B 2(1~41r1)3 *
+ ﬁ +O(%). )
In explicit terms,
£(S*(n, ) = % 4 nlintn z:no(ﬁ)), (10)
DS, ) = ? . n(21n1nn—31+0(ﬁ))' (1)

In“n In" n
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Furthermore, the number k = J,, that maximizes S*(n, k) satisfies
n n
Jp = —+o<£) (12)

and

(1+o(1)). (13)

PROOF. We start with some facts that we need. Set B, = Z S*(n, k), the number

k
of all partitions of an n-element set not using singleton classes (see the sequence

A000296 in [17]). Becker [1] observed that !
B, =B, + B, (14)

From B; = B; + Bj, for i = 1,2,...,n, and Bf = 0, we obtain B, , =
n

= Z Bi(—l)"_i. As the B, sequence is strictly increasing, we immediately obtain

i=1
t
k t—1 .
By —Bi_ ) < By, = Z Bi(—1)"" < B; for t > 3, and with ¢t = n — h the asymp-
i=1

totical formula
Bhyi =B, =By 4...+(=1)"By_y + O(Bu_p_1). (15)

In the special case h = 0, using (21), we obtain:

B, :Bn—O(Bn_l):Bn(l—o(f)) (16)

n

We obtain the recurrence relation
S (n, k) =(n—-1)S"(n—2,k— 1)+ kS*(n— 1, k), (17)

according to the case analysis whether the n'" element is in a doubleton class or
not. We define the polynomial sequence S,(z) = Z S*(n, k)xk It is easy to see
k

h Identity (14) can be proved by the following bijection from the partitions with at least one singleton
class of an n-element set, [n], to the partitions without singleton classes of an n+1-element set, [n+1]:
build a new class from the elements of all singletons and n + 1.
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that S\(z) =0, S)(z) = z, and for n > 3 from (17),
Su(z) = (n— 1)&Sys(x) + 25, (x). (18)

For the proof, first we compute £(S*(n, .)) and D(S*(n, .)) exactly and then asympto-
tically. The central and local limit theorems hinge on the relation D(S*(n, .)) — co.
Salvy and Shackell [15] showed (10,11) originally for S(n, k), but not for S*(n, k).
However, it is shown in [4] that

£(S(n, ) = ; —1+2(T—:1)2+0<%), (19)
DX(S(n,.)) = T(r’i o 271((:; 11))4 1+ 0(%). (20)

Using these asymptotic expansions we obtain that £(S*(n,.)) — £(S(n,.)) = O(r)
and D*(S*(n,.)) — D*(S(n,.)) = O(r). The explicit asymptotics follow from these
remarkably small differences. Formulae (12) and (13) follow from (6) and (7), where
B, is approximated with B, ;| by (16).

We obtain from (1), using (18) repeatedly,

B; B,
E(S(n,) = —=—n—0,
By B; \B;_ By _
D*(S*(n,.)) = ;24—271 ’L(g*)g Lin(n—1) ;f—
B\’ B\’ B
- () (%) - e,

Canfield and Harper [5], Canfield [3] made minor modifications on the asymptotics
of Moser and Wyman [14] to develop asymptotics for By, which holds uniformly
for h = O(In n), using a single r = r(n) value, as n — 00:

_ (n+h) ! Py + hP, + h*P,
Bn+h - rn+h (27.[.3)1/2 x| 1 er +
+ hQ; + h*Q, + h*Qs + h* 3
n Qo + h@Q, 2; Qs Q4 Lo )>’ 1)

where B = (7"2 +7)e", P, and Q; are explicitly known rational functions of 7.
We list and use in the Maple worksheet [18] their exact values from Canfield [4].
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To obtain (8) and (9), we started with the closed forms above, used (15) for the
B”* numbers, substituted the B numbers with (21), and changed e " to r/n. For
details, see the Maple worksheet [18].

