
Mathematical Programming 65 (1994) 93-105

On weighted multiway cuts in trees

Péter L. Erdös *'~, Läszló A. Székely **'b
aCentrum voor Wiskunde en lnformatica, 1098 SJ Amsterdam, Netherlands

Mathematical Institute of the Hungarian Acaderny of Sciences, H-1055 Budapest, Hungary
bDepartment of Computer Science, Eötvös University, H-1088 Budapest, Hungary

Department of Mathematics, University of New Mexico, Albuquerque, NM 87131, USA

Received 11 September 1991; revised manuscript received 1 April 1993

Abstract

A min-max theorem is developed for the multiway cut problem of edge-weighted trees. We present
a polynomial time algorithm to construct an optimal dual solution, if edge weights come in unary
representation. Applications to biology also require some more complex edge weights. We describe
a dynarnic programming type algorithm for this more general problem from biology and show that
our min-max theorem does not apply to it.

AMS 1991 Subject Classißcations: 05C05, 05C70, 90C27

Keywords: Multiway cut; Menger's theorem; Tree; Duality in linear programming; Dynamic programming

1. Introduction

Let G = (V, E) be a simple graph, C = { 1, 2 r} be a set of colours. For N c V(G), a
map x : N ~ C is a partial colouration. We usually think of a given partial colouration. A

map X: V(G) ~ C is a colouration if X(V) = 2(v) holds for all v ~N.
A colour dependent weightfunction assigns to every edge (p, q) and colours i,j a natural

number w(p, q; i, j) , which teils the weight of the edge (p, q) in a colouration X, in which

~(p) = i, ~(q) =j. We assume that w(p, q; i, i) = 0 and w(p, q; i,j) = w(q, p; j, i). We say

that w is colour independent, i f fo r any (p, q) , im v~ j i , i2 ~ J2, we have w(p , q; il, j l) = w (p ,

q;/2, J2). We say that w is edge independent, i f for any (p » ql) ~ E and (P2, q2) ~ E, and

*Corresponding author.
**Research of the author was supported by the A. v. Humboldt-Stiftung and the U.S. Office of Naval Research
under the contract N-0014-9 l-J- 1385.

0025-5610 © 1994--The Mathematical Programming Society, Inc. All rights reserved
SSD10025 -5610 (93) E0073 -N

94 P.L. Erdös, L.A. Székely / Mathematical Programming 65 (1994) 93-105

i, j ~ C, we have w(p 1, ql; i, j) = w (p » q2; i, j) . (Hence, any edge independent weight
function satisfies w(p, q; i, j) = w(p, q; j, i).) We say that w is constant, if it is colour and
edge independent.

An edge (p, q) is colour-changing in the colouration ~, if] (p) :# ~(q). The changing
number of the colouration ~ is the sum of weights of the colour-changing edges in Ä~, i.e.:

change(G, ~) = ~ w(p, q; ~((p), y((q)) .
(p, q) ~E(G)

A partial colouration X defines a partition o fN by N~ = { v ~ N: X(v) = i }. A set of edges that
separates every Ni from all the other N/s is tenned a multiway cut [1]. Observe that the set
of colour-changing edges of a colouration ~ forms a multiway cut and every multiway cut
is represented in this way.

The length of the pair (G, X) is the minimum weight of a multiway cut, in formula:

l(G, X) = min{ehange(G, ~): ~ colouration} .

An optimal colouration is a colouration ~ such that change(G, ~) = I(G, X).
The multiway cut problem for colour independent weight functions has been extensively

studied in combinatorial optimization (e.g. [1-3] .). As Dahlhaus et ad. pointed out [3],

this problem is NP-hard, even for INI = 3, IN, I = 1 and constant weight.
On the other hand, if we restrict ourselves to planar graphs, a fixed number of colours,

and constant weight, then the problem becomes solvable in polynomial time [3]. A well-
known specialization of the multiway cut problem, which is solvable in polynomial time,
is r = 2, which is considered in the undirected edge version of Menger' s theorem [8].

