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Abstract. In this note, we consider a finite set X and maps W from the set S2|2(X) of all 2, 2-
splits of X into R≥0. We show that such a map W is induced, in a canonical way, by a binary
X-tree for which a positive length �(e) is associated to every inner edge e if and only if (i) exactly
two of the three numbers W (ab|cd), W (ac|bd), and W (ad|cb) vanish, for any four distinct ele-
ments a, b, c, d in X , (ii) a �= d and W (ab|xc)+W (ax|cd) = W (ab|cd) holds for all a, b, c, d, x
in X with #{a, b, c, x} = #{b, c, d, x} = 4 and W (ab|cx), W (ax|cd) > 0, and (iii) W (ab|uv) ≥
min

(
W (ab|uw), W (ab|vw)

)
holds for any five distinct elements a, b, u, v, w in X . Possible gen-

eralizations regarding arbitrary R-trees and applications regarding tree-reconstruction algorithms
are indicated.

Keywords: biological systematics, phylogeny, phylogenetic combinatorics, evolutionary trees,
tree reconstruction, X-trees, quartet methods, quartet systems, weighted quartet systems.

1. Introduction

Let X be a finite set of cardinality n, and let T = (V, E) be an X-tree, i.e., a finite tree
without vertices of degree 2 whose set of leaves coincides with X . Further,

(i) let
(X

i

)
denote, for any natural number i, the set of all subsets of X of cardinality i,

(ii) let S2|2(X) denote the set of all partial 2, 2-splits of X :

S2|2(X) :=
{{

{a, b}, {c, d}
}∣
∣
∣{a, b}, {c, d} ∈

(
X
2

)
; {a, b}∩{c, d} = /0

}
,
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(iii) let E0 = E0(T ) denote the set of pending edges of T , i.e., of edges incident with a
leaf:

E0 = E0(T ) := {e ∈ E
∣
∣e∩X �= /0},

(iv) let E1 = E1(T ) denote the complementary set of inner edges of T :

E1 = E1(T ) := E \E0,

(v) and let
� : E1 → R>0

denote an arbitrary, but strictly positive length function defined on that set.

For convenience, we will also write ab|cd for the unordered pair {{a, b}, {c, d}} of
subsets of X of cardinality at most 2, for any a, b, c, d ∈ X (so that ab|cd ∈ S2|2(X)
holds if and only if one has #{a, b, c, d} = 4).

We are interested in the map W = WT, � defined on S2|2(X) by

W : S2|2(X) → R≥0, ab|cd �→ ∑
e∈E(ab|cd)

�(e), (1.1)

where the sum runs over the set E(ab|cd) of all edges e ∈ E that separate the leaves
a, b from the leaves c, d. Clearly, the function W measures the total length of the “inner
path” of the quartet tree Ta,b,c,d “spanned” by a, b, c, d in case T contains at least one
edge that separates a, b from c, d, and it vanishes otherwise.
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The following facts are easily established:

(F1) Given any 4-subset {a, b, c, d} of X , at least two of the three numbers W (ab|cd),
W (ac|bd), and W (ad|cb) vanish.

(F2) If T is binary, i.e., if all vertices in V outside X have degree 3 or — equivalently
— if #V = 2n−2 holds (recall that there is no vertex of degree 2), one has

W (ab|cd)+W(ac|bd)+W(ad|cb) > 0 (1.2)

for all {a, b, c, d} ∈ (X
4

)
.

(F3) Given a, b, c, d, x ∈ X with #{a, b, c, x} = #{b, c, d, x} = 4 and

W (ab|xc), W (bx|cd) > 0,

one has #{a, b, c, d, x} = 5 and

W (ab|xc)+W(bx|cd) = W (ab|cd). (1.3)
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(F4) Given any 5-subset {a, b, u, v, w} of X , one has

W (ab|uw) ≥ min
(

W (ab|uv), W (ab|vw)
)
, (1.4)

i.e., the two smaller ones of the three numbers

W (ab|uv), W (ab|uw), W (ab|vw)

must coincide or, still in other words, W (ab|uv) < W (ab|uw) implies that
W (ab|uv) = W (ab|vw) for all a, b, u, v, w ∈ X as above.

Our main result is the following:

Theorem 1.1. A map
W : S2|2(X) → R≥0

is of the form WT, � for some finite binary tree T with leave set X and some length
function � defined on the set E1(T ) of inner edges of T if and only if W satisfies the
conditions (F1) to (F4) above. Moreover, if W satisfies those four conditions, the tree T
and the length function � : E1(T ) → R>0 with W = WT, � are uniquely determined (up
to canonical isomorphism) by W.