Finally, Lemma 1 will provide the non-positive real roots of the generating
polynomial. By induction from (18) we see that for n > 2 one has

deg(Sn(z)) = EJ (22)

and the root £ = 0 has multiplicity one. Hence S,(0) > 0 for n > 2. O

LEMMA 1. Apart from x = 0, the roots of Sy, (z) and Sy, () are negative real num-
bers and every root occurs with multiplicity one. Furthermore, if the roots of Sy, (x) are
denoted by [352") in increasing order, and the roots of Sy,—1(z), San11(x) are denoted by
aiznil) , aEan) , both in increasing order, then the following interlacing properties hold:
,8(271) <a(2n71) <ﬂ(2n) ag2n71) <. <,6 ) < (2n 1) ﬁ(Zn)
n— )
ﬂ(2n) 2n+1 <ﬂ(2n) 2n+l) <. <a 2n 1) ﬂ(Zn) 2n+1) <IB(2n) 0:()[512n+1).
We will use induction in n. The roots of Sy(z) = S5(z) = , Su(z) = 32° +z
(roots ﬂ$4) = —1/3 and ﬁg‘) = 0) and Ss(z) = 10z” + z (roots a(ls) = —1/10 and
af) = 0) satisfy Lemma 1. The inductive step is provided by the following two
statements for n > 2:

(i) If the roots of Sy, »(z) and S,, |(x) occur with multiplicity one and satisfy

2n—2 2n—1 2n—2 2n—1 2n—1 (2n-2 2n—1
A <o < <o <<l < g0 =0 = o)

then the roots ﬁf") of Sy,(x) satisfy

5277,) < O[(12n 1) <ﬂ(2n) an—l) <ﬂ(2n) (Zn 1) —0= 7(12n)

(ii) If the roots of Sy,—i(z) and S,,(z) occur with multiplicity one and satisfy

65271) < a(l2n—1) < ﬂ£2n) < Oé§2n_l) < ﬁ(Zn) 1) — 0= 1(12n)’

(2n+1)

then the roots a of Synt1(x) satisfy

ﬁ§2n) <a (2n+1) <ﬂ(2n) 22n+1) <. <an2112+1) <ﬁn2izl) <a 2nl+1 <ﬂ(2n) 0— a(2n+l)
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First we prove (i). In our setting the identity (18) specifies to

SZn (.’L')
x

= (2n — 1)Sy_2(z) + Sh 1 (2), (23)

where the RHS is the sum of two polynomials of degree n— 1 and n— 2, respectively.

Set « (2n D~ —00. The proof hinges on the following three claims:
e the sign of S5, »(x) alternates on oz(.zn_l), ag_"l Y for i = 0,1,...,n—3;
e the sign of S5, |(z) alternates on a(2n 1), aﬁ"l D for i = 1,....,n—2;
o sign(S2(0)" ) = sign(Sp-i ().

The first claim follows from the hypotheses.

The second claim follows from the fact that Sén_l(x) is a polynomial of de-

gree n— 2 and it has exactly one root in every interval (aizn*l), aﬁnfl) ) for
i=1,2,...,n— 2, as it must have a root between consecutive roots of S,_1(z).

The third claim follows from the facts that

sign(SZn_z (a(lzn 1))) 31gn(,5’2n 2 (— oo)) = —(—1)"_1,

n—2) 2n-1) and

as S, »(x) has a single root, ﬂlz , which is less than a;

. (2n-1 _
sign(Stat (a7")) = sign(Shui(~00)) = (~1)" 2
/ (2n-1)
as Sy,_1(x) has no root less than a; )
From the three claims and (23) it follows that the sign of S,,(z)/z, and hence
(2n—-1) (2n-1)
of Sy,(z), alternates on «; L QG
the required root ﬂﬁ:? between these numbers, 7 = 1, - 3.
From the proof of the third claim and (23) it follows that mgn(Szn( N =
=(—1)". If we show that S,(z)/z has a different sign at —oo, then we provide
the required root ﬂgzn) < 0422"_1) for Sy,(z)/z, and hence for Sy,(z). Indeed, the

degree of S, »(z) is greater than the degree of S5,_;(x), and therefore the sign of

fort=1,...,n— 3; and this fact provides

Son(z)/x at —oo is the sign of Sy, »(x) at —oo, namely (—1)""".

As Sys(a, (2" 1)) Son-2(0) = 0, the second and the third claim, and (23)
(2n—-1) (2n-1)

imply that Sy,(z)/z alternates on ¢, 5 ', a,_, , providing the required root ﬂ(znl)

between these numbers, also for Sy,(z). Finally, the last root to find is 5(2") 0.
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Next we prove (ii). In our setting the identity (18) specifies to

Sony1()