Although it is less known in the operations research community, some instances of the
multiway cut problem have great importance in biomathematics. In fact, the notions of the
changing number and the length came from genetics and we follow the terminology used
there. For the case of constant weight function, Fitch [6] and Hartigan [7] developed a
polynomial time algorithm to determine the length of a given tree. Sankoff and Cedergren
[13], and Williamson and Fitch [12] studied edge independent weight functions and made
polynomial time algorithms to find the length. Some explanation of the significance of the
multiway cut problem in biology is given in [4, 5].

The goal of the present paper is to study the multiway cut problem. In Section 2 we give
a new lower bound for the length of a multiway cut. Section 3 provides a dynamic program-
ming type algorithm to find the length of a tree with an arbitrary weight function. Section
4 uses the algorithm of Section 3 to establish a min-max theorem for the multiway cut
problem of trees, in the case of colour independent weight functions. All the results can be
extended to any graph G, in which N intersects every cycle. Section 5 describes our results
in terms of linear programming.

A preliminary version of the present paper has already appeared [5]. We are indebted to
the anonymous referees for their helpful observations that we use in this presentation.

P.L. Erdös, L.A. Székely / Mathematical Programming 65 (1994) 93-105 95

2. Lower bound for the weight of a muitiway cut

Let G be a simple graph, Nc_V(G) and x:N--*C be a partial colouration. Let w be a

colour dependent weight function.

Definition. An oriented path P in G starting at s(P) ~ N and terminating at t(P) ~ N is a

colour-changing path, if X(S (P)) 4: X(t(P)) and P has no internal vertex in N. (From now
on path means oriented path, unless we explicitly say the opposite.) Let us fix a family
of colour-changing paths and let e = (p, q) ~ E(G). Define

ni(e , ~) = # { P E r : (p, q) ~ P and X(t(P)) =i} .

The notation (p, q) ~ P means that P enters the edge (p, q) a tp and leaves at q.

Definition. Let x : N ~ C be a partial colouration and ~ be a colouration on G. A family :~
of colour-changing paths is a path packing, if all pairs of colours i 4:j and all edges (p, q)
satisfy

ni((p, q), ~) +nj((q, p), ~) <~w(p, q;j, i) .

The maximum cardinality of a path packing is denoted by p (G, X).

Theorem 1. For any graph G and partial colouration)(, we have

I(G, X) >~ p(G, X) •

Proof. Let ~ be a path packing and ~: V(G) ~ C be an optimal colouration. Define a map
f : 9 ~ E(G) as follows: le t f (P) = e if e is the last colour-changing edge in P in ~. For any
colour changing edge e = (p, q), ~(p) = j and ~((q) = i (i:~j since e is colour changing),

we have

{ P ~ ß : f (P) =e} <~ni((p, q), ~) +n~((q, p), g) <~ w(p, q; j, i) .

Therefore,

191 ~< change(G, ~O=l(G, X) • []

3. An algorithm to find optimal colourations

Now we focus on the multiway cut problem of trees. Let Tbe a tree and x :N-o C be a
partial colouration, and let L(T) denote the set of leaves, i.e. vertices of degree 1. We
assume N = L(T). (It is obvious that the solution of the multiway cut problem of trees with
N = L(T) easily generalizes to the solution of the multiway cut problem of trees with
arbitrary N.) Let w be a colour dependent weight function. In this section we give a
polynomial time algorithm to determine all optimal colouration of T for the weight w.

9 6 P.L. Erdös, L.A. Székely / Mathematical Programming 65 (1994) 93-105

Let us fix an arbitrary non-leaf vertex, the root of T. Let (u, v) be an edge and let v be

closer to the root than u, then we say v = Father(u). (Father(root) is NIL.) We denote
the set of all u for which v = Father(u) by Son(v).

Our colouring algorithm has two phases. Starting from the leaves and approaching the
root we determine a penaltyfunct ion of every vertex v recursively, and subsequently we
determine a suitable colourätion] starting from the root and spreading to the leaves.

