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Abstract

We compare three lower bounds for the minimum cardinality of a multiway cut in a graph
separating a given set S of terminals. The main result is a relatively short algorithmic proof
for a simplified version of a min—max theorem of the first and the third authors asserting that
the best of the three lower bounds is actually attainable if every circuit of the graph contains a
terminal node. © 1998 Elsevier Science B.V. All rights reserved.

0. Introduction

Let G=(V,E) be a connected graph with no loops and § a specified subset of nodes.
A family 2 :={W,1,..., ¥/} of pairwise disjoint non-empty subsets of ¥ whose union
is V is called a partition of V. 2 is said to separate S or to be S-separating if each
member of 2 contains exactly one element of S. The value eg(#) of #2 is the number
of edges connecting distinct parts. Clearly, eg(2) =)y, d(X)/2 where d(X) denotes
the number of edges leaving X. The set of edges connecting distinct members of an
S-separating partititon 2 is called a multiway cut (separating S). We are interested in
the minimum cardinality ng of a multiway cut, that is, in an S-separating partition of
minimum value.

Minimum multiway cuts have been subject of study before, see, e.g. [1-3]. The
minimum multiway cut problem was shown to be NP-complete even for some restricted
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versions [4]. Paper [5] introduced a new lower bound for the minimum cardinality of
a multiway cut and proved a min—max theorem in the special case when the nodes of
S cover all circuits. For this special class, even the weighted multiway cut problem
has been solved in [6].

In the first section we introduce a new lower bound ¥s for the minimum multiway
cut. This value is the same as the lower bound used in [5] but its definition is more
transparent. We compare Vs with two known lower bounds and prove that, among
these three, Vs is always the best (that is, the largest). Section 2 includes the main
contribution of the paper: it is a relatively simple algorithmic proof for a simlified
version of a min—-max theorem of [5]. This result is about undirected graphs and the
basic idea behind the present simplification is that we introduce orientations of the
underlying undirected graph.

We need the following notions and notation. A leaf of a tree is a node of degree
one. A star is a tree whose all but possibly one nodes are leaves. We call a directed
tree T an arborescence if every node is reachable by a directed path from a special
node, called the root of 7.

Given a hypergraph ¥, the degree of a node u is the number of members of
& containing u. For a subset Z of nodes of a graph G =(V,E), the set of edges
connecting Z and ¥ —Z is called a cut. It is denoted by [Z, ¥ —Z] and its cardinality by
d(Z)=ds(Z). For a digraph G let 9(Z)= 0z(Z) denote the number of edges entering
Z. For two disjoint subsets 4,B of V, let A(4,B; G) denote the maximum number of
edge-disjont (directed) paths with starting node in 4 and end node in B. By Menger’s
theorem A(4,B; G)=min(g(X):BC X CV —4). For s€ S let A(S —s,s;G) denote the
maximum number of edge-disjoint paths from § —s to s. If G is a directed graph we
use the notation A(S —s,s; G) for the maximum number of edge-disjoint directed paths
from S — s to s. Note that via the Max-flow Min-cut algorithm both A(S —s,s; G) and
MS —s,s; G) are computable in polynomial time.

1. Lower bounds

First, we try to find some lower bounds for ms. Let 7§ := > ses M8 —5,5;G)/2. The
quantity t§ was introduced by Lovasz [7]. He proved that 7§ is equal to the maximum
value of a fractional packing of S-paths and also to the minimum value of a fractional
edge-covering of S-paths, where an S-path is a path connecting two distinct elements
of S. For 15 one has 1§ =3 AS — 5,5, G)/2< Y s d(V;)/2=eg(#P) for any §-
separating partition 2 = {¥;: s€ S}, from which ¥ <ng follows. Therefore, 75 is a
polynomially computable lower bound for ws. It is not a very good one though as
is shown by a star with £ leaves where S consists of the £ leaves. For such a star
T =k/2 and ms=k — .

In order to obtain better bounds we introduce two other parameters. By the value
val(T) of a sub-tree T of G we mean the number of its leaves belonging to §
minus one. In particular, the value of a path connecting two elements of S is 1.
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Let v§*® denote the maximum sum of values of edge-disjoint trees of G. Let Vy:=
max(} ¢ A(S — 5,5; G)) where the maximum is taken over all orientations G of G.

Theorem 1.1. 78 <V <Vs <.