It was established already in 1977 by the psychologists Colonius and Schulze (cf.
[5, 6]), the first two papers on quartet analysis that initiated much further work devoted
to this topic, cf. [7–39] that, given any subset Q of S2|2(X), there exists a binary X-tree
T = (V, E) such that the set

Q T :=
{

ab|cd ∈ S2|2(X)
∣
∣ E(ab|cd) �= /0

}

of 2|2-splits in S2|2(X) induced by T coincides with Q if and only if the following three
assertions hold:

(Q1) #(Q ∩{ab|cd, ac|bd, ad|cb}) = 1 holds for all {a, b, c, d} ∈ (X
4

)
,

(Q2) ab|cx ∈ Q and ax|cd ∈ Q implies ab|cd ∈ Q for all {a, b, c, d, x} ∈ (X
5

)
,

(Q3) ab|uv, ab|vw ∈ Q implies ab|uw ∈ Q for all {a, b, u, v, w} ∈ (X
5

)
,

in which case this tree is uniquely determined by Q .
Thus, the support

supp(W ) :=
{

ab|cd ∈ S2|2(X)
∣
∣ W (ab|cd) �= 0

}

of any map W : S2|2(X) → R≥0 that satisfies the conditions (F1) to (F4) above is obvi-
ously of the form Q T for some unique binary X-tree T . Thus, a proof of the existence
part of Theorem 1.1 could easily be based on this observation. In this note however, we
want to proceed in a more direct way, not so much to avoid referring to any previous
work, but because our direct approach also yields new tree-building strategies.

The paper is organized as follows: In the next section, we will show that the map
WT, � : S2|2(X)→ R≥0 associated with a binary X-tree T and a length function � : E1(T )
→ R>0 determines T and � up to canonical isomorphism. Then, we will show that a
map W : S2|2(X) → R≥0 is of the form W = WT, � for some binary X-tree T and length
function � : E1(T ) → R>0 if and only if W satisfies the conditions (F1) to (F4) above.
And finally, we shall discuss various promising directions of future research as well as
some simple algorithmic applications of our results in the last section.
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2. WT, � Determines T and � up to Canonical Isomorphism

Given any two binary X-trees T and T ′ and maps � : E1(T ) → R>0 and �′ : E1(T ′) →
R>0, we will show here that WT, � = WT ′, �′ implies the existence of a unique map
ϕ : V (T )→V (T ′) with ϕ(x) = x for all x ∈ X and {ϕ(u), ϕ(v)} ∈ E(T ′) for all {u, v} ∈
E(T ), and that this map is necessarily bijective, induces a bijection between E(T ) and
E(T ′), and commutes with � and �′ (i.e., �({u, v}) = �′({ϕ(u), ϕ(v)}) holds for this
map ϕ and all {u, v} ∈ E(T )).

To construct ϕ(v), recall the following facts:

i) Given any finite connected graph G = (V, E), the standard graph metric dG in-
duced on V by G is defined to be the map from V ×V into N0 that maps each
pair (u, v) ∈ V ×V onto the minimal number dG(u, v) of edges that constitute a
path from u to v in G, i.e., onto the minimum of all k ∈ N0 for which vertices
v0 := u, v1, . . . , vk := v ∈V exist with {vi−1, vi} ∈ E for all i = 1, . . . , k.

ii) A finite connected graph G = (V, E) is defined to be a median graph if, for all
u, v, w ∈V , there exists a unique vertex m = medG(u, v, w) in V with

dG(u, v) = dG(u, m)+ dG(m, v),
dG(u, w) = dG(u, m)+ dG(m, w),

and
dG(v, w) = dG(v, m)+ dG(m, w),

in which case medG(u, v, w) = medG(v, u, w) = medG(u, w, v) and medG(u, u, w)
= u hold for all u, v, w ∈V (cf. [1]).

iii) Any X-tree T = (V, E) is a median graph and every vertex v in V is of the form v =
medT (a, b, c) for some appropriate leaves a, b, c in X , and one has medT (a, b, c)∈
V −X for some a, b, c ∈ X if and only if #{a, b, c} = 3 holds.

iv) Given a X-tree T = (V, E), a length function � : E1(T ) → R>0, and four distinct
leaves a, b, c, d ∈ X , one has WT, �(ab|cd) > 0 if and only if one has

medT (a, b, c) = medT (a, b, d) �= medT (a, c, d) = medT (b, c, d),

in which case E(ab|cd) consists exactly of the set of edges e∈E1(T ) on the unique
path from medT (a, b, c) = medT (a, b, d) to medT (a, c, d) = medT (b, c, d) and
WT, �(ab|cd) is exactly the length of that path relative to �.