- - 2’!?,52”_1(15) + S;n(x)ﬁ (24)

where the RHS is the sum of two polynomials of degree n — 1. The proof hinges on

the following three claims:

e the sign of S5, () alternates on ﬂ (2n) z(2+n1) fori=1,...,n—2;

e the sign of $5,(z) alternates on f; (2n) ﬂlzn) fori=1,...,n—1;

o sign(Spn-1(B1™) = sign(S5,(87")).
The first claim follows from the hypotheses.
The second claim follows from the fact that S;n( ) is a polynomial of degree
— 1 and it has exactly one root in every interval with the endpoints [3 (2n) 62(1”1) for
i=1,2,...,n— 1, as it must have a root between consecutive roots of S,,(z).
The third claim follows from the facts that

sign (Son-1 (81™)) = sign(San-1(~0)) = (=1)""",

and
sign (5, (67")) = sign(Sfan(~00)) = (~1)"",

as neither S5,(z) nor Sy,_;(z) has a root less than ﬂ?").

From the three claims and (24) it follows that the sign of S5,11(z)/x, and
hence of Sy,y(x), alternates on ﬁfm, ﬂfﬁ) for ¢ = 1,...,n — 2; and this fact
provides the required root aian) between these numbers, t = 1,...,n — 2.

As S 1(B%) = $5,_1(0) = 0, the second and the third claim, and (24)

(2n), providing the required root 0‘5; n1+ v

(@nt1) _ o

imply that S,,11(z)/z alternates on ﬂ( "
between these numbers, also for S5, (z). Fmally, the last root to find is «,;

3. Semilabeled trees and set partitions

Let F(n, k) denote the number of roofed semilabeled trees with k uniquely labeled
leaves and n non-root vertices. Such trees have a root, which may or may not have
degree one, and is not being counted as vertex or leaf; and have k leaves. Two such
trees are identical, if there is a graph isomorphism between them that maps root to
root and every leaf label to the same leaf label.
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Erdds and Székely in [7] established a bijection between the trees counted by
F(n, k) and partitions of an n-element set into n — k + 1 classes, under which
out-degrees of non-root vertices and the root correspond to class sizes in the
partition. (Their result immediately implies that F(n, k) = S(n,n —k+1).) We
use the term phylogenetic tree for semilabeled trees, in which the root degree is
> 2 and every internal vertex has degree > 3. Let F*(n, k) denote the number
of phylogenetic trees with k leaves and m non-root vertices. The bijection provides
F*(n,k) = S*(n,n— k+ 1) and S*(n,1) = F*(n,n —i+ 1).

Any information available on the S (S*) numbers kind can translate to infor-
mation on the F (F*) numbers. The central and local limit theorems for S(n, k)
[12] translate into such for F(n, k) (with £(F(n,.)) = n+ 1 —&(S(n,.)) and
D(F(n,.)) = D(S(n, .))); the central and local limit theorems for S*(n, k) (Theo-
rem 1) translate into such for F*(n, k) (with £(F*(n,.)) =n+1—E(S*(n,.)) and
D(F*(n,.)) = D(S"(n, .)))-

Felsenstein [9, 10], and also Foulds and Robinson [11] investigated the numbers
Tom- Tn.m is the number of rooted trees with n labeled leaves, m unlabeled internal
vertices (the root is one of them), where the root has degree at least 2 and no other
internal vertices have degree 2. Clearly,

Tom=F(Mn+m-1,n)=S8(n+m-—1,m). (25)

If we are interested only in evaluating certain 7,,,,, numbers, formula (25) would
suffice. However, the T, ,, notation suggests that the distributions of F(n, k) and
F*(n, k) for a large but fixed number of vertices n and a varying number of leaves k,
being mathematically interesting, is not however relevant for phylogenetics. The
distribution relevant for phylogenetics corresponds to large but fixed number of
leaves n, and varying number of internal vertices, with which the total number of

vertices varies as well. Let £, = Z T, denote a number of all phylogenetic trees

k
with n labeled leaves. This sequence is A000311 in [17], which is the solution to

Schroeder’s fourth problem [16]. Next we prove central and local limit theorems for
the array T, 1.