Proof. To see the last inequality, suppose that G is an orientation of G for which
Vs =) s M8 — 5,5;G) and that 2:={V;: s€S} an S-separating partition for which
eg(.?) =Tgs. Then

Ts=Y MS—s55G)< > ol)=>_ d(V)2=ex(P)=ms,
SES SES seS
as required.

The middle inequality is also straightforward. Indeed, let 73, 75,..., T; be the mem-
bers of an optimal packing of trees. Orient the edges of each 7; as follows. Choose
arbitrarily a leaf of 7; in S and orient each edge of 7; so as to obtain an arborescence
with this root. The edges not in any 7; may be oriented arbitrarily. In such an orienta-
tion G of G the value A(S —s,s; G) is at least as large as the number of trees containing
s whose chosen root is different from s5. Therefore, the sum > o A(S — s,5; G) is at
least the sum of the values of the trees. We obtain, that Vs> ¢ A(S —s,s; 5)21}3‘“.

Finally, we prove the first inequality

15(G) <VER(G). (1.1)

By induction, we assume that

(*) inequality (1.1) holds for any graph G’ = (V’,E’) for which |V'|+|E’| <|V|+|E]|.

We may assume that the deletion of any edge e decreases t;. Indeed, if the
deletion of e leaves t; unchanged, then by (x) we have 73(G)=15(G — €)<
vi®(G — e)<VE*™(G), as required. We also may assume that there is no edge e con-
necting two elements of S. Indeed, leaving out such an edge decreases both ¥ and
v by one and hence (x) implies again (1.1).

Case 1: There is a set Z of nodes for which |Z|>2, ZNS={s} for some s€ S and
MS —s,5:G)=dg(Z).

Contract Z into one node denoted by sz. In the contracted graph G’ let §' :=§—s+sz.
Using (*) and the fact that contraction does not decrease any value A(S—x,x; G}{x €S),
we have vI®(G')>13,(G')>15/(G). Therefore, there is a family 7 of edge-disjoint
trees in G’ so that Y (val(T): T € 7')=18(G).

We assume that |.7| is as large as possible. In this case we claim that each terminal
node x € S’ belonging to a tree 7€ J ' is a leaf of 7. For otherwise we could split 7
at x into dy(x) subtrees. Then the total value of the new family of trees is unchanged,
contradicting the maximality of [7'|, and the claim follows.

Since A(S — s,5;G)=dg(Z), there is a family of dg(Z) edge-disjoint paths in G
connecting s and S — 5. For an edge e in the cut [Z,}V — Z] let P, denote the path
in this family containing e and let P, be the subpath of F. whose first node is s
and last edge is e. If a tree 7/ €7’ uses an edge ¢’ of G’ corresponding to an edge
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e€[Z,V—Z] of G, then T:=T"—¢e' +P'(e) is a tree of G for which val(T) = val(T").
In 7' replace each such 77 by T.

Every tree in J’ not containing sz corresponds to a tree T of G (disjoint from Z)
whose value is the same. Therefore, we have obtained a family 7 of edge-disjoint trees
of G for which vi*(G)> Y (val(T): T€ 7 )= (val(T'): T' € ") 2 1{(G') 2 15(G),
as required.

Case 2:

US — s,5,G)=dg(s)<dc(Z) (1.2)

holds whenever s€ S, ZNS={s} and |Z|>2.

By Menger’s theorem, the deletion of an edge e decreases ¢ if and only if e belongs
to a (minimum) cut [Z,V — Z] for which ZNS={s} and dg(s)=A(§ — s,5;G) for
some s € S. Therefore, every edge e of G has exactly one end-node in S, that is, G is
bipartite.

For each s€ S, veV — S let c(sv) denote the number of parallel edges between s
and v. For v€V —s let a(v):=max(c(sv): s €S). We claim that

Uv) <dg(v)/2, (1.3)

for otherwise dg({s,v})<dg(s), contradicting (1.2). By (1.3) the set of edges inci-
dent to v can be partitioned into a(v) stars so that each contains at least two edges.
The value of one such star is one less than the number of its edges and hence the
total value of the x(v) trees is dg(v) — %(v). Applying this way of partitioning to
each €V — S, we obtain a family of trees whose total value is Y ([dg(v) — a(v)]:
veV —8)>S(de(v)/2: veEV —8)=|E|2=3(ds(s)/2: s€S)=>_(MS—5,5G)/2:
s€8)=14(G), from which (1.1) follows.