v) If, moreover, T is binary, one has

medT (a1, a2, a3) = medT (b1, a2, a3)

for four distinct elements a1, a2, a3, b1 ∈ X if and only if one has WT, �(a1b1|a2a3)
> 0, and one has medT (a1, a2, a3) = medT (b1, b2, b3) for some a1, a2, a3, b1, b2,
b3 in X with #{a1, a2, a3} = 3 if and only if there exists a permutation π of the
index set {1, 2, 3} with either ai = bπ(i) or #{a1, a2, a3, bπ(i)}= 4 and WT, �(aibπ(i)|
a jak) > 0 for all i, j, k in {1, 2, 3} with {1, 2, 3}= {i, j, k} in which case we must
also have #{b1, b2, b3}= 3 as well as either bi = aπ−1(i) or #{b1, b2, b3, aπ−1(i)}=
4 and WT, �(biaπ−1(i)|b jbk) > 0 for all i, j, k ∈ {1, 2, 3} with {1, 2, 3} = {i, j, k}.



X-Trees and Weighted Quartet Systems 159

In particular, we can decide whether we have medT (a1, a2, a3) = medT (b1, b2, b3)
for some a1, a2, a3, b1, b2, b3 in X with #{a1, a2, a3} = 3 from exclusively analy-
sing the support of WT, �.

vi) One can decide whether two distinct vertices u and v in T form an edge by studying
medians: Indeed, given any two distinct vertices u, v∈V , one can choose elements
x1, x2, x3, x4 ∈ X , not necessarily distinct, as indicated in the figure below:
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i.e., with
u = medT (x1, x2, x3) = medT (x1, x2, x4)

and
v = medT (x1, x3, x4) = medT (x2, x3, x4),

and one has {u, v} ∈ E(T ) if and only if

medT (x1, x3, y) ∈ {
medT (x1, x2,y), medT (x3, x4, y), u, v

}

holds for all y ∈ X .

These well-known and easily established facts allow us to define the required map
ϕ : V (T ) → V (T ′): For every x ∈ X , we put ϕ(x) := x, and for every v ∈ V (T )−X ,
we choose a1, a2, a3 ∈ X with v = medT (a1, a2, a3) and put

ϕ(v) := medT ′(a1, a2, a3).

This is clearly well defined in view of Assertion v) above, we have ϕ(x) = x for every
x ∈ X simply by definition, and we have

ϕ(v) = medT ′(a1, a2, a3)

for all v∈V and a1, a2, a3 ∈X with v = medT (a1, a2, a3) — even in case v∈ X because
this implies that at least two of the three elements a1, a2, a3 must coincide with v which
in turn implies that

medT ′(a1, a2, a3) = v = ϕ(v)

must hold also in this case. Further, we have {ϕ(u), ϕ(v)} ∈ E(T ′) for all {u, v} ∈
E(T ): Indeed, if {u, v} ∈ E(T ) holds, we can choose x1, x2, x3, x4 ∈ X as described in
Assertion vi) above and, applying ϕ, we get

ϕ(u) = medT ′(x1, x2, x3) = medT ′(x1, x2, x4),

ϕ(v) = medT ′(x1, x3, x4) = medT ′(x2, x3, x4),
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as well as

medT ′(x2, x3, y) = ϕ(medT (x2, x3, y))

∈ {
ϕ(medT (x1, x2, y)), ϕ(medT (x2, x3, y)), ϕ(u), ϕ(v)

}

=
{

medT ′(x1, x2, y), medT ′(x2, x3, y), ϕ(u), ϕ(v)
}

for all y ∈ X . Hence,

{ϕ(u), ϕ(v)} ∈ E(T ′),

as claimed.
It is also easy to see that any map ϕ : V (T ) → V (T ′) with ϕ(x) = x for all x ∈ X

and {ϕ(u), ϕ(v)} ∈ E(T ′) for all {u, v} ∈ E(T ) is necessarily bijective and induces a
bijection between E(T ) and E(T ′) and, hence, also one between E1(T ) and E1(T ′):
Indeed, the image ϕ(V (T )) of V (T ) must contain all vertices on all paths between any
two leaves in T ′, and the image

{{ϕ(u), ϕ(v)} ∣
∣{u, v} ∈ E(T )

}
of E(T ) must contain

all edges on all of those paths. Thus, the map ϕ : V (T ) →V (T ′) as well as the induced
map from E(T ) into E(T ′) must be surjective and, hence, bijective because one has
#V(T ) = #V (T ′) = 2n− 2 and #E(T ) = #E(T ′) = #V (T )− 1 = 2n− 3 in view of the
fact that both, T and T ′, were assumed to be binary X-trees.

