
Mathematical Programming 65 (1994) 93-105 

On weighted multiway cuts in trees 

Péter L. Erdös *'~, Läszló A. Székely **'b 
aCentrum voor Wiskunde en lnformatica, 1098 SJ Amsterdam, Netherlands 

Mathematical Institute of the Hungarian Acaderny of Sciences, H-1055 Budapest, Hungary 
bDepartment of Computer Science, Eötvös University, H-1088 Budapest, Hungary 

Department of Mathematics, University of New Mexico, Albuquerque, NM 87131, USA 

Received 11 September 1991; revised manuscript received 1 April 1993 

Abstract 

A min-max theorem is developed for the multiway cut problem of edge-weighted trees. We present 
a polynomial time algorithm to construct an optimal dual solution, if edge weights come in unary 
representation. Applications to biology also require some more complex edge weights. We describe 
a dynarnic programming type algorithm for this more general problem from biology and show that 
our min-max theorem does not apply to it. 
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1. Introduction 

Let G = ( V, E) be a simple graph, C = { 1, 2 . . . . .  r} be a set of  colours. For N c  V(G), a 
map x : N ~  C is a partial colouration. We usually think of  a given partial colouration. A 

map X: V(G) ~ C is a colouration if X(V) = 2(v)  holds for all v ~N.  
A colour dependent weightfunction assigns to every edge (p, q) and colours i,j a natural 

number w(p, q; i, j ) ,  which teils the weight of  the edge (p, q) in a colouration X, in which 

~(p) = i, ~( q) =j. We assume that w(p, q; i, i) = 0 and w(p, q; i,j) = w( q, p; j, i). We say 

that w is colour independent,  i f fo r  any (p,  q ) , im v~ j i  , i2 ~ J2, we have w(p ,  q; il, j l  ) = w ( p ,  

q;/2,  J2). We  say that w is edge independent,  i f  for any ( p »  ql )  ~ E and (P2, q2) ~ E, and 
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i, j ~  C, we have w(p  1, ql; i, j )  = w ( p »  q2; i, j ) .  (Hence, any edge independent weight 
function satisfies w(p, q; i, j)  = w(p, q; j, i).) We say that w is constant, if it is colour and 
edge independent. 

An edge (p, q) is colour-changing in the colouration ~, if ] ( p )  :# ~(q).  The changing 
number of the colouration ~ is the sum of weights of the colour-changing edges in Ä~, i.e.: 

change(G, ~) = ~ w(p, q; ~((p), y((q) ) . 
(p, q) ~E(G) 

A partial colouration X defines a partition o fN by N~ = { v ~ N: X(v) = i }. A set of edges that 
separates every Ni from all the other N/s  is tenned a multiway cut [ 1 ]. Observe that the set 
of colour-changing edges of a colouration ~ forms a multiway cut and every multiway cut 
is represented in this way. 

The length of the pair (G, X) is the minimum weight of a multiway cut, in formula: 

l(G, X) = min{ehange(G, ~): ~ colouration} . 

An optimal colouration is a colouration ~ such that change(G, ~) = I(G, X). 
The multiway cut problem for colour independent weight functions has been extensively 

studied in combinatorial optimization (e.g. [ 1-3] .). As Dahlhaus et ad. pointed out [3], 

this problem is NP-hard, even for INI = 3, IN, I = 1 and constant weight. 
On the other hand, if we restrict ourselves to planar graphs, a fixed number of colours, 

and constant weight, then the problem becomes solvable in polynomial time [ 3 ]. A well- 
known specialization of the multiway cut problem, which is solvable in polynomial time, 
is r = 2, which is considered in the undirected edge version of Menger' s theorem [ 8 ]. 

Although it is less known in the operations research community, some instances of the 
multiway cut problem have great importance in biomathematics. In fact, the notions of the 
changing number and the length came from genetics and we follow the terminology used 
there. For the case of constant weight function, Fitch [6] and Hartigan [7] developed a 
polynomial time algorithm to determine the length of a given tree. Sankoff and Cedergren 
[ 13 ], and Williamson and Fitch [ 12] studied edge independent weight functions and made 
polynomial time algorithms to find the length. Some explanation of the significance of the 
multiway cut problem in biology is given in [4, 5]. 