4. Phylogenetic trees and set partitions in another distribution

THEOREM 2. For the array A(n,j) = Tny1j, the central limit theorem (2) and the
local limit theorem (5) hold with
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1 - 3_1n2 1
E(Tpyr,) = Pn+4 p +O<ﬁ>

2p
and
n(1l 2 1+4In2—81In*2 1
DT )= =—-=-1 ol -),
(Trr1.) 4(p2 p )+ 8p? " (n>
where p = —1-+21n 2. Furthermore, the number k = J,, that maximizes T, i, satisfies
1-p
Jn =—n+ 0(\/5): (26)
2p
and
n!(1+ o(1))
Tn+1,Jn = 1 5 . (27)
m/2npt1/2 (—2 -—= 1)
p p

ProOOF. Felsenstein [9, 10] proved the recurrence relation 2

Tog=Mn~+k—=2)T 11+ kTn-14 (28)
for k > 1 with the initial condition T;,; = 1 for n > 1. Consider the polynomials
P,(z) = Z Tn+1,kmk. Then P,(1) = t,y; and the degree of P,(z) is n. Felsen-

k
stein’s recurrence relation (28) implies the identity

Pu(z) = nzP, (z) + (z + 2°)P,_(z) (29)

with the initial term Py(z) = 1, Pi(z) = Th,x = x. We get for the expectation and
variance, from (1), using (29) repeatedly,

tn+2 n -+ 1
E(T, = — , 30
(n—i—l,.) Ztn—l—l 2 ( )
DT, ) = tnys thi b nt1 (31)
T At 42, e 4

2 The recurrence is based on a case analysis whether the n™ leaf is to be grafted into an edge or to
be joined to an internal vertex of an already existing tree with n — 1 leaves.
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Consider the following bivariate generating function for Tj, ;:

H@,2)=> > Tn,kx’“;—f => Pn_l(x);—T, (32)

n>l k ’ n>1

) ) z 22 42 262 .
in particular, H(1, z) = T + o + £ + a +... . Flajolet [8] observed the func-
tional equation ' ' ' '

H(z,2) =2+ m(eH(x’z) — 1 - H(z, 2)), (33)

which immediately follows from the Exponential Formula, and obtained from this
equation an expression for H(1, z) in terms of the Lambert function:

z—1

1
H(ls Z) = —LambertW( — Ee(z_l)/z) + >

He also observed that H(1, z), the EGF of the t, sequence, has a singularity at
p=—142In2, and it is the only singularity at this radius; and furthermore, for
|z| < p, there is a singular expansion of H(l, z) in terms of A = /1 — z/p, of
which the first few terms are

1 1 3/2
H(l,2) =1In2 — \/pA + (E_EIHQ)Az_ /)3—6A3+O(A4). (34)
Flajolet [8] used (34) to obtain an asymptotic formula for ¢, and noted that an
asymptotic expansion can be obtained by this method. Using Maple, we went further
and obtained the following asymptotic expansion:

y n! 1 3 25 0 1 35
o TP\ T 1enn T e O\ ) )

Combining (30) and (31) with (35), one obtains the asymptotics for the expectation
and the variance in Theorem 2. The details are on a Maple worksheet [19]. O

LEMMA 2. For n > 1, the polynomial P,(x) has n distinct real roots, one of them
is zero, and the other n — 1 roots are in the open interval (—1,0).

We prove the theorem by induction on n. The small cases above are easy to verify.
It is easy to see (by a different induction) that Pi(—1) = —1 and from (29),
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P,(—1) = (-n)P,_1(—1), thus
sign(F (1)) = (=1)". (36)

Using the induction hypothesis, let the roots of P,(z) be —1 < o) < -+ <
Qn_y < @p_1 < a, = 0. By Rolle’s theorem, P,(z) has a root §; in (a, oy ) for
i=1,2,...,n—1. From (29) we observe that sign(P,;(5;)) = — sign(P,(5;)). As
the sign of P,(z) must alternate on the f;, so does P, (), and therefore P, (z)
has a root in (8;, B;1) for i = 1,2,...,n — 2. We have to find three more roots:
one is = 0, and we will show that the other two are in the intervals (—1, 5;) and
(Bn-1, 0), respectively.

Indeed, sign(P,(z)) differs in —1 and §;, since P,(z) has a single root «;
between. Also, sign(P,i(—1)) = — sign(P,(—1)) by (36) and sign(P,+(81)) =
= — sign(P,(6;)) by our earlier observation. Hence sign(P,(z)) differs in —1
and f, and therefore, P, () has a root in (-1, 3;).

Observe that (29) together with the induction hypothesis imply that for n > 1
the coefficient of 2" in P,(x) is positive. On one hand, for negative z sufficiently
close to zero we have sign(P,.(x)) = —1. On the other hand, sign(P,(8))=
—=— sign(Boy1(—1))=(=1)", sign(Pos1(8:))=(=1)"""" and sign(P,;(Bu_1))=
=1. Therefore, P, (x) has a root in (8,-1,0).
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