Definition. The vector-valued penaltyfunction is a map

pen: V(T) ~ (M U {~}) r ,

such that peni(v) means the length of the subtree separated by v from the root, ifthe colour
of v has to be i.

Phase I. For every leaf v ~ L(T) let

= f O if v~,,V/,
pen«(v)

otherwise,

where in an actual computation oo may be substituted by a sufficiently large number. Take
a vertex v, such that pen(v) is not computed yet for the vertex v, but pen(u) is already
known for every vertex u G Son(v). Then compute

peni(v) = ~ min {w(u, v; j , i) +pen/(u)} .
u ~ S o n (v) j = l r

Phase II. Now we determine an optimal colouration ~ of T. First, let ~(root) be a colour
i, which minimizes the value peni(root). Furthermore, for a vertex v for which ~(v) is not
settled yet, but ~ (Father(v)) is already determined, let ~(v) be a colour i, which minimizes
the expression

w (v, Father(v); i,)~(Father(v))) + peni (v).

It is easy to see, that every leaf v ~Ni satisfies ~(v) = i = X(V), for i = 1 r.

The correctness of this algorithm is almost self-explanatory. Assume the positive integer
edge weights are given in unary representation. Then, the time complexity is O(n. r 2.

(max weight)), since at each step we calculate r 2 sums, take the minimum, and roughly 2n

steps are necessary because T has n vertices and n - 1 edges. You may change max weight

for log (max weight), if the edge weights come in binary representation.
In the rest of this section we focus on colour independent weight functions, since we can

develop a slightly more efficient version of this algorithm, which also can determine all
optimal colourations. Biologists may need all optimal colourations; the saving in running

time comes from avoiding the second minimization in Phase II. Also, case (A2) in the
proof of Theorem 2 will need the modified algorithm. For the sake of simplicity, for the
rest of this section the weight function is a map w: E(T) ~ M for colour changing edges

P.L. Erdös, L.A. Székely / Mathematical Programming 65 (1994) 93-105 97

and the weight of any edge not changing colour is O. We use the usual Kronecker delta

notation.

Phase I ' . For every leaf v, set

M1 (v) ---M2(v) = {i: peni(v) = O} .

If pen(v) is not computed yet for the vertex v but pen(u) is already known for every vertex
u c Son(v), then set

peni(v) = ~ min {(1--6u)w(u, v) +pen~(u)} .
u~Son(v) j = l , L, r

L e t p (v) = minipeni(v), and

MI(v) = { i c {1 r}: pen/(v) = p (v) } ,

M2(v) = { i c { 1 r}: peni(v) < p (v) +w(v, Fa the r (v)) } .

It is obvious that M1 (v) __.M2(v).

Phase I I ' . For ~ (roo t) , take an arbitrary element o fMl(roo t) . If ~(v) is not settled yet for

a vertex v, but ~ (F a t h e r (v)) is already determined, take

~ (F a t h e r (v)) if ~ (Fa ther (v)) c M2 (v)
~((v) = [a n arbitrary element of Ml (v) otherwise.

It is easy to see, that every vertex v c N i satisfies ~ (v) = i = x (v) , for i = 1 r. This
algorithm is obviously correct and permitting some extra freedom at certain steps, any
optimal colouration can be obtained by the modified algorithm. For this purpose we intro-
duce a third set of colours at Phase I ' :

M 3 (v) = {iC { 1 r}: peni(v) =p(v) +w(v, Father(v)) } .

I f in Phase II ' we also allow to give the colour of ~ (F a t h e r (v)) to v, if
~ (Fa the r (v)) c M 3 (v) , then the algorithm still yields an optimal colouration. Moreover,
one can prove that running this algorithm in all possible ways yields all optimal colourations.
(We leave the proof to the reader.) The complexity of this revised algorithm is better by a

constant multiplicative factor than that of the original, hut to get every optimal colouration
may take exponential time, since M.A. Steel exhibited trees with exponentially many optimal
colourations [11].