The goal of the present paper is to study the multiway cut problem. In Section 2 we give 
a new lower bound for the length of a multiway cut. Section 3 provides a dynamic program- 
ming type algorithm to find the length of a tree with an arbitrary weight function. Section 
4 uses the algorithm of Section 3 to establish a min-max theorem for the multiway cut 
problem of trees, in the case of colour independent weight functions. All the results can be 
extended to any graph G, in which N intersects every cycle. Section 5 describes our results 
in terms of linear programming. 

A preliminary version of the present paper has already appeared [ 5 ]. We are indebted to 
the anonymous referees for their helpful observations that we use in this presentation. 
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2. Lower bound for the weight of a muitiway cut 

Let G be a simple graph, Nc_V(G) and x:N--*C be a partial colouration. Let w be a 

colour dependent weight function. 

Definition. An oriented path P in G starting at s(P) ~ N  and terminating at t(P) ~ N  is a 

colour-changing path, if X(S (P))  4: X(t(P) ) and P has no internal vertex in N. (From now 
on path means oriented path, unless we explicitly say the opposite.) Let us fix a family 
of colour-changing paths and let e = (p, q) ~ E( G). Define 

ni(e , ~ )  = # { P E r :  (p, q) ~ P  and X(t(P))  =i} . 

The notation (p, q) ~ P means that P enters the edge (p, q) a tp  and leaves at q. 

Definition. Let x : N ~  C be a partial colouration and ~ be a colouration on G. A family :~ 
of colour-changing paths is a path packing, if all pairs of colours i 4:j and all edges (p, q) 
satisfy 

ni((p, q), ~ )  +nj((q, p),  ~ )  <~w(p, q;j, i ) .  

The maximum cardinality of a path packing is denoted by p (G, X). 

Theorem 1. For any graph G and partial colouration )(, we have 

I( G, X) >~ p( G, X) • 

Proof. Let ~ be a path packing and ~: V(G) ~ C be an optimal colouration. Define a map 
f :  9 ~ E(G)  as follows: le t f (P)  = e if e is the last colour-changing edge in P in ~. For any 
colour changing edge e =  (p, q), ~(p) = j  and ~((q) = i (i:~j since e is colour changing), 

we have 

# { P ~ ß :  f (  P ) =e} <~ni( (p, q), ~ )  +n~( ( q, p ), g )  <~ w(p, q; j, i ) .  

Therefore, 

191 ~< change(G, ~O=l(G, X) • [] 

3. An algorithm to find optimal colourations 

Now we focus on the multiway cut problem of trees. Let Tbe  a tree and x :N-o  C be a 
partial colouration, and let L(T) denote the set of leaves, i.e. vertices of degree 1. We 
assume N =  L(T).  (It is obvious that the solution of the multiway cut problem of trees with 
N =  L(T) easily generalizes to the solution of the multiway cut problem of trees with 
arbitrary N.) Let w be a colour dependent weight function. In this section we give a 
polynomial time algorithm to determine all optimal colouration of T for the weight w. 
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Let us fix an arbitrary non-leaf vertex, the root of T. Let (u, v) be an edge and let v be 

closer to the root than u, then we say v = Father(u).  (Father(root)  is NIL.) We denote 
the set of all u for which v = Father(u) by Son(v). 

Our colouring algorithm has two phases. Starting from the leaves and approaching the 
root we determine a penaltyfunct ion of every vertex v recursively, and subsequently we 
determine a suitable colourätion ] starting from the root and spreading to the leaves. 

Definition. The vector-valued penaltyfunction is a map 

pen: V(T) ~ (M U {~} ) r ,  

such that peni(v) means the length of the subtree separated by v from the root, ifthe colour 
of v has to be i. 

Phase I. For every leaf v ~ L(T) let 

= f O  if v~,,V/, 
pen«(v) 

otherwise, 

where in an actual computation oo may be substituted by a sufficiently large number. Take 
a vertex v, such that pen(v)  is not computed yet for the vertex v, but pen(u) is already 
known for every vertex u G Son(v). Then compute 

peni(v) = ~ min {w(u,  v; j ,  i) +pen/(u)} . 
u ~ S o n ( v )  j = l  . . . . .  r 

Phase II. Now we determine an optimal colouration ~ of T. First, let ~(root)  be a colour 
i, which minimizes the value peni(root). Furthermore, for a vertex v for which ~(v) is not 
settled yet, but ~ (Father(v))  is already determined, let ~(v) be a colour i, which minimizes 
the expression 

w ( v, Father(v);  i, )~(Father(v ) ) ) + peni ( v ). 