Finally, we have necessarily

�({u, v}) = �′({ϕ(u), ϕ(v)})

for any edge {u, v} ∈ E1 because, as above, we can choose x1, x2, x3, x4 ∈ X with
u = medT (x1, x2, x3) = medT (x2, x2, x3) and v = medT (x2, x3, x4) = medT (x1, x3, x4).
Hence,

�({u, v}) = WT, �(x1x2
∣
∣x3x4) = WT ′, �′(x1x2

∣
∣x3x4) = �′({ϕ(u), ϕ(v)}),

as claimed.

It remains to observe that ϕ is uniquely determined by T and T ′: However, as ob-
served already above, any map ψ : V (T ) → V (T ′) with ψ(x) = x for all x ∈ X and
{ψ(u), ψ(v)} ∈ E(T ′) for all {u, v} ∈ E(T ) is necessarily bijective and induces a bijec-
tion from E(T ) onto E(T ′). Thus, dT (x, y) = dT ′(x, y), and hence,

ψ(medT (x, y, z)) = medT ′(x, y, z) = ϕ(medT (x, y, z))

must hold for all x, y, z ∈ X implying that also ψ(v) = ϕ(v) must hold for all v ∈V .

3. Deriving T and � from W

In this section, we will assume throughout that W is a map from S2|2(X) into R≥0 that
satisfies the conditions (F1) to (F4) stated above, and we want to show that a binary
X-tree T and a map � : E1(T ) → R>0 with W = WT, � then necessarily exist.
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To simplify notations, we will say that W (ab|x|cd) holds for some elements a, b, c,
d, x in X if and only if the four elements a, b, x, c and the four elements b, x, c, d are dis-
tinct and one has W (ab|xc), W (bx|cd) > 0. We will begin by collecting some technical-
ities regarding this quinternary relation. Note first that W (ab|x|cd) implies #{a, b, x, c,
d} = 5 and

W (ab|cd) = W (ab|xc)+W(bx|cd) > W (ab|xc), W (bx|cd) > 0

in view of (F3). Hence,

W (ab|xc) = W (ab|xd) > 0, W (ax|cd) = W (bx|cd) > 0 (3.1)

in view of (F4). This proves the implication “(i) ⇒ (ii)” in

Lemma 3.1. For all a, b, c, d, x in X, the following assertions are equivalent:

(i) W (ab|x|cd) holds, i.e., one has #{a, b, x, c} = #{b, x, c, d} = 4 and W (ab|xc),
W (bx|cd) > 0.

(ii) #{a, b, x, c, d} = 5, W (ab|cd) = W (ab|xc)+W(bx|cd), W (ab|xd) = W (ab|xc) >
0, and W (ax|cd) = W (bx|cd) > 0.

(iii) #{a, b, c, d} = #{a, b, d, x} = 4 and W (ab|cd) > W (ab|xd) > 0.

(iv) #{a, b, x, c, d} = 5, W (ab|cd) > 0, W (ab|xc) = W (ab|xd), furthermore W (xa|dc)
= W (xb|dc).

In particular, given any 5-subset {a, b, x, c, d} of X, one has

W (ab|x|cd) ⇔W (ba|x|cd) ⇔W (cd|x|ab)⇔ ··· .
Proof. It is obvious that (ii) ⇒ (iii) and (ii) ⇒ (iv) hold.

(iii)⇒ (i): Clearly, we must have c �= x and, hence, #{a, b, x, c, d}= 5. If W (bx
∣
∣dc)> 0

would not hold, we would either have W (bc
∣
∣dx)> 0 and thereforeW (ab

∣
∣c

∣
∣dx) implying

W (ab
∣
∣cd) > W (ab

∣
∣xd) = W (ab

∣
∣cd)+W(bc

∣
∣xd) > W (ab

∣
∣cd),

an obvious contradiction, or we would have W (bd
∣∣cx) > 0 and, hence, also W (ab|d

|cx) in contradiction to W (ab|dc) �= W (ab|dx). Thus, W (ab|x|dc), or equivalently,
W (ab|x|cd) must hold, as claimed.

(iv) ⇒ (i): We must have W (ab|xc) > 0 because, otherwise, we would have either
W (xa|bc) > 0 and therefore W (xa|b|cd), or W (xb|ac) > 0 and therefore W (xb|a|cd),
both assertions being in contradiction to our assumption W (xa

∣∣cd) = W (xb
∣∣cd). By

symmetry (exchanging a,b with c, d), we must also have W (bx|cd) > 0 implying that
W (ab|x|cd) > 0 must hold indeed.