4. A min-max theorem

In this section we assume that the weight function is colour-independent and we prove
that the lower bound of Theorem 1 is tight for leaf-coloured trees, and then even for a larger
class of graphs.

98 P.L. Erdös, I.A. Székely / Mathematical Programming 65 (1994) 93-105

Theorem 2. Let T be an arbitrary tree with coIour-independent weight function

w : E(T) ~ [~ and with leaf-colouration x: L (T) ---> C. Then

I(T, X) =p(T , X) •

We already know ffom Theorem 1 that the LHS is greater or equal than the RHS. We have
to prove the other inequality. For this end we construct the desired optimal path packing in
a recursive manner. At first, we explicitly construct optimal path packings for stars, i.e. for
trees with 1 branching vertex. Then, for a tree T with at least 2 branching vertices and with

w(73=]~ w~
f ~ E(T)

sum of weights, we define a 'smaller' tree T' for which we can trace back the problem of
the construction of an optimal path packing, such that we can 'lift up' the path packing from

T' to T to get the solution. We may have at most W(T) 'lift up' steps. Here we give the
details.

For convenience, we want to use the functions Son and Father, therefore we fix, as in
Section 3, a root of T. In the complexity issues we assume that our tree is represented by
the vertices v and the sets Son(v) and Father(v), furthermore every element of Son(v) and
Father(v) (which represents edges) also contains the weight of the edge. The paths under
construction will be represented as double-linked lists, therefore, due to Theorem 1, the
space complexity of the representation is O(l(T, X)" n).

Definition. We say that a vertex v is of order 1 if every element of Son(v) is a leaf.

Notice that every tree with at least 2 branching vertices has a non-root vertex of order 1.
Before starting the main body of the proof we need the following lemma.

Lemma 1. One can assume that no vertex of order 1 has two sons with the same colour.

Let v be a vertex of order 1, such that Son(v) contains at least 2 leaves with identical colour.
Let E(T) denote the tree obtained from T by identification of the elements of Son(v) with
identical colour and adding up their edge weights, respectively. Now one can easily construct
an optimal path packing for T from an optimal path packing of E (T). Anyhow, we give a

formal proof, otherwise, the base case of out recursive algorithm would not be complete.

Proof. Define the tree E(T) formally as follows: let the tree T' be a star with midpoint v
and with leaves { li: 3u ~ Son(v) with X(U) = i} and let •(T) be the tree made of the trees
T \Son(v) and T' by identification of their common v. The leaf-colouration and weight
function of ~ (T) are as follows:

X , (u) = (X (U) if u ~ L \ S o n (v) u = l i ,

P.L. Erdös, L.A. Székely / Mathematical Programming 65 (1994) 93-105 99

w, (f) =~ù~So~(o) w((u' v))
I x(u)=i
Lw~ß

Notice that I(E(T), X') = l(T, X).

i f f = (li, v) ,

otherwise.

Claim. I f I (E(T) , X') = p (E (T) , X') then l(T, X) =p(T, X).

Proof. Let Son(v) contain d different colours. We apply induction on I Son(v) I.
Base case: if [Son(v) I = d, then E (T) = T, X = X', and we have nothing to prove.
Inductive step: Suppose that we know Lemma 1 for all ISon(v) I <k. Assume now

I Son(v) I = k and for some fixed zl, z2 ~ Son(v), let X(Zl) = X(z2). Join zl and z2 into z. In
the new tree T * obtained by identification, define the leaf colouration and the weight
function as follows:

= f X (u) if u =/~Zl, Z2»
X*(U)

[.X(Zl) i f u = z ,

{w(f)
w*ff) = w(v, z~) +w(v, z2)

i f f4 : (v, zi) ,
i f f = (v, z) •

Now we have Z (T) = E (T *) , therefore I(Y~(T)) = / (E (T *)) . By the hypothesis there
exists a path packing ~@* in the tree T * satisfying 1 9 " [= l (T *) . It is easy to divide the
paths of ~ * adjacent to vertex z into two groups, such that the members of one group are
adjacent to zl and the members of the other are adjacent to z2 and both groups obey the
weight restriction on the edge adjacent to zi. In this way we obtain a path packing of l(T)
members in T. This proves the Claim as well as Lemma 1. []

The time complexity of this algorithm is O(~~~Soù«~) w(u, v)) so the time complexity
of all applications of Lemma 1 altogether is 0 (W(T)) .