It is easy to see, that every leaf v ~Ni  satisfies ~(v) = i = X(V), for i = 1 . . . . .  r. 

The correctness of this algorithm is almost self-explanatory. Assume the positive integer 
edge weights are given in unary representation. Then, the time complexity is O(n.  r 2. 

(max weight) ), since at each step we calculate r 2 sums, take the minimum, and roughly 2n 

steps are necessary because T has n vertices and n - 1 edges. You may change max weight 

for log (max weight),  if the edge weights come in binary representation. 
In the rest of this section we focus on colour independent weight functions, since we can 

develop a slightly more efficient version of this algorithm, which also can determine all 
optimal colourations. Biologists may need all optimal colourations; the saving in running 

time comes from avoiding the second minimization in Phase II. Also, case (A2) in the 
proof of Theorem 2 will need the modified algorithm. For the sake of simplicity, for the 
rest of this section the weight function is a map w: E(T) ~ M for colour changing edges 
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and the weight of  any edge not changing colour is O. We use the usual Kronecker delta 

notation. 

Phase I ' .  For every leaf v, set 

M1 (v)  ---M2(v) = {i: peni(v) = O} . 

If  pen(v) is not computed yet for the vertex v but pen(u) is already known for every vertex 
u c Son(v),  then set 

peni(v) = ~ min {(1--6u)w(u,  v) +pen~(u)} . 
u~Son(v )  j = l ,  L, r 

L e t p ( v )  = minipeni( v), and 

MI(v)  = { i c  {1 . . . . .  r}: pen/(v) = p ( v )  } , 

M2(v) = { i c { 1  . . . . .  r}: peni(v) < p ( v )  +w(v,  Fa the r (v ) )  } . 

It is obvious that M1 (v) __.M2(v). 

Phase I I ' .  For ~ ( roo t ) ,  take an arbitrary element o fMl( roo t ) .  If  ~(v)  is not settled yet for 

a vertex v, but ~ ( F a t h e r ( v ) )  is already determined, take 

~ ( F a t h e r ( v ) )  if ~ (Fa ther (v)  ) c M2 (v) 
~((v) = [ a n  arbitrary element of  Ml (v )  otherwise.  

It is easy to see, that every vertex v c N i  satisfies ~ ( v ) = i = x ( v ) ,  for i =  1 . . . . .  r. This 
algorithm is obviously correct and permitting some extra freedom at certain steps, any 
optimal colouration can be obtained by the modified algorithm. For this purpose we intro- 
duce a third set of  colours at Phase I ' :  

M 3 ( v  ) = {iC { 1 . . . . .  r}: peni(v) =p(v)  +w(v,  Father(v)  ) } . 

I f  in Phase II '  we also allow to give the colour of  ~ ( F a t h e r ( v ) )  to v, if 
~ (Fa the r (v )  ) c M 3 ( v ) ,  then the algorithm still yields an optimal colouration. Moreover, 
one can prove that running this algorithm in all possible ways yields all optimal colourations. 
(We leave the proof to the reader.) The complexity of  this revised algorithm is better by a 

constant multiplicative factor than that of  the original, hut to get every optimal colouration 
may take exponential time, since M.A. Steel exhibited trees with exponentially many optimal 
colourations [ 11 ]. 

4. A min-max  theorem 

In this section we assume that the weight function is colour-independent and we prove 
that the lower bound of Theorem 1 is tight for leaf-coloured trees, and then even for a larger 
class of graphs. 
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Theorem 2. Let T be an arbitrary tree with coIour-independent weight function 

w : E( T) ~ [~ and with leaf-colouration x:  L ( T) ---> C. Then 

I(T, X) =p(T ,  X) • 

We already know ffom Theorem 1 that the LHS is greater or equal than the RHS. We have 
to prove the other inequality. For this end we construct the desired optimal path packing in 
a recursive manner. At first, we explicitly construct optimal path packings for stars, i.e. for 
trees with 1 branching vertex. Then, for a tree T with at least 2 branching vertices and with 

w(73= ]~ w~ 
f ~  E(T) 

sum of weights, we define a 'smaller' tree T' for which we can trace back the problem of 
the construction of an optimal path packing, such that we can 'lift up' the path packing from 

T' to T to get the solution. We may have at most W(T)  'lift up' steps. Here we give the 
details. 