Corollary 3.2. If W (ab
∣
∣cd) > 0 and W (ab

∣
∣cd) ≥ W (ax

∣
∣cd), W (bx

∣
∣cd) hold for any

five distinct elements a, b, c, d, x ∈ X, one has

W (ab
∣∣xc) > 0.
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Proof. Otherwise, we could assume without loss of generality that W (xa
∣
∣bc) > 0 holds

which, together with W (ab
∣
∣cd) > 0, would imply W (xa|b∣

∣cd), and hence,

W (xa
∣
∣cd) = W (xa

∣
∣bc)+W(ab

∣
∣cd) > W (ab

∣
∣cd),

a contradiction.

Corollary 3.3. If W (ab
∣
∣xy), W (ab

∣
∣yz) > 0 holds for any five distinct elements a, b, x, y,

z ∈ X, one has
W (ax′

∣∣y′z′) = W (bx′
∣∣y′z′)

for all x′, y′, z′ ∈ X with {x, y, z} = {x′, y′, z′}.

Proof. Our assumptions imply W (ab
∣
∣xz)≥min

{
W (ab|xy), W (ab

∣
∣yz)

}
> 0. Thus, sym-

metry (relative to x, y, z) allows us to assume, without loss of generality, that W (bx
∣∣yz)>

0 holds. Together with W (ab
∣
∣xy) > 0, this implies W (ab

∣
∣x

∣
∣yz), and hence,

W (ax
∣
∣yz) = W (bx

∣
∣yz) > 0,

which in turn implies that

W (ax′|y′z′) = W (bx′|y′z′)
holds for all x′, y′, z′ with {x′, y′, z′}= {x, y, z} because both terms vanish in case x′ �= x,
and both terms coincide with W (ax

∣
∣yz) = W (bx

∣
∣yz) in case x′ = x.

Corollary 3.4. If
0 < W (ab|xy) ≤W (ab|xz), W (ab|yz)

holds for five distinct elements a, b, x, y, z in X, one has either W (ab|x|yz) or W (ab|y|xz)
and, hence, in any case

W (ab|xz) = W (ab|xy)+W(ay|xz) = W (ab|xy)+W(by|xz) (3.2)

as well as

W (ab|yz) = W (ab|xy)+W(ax|yz) = W (ab|xy)+W(bx|yz). (3.3)

Proof. Clearly, both W (ab|x|yz) and W (ab|y|xz) imply (3.2) and (3.3). Thus, it is
enough to show that either W (bx|yz) > 0 or W (by|xz) > 0 must hold. Yet, otherwise
we would have W (bz|xy) > 0 implying that W (ab|z|xy) would hold in contradiction to
W (ab|xy) ≤W (ab|xz).

Next, we define

W (ab| ∗ ∗) := min

{
W (ab|xy)

∣
∣
∣{x,y} ∈

(
X \ {a, b}

2

)}

for any two distinct elements a, b ∈ X .
Note that in case the map W is of the form WT, � for some binary X-tree T and some

length function � : E1(T )→R>0, we have W (ab|∗∗)> 0 for any two distinct vertices a
and b if and only if the vertices a and b form a cherry in T , i.e., the two unique vertices
u, v in V with {a, u}, {b, v} ∈ E coincide.
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Corollary 3.5. If

W (a0b0
∣
∣c0d0) = max

{
W (ab

∣
∣cd)

∣
∣
∣ab

∣
∣cd ∈ S2|2(X)

}

holds for some a0b0
∣
∣c0d0 ∈ S2|2(X), one has W (a0b0| ∗ ∗) > 0 as well as W (a0x|yz) =

W (b0x|yz) for all {x, y, z} ∈ (X\{a0,b0}
3

)
.

Proof. Corollary 3.2 implies that W (a0b0
∣
∣xc0)> 0 must hold for all x in X−{a0, b0, c0}

which in turn implies that W (a0b0
∣
∣xy) > 0 holds for all x, y ∈ X −{a0, b0} with x �= y,

in view of (F4) and, therefore, also

W (a0x
∣
∣yz) = W (b0x

∣
∣yz)

for all {x, y, z} ∈ (X\{a0,b0}
3

)
in view of Corollary 3.3.

Corollary 3.6. If 0 <W (ab|xy)=W (ab|∗∗) holds for four distinct elements a, b, x, y∈
X, one has

W (ab
∣
∣xz) = W (ab

∣
∣xy)+W(ay

∣
∣xz)

as well as
W (ab

∣∣yz) = W (ab
∣∣xy)+W(ax

∣∣yz)

for all z ∈ (X \ {a, b, x, y}).
Proof. This follows directly from Corollary 3.4.