We return to the main body of the proof; we assume that any two sons of an arbitrary
vertex of order 1 have different colours. Our algorithm is given in a recursive form in the
variables b (T) and W(T), where b (T) is the number of branching (non-leaf) vertices of
T.

Base case: let b (T) --- 1 and W(T) be arbitrary. Then T is a star; let v denote the midpoint
of it. Due to Lemma 1 we may assume that IL(T) [= r (i.e. every colour occurs once).
Assume that the edge (v, u) has maximum weight over all edges. Orient paths from u to

every other leaf z ~ L (T) \ { u } with multiplicity w(v, z). This path system is obviously a
path packing and has l (T) members. This case requires O (W(T)) steps.

Recursive step: For any tree T with at least 2 branching vertices we shall find 'smaller '
tree T' with fewer branching vertices (b (T ') < b (T)) or with smaller total weights

100 P.L. ErdSs, L.A. Szdkely / Mathematical Programming 65 (1994) 93-105

(b (T ') = b(T) and W(T') < W(T)) such that an optimal path packing of T' can be lifted

up to an optimal path packing of T. Define

We distinguish two cases:
(A) There is a vertex c of order 1 such that s (v) 4: w (v, Father(v)).
(B) s (v) = w (v, Father(v)) for every vertex v of order 1.
Case (A). Let 2 be an optimal colouration of T such that v is the first branching vertex

for which the colour sets M~ were determined. We have two subcases; in (A1) we have
s(v) >w(v, Father(v)) , in (A2) we have s(v) <w(v, Father(v)) .

Case (A1). Let T" be the tree with the same vertex set, edge set and leaf colouration as
the tree T was, and let the new weight function w' : E(T) ~ N such that

If w' (f) = 0, then cancel this edge and its leaf endpoint from the tree T" to obtain the tree
T'. Due to our colouring algorithm, colouration ~ is also optimal for the tree T', therefore

The total weight of tree T' is less than of T. Assume now that we have an optimal path
packing ~ ' of l(T', X) elements in T'. Denote by AT the star of v U Son(c) with weight
function w = 1 and with the original leaf colouration. Let A ~ be optimal path packing in

AT (use the base case). Now the path system ~a~= .~, U A ~ is obviously optimal path
packing in the tree T.

We can construct T' and the path packings A ~ and ~¢~ from the given tree T and path

packing ~.~' in O(r. ~2u~Son(v) w(v, u)) time, so that the total time complexity of the case
(A1) is O(rW(T)) .

Case (A2). Now we have s(v) <w(v , Father(v)). Let the tree T' be identical with the
tree T with the same leaf-colouration and with the weight function

Now it is easy to see that there exists an optimal colouration ~ of T' satisfying ~(v) =
~(Father(v)) which is also optimal in T. (The only problem that can occur is that

(Father(v)) ~ M2 (v) but ~ (Father(v)) ~ M~ (v). In that case we can apply the extended
Phase II ' .) Therefore, we have l(T) = I(T ') and W(T') < W(T). Now we can easily 'lift
up' any optimal path packing ~ of T' to the tree T, namely ~ itself is obviously path
packing in T.

