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Abstract We describe a new family of phylo-
genetic invariants that arise from the recently
developed spectral analysis approach to tree
reconstruction. These invariants, which are valid for
Kimura's 3ST model, possess four important
properties—they are defined equally easily for any
number of taxa, their description is tree-inde-
pendent, they apply even when the distribution of
the four nucleotides in the ancestral taxon is
unknown, and they can be modified to deal with
sequence sites that do not mutate independently with
identical distribution.
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INTRODUCTION

Recently there has been considerable interest in
phylogenetic invariants (Cavender 1989, 1991; Fu
& Li 1991, 1992; Nguyen & Speed 1992; Evans &
Speed 1993; Ferretti & Sankoff 1993). Broadly
speaking, phylogenetic invariants are functions
which, when evaluated on "ideal" sequence data,
take a value that depends only on the (dimensionless)
underlying evolutionary tree linking the taxa. The
motivation for their development is that they allow,
in principle, the consistent reconstruction of an
evolutionary tree from sequence data without having
to deal with a large number of unknown parameters.

All phylogenetic invariants are based on some
stochastic model describing the observed differences
in the aligned segments of genetic sequences for a
collection of extant species. The validity of a
particular invariant therefore depends on the correct-
ness of its relevant model. This model, which we
shall denote throughout as M, encapsulates the
underlying probabilistic mechanism by which the
unknown sequence of the ancestral taxon mutated
randomly over time to result in the observed forms
in extant taxa.

It is important to distinguish two aspects of M—
the stochastic features (e.g., whether or not
mutations at different sequence sites and/or places
in the tree are independent) and the parameters. The
parameters of M generally comprise one discrete
variable—the true tree, denoted T, that is, the his-
torically correct evolutionary (gene) tree connecting
the extant species—as well as continuous variables,
denoted P, which mostly pertain to edges of the true
tree (and may be related to time) or perhaps,
additionally, describe the distribution of rates and
correlations of mutation at different sites on the
sequence.

A desirable aspect of M is that it imparts to the
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data sufficient traces of the true tree connecting the
species so as to enable this tree to be reconstructed,
at least from "ideal" sequences. In practice this
generally means that M should incorporate some
independence assumptions as stochastic features,
and not possess too many freely adjustable para-
meters. Increasing the number of parameters and
weakening the assumptions in M allows M to better
approximate nature; however, this brings a risk of
overfitting the data; indeed, with sufficient
flexibility, any sequence data can be described
perfectly by any tree!

Attempts to reconstruct T without having to worry
about the continuous parameters motivated the study
of invariants, which began around 1987 from two
quite different directions. Cavender & Felsenstein
(1987) published a seminal paper which derived
quadratic invariants forCavender/Farris's symmetric
two-character state nucleotide model (with four
taxa). Lake (1987) independently developed his
"evolutionary parsimony" method, which used linear
polynomials to identify a tree under a different
stochastic model of four-character state nucleotide
sequences, still with four taxa. Subsequent work has
attempted, with mixed success, to (1) generalise
these methods systematically to sets of more than
four taxa, (2) extend to more general models, and
(3) develop statistical tests by which invariants can
discriminate between two trees, or construct con-
fidence intervals of trees (as in Navidi et al. 1991).

Fu & Li (1991) and Evans & Speed (1993) have
analysed a quite different model due to Kimura
(1981), which has three parameters describing the
rates of transition and the two types of transversion
substitutions—these rates being allowed to vary for
each edge of the tree. Fu & Li (1991) show the
transition matrices for this model form a semigroup
and allow certain events to be pairwise independent,
and furthermore, that no larger semigroup can allow
this independence. Evans & Speed (1993) provide
a complete characterisation of when any given
polynomial is an invariant for a tree under this
model. Their characterisation is general (although
it assumed equal frequencies of the four states at
the root, something we dispense with) and is valid
for any number of taxa. They did not explicitly
construct the simple and complete family of
invariants for any number of taxa that we describe
below. Evans & Speed exploited the fact that
Kimura's model is essentially described by a finite
group—the Klein four-group. It was this observation
that allowed for the construction of our invariants,
which are essentially a consequence of the recent

extension of Hendy & Penny's (1993) "spectral
analysis" method from two-state to four-state
character sequences (see Steel et al. 1992).