In Theorem 1.1 strict inequality may occur at each place. That was shown already
for the first inequality. In the graph in Fig. 1 7§ =3 =v{ and ¥5 =4 =7, that is the
second inequality is strict.

In the first graph in Fig. 2 1§ =6, vi*=7=7Vs, ns=8. (A tree-packing of total
value 7 is shown in the second of Fig. 2. The fact that ¥5 <8 can be shown by case
checking.)

S={A,B,C}

L.

Fig. 1.
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Fig. 2.

2. Min-max theorem and algorithm

The example of Fig. 2 leaves little room to find classes of graphs for which Vs = 7.
In what follows, we prove that those graphs for which G — § induces a tree form such
a class. (The apparently more general case when G — S induces a forest is easily seen
to be equivalent to the tree case.) The theorem below is equivalent to the min-max
theorem of [5], but formulated in simpler terms relying on the notion of orientations.
This idea gave rise to a proof significantly simpler than the original one. (Actually, the
result below extends to the case when G — § may induce only two-element circuits.
This is equivalent to the weighted multiway cut problem in trees and was solved in [6].
We hope, though the details have not yet been worked out, that the present orientation
method can be extended to the weighted case, as well.)

If one is interested only in computing a minimum multiway cut in the special case
when G — S induces a tree, then a simple greedy type algorithm is available in [5]
whose proof of correctness is also very simple and does not need any kind of duality
theory. The first part of the present algorithm is nothing but a reformulation of the
greedy algorithm from [5]. The main novelty here lies in the second part of the algo-
rithm where an optimal orientation is computed yielding a relatively simple proof of
Theorem 2.1.

Theorem 2.1. Let G=(V,E) be an undirected graph with a terminal set S for which
G — S induces a tree. Then Vs =g, that is, the minimum cardinality of a multiway
cut separating S is equal to the maximum of 3 ¢ MS —s,5; G) over all orientations
G of G.

Proof. We have seen that Vg <ms. In order to prove the equality, we are going to
construct a partition # separating S and an orientation G of G so that

0s(X)=A(S — 5,5;G) whenever s€ X € 2. 2.1)
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Before proceeding to the proof, let us mention that there is another interpretation of
the problem. Consider each element of S as a colour. Then the minimum multiway
cut problem is equivalent to colouring the nodes with the available |S| colours so as
to minimize the number of bi-chromatic edges. For a given colouration we say that
an edge uv is bi-chromatic if its two ends have different colours. The other edges are
called mono-chromatic.

We may assume that S is a stable set. We also may assume, without loss of gener-
ality, that for every edge sv with s € S the degree of v is 2. If this is not the case, then
subdivide the edge vs by a new node. Clearly, the theorem holds for the new graph if
and only if it holds for the original.

Let T =(U, F) denote the tree induced by G —S. By the assumptions we made, only
the leaves of T have neighbours in S. We may furthermore assume that every leaf v
actually has one neighbour in S for otherwise we may delete v without changing the
problem.

Let us choose an arbitrary non-leaf node » of T and call it a root. The height
h(u) of a node u of T is the length of the unique path from r to u. For an edge
e=uv with A(u)=h(v) — 1 we say that node v and edge e are above u and that u and
e are under v. That is, the nodes above u are exactly those neighbours of u whose
height is one bigger than that of u. Furthermore, every node u but the root has ex-
actly one node under u. There is no node under the root and above a leaf. (In the
literature a node above u is called a child of u and a node under u is called a parent
of u.)

With the help of a depth first search (say), determine an ordering of the elements
of U, described by a one-to-one mapping f:U — {1,2,...,|U|}, in such a way that
f(ry=1and f(u)< f(v) whenever uv is an edge of T with A(u)=h(v) — 1.

The algorithm consists of two parts. In the first one we determine a partition 2 of
V separating S while the second part serves for computing the orientation.

Part 1: Computing partition 2. The partition & will be given by a function ¢: V —
S such that o(s):=s for s€S. (In other words o(u) will be the colour of u.) The
g-values of the tree are computed in two phases.

In the first phase a subset L(u) of § will be assigned to every node u of T, as
follows. According to the ordering f of U, consider the elements u of U in a reverse
order (that is, root # is considered last). If u is a leaf whose unique neighbour in §
is s, then let L(u):= {s}. Suppose that u is a node for which L(v) has been computed
for all nodes v above u. Let L(u) consist of the nodes of maximum degree of the
hypergraph {L(v): v is above u}. The first phase terminates when L(r) (and hence
every other L(v)) has been computed.