Next, we define

W b(a ∗ |cd) := max
{

W (az|cd)
∣
∣∣z ∈ X \ {a, b, c, d}

}

for any four distinct elements a, b, c, d ∈ X . The following result will be crucial for our
proof of Theorem 1.1:

Lemma 3.7. If W (ab| ∗ ∗) > 0 holds for two distinct elements a, b ∈ X, one has

W (ab|cd) = W (ab| ∗ ∗)+Wb(a ∗ |cd) (3.4)

for any two distinct elements c, d ∈ X \ {a, b}. In particular, a map W from S2|2(X)
into R≥0 that satisfies the conditions (F1) to (F4) is completely determined, for any two
distinct elements a, b ∈ X with W (ab| ∗ ∗) > 0, by its values on S2|2(X \a)∪S2|2(X \b)
and the value of W (ab| ∗ ∗).
Proof. In case W (ab|cd) = W (ab| ∗ ∗), we have to show that W (az|cd) = 0 holds for
all z ∈ X \ {a, b, c, d} which follows from the fact that W (az|cd) > 0 for some z ∈
X \{a, b, c, d} would imply W (ba|z|cd) in view of W (ba|zc) > 0 and W (az|cd) > 0 in
contradiction to W (ab|cd) = W (ab| ∗ ∗)≤W (ab|zc).

Otherwise, we have W (ab|cd) > W (ab| ∗ ∗) and we can use (F4) to find some
z ∈ X \ {a, b, c, d} with W (ab|zc) = W (ab| ∗ ∗) and, therefore, W (ba|z|cd) in view
of W (ab|cd) > W (ab|zc) > 0 and Lemma 3.1, (iii) ⇒ (i) ⇒ (ii) and, thus,

W (ab|cd) = W (ab|cz)+W(az|cd) = W (ab| ∗ ∗)+W(az|cd)

≤ W (ab| ∗ ∗)+Wb(a ∗ |cd).
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It remains to show that
W (az′|cd) ≤W (az|cd)

holds for all z′ ∈ X \ {a, b, c, d}. Otherwise, however, we would have W (az′|cd) >
W (az|cd) > 0 for some z′ ∈ X \ {a, b, c, d, z} and, hence, W (az′|z|cd) by Lemma 3.1,
(iii) ⇒ (i) ⇒ (ii) which in turn would imply W (ba|z′|zc) in view of W (az′|zc) > 0
and W (ba|z′z) ≥W (ab| ∗ ∗) > 0, and, hence, W (ab|z′c) < W (ab|zc) in contradiction to
W (ab|zc) = W (ab| ∗ ∗)≤W (ab|z′c).

We now turn to the remaining part of the proof of Theorem 1.1. We already showed
in the previous section that there can be at most one pair T, � with W = WT, �. So, it
remains to show that such an X-tree T and a length function � indeed exist.

To this end, we will use induction relative to the cardinality n of X . Clearly, Theo-
rem 1.1 holds in case n = 4. Indeed, if the elements in X are labelled a, b, c, d so that
W (ab|cd) > 0 and, hence, W (ac|bd) = W (ad|bc) = 0 holds, the tree

T = Tab|cd

:=
(
{a, b, c, d, uab, ucd},

{
{a, uab}, {b, uab}, {c, ucd}, {d, ucd}, {uab, ucd}

})

with exactly four leaves a, b, c, d and two additional vertices named uab, ucd of degree
3, uab adjacent to a, b, and ucd , ucd adjacent to c, d, and uab, together with the map

� :
{{uab, ucd}

} → R>0, {uab, ucd} �→W (ab|cd)

is obviously the unique required pair T, � with W = WT, �.
To perform induction, we now assume n > 4 and choose a0b0

∣∣c0d0 ∈ S2|2(X) with

W (a0b0
∣
∣c0d0) ≥W (ab

∣
∣cd) (3.5)

for all ab
∣
∣cd ∈ S2|2(X).

In view Corollary 3.5, this implies that W (a0b0| ∗ ∗) > 0 as well as

W (a0x
∣
∣yz) = W (b0x

∣
∣yz) (3.6)

for any three distinct elements {x, y, z} in X −{a0, b0}.
Next, using our inductive hypothesis, we choose a binary (X \ {a0})-tree T1 and a

length function �1 : E1(T1) → R>0 with

WT1, �1 = W
∣
∣
S2,2(X−{a0})

and note that, in view of (3.6), we have also

WT2, �2 = W
∣
∣
S2,2(X−{b0}),

for the binary (X −{b0})-tree T2 and the length function �2 : E1(T2) → R>0 derived by
renaming the vertex a0 in T1 by b0.

Let u0 denote the unique vertex in V (T1) with {u0, b0} ∈ E(T1) (and, hence, with
{u0, a0} ∈ E(T2)). It is clear that u0 is not a leaf in either T1 or T2. Now, choose
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some further element w0 not in any set previously considered and define T = (V, E)
and � : E1(T ) → R>0 as follows:

V := V (T1)∪{a0, w0},

E :=
{{a0, w0}, {b0, w0}{u0, w0}

}∪E(T1)
∖{{b0, u0}

}
.