In parallel, much attention has been devoted to
constructing, counting, and classifying linear
invariants (e.g., Nguyen & Speed 1992; Fu & Li
1992). There are good statistical reasons to prefer
linear invariants over higher order polynomial or
more general invariants (see Navidi et al. 1991);
however, for several models, such as Kimura's three-
parameter model, there exist no linear invariants
(apart from the trivial one). Furthermore, restricting
attention to linear polynomial invariants generally
neglects a large amount of information contained in
non-linear invariants. Among non-linear invariants,
it appears that only polynomial functions have been
considered, though these seem to have few statistical
(or other) advantages over invariants based on other
analytical functions.

The organisation of this paper is as follows. We
first provide a definition for phylogenetic invariants.
We then describe the three-parameter model for
nucleotide substitution proposed by Kimura (1981).
Under the further assumption that sequence sites
evolve "independently and identically" (the i.i.d.
assumption) we construct a collection of invariants.
An extension is then described that provides
invariants in the case where this i.i.d. assumption is
relaxed, to allow for different rates across sites, and
a limited degree of dependence between sites. In both
cases, these invariants asymptotically, uniquely
identify the tree that generated the data. An obvious
weakness in this last statement is the word
"asymptotically"—statistical tests based on the
nonasymptotic properties of invariants (Waddell et
al. in press) are required for them to be useful in
practise, and so our results are just a first step in this
direction.

PHYLOGENETIC INVARIANTS -
DEFINITIONS

Throughout this paper we adopt the conventions of
letting [n] denote the set {l,...,n}, and [X,J denote
the column vector whose i-th component is X,. We
use standard terminology for describing aspects of
phylogenetic trees (e.g., Steel 1992), which are trees
whose degree 1 vertices (leaves) are labelled and
whose remaining vertices are unlabelled and of
degree >3, though we refer throughout to phylo-
genetic trees simply as trees. Also, we adopt the
following convention: if a rooted tree T, as in Fig.
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Fig. 1 A, A rooted phylogenetic
tree T having leaves labelled [5] =
{1,...,5}. B, The unrooted phylo-
genetic tree on [5] obtained from T
by suppressing the root r, denoted
T'.

B

1

i -r

3 5

1 A, has a root r, of degree 2, let T~r denote the tree
obtained from T by deleting r and replacing its two
incident edges with a single edge, as in Fig. IB. If
the degree of r is more than 2, we can take r~rto be
simply T itself, regarding r as just one of the
unlabelled internal vertices of T.

A number of essentially similar definitions for
phylogenetic invariants have been proposed—here
our definition emphasises the fact that phylogenetic
invariants are calculated on observed data rather than
"ideal" data. If the taxa are labelled l,...,n, then the
collection of states for the different taxa at a given
site in the aligned sequences is an ordered n-tuple K
= (Sh...,Sn) where each 5,- is either A, C, G or T (U
if using RNA sequences), and this K is often called
a pattern. For each pattern n, let DK denote the
proportion of sites in the sequences where this
pattern occurs. A phylogenetic invariant (or more
briefly, an invariant) for a model M with parameters
(T,P) is a function f = f([XK]) in variables XK

("indeterminants") that are indexed over all the
possible patterns, n, and so that the following
property holds for all P:

If D is stochastically generated according to M,
and f is evaluated with XK = DK, then as the
sequences become long, f tends to 0 with
certainty (i.e., with probability 1).

More succinctly, we write:

,o (1)

where —> p denotes convergence in probability (see
Renyi 1970). When the sequence site substitutions
are independent then condition (1) is equivalent to
the more usual formulation

where EK is the expected value of DK for model M.
The important words in these definitions are the

words "for all P"—that is, the truth of (1) or (1*)
does not depend on the actual values the unknown
edge parameters take, although the rate of
convergence in (1) may. Often f is a polynomial
function, though this is not necessary. The linear
function:

f(\En}) = 0 (1*)

is a noninformative invariant for all M, the trivial
invariant.