For convenience, we want to use the functions Son and Father, therefore we fix, as in 
Section 3, a root of T. In the complexity issues we assume that our tree is represented by 
the vertices v and the sets Son(v) and Father(v),  furthermore every element of Son(v) and 
Father(v) (which represents edges) also contains the weight of the edge. The paths under 
construction will be represented as double-linked lists, therefore, due to Theorem 1, the 
space complexity of the representation is O(l(T,  X)" n).  

Definition. We say that a vertex v is of  order 1 if every element of Son(v) is a leaf. 

Notice that every tree with at least 2 branching vertices has a non-root vertex of order 1. 
Before starting the main body of the proof we need the following lemma. 

Lemma  1. One can assume that no vertex of  order 1 has two sons with the same colour. 

Let v be a vertex of order 1, such that Son(v) contains at least 2 leaves with identical colour. 
Let E(T)  denote the tree obtained from T by identification of the elements of Son(v) with 
identical colour and adding up their edge weights, respectively. Now one can easily construct 
an optimal path packing for T from an optimal path packing of E (T). Anyhow, we give a 

formal proof, otherwise, the base case of out recursive algorithm would not be complete. 

Proof. Define the tree E(T)  formally as follows: let the tree T' be a star with midpoint v 
and with leaves { li: 3u ~ Son(v) with X(U) = i} and let •(T) be the tree made of the trees 
T \Son(v )  and T' by identification of their common v. The leaf-colouration and weight 
function of ~ (T)  are as follows: 

X , ( u ) = ( X ( U )  if  u ~ L \ S o n ( v )  u = l  i , 
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w, (f) =~ù~So~(o) w( (u' v) ) 
I x(u)=i 
Lw~ß 

Notice that I(E( T), X') = l(T, X). 

i f f =  (li, v) , 

otherwise.  

Claim. I f I (E(T) ,  X') = p ( E ( T ) ,  X') then l(T, X) =p(T, X). 

Proof.  Let Son(v) contain d different colours. We apply induction on I Son(v) I. 
Base case: if [ Son(v) I = d, then E ( T )  = T, X = X', and we have nothing to prove. 
Inductive step: Suppose that we know Lemma 1 for all ISon(v) I <k.  Assume now 

I Son(v) I = k and for some fixed zl, z2 ~ Son(v),  let X(Zl) = X(z2). Join zl and z2 into z. In 
the new tree T *  obtained by identification, define the leaf colouration and the weight 
function as follows: 

= f X ( u )  if u =/~Zl, Z2» 
X*(U) 

[.X(Zl) i f u = z ,  

{w(f) 
w*ff) = w(v, z~) +w(v, z2) 

i f f4 :  ( v, zi) , 
i f f =  (v, z) • 

Now we have Z ( T )  = E ( T * ) ,  therefore I(Y~(T)) = / ( E ( T * ) ) .  By the hypothesis there 
exists a path packing ~@* in the tree T *  satisfying 1 9 "  [ = l ( T * ) .  It is easy to divide the 
paths of  ~ *  adjacent to vertex z into two groups, such that the members of one group are 
adjacent to zl and the members  of  the other are adjacent to z2 and both groups obey the 
weight restriction on the edge adjacent to zi. In this way we obtain a path packing of l(T) 
members in T. This proves the Claim as well as Lemma 1. [] 

The time complexity of  this algorithm is O(~~~Soù«~) w(u, v)) so the time complexity 
of  all applications of  Lemma  1 altogether is 0 (W(T) ) .  

We return to the main body of the proof; we assume that any two sons of an arbitrary 
vertex of order 1 have different colours. Our algorithm is given in a recursive form in the 
variables b (T) and W(T),  where b (T)  is the number of  branching (non-leaf) vertices of  
T. 

Base case: let b (T) --- 1 and W(T) be arbitrary. Then T is a star; let v denote the midpoint 
of  it. Due to Lemma 1 we may assume that IL(T) [ = r (i.e. every colour occurs once).  
Assume that the edge (v, u) has maximum weight over all edges. Orient paths from u to 

every other leaf z ~ L ( T ) \ { u }  with multiplicity w(v, z). This path system is obviously a 
path packing and has l (T) members.  This case requires O (W(T) )  steps. 