Note that
E1(T ) = E1(T1)∪

{{u0, w0}
}

holds. Put
�(e) = �1(e)

for all e ∈ E1(T1), and
�({u0, w0}) := W (a0b0| ∗ ∗). (3.7)

One has to show that W = W(T, �) holds. However, both maps coincide on S2|2(X \
a0)∪ S2|2(X \ b0) in view of our construction, and we have also W (T, �)(a0b0| ∗ ∗) =
�({u0, w0}) = W (a0b0| ∗ ∗). Thus, our claim follows from Lemma 3.7.

The observations leading to this proof immediately suggest various algorithms to
construct the tree and to determine the length function: First one has to determine a
suitable labelling X = {a1, a2, . . . , an} of the elements in X and then, in a second run,
one builds the tree in a recursive fashion.

4. Discussion

The crucial observation used above that a map W : S2|2(X) → R≥0 which satisfies the
conditions (F1)–(F4) and certain inequalities is uniquely determined by its restriction to
a certain subset of S2|2(X), raises the question for which other collections of inequalities
and corresponding subsets of S2|2(X) this might hold. E.g., one can generalize the
observation above and show that, given any four distinct elements a1, a2, a3, a4 in X
with

0 < W (a1a2|a3a4) ≤W (a′1a′2|a′3a′4)

for all {a′1, a′2, a′3, a′4} ∈
(X

4

)
with W (a′1a′2|a′3a′4) > 0 and

#({a1, a2, a3, a4}∩{a′1, a′2, a′3, a′4}) = 3,

the map W is uniquely determined by its restriction to all 4-subsets {x1, x2, x3, x4} of
X for which {x1, x2, x3, x4} is either contained in

A1 := {a1, a2, a3}∪
{

a ∈ X \ {a1, a2, a3}
∣
∣
∣W (a1a|a2a3) > 0

}
,

or in
A2 := {a1, a2, a3}∪

{
a ∈ X \ {a1, a2, a3}

∣
∣
∣W (aa2|a1a3) > 0

}
,

or in
A3 := {a1, a3, a4}∪

{
a ∈ X \ {a1, a3, a4}

∣
∣
∣W (a1a4|aa3) > 0

}
,
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or, finally, in

A4 := {a1, a3, a4}∪
{

a ∈ X \ {a1, a3, a4}
∣
∣
∣W (a1a3|aa4) > 0

}
.

Using this observation, the required X-tree T and length function � with W = WT, � can
also be constructed as follows: One first chooses two distinct elements a1, a2 in X for
which some subset {x, y} ∈ (X\{a1,a2}

2

)
with W (a1a2|xy) > 0 exists, then one chooses

two distinct elements a3, a4 in X \ {a1, a2} with

W (a1a2|a3a4) = min

{
W (a1a2|xy)

∣
∣
∣{x, y} ∈

(
X \ {a1, a2}

2

)
, W (a1a2|xy) > 0

}
,

and observes that W (a1a2|a3a4) ≤ W (a′1a′2|a′3a′4) must hold for all {a′1, a′2, a′3, a′4} ∈(X
4

)
with W (a′1a′2|a′3a′4) > 0 and #({a1, a2, a3, a4}∩{a′1, a′2, a′3, a′4})= 3, then one con-

structs the subsets A1, A2, A3, A4 as above and, noting that a4 �∈A1∪A2 and a2 �∈A3∪A4

hold, and then one uses the induction hypothesis to find, for each i ∈ {1, 2, 3, 4}, an Ai-
tree Ti together with a length function �i such that WTi , �i = W |S2|2(Ai) holds. Finally, one
“fuses” these four “small” trees in an appropriate (and absolutely canonical) way into
one big supertree T and one uses the length function �1, �2, �3, �4 to define a length
function � for T for which one finally observes that W = WT, � must hold by referring to
the above generalization of Corollary 3.5.

More generally, one may as well start with any arbitrary labelling

X = {a1, a2, . . . , an}
of the elements in X and use the above analysis to construct recursively, starting with
the tree T3 := ({a1, a2, a3, v}, {{ai, v}|i = 1, 2, 3}), a sequence of trees T (i) with leave
set Xi := {a1, . . . , ai} and length function �i defined on E1(Ti) for i = 4, . . . , n such that

W
∣
∣
∣
S2|2(Xi)

= WTi , �i

holds for all i = 4, . . . , n.
Indeed, comparing W -values, one can — for each i = 4, . . . , n — identify that edge

ei = {ui, vi} in T (i−1) to which the new pending edge with leaf ai has to be attached. The
tree T (i) then results from T (i−1) by eliminating the edge ei and adding a new internal
vertex wi as well as three new edges {ui, wi}, {wi, vi}, {wi, ai}, and the length function
�i can then also be defined easily on the (one or two) new internal edges while keeping
the value of �i−1 on all internal edges of T (i) that are also internal edges of T (i−1).