This operation takes O(1) time, so the total time complexity of case (A2) is O(n).
Case (B). From now on we assume that every vertex z of order 1 satisfies the condition

s(z) = w(z, Father(z)). For the rest of (B), we fix a vertex v; if the diameter of Tis 3, then

P.L. Erdös, L.A. Székely / Mathematical Programming 65 (1994) 93-105 101

let v be the root, otherwise, let v be a non-root vertex such that Son(v) ¢ L (T) and every

non-leaf son is a vertex of order 1 (the existence of such a v is obvious). Let the non-leaf
sons of v be the vertices z~, ..., z»

By the defnit ion of case (B) it is easy to see the existence of an optimal coloration
colouring v and every zi to the same colour. Therefore if 7 ~ is the tree derived from the tree
T b y contracting every edge of form (v, z~) (leaving the name of the new vertex v), which

is endowed with the original leaf-colouration and weight function on the existing edges,
then the restriction of the same colouration] is also optimal for 7 ~ and l(2r) = l (T) . On the
other hand, the tree 7 ~ has less branching vertices than T.

Now due to our hypothesis we have an optimal path packing ~.~ in the tree 7 ~. Therefore

I~1 =l(T).

Let us define the lift up ~.~= {/3: p ~ j ~ } of the path packing ~ , where/3 is identical with
P if no leaf u of Son(zi) (i = 1 k) belongs to the path P, and/3 comes from P by

subdivision of the edge (v, u) with vertex zi if endvertex(P) = u ~ Son(zl) (i = 1 k).
We have l(T) many elements in ~.~.

Let ei = (v, zi) (for every i = 1 k). For an edge f = (p, q), we write - f = (q, p) .
Now, by the definition of g , the condition

ni(f, ~) + nj(-f, ~) < w(f)

holds for every edgef4 : ei (i = 1 k), but unfortunately this is not necessarily the case

for the edges e»
We solve this problem in a slightly more general setting (Lemma 2). For this we introduce

the following notations: Let [x] ÷ denote x, if x is non-negative, 0, if x is non-positive.

Define the badness of the colour changing path system ~ by

bad G'~) = E
(i, j) ECXC e~E(G)

i~ j

[nj(e, «~) +nj(- e , ~) - w (e)] +

Call an edge oversaturated by the path system B , if the contribution of the edge to the

badness is positive. (We recall the definition e i = (V, Zi).)

L e m m a 2. Let g be a system of colour-changing paths on the tree T such that
(i) for all i, j, nj(+_el, g) <~ w(el),

(ii) ~ does not oversaturate any edge from E(T) \ { el ek}.
Then there exists a path packing ~ * in T of the same size.

Proof. If b a d (~) = 0 then ~ itself is a path packing. Suppose b a d (~) > 0, and, say, the

edge el is oversaturated with colours 1 and 2, i.e.

102 P.L. Erdös, L.A. Székely / Mathematical Programming 65 (1994) 93-105

nl(el, jö) + n 2 (- - e l , ~) > w (e l) .

Take a path PI ~ ~ such that el ~ P1 and X(t(P1)) = 1 (where, say, t(Pl) ~ Son(zl)), and
a path P 2 ~ ~ such that - e l E P 2 and X(t(P2))=2 (where t(P2) f~Son(zl) and
s(P2) ~ Son(zl)). Now we distinguish the cases (BA) and (BB):

Case (BA). Suppose there is no P 3 E ~ for which -e l~P3 , s (P3)=s(P2) and
X(t(P3)) = 1. In this case we define the following path system:

B I = ~ U {P}\{P1 } ,

where the path P is (s(Pz), zi, t(P1)), oriented from left to right.

C|aim A.

b a d (g l) ~<bad(~) - 1.

Proof. It is easy to see that n~(+f, ~ 1) ~<n~(+f, «~) for each i= 1 k and for each

f ~ E(T) \ { el, (Zl, s (P2)) }, furthermore

rti(- e l , .~1) =nj(- e l , ~) , i-- 1 k ,

nj(el, ~1) =ni(ei, ~'~), i = 2 k ,

nl(el, ~ 1) = n l (e l , ~) - 1 .

Finally, for the edgef2 = (Zl, s(P2)) we have

nj(f2' ~1) =ni(f2' ~) , i = 1 k ,

nj(--f2, ~1) =ni(--f2, ~ßö), i = 2 k,

nl(-f2, ~ 1) +ni(fz, J°l) <~w(f2), i-= 1 k.