If f satisfies (1) for all trees T, we say it is a model
invariant, otherwise it is a phylogenetically
informative invariant. Model invariants do not
distinguish between trees, but are useful as a check
on the correctness of the model M. Phylogenetically
informative invariants can, in principle, place
restrictions upon which trees adequately describe the
data. Such invariants, taken together, may single out
the correct tree by a process of elimination. Thus,
we say that a collection of invariants for model M
identifies all trees if each possible value for Tr (i.e.
the tree T without specifying the placement of the
root) can be distinguished by those entries in the
collection which satisfy (1) (or (1 *)). Thus, for each
unrooted tree T there is a set of invariants I(T) so
that if T&Y then I{T)*I{Y). One can ask for more
than this however—we will say a collection of
phylogenetic invariants is complete if, for each
unrooted tree T~r, the invariants in I(T~r) all satisfy
(1*) and the remaining invariants are all positive if
and only ifM has parameters (T,P) for some P.

The following proposition is proved in Ap-
pendix 1.
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Proposition 1 If a model has a collection of
invariants which identify all three fully resolved (i.e.
binary) trees on four taxa then

(1) for each fully resolved, unrooted tree T on n
> 4 taxa, there exists an invariant f^ t^]) such
that

if and only if T is the (unrooted) tree parameter
in M.
(2) for n > 4 taxa there is a collection of
invariants that identifies all trees.

TREES AS SET SYSTEMS

Normally a phylogenetic tree is thought of as a
graph, that is, as a collection of vertices joined by
edges. However, there is a natural way to represent
a phylogenetic tree as a collection of subsets, and
this representation is an essential ingredient in our
construction of a complete collection of invariants.
If we take an unrooted tree, T, whose leaves are
labelled by the set [n] (={ l,...,n}) and we delete an
edge of T, this breaks the tree into two connected
components and thereby partitions [n] into a pair of
sets; this pair is frequently referred to as a split. One
of these two sets will not contain the last label n; if
we select this set, and do this for all the edges of the
tree T we obtain a collection, a = a(7), of subsets of
[n-1] which have the following two properties:

(i) [«-lJ e o and ( i jeo, for all ie[n-l] .
(ii) if p, p 'ea , then pnp'G {p,p',0}.

Condition (ii) is often expressed by saying that p
and p' are compatible. It is easily shown that a(7)
has at most 2n-3 sets, and this upper bound is
achieved precisely if T is a binary (i.e. fully resolved)
tree. For example, for the tree Tr, in Fig. IB, we
haveo(7-0= {{1}, f2}, {3}, {4}, {1,2,3,4), {1,3},
{2,4}}.

Conversely, any collection, a, of subsets of
[n-1] which satisfy (i) and (ii) corresponds to o(7)
for a unique phylogenetic tree T on [n]. This funda-
mental result is due to Buneman (1971). Further-
more, Tcan easily and quickly be recovered from o
(e.g., by Meacham's TREE POPPING method; see
Bandelt & Dress 1986). More generally, Buneman
(1971) described how to construct a graph from any
collection a of sets, and showed that this graph is a
tree precisely if the sets in o are all pairwise
compatible. For further details the interested reader
should consult Barthelemy & Guenoche (1991).

KIMURA'S THREE-PARAMETER MODEL

Kimura (1981) defined a three substitution-type
(3ST) model for nucleotide substitution, for which
there is a rate a for "transition" type substitutions,
and rates (i and y for two types of "transversion"
substitution, as illustrated in Fig. 2A.

Following Kimura, we denote these three types
of substitution by the letters P,R,Q, respectively. Let
0 denote the "null substitution", which fixes the four
nucleotides. Then the collection {O,P,Q,R} is closed
under composition © (the effect of doing one
substitution followed by another). For example, P
followed by Q is the same substitution as R
(regardless of which nucleotide it is applied to). In
fact, the composition table of this collection, shown
in Fig. 2B, forms a group—the so-called Klein 4-
group, as first pointed out by Evans & Speed (1993).
Ultimately, it is this property of the 3ST model which
leads to the results described below. Note that
Kimura's two-parameter model and the Jukes-
Cantor model are both special cases of the 3ST
model (put p = y ; a = P = y, respectively).