Intuitively, we think of L(u) as the set of candidate colours from which the final
colour of u will be chosen during the second phase of Part 1. The sets L(u) are
determined in a downward manner (toward the root) and L(u) consists of those colours
which appear most often in the (already determined) candidate colour-sets of nodes
above u.
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In the second phase we work upward, that is we consider the elements v of U in the
(forward) ordering given by f. Start at the root » and define o(r) to be an arbitrary
member of L(r). In the general step, when v is considered let uv denote the unique
edge of T under v. By the choice of the ordering, u precedes v and hence o(u) has
already been determined.

(a) If o(u) € L(v), then let a(v):=0o(u),
(b) if o(u) & L(v), then let o(v) be an arbitrary member of L(v).

Intuitively, this means that the colour of root » is an arbitrary member of the candi-
date colour-set Z(r). Furthermore, if the colour g(x) of a node of tree 7 has already
been determined and e =uv is an edge of T above u, then the colour o(v) of v is al-
ways chosen from the candidate colour-set L(v) of v so as to make e mono-chromatic
whenever this is possible. (That is, e becomes bi-chromatic if the final colour ¢(u) of
u is not in the set L(v) of candidate colours of ».) This way, we have determined a
colouration ¢ of the nodes of G, or, equivalently, a partition #:={V;: s€S} of V
where V;:={ueV: o(v)=s}.

Part 2. Computing the orientation of 7. In the second part of the algorithm we
define the orientation of the edges of G in such a way that once the orientation of
an edge has been determined, it will never be changed later. Let e=uv be an edge
of T with A(u)=h(v) — 1. The orientation of e will be specified by declaring that
e is either an up-edge or a down-edge. e being an up-edge means that e is oriented
from u to v while e being a down-edge means that e is oriented from v to u. We
will call a node v distinct from the root an up-node if the (unique) edge under v is an
up-edge. Node v is called a down-node if either u=r or if the edge under u is a down-
edge.

Let all bi-chromatic edges be up-edges. To determine the orientation of other edges,
we consider the nodes u# of T in the order of their height starting with root » and
determine the orientation of all the mono-chromatic edges above u. Therefore, when
a node u is considered, its status of being an up-node or a down-node has already
been determined. Specifically, the orientation of the mono-chromatic edges above u is
determined by the following rules.

Rule 1: If u is a down-node, then let every mono-chromatic edge above u be a
down-edge.

Rule 2: If u is an up-node, then choose arbitrarily a mono-chromatic edge uz above u
(there is one!) and, apart from uz, let all mono-chromatic edges above u be down-edge.
We will call uz a special edge.

Rule 3: If e is an edge connecting a leaf u of T and a node s in S, then orient e
so that the in-degree (and the out-degree) of u be 1.

In other words, every bi-chromatic edge is an up-edge and every mono-chromatic
edge above u, with one exception in case u is a down-node, is a down-edge.

Let G denote the resulting directed graph. Henceforth, our main concern is to prove
that the partition # and the orientation G satisfy (2.1). To this end let us consider
an element s€ S (that is, one of the colours) and the set F;:={uju,..., w404} of
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bi-chromatic edges of G for which o(v;)=s. That is, F; is the set of edges of G
entering the part V; of 2 containing s.

We are going to find & edge-disjoint paths from S — s to s. The existence of such
paths directly implies (2.1). It follows from Rule 2 that for any up-node v; (i=1,...,k)
there is a unique path P/ in G from v; to s consisting of special edges. Since special
edges are mono-chromatic these paths are inside ¥;. They are edge-disjoint (and actually
node-disjoint, except at s) since no two special edges enter the same node.

Therefore, all what we have to show is that there are k¥ edge-disjoint paths P/ from
S—stouv; (i=1,...,k). By glueing together paths P/ and P/ we will obtain a path
P, from a node of § — 5 to s that uses edge u;v;.

Let G, = (V,E,) be a subgraph of G where E; consists of three types of edges. Recall
that if (a directed edge) yv is a down-edge or vy is an up-edge, then y is above v.

Type A: A down-edge yv belongs to E; if s € L(y).

Type B: An up-edge vy belongs to E; if s€L(y) and a(v) #s.