Recursive step: For any tree T with at least 2 branching vertices we shall find 'smaller '  
tree T' with fewer branching vertices ( b ( T ' ) < b ( T ) )  or with smaller total weights 
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(b (T ' )  = b(T) and W(T' ) < W(T)) such that an optimal path packing of T' can be lifted 

up to an optimal path packing of T. Define 

We distinguish two cases: 
(A) There is a vertex c of order 1 such that s (v) 4: w ( v, Father(v) ). 
(B) s (v) = w ( v, Father(v) ) for every vertex v of order 1. 
Case (A). Let 2 be an optimal colouration of T such that v is the first branching vertex 

for which the colour sets M~ were determined. We have two subcases; in (A1) we have 
s(v) >w(v,  Father(v)) ,  in (A2) we have s(v) <w(v, Father(v)) .  

Case (A1). Let T" be the tree with the same vertex set, edge set and leaf colouration as 
the tree T was, and let the new weight function w' : E(T) ~ N such that 

If w' (f) = 0, then cancel this edge and its leaf endpoint from the tree T" to obtain the tree 
T'. Due to our colouring algorithm, colouration ~ is also optimal for the tree T', therefore 

The total weight of tree T' is less than of T. Assume now that we have an optimal path 
packing ~ '  of l(T', X) elements in T'. Denote by AT the star of v U Son(c) with weight 
function w = 1 and with the original leaf colouration. Let A ~  be optimal path packing in 

AT (use the base case). Now the path system ~a~= .~, U A ~  is obviously optimal path 
packing in the tree T. 

We can construct T' and the path packings A ~  and ~¢~ from the given tree T and path 

packing ~.~' in O(r. ~2u~Son(v) w(v, u) ) time, so that the total time complexity of the case 
(A1) is O(rW(T)) .  

Case (A2). Now we have s(v) <w(v ,  Father(v) ). Let the tree T' be identical with the 
tree T with the same leaf-colouration and with the weight function 

Now it is easy to see that there exists an optimal colouration ~ of T' satisfying ~(v) = 
~(Father(v)) which is also optimal in T. (The only problem that can occur is that 

(Father(v))  ~ M2 (v) but ~ (Father(v))  ~ M~ (v). In that case we can apply the extended 
Phase II ' .)  Therefore, we have l(T) = I(T ' )  and W(T') < W(T). Now we can easily 'lift 
up' any optimal path packing ~ of T' to the tree T, namely ~ itself is obviously path 
packing in T. 

This operation takes O(1) time, so the total time complexity of case (A2) is O(n). 
Case (B). From now on we assume that every vertex z of order 1 satisfies the condition 

s(z) = w(z, Father(z) ). For the rest of (B),  we fix a vertex v; if the diameter of Tis 3, then 
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let v be the root,  otherwise, let v be a non-root vertex such that Son(v) ¢ L ( T )  and every 

non-leaf son is a vertex of  order 1 (the existence of  such a v is obvious).  Let the non-leaf 
sons of v be the vertices z~, ..., z» 

By the defnit ion of case (B)  it is easy to see the existence of an optimal coloration 
colouring v and every zi to the same colour. Therefore if 7 ~ is the tree derived from the tree 
T b y  contracting every edge of form (v, z~) (leaving the name of the new vertex v), which 

is endowed with the original leaf-colouration and weight function on the existing edges, 
then the restriction of the same colouration ] is also optimal for 7 ~ and l(2r) = l (T) .  On the 
other hand, the tree 7 ~ has less branching vertices than T. 

Now due to our hypothesis we have an optimal path packing ~.~ in the tree 7 ~. Therefore 

I~1 =l(T).  

Let us define the lift up ~.~= {/3: p ~ j ~ }  of the path packing ~ ,  where/3 is identical with 
P if no leaf u of  Son(zi) (i = 1 . . . . .  k) belongs to the path P, and/3  comes from P by 

subdivision of the edge (v, u) with vertex zi if endvertex(P) = u ~ Son(zl) (i = 1 . . . . .  k).  
We have l(T) many elements in ~.~. 