Now, consider a collection of taxa, labelled 1 ,...,n.
These taxa form the leaves (endpoints) of their
evolutionary tree, T, which is a rooted tree, as in
Fig. 1 A. The root, r, of Trepresents the most recent
common ancestor of the taxa. Consider the evolution
of a single site on a segment of aligned DN A or RN A
sequence from the ancestor r to its present observed
forms. For this site the state—A, C, G, or T (U for
RNA)—at the root will always be unknown. As the
root sequence, and its descendant varieties (in the
intermediate and extant species) evolve, substitutions
of type P,Q,R will occur randomly with rates a,y,p.
We do not assume these parameters are constant over
the evolutionary tree—they may vary freely from
edge to edge (i.e. over time, and across different lines
of descent). We assume that all the rates are strictly
positive on any edge of the evolutionary tree.

The key assumption in the 3ST model is that these
three types of substitutions take place independently
in the tree—so that, for example, a transition at a
site, in some intermediate species at some time in
its evolution does not affect the probability of (say)
an R-type transversion at that same site, either some
time later in its evolution, or in another intermediate
species in a different line of descent on the tree.

This assumption concerns a single site. The usual
way to extend this to a collection of sites is to assume
that:
(A) there is (statistical) independence across the sites

of the sequence (as well as across the tree). This
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Fig. 2 A, The three types of A
substitutions (P,Q,R) and theirrate
parameters (ot,y,P) in Kimura's 3ST
model. B, The substitutions,
together with the "null substitution"
0, form a group (the Klein 4-group)
underthe operation of composition,
denoted ffi.
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assumption implies, for example, that a tran-
sition at a site should not influence the likelihood
of a transition occuring simultaneously, or sub-
sequently, at a neighbouring site in some extant
or ancestral taxon.

(B) the rates of the three types of substitution at any
place in the tree is the same for all sites (these
rates may, however, vary across the tree).

Statistically, regarding the sites as random
variables, condition (A) states the sites are inde-
pendently distributed, while (B) states that they are
identically distributed; together this is commonly
referred to as the "i.i.d." assumption.

Both the above assumptions seem particularly
severe; for example, the second will not hold for
sites subject to linkage or selection. However, it is
not possible to say anything useful by completely
abandoning assumptions (A) and (B); a tractable
extension replaces conditions (A) and (B) by:

(A') Each site influences only a fixed number of
other sites—a precise statement is given later.

(B') Each site can evolve at a different rate, but at
any point in the tree, the ratios of the rate
parameters a,(3,y at that point are the same
across the sites (these ratios may vary across
the tree).

A further aspect of the model concerns the
distribution of the states at the root. In what follows
we do not make any assumption whatsoever about
this distribution (in particular, unlike the invariants
described by Evans & Speed (1993), we do not need
to assume that the distribution of the four states at
the root is uniform) in other words, the model has
arbitrary root distribution.

We show the i.i.d. assumptions ((A), (B)) lead to
polynomial invariants, while the more general
assumptions ((A'), (B')) lead to analytical invariants.

INVARIANTS UNDER THE i.i.d. MODEL

We now construct a complete collection of
polynomial invariants for the 3ST model with
arbitrary root distribution, under the i.i.d. assump-
tions. Essentially we take certain linear combinations
of the variables (the values Le([Xn\) below), and our
invariants are simply the difference of two terms,
each of which is a product of these linear com-
binations. Furthermore, the linear combinations
involved are such that each variable XK occurs in
each combination, with coefficient either +1 or - 1 ,
depending on the particular combination.

We begin with some definitions. A quadri-
partition (of [«]) is a pair 0 = (O|,O2), where each o,
is a subset of [n-1]. Forquadripartitions0 = (o1,a2),
and 9* = (fi].|l2), define

r+1, if la,nu.il + la2nu.2l is even
h(9*,8) = \ (2)

«— 1, if la^u.,1 + la2np.2l is odd.
(where 151 denotes the size of set S).
For a pattern % = (S\,...,Sn) let 9(n) denote the
quadripartition (O|,G2) where:

O| = {i: Sn —> S,is a R-type or Q-type substitution}
o2 = {/: Sn —> Si is a R-type or P-type substitution}.