While, given a map W that satisfies the conditions (F1) to (F4), the outcome of
any such recursive construction does, of course, not depend on the labelling of X , the
algorithmic procedure will selective only use certain W -values (depending strongly on
the chosen labelling) and can thus be applied to any map W from S2|2(X) into R≥0

whether or not (F1) to (F4) are satisfied. And it will always produce a weighted X-tree
depending on that map W and the input labelling.

In a forthcoming paper, we will discuss various ideas on how to make a sensible
choice of the input labelling in case one starts with a map W that satisfies the conditions
(F1) to (F4) only approximately, and present some related experimental results.
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Our result also suggests to study arbitrary subsets X of S2|2(X) and maps W0 : X →
R≥0 and ask for necessary and/or sufficient conditions on X and W0 that imply that
there exists at least (or at most) one extension W = S2|2(X) → R>0 of W0 that satisfies
the conditions (X ) as well as perhaps certain inequalities, or for algorithms that decide
extendability and/or construct such an extension if it exists. The results by Boecker and
others (cf. [2–4]) suggest that deciding unique extendability might, at least in certain
cases, be considerably simpler than just deciding extendability.

Another question that arises naturally in this context is how, given any map W :
S2|2(X) → R≥0, one can find a map W ′ : S2|2(X) → R≥0 that satisfies the conditions
(F1)–(F4) and approximates W as closely as possible (relative to some predefined mea-
sure of “closeness”). While prescribing the support of W ′ (i.e., the topology of the
X-tree in question), least square approximations should be easy, a linear-programming
approach (similar to that pursued by Weyer-Menkhoff [40], see also [24]) in the case
of unweighted X-trees where only the support of W ′ is of interest) would be welcome
whenever any a priori assumptions about that support cannot be provided.
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21. P.L. Erdős, M.A. Steel, L.A. Székely, and T. Warnow, Local quartet splits of a binary tree
infer all quartet splits via one dyadic inference rule, Comput. Artificial Intelligence 16 (2)
(1997) 217–227.
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24. S. Grünewald, The quartet joining algorithm, manuscript, Bielefeld, 2002.
25. D. Huson, S. Nettles, L. Parida, T. Warnow, and S. Yooseph, The disk-covering method for

tree reconstruction, In: Proceedings of “Algorithms and Experiments,” ALEX’98, Trento,
Italy, 1998, pp. 62–75.

26. D. Huson, S. Nettles, K. Rice, T. Warnow, and S. Yooseph, Hybrid tree reconstruction meth-
ods, ACM J. Exp. Alg. 4 (1998) Article 5.

27. D.H. Huson, S.M. Nettles, and T.J. Warnow, Disk-covering, a fast-converging method for
phylogenetic tree reconstruction, J. Comput. Biol. 6 (3/4) (1999) 369–386.

28. T. Jiang, P. Kearney, and M. Li, Orchestrating quartets: approximation and data correction,
FOCS’98 Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer
Science, 1998, pp. 416–425.

29. T. Jiang, P. Kearney, and M. Li, A polynomial time approximation scheme for inferring
evolutionary trees from quartet topologies and its application, SIAM J. Comput. 30 (2000)
1942–1961.

30. P.E. Kearney, The ordinal quartet method (extended abstract), In: RECOMB’98, New York,
1998, pp. 125–133.

31. J. Kim, large-scale phylogenies and measuring the performance of phylogenetic estimators,
Syst. Biol. 47 (1998) 43–60.

32. J. Lagergren, Combining polynomial running time and fast convergence for the disk-
covering method, J. Comput. System Sci. 65 (2002) 481–493.



X-Trees and Weighted Quartet Systems 169

33. L. Nakhleh, U. Roshan, K.St. John, J. Sun, and T. Warnow, Designing fast converging phylo-
genetic methods, In: Bioinformatics, Oxford University Press, ISMB’01 17 (90001), 2001,
S190–S198.

34. V. Ranwez and O. Gascuel, Quartet based phylogenetic inference: improvements and limits,
Mol. Biol. Evol. 18 (6) (2001) 1103–1116.

35. K. Strimmer and A. von Haeseler, Quartet puzzling: a quartet maximum likelihood method
for reconstructing tree topologies, Mol. Biol. Evol. 13 (1996) 964–969.

36. K. Strimmer, N. Goldman, and A. von Haeseler, Bayesian probabilities and quartet puzzling,
Mol. Biol. Evol. 14 (1997) 210–211.
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