The last inequality is true, since otherwise n2(- f » ~) + ni(f2 ~) > w(f2) would hold,
contradicting the assumptions of Lemma 2. []

Case (BB). Suppose there exists a path P3 which was forbidden in (BA). Then let ~1
be the following path system:

B1 = ~ (--J {P, P3 APx }\{P1, P3 }

where P3/~ P1 denotes the (unique) path oriented from s(P3) to t(Pl).

Claim B.

bad(~~) ~< b a d (~) - 1.

Proof. Set

E l={e l , (zl, t(Pl)), (zl, s(P3))} and E2=E(P1) UE(P2)\E(P3AP1).

P.L. Erdös, L.A. Székely / Mathematical Programming 65 (1994) 93-105 103

Then for each e d g e f ~ E (T) \ (E 1 UEz) the estimates of Claim A hol& Furthermore, for

f G E1 we have

ni(+f, ,~1) =ni(-f-f, ~) , i = 2 k ,

n~(+f, ~1) <n~(+f, ~) ,

n i (+ _ (Z l , t (P 1)) , ~ l) = n i (+ - (z l , t (Pa)) ,«~) , i = l k ,

n i (++_e l ,~a)=n i (+e l ,~) , i = 2 k ,

nl(+e l , ~1) =n~(+ e l , ~) - 1 ,

nj(-1- (Zl, s(P3)) = nj(-1- (Zl, s(P3)), ~) i-- 1 k .

The equalities and inequalities above prove Claim B. []

The surgeries described in Case (BA) and Case (BB) obviously keep the conditions of
Lemma 2, therefore they may be repeated until the badness drops to 0. Claims A and B

guarantee, that we finally reach 0. Lemma 2 and Theorem 2 are proved. []

The determination of the tree 2r takes O(n) steps, therefore the total time complexity of

this procedure is O(nb(T)). To lift up the paths from ~ to ~ takes

time, therefore the total time complexity of lift up operations is O(rW(T)) . Finally, the

badness at Lemma 2 is at most

w(v, z)
z~Son(v)

and every edge can occur at most one application of Lemma 2 so the total time complexity
of Lemma 2 is O(max{rW(T), nE}).

The bookkeeping of (edge, path) incidences is necessary. A possible execution of this
task is to build up lists for every edge to store these incidences and to maintain these lists
at every 'lift up' step. The total time complexity of our recursive procedure is
O (max{ rW(T), n e}), so it is unary polynomial.

The following theorem is an easy consequence of Theorem 2.

Theorem 3. Let G be a graph with a weight function w: E(T) ~ ~ and with a partial

colouration x:N--> C. Assume that N intersects every cycle olG. Then

104 P.L. Erdó's, L.A. Székely / Mathematical Programming 65 (1994) 93-105

l(G, X) =p(G, X)

Proof. Obtain a forest by eliminating the vertices of N and making leaves from the edges
that were adjacent to them. Give the colour of n to the leaves that substitute a former n E N.
Apply Theorem 2 for each and every tree in the forest. []

5. The LP connection

One may consider the following linear programs related to the multiway cut problem
with colour independent weight function. Note that this is something, which is different
from the usual multiway cut polyhedron [1].

For every oriented edge (p, q) of G and every ordered pair of distinct colours ij define a

variable Zpq,ij. If q~N, then eliminate Zpq,i~ and Zqpj i for every J~x(q) . Introduce new
quotient variables by identifying the surviving variables Zpq,u and Zqpdi in pairs. For conven-
ience we use the same notation for the quotient variables. Then the primal linear program
is:

Zpq,o >~0 ;

for every colour-changing path Pab (a, b ~N), have

E E ZP«'ix(b) >~ 1;
(p, q)~Pab i:i4:x(b)

min ~., Zpq.U w(p, q) ,

where the last sum is for all quotient variables. To describe the dual linear program, for
every colour-changing path Pùb introduce a variable A ab, such that

Aab ~ O ;

for every quotient variable Zpq,o, have

E hab + ~., Aùo <~ w(p, q);
x(b) =j X(v) =i

(p, q) ~Pab (q, p) ~Puv

max ~ Aab.