Thus, for example, O, is precisely the set consisting
of those taxa (' whose state differs from taxon n by a
transversion, as described in Fig. 2A. Note that
precisely four patterns induce the same quadri-
partition.
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For a quadripartition 0 - (O],a2), define the linear
combination:

(3)

where the summation is over all patterns. Note that
the coefficient of each XK in LQ([XK]) is either +1 or
- 1 . For a quadripartition 9 define the polynomial fe

by:

e*:h(6,9*)=l
(4)

6*:h(G,e*)=-l

These are our invariants. To state which ones apply
for a particular tree, we need to relate quadri-
partitions to trees by the representation of trees as
set systems. Firstly, recall that T~ris the tree obtained
from T by suppressing its root. The tree T~r defines
a special set of quadripartitions, which we now
describe. Let
A= {p(l>: [ n - l ] 3 p * 0 }
where

p(2> = = (p,p)
and let
C(T-r) = {(0,0)} u {p«: peo(T~r), i=l,2,3}.
Note that C(T~r) determines Tr (since o(T~r) does),
and has size three times the number of edges of T,
so is therefore no larger than 3(2n-3), this bound
being taken precisely if T is fully resolved. The
following proposition, which provides the promised
class of invariants for the 3ST model, follows from
Theorem 10 of Szekely et al. (1993).

Proposition 2 For the 3ST model with underlying
tree T, and arbitrary root distribution, under the i.i.d.
assumption, let En denote the expected value of DK.

(1) fe([£J) = 0 if and only if 0 e C(Tr).
(2) {fe : 0 ^ (0 ,0) ) is a complete collection of
invariants, consisting of 3x(2n~'-l) phylo-
genetically informative invariants, namely
(fe: 0eA},and
4""1- 3x(2"~'-l) - 1 model invariants. Each
unrooted tree t with e edges has
4"~' - 3e - 1 associated invariants, namely
{fe: 6

EXTENSIONS TO NON-i.i.d. MODELS

In this section we adopt the following notation. If \|/
is a function defined on real numbers, and x a real

nxl vector, then \|/x is the vector whose i-th
component is V|/(x,), for i = l,...,n.
Define the linear form:

%B([XK],«**])= 2, x* (5)

Ji:6(jt)=6

Indexing the quadripartitions, the h(0,0') values of
Equation (2) form a 4"~' by 4""1 symmetric
Hadamard matrix, denoted H, so that Equation (3)
can be rewritten:
j (\ v n — ciiv1!
LgUA^JJ — (HXJg
where x = [xe], and xe = Xed^nl)ls given by Equation
(5).
Let e = [<?e], where ee = X9([£'n]), where En is, as
usual, the expected value of DK. Then it can be shown
that all the components of He are positive, so that,
since H~' = 4'"H, Proposition 2(1) can be restated
as follows: under the 3ST model with i.i.d.

(H-'logHe)9 = 0 if and only if 0 i C(T-r)
which is the first half of Theorem 1 of Steel et al.
(1992). The second half of that theorem states:

(H-1logHe)9 = Ep', if 0 = pwe C(T~r)
where Ep is the expected number of type-/ sub-
stitutions on the edge of T~r corresponding to p,
where a type -1,2,3 substitution is a Q,P,R
substitution, respectively. (There is a minor but
important technical qualification required in case T
has exactly two edges incident with its root, and p
corresponds to the edge of T~r which replaces those
two edges. In this case, p corresponds to two edges
of T, and then Ep is the total expected number of
type-/ substitutions on both these two edges. Note
also that we are assuming throughout that Ep' > 0
for all i and pe o ( H ) .

We wish to generalise these two results, thereby
providing invariants under more general conditions
than the i.i.d. assumption. We first present a more
general version of the independence assumption,
which is a limiting statement that, informally, says
that non-independence arises only between a fixed
number of sites (condition (A'))- Precisely, suppose
the patterns in the sequences are ordered 7t|,...,7Cc (this
may be chosen to differ from the sequence ordering
if the new ordering better reflects the interactions
arising in three dimensions by having most
interaction occurring between neighbours). Let

1 if 0(71;) = 0

0 otherwise
Let p,; denote the maximum (over all 0) correlation
of 5(/,0) with 8(/,0). Then we can take, for condition
(A'), the following statement:
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for te
>-J\

The numerator, 1, can be replaced by any constant,
and there are other slightly different alternatives to
(A'), however we do not pursue these here.

As for condition (B'), this states, informally, that
the substitution process at different sites is essentially
the same, except that it is proceeding at different
speeds. More precisely, for the edge e of T cor-
responding to pe [n-1], and a site j on the aligned
sequences, let Ep'(j) be the expected number of type-
/ substitutions on edge e. Then condition (B') states:

(B') Ep'(j) can be written in the form Ep' x Xj .