Let ei = (v, zi) (for every i =  1 . . . . .  k).  For an edge f =  (p, q),  we write - f =  (q, p ) .  
Now, by the definition of g ,  the condition 

ni(f, ~ )  + nj( -f,  ~ )  < w(f) 

holds for every edgef4 :  ei (i = 1 . . . . .  k),  but unfortunately this is not necessarily the case 

for the edges e» 
We solve this problem in a slightly more general setting (Lemma 2 ). For this we introduce 

the following notations: Let [x] ÷ denote x, if x is non-negative, 0, if x is non-positive. 

Define the badness of the colour changing path system ~ by 

bad G'~) = E 
(i, j)  ECXC e~E(G) 

i~ j  

[nj(e, «~) +nj( - e ,  ~ )  - w ( e )  ] + 

Call an edge oversaturated by the path system B ,  if the contribution of  the edge to the 

badness is positive. (We recall the definition e i = (V,  Zi).) 

L e m m a  2. Let g be a system of colour-changing paths on the tree T such that 
(i) for all i, j, nj( +_el, g )  <~ w( el), 

(ii) ~ does not oversaturate any edge from E( T) \ { el . . . . .  ek}. 
Then there exists a path packing ~ *  in T of the same size. 

Proof.  If  b a d ( ~ )  = 0 then ~ itself is a path packing. Suppose b a d ( ~ )  > 0, and, say, the 

edge el is oversaturated with colours 1 and 2, i.e. 
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nl(el, jö) + n 2 ( - - e l ,  ~ )  > w ( e l )  . 

Take a path PI ~ ~ such that el ~ P1 and X(t(P1 ) ) = 1 (where, say, t(Pl)  ~ Son(zl) ), and 
a path P 2 ~ ~  such that - e l E P  2 and X(t(P2))=2 (where t(P2) f~Son(zl) and 
s(P2) ~ Son(zl) ). Now we distinguish the cases (BA) and (BB): 

Case (BA). Suppose there is no P 3 E ~  for which -e l~P3 ,  s (P3)=s(P2)  and 
X(t(P3) ) = 1. In this case we define the following path system: 

B I  = ~ U  {P}\{P1 } , 

where the path P is (s(Pz), zi, t(P1) ), oriented from left to right. 

C|aim A. 

b a d ( g l )  ~<bad(~) - 1. 

Proof. It is easy to see that n~( +f,  ~ 1 )  ~<n~( +f,  «~) for each i=  1 . . . . .  k and for each 

f ~  E(T) \ { el, (Zl, s (P2)) }, furthermore 

rti( - e l ,  .~1) =nj( - e l ,  ~ ) ,  i-- 1 . . . . .  k ,  

nj(el, ~1) =ni(ei, ~'~), i = 2  . . . . .  k ,  

nl(el, ~ 1 )  = n l ( e l ,  ~ ) -  1 . 

Finally, for the edgef2 = (Zl, s(P2) ) we have 

nj(f2' ~1)  =ni(f2' ~ ) ,  i =  1 . . . . .  k ,  

nj( --f2, ~1)  =ni( --f2, ~ßö), i = 2  . . . . .  k,  

nl( -f2,  ~ 1 )  +ni(fz, J°l) <~w(f2), i-= 1 .. . . .  k. 

The last inequality is true, since otherwise n2( - f »  ~ ) +  ni(f2 ~ )  > w(f2) would hold, 
contradicting the assumptions of Lemma 2. [] 

Case (BB). Suppose there exists a path P3 which was forbidden in (BA). Then let ~1  
be the following path system: 

B1 = ~ (--J {P, P3 APx }\{P1, P3 } 

where P3/~ P1 denotes the (unique) path oriented from s(P3) to t(Pl). 

Claim B. 

bad(~~)  ~< b a d ( ~ )  - 1. 

Proof. Set 

E l={e l ,  (zl, t(Pl)), (zl, s(P3))} and E2=E(P1) UE(P2)\E(P3AP1). 
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Then for each e d g e f ~ E ( T ) \ ( E 1  UEz) the estimates of Claim A hol& Furthermore, for 

f G  E1 we have 

ni(+f,  ,~1) =ni(-f-f, ~ ) ,  i = 2  . . . . .  k ,  

n~( +f, ~1) <n~( +f, ~ ) ,  

n i ( + _ ( Z l , t ( P 1 ) ) , ~ l ) = n i ( + - ( z l ,  t (Pa)) ,«~) ,  i = l  . . . . .  k ,  

n i (++_e l ,~a )=n i (+e l ,~ ) ,  i = 2  . . . . .  k ,  

nl( +e l ,  ~1) =n~( + e l ,  ~ )  - 1 , 

nj( -1- (Zl, s(P3) ) = nj( -1- (Zl, s(P3) ), ~ )  i-- 1 . . . . .  k .  