We claim that these linear programs have integer optimal solutions. It is easy to see, that

p(G, X) ~<max ~ Aab :Aab integer ~<max ~ Aab =min ~ Zpq,U w(p, q)

~<min ~ Zpq,U w(p, q) :Zpq,ij integer~ I(G, X) •

Only the first and last inequalities require proofs from the chain of inequalities above. The
first one holds, since any path packing provides a feasible integer solution for the second
linear program. The last one holds, since we have an optimal colouration ~ with total weight

P.L. Erdös, L.A. Székely / Mathematical Programming 65 (1994) 93-105 105

of the co lour -changing edges o f l(G, X); define Zpq,i j = 1, i f f (p, q) is a co lour -changing

edge in the opt imal colourat ion ~ and ~((p) = i, ~ (q) = j hold, and Zpq,ij = 0 otherwise. I f

l(G, X) =p (G , X). then equal i ty holds eve rywhere in the chain.

It is a natural ques t ion whether these l inear programs are totally dual integral [10], i.e.,

whether they have integer opt imal solutions for co lour dependent weight funct ions w(p, q;

i, j) . Unfor tunate ly , this is not the case, take for example the 3-star with center c and leaves

x, y, z with colours X(X) = 1, X(Y) = 2 and X(Z) = 3 ; and the weight funct ion w(c, .; i,

j) = iWj defined by the matr ix

W = 0 .

3

References

[1] S. Chopra and M.R. Rao, "On the multiway cut polyhedron," Networks 21 (1991) 51-89.
[2] W.H. Cunningham, "The optimal multiterminal cut problem," DIMACS Series in Discrete Math. 5 (1991)

105-120.
[3] E. Dahlbans, D.S. Johnson, C.H. Papadimitriou, P. Seymour and M. Yannakakis, "The complexity of

multiway cuts," extended abstract (1983).
[4] P.L. Erdös and LA. Székely, ' 'Evolutionary trees: an integer multicommodity max-flow-min-cut theorem,' '

Advances in Applied Mathematics 13 (1992) 375-389.
[5] P.L. Erdös and L.A. Székely, "Algorithms and min-max theorems for certain multiway out," in: E. Balas,

G. Comuéjols and R. Kannan, eds., lnteger Programming and Combinatorial Optimization, Proceedings of
the Conference held at Carnegie Mellon University, May 25-27, 1992, by the Mathematical Programming
Society (CMU Press, Pittsburgb, 1992) 334-345.

[6] W.M. Fitch, "Towards defining the course of evoluüon. Minimum change for specific tree topology,"
Systematic Zoology 20 (1971) 406416.

[7] J.A. Hartigan, "Minimum mutation fits to a given tree," Biometrics 29 (1973) 53-65.
[8] L. Loväsz and M.D. Plummer, Matehing Theory (North-Holland, Amsterdam, 1986).
[9] K. Menger, ' 'Zur allgemeinen Kurventheorie," Fundamenta Mathematicae 10 (1926) 96-115.

[10] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization (John Wiley & Sons, New
York, 1988).

[11] M. Steel, "Decompositions of leaf-coloured binary trees," Advances in Applied Mathematies 14 (1993)
1-24.

[12] P.L. Williams and W.M. Fitch, "Finding the minimal change in a given tree," in: A. Dress and A. v.
Haeseler, eds., Trees and Hierarchical Structures, Lecture Notes in Biomathematics 84 (1989) 75-91.

[13] D. Sankoff and R.J. Cedergren, "Simultaneous comparison of three or more sequences related by a tree,"
in: D. Sankoff and J.B. Kruskal, eds., Time Wraps, String Edits and Macrornoleculas: The Theory and
Practice ofSequence Comparison (Addison-Wesley, London, 1983) 253-263.