Here Xj can be thought of as the rate at which
substitutions occur at site j , and Ep' is the average
(over all the sites) of the expected number of type-
i substitutions on the edge of T~r corresponding to
p, divided by the average value of the Xfs.

Let M(x) denote the limiting average value of the
numbers exXJ (averaged over all sites j) as the
sequences length c becomes large. That is, let

For example, if the rate parameters Xj are drawn
independently according to some distribution then
M(x) is the moment generating function of this
distribution. Now, Xjis positive for ally, and so M(x)
is monotone increasing, and therefore has a unique
left functional inverse, which we denote as (|)(x). That
is, <j> is the function for which §(M(x)) = x for all
real x. Then we have the following result, which is
proved in Appendix 2.

Proposition 3 For the 3ST model with underlying
tree T and arbitrary root distribution, under
conditions (A') and (B') let d = [de], de = XQ([DK]).
Then,

{0, if and only if 9 g C(T~r).

Ep\ if 9 = p("e C ( r r )
EXAMPLES: (1) In case all the sites evolve at the
same rate (=X), we have M(x) = e**, giving (|)(x) =
(l/X) log(x), and so Proposition 3 is just a special
case of Proposition 2.
(2) Jin & Nei (1990) suggest that the gamma
distribution

f(x) = -, x>0,
T(k)

may be appropriate for the Xfs. In this case, M(x) -

(v/(v-x))* so that <t>(x) = v(l-x-yk). Letting tyk(x) =
x~1/k, the invariants can then be written, independent
of v, as

(e, - Hr%Hd)e - » p 0, if and only if 9 <t C(Tr),

where e, = [1,0,0,0...]'.
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APPENDIX 1: Proof of Proposition 1

(1) If rhas four leaves, set

)2 (Al)

Then, since C identifies all trees on four leaves, fj([Dn]) —> p 0 if and only if T is the unrooted tree parameter in M.
Now suppose Thas n > 4 leaves. Applying Proposition 2(3) of Steel (1992), since T is fully resolved there exists a set
Q of w-3 phylogenetic subtrees of T, each having four leaves of T, such that the trees in Q collectively define T. Thus,
let

f r ( [XJ )= Z f,([X(OpJ) (A2)

where, if t has leaves {i,j,k,l}, X(t)p is the sum of Xn over all patterns K which extend the pattern p on {i,j,k,l} and f,
is given by (Al) with T=t. In this way, f/{[Dn]) —> p 0 if and only if T is the unrooted tree parameter in M.

(2) Each phylogenetic tree is defined by how it resolves all its subtrees on four leaves, containing a fixed leaf, say n
(Bandelt & Dress 1986). Let this collection of subtrees be R. Then the collection of invariants (f,([X(f)p]): teR),
where f,(fX(Op]) is as defined in part (1), identifies all trees on n taxa.

APPENDIX 2: Proof of Proposition 3

Let Y = [79] where 7e = Ep\ if 9 = pfl)e C(T~r), while ye = 0 otherwise except for 7 (B0) which is chosen so that the
components of 7 sum to 0. Then the expected value of 8(/,9), denoted <8(/,9)>, is given by Theorem 1 of Steel et al.
(1992) as

<8(/,8)> = (H-|expH(A,/y))e

Thus, c~1Z<80",9)> =c"1Z(H~'expH(>L;7))e
j J

= [H-|c-1ZexpH(A.J-7))]

Now, \imc_>xc~ Z(expH(A.y7))e< =lim(.^0Oti~ Z(exp^.,(H7))g' =M((H7)g>)

Thus, l im,.^ c~x Z <80',8)>=(H~1MH7)e,
j

Applying Bernstein's Theorem (see Renyi 1970, p. 379), we deduce that, for each 9,

de -^p l i m ^ c~l I < 8O\6) > = (H-1Affl7)e,

thus, rf->pH"'AfH7 (A3)
Now, since (j) is continuous, so too is H"'(j)H, and if we have (for general random vectors) Z-*pz, then it is easily
checked that \y(Z) —>p V|/(z) for any continuous function \|/. Applying this to (A3) we deduce that
H-'<|>Hrf ->,, H-'())HH-1MH7 = 7, as required.