Type C: An edge tu of G belongs to E; if t€S —s.

Note that a down-edge yv€E, is mono-chromatic and o(v)=oc(y)#s. Hence,
o(v) € L(y). For a non-special up-edge vy, o(v) & L(y).

Let o(u) (respectively, 6(u)) denote the number of edges in E; entering (leaving) .

Lemma 2.2. o(u)>=6(u) for every node u of T.

Proof. By Rule 3, the lemma holds for leaves so suppose that u is not a leaf. If
o(u)=s, then, by Rules 1 and 2, (u)=0<po(u). Therefore, we will assume that
o(u)#s. Let A:={y€U: y is above u,s € L(y),0(u) €L(y)} and B:={y€U: y is
above u,s € L(y), o(u) € L(y)}. Let a:=14|, f:=|B|.

Since o(u) € L(u), the definition of L(x) implies that

B>a and if f=a, then seL(u). (2.2)

Let x denote the node under u in case u #r.

Case 1: u is a down-node. Then the edges of E; above u that leave u are precisely
the edges from u to A. Hence, 8(u)<x+ 1 and &(u) =« if u is the root. Each edge
under an element of B is a down-edge and belongs to E; from which o(u)>p. If
u=r, then o(u)>pf=o=0(u), as required. So suppose that u#r. If fZ« + 1, then
o(u)=8(u). If a= B, then (2.2) implies that ux ¢ E; and hence o(u)> = o =d(u).

Case 2: u is an up-node. If a=f, then s€L(u) by (2.2). Now a(x)#s, since
o(x)=s would imply o(u)=s which is not the case. Therefore, xu € E;.

Let uz denote the special edge above u. Now, o(u)=a(z) € L(z) and hence z ¢ 4.
We distinguish two cases.

If z € B, then s ¢ L(z) and hence uz ¢ E;. Therefore, the edges in E; leaving u are
the edges from u to 4, that is, 8(u)=a. For every node y€B — z the edge under y
is oriented toward u. If f=>a + 1, then o(u)=f — 1 > a=06(u). If B=«, then xu € E;
and hence o(1)=(f — 1)+ 1 =a=20d(u).
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If z¢ B, then d(u)<a+ 1. If f=a+ 1, then o(u)=f=a + 1 >6(u). If f=0, then
xu€Es and hence o(u)2f+ 1=a+1206(u). O

Now, we can construct the paths P/ (i=1,...,k) in a greedy way. Starting at u,v,
we can go backward in E; as long as we arrive at a node of S which is distinct from
s since the tail of every edge in E; has got a colour distinct from s. That is, we have
constructed a directed path P/’ that starts at an element of S — s and its last edge is
uv;. After leaving out the edges of this path the property of Lemma 2.2 continues
to hold, so we can repeat the construction to obtain the required edge-disjoint paths
P P,... B

References

[1] D. Bertsimas, C. Teo, R. Vohra, Nonlinear formulations and improved randomized algorithms for multicut
problems, in: E. Balas, J. Clausen (Eds.), Integer Programming and Combinatorial Optimization, 4th
International IPCO Conf., Copenhagen, Denmark, May 1995, Proceedings, Lecture Notes in Computer
Science, vol. 920, Springer, Berlin, pp. 29-39.

[2] S. Chopra, M. Rao, On the multiway cut polyhedron, Networks 21 (1991) 51-89.

[3] W.H. Cunningham, The optimal multiterminal cut problem, in: DIMACS Series Disc. Math. 5 (1991)
105-120.

[4] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, M. Yannakakis, The complexity
of multiway cuts, 24th ACM STOC, 1992, pp. 241-251, see also E. Dahlhaus, D.S. Johnson,
C.H. Papadimitriou, P.D. Seymour, M. Yannakakis, The complexity of multiterminal cuts, SIAM J.
Comput. 23 (1994) (4) 864-894.

[5] P.L. Erdos, L.A. Székely, Evolutionary trees: an integer multicommodity max-flow-min-cut theorem,
Adv. Appl. Math. 13 (1992) 375-389.

[6] P.L. Erdds, L.A. Székely, On weighted multiway cuts in trees, Math. Programming 65 (1994) 93-105.

[7] L. Lovasz, On some connectivity properties of Eulerian graphs, Acta Math. Acad. Sci. Hungar. 28 (1976)
129-138.