The equalities and inequalities above prove Claim B. [] 

The surgeries described in Case (BA) and Case (BB) obviously keep the conditions of 
Lemma 2, therefore they may be repeated until the badness drops to 0. Claims A and B 

guarantee, that we finally reach 0. Lemma 2 and Theorem 2 are proved. [] 

The determination of the tree 2r takes O(n) steps, therefore the total time complexity of 

this procedure is O(nb(T) ). To lift up the paths from ~ to ~ takes 

time, therefore the total time complexity of lift up operations is O(rW(T)) .  Finally, the 

badness at Lemma 2 is at most 

w(v, z) 
z~Son(v)  

and every edge can occur at most one application of Lemma 2 so the total time complexity 
of Lemma 2 is O(max{rW(T),  nE}). 

The bookkeeping of (edge, path) incidences is necessary. A possible execution of this 
task is to build up lists for every edge to store these incidences and to maintain these lists 
at every 'lift up' step. The total time complexity of our recursive procedure is 
O (max{ rW(T),  n e} ), so it is unary polynomial. 

The following theorem is an easy consequence of Theorem 2. 

Theorem 3. Let G be a graph with a weight function w: E( T) ~ ~ and with a partial 

colouration x:N--> C. Assume that N intersects every cycle olG. Then 
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l(G, X) =p(G, X) 

Proof. Obtain a forest by eliminating the vertices of N and making leaves from the edges 
that were adjacent to them. Give the colour of n to the leaves that substitute a former n E N. 
Apply Theorem 2 for each and every tree in the forest. [] 

5. The LP connection 

One may consider the following linear programs related to the multiway cut problem 
with colour independent weight function. Note that this is something, which is different 
from the usual multiway cut polyhedron [ 1 ]. 

For every oriented edge (p, q) of G and every ordered pair of distinct colours ij define a 

variable Zpq,ij. If q~N,  then eliminate Zpq,i~ and Zqpj i for every J~x(q) .  Introduce new 
quotient variables by identifying the surviving variables Zpq,u and Zqpdi in pairs. For conven- 
ience we use the same notation for the quotient variables. Then the primal linear program 
is: 

Zpq,o >~0 ; 

for every colour-changing path Pab (a, b ~N),  have 

E E ZP«'ix(b) >~ 1; 
(p, q)~Pab i:i4:x(b) 

min ~., Zpq.U w(p, q) , 

where the last sum is for all quotient variables. To describe the dual linear program, for 
every colour-changing path Pùb introduce a variable A ab, such that 

Aab ~ O  ; 

for every quotient variable Zpq,o, have 

E hab + ~., Aùo <~ w(p, q); 
x(b) =j X(v) =i 

(p, q) ~Pab (q, p) ~Puv 

max ~ Aab. 

We claim that these linear programs have integer optimal solutions. It is easy to see, that 

p(G, X) ~<max ~ Aab :Aab integer ~<max ~ Aab =min ~ Zpq,U w(p, q) 

~<min ~ Zpq,U w(p, q) :Zpq,ij integer~ I(G, X) • 

Only the first and last inequalities require proofs from the chain of inequalities above. The 
first one holds, since any path packing provides a feasible integer solution for the second 
linear program. The last one holds, since we have an optimal colouration ~ with total weight 
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of  the co lour -changing  edges  o f  l(G, X); define Zpq,i j = 1, i f f  (p, q)  is a co lour -changing  

edge  in the opt imal  colourat ion ~ and ~((p) = i, ~ (q )  = j  hold, and Zpq,ij = 0 otherwise.  I f  

l(G, X) =p (G ,  X). then equal i ty  holds eve rywhere  in the chain. 

It is a natural ques t ion whether  these l inear programs are totally dual integral [ 10],  i.e., 

whether  they have  integer  opt imal  solutions for co lour  dependent  weight  funct ions w(p, q; 

i, j ) .  Unfor tunate ly ,  this is not  the case, take for example  the 3-star with center  c and leaves  

x, y, z with colours  X(X) = 1, X(Y) = 2  and X(Z) = 3 ;  and the weight  funct ion w(c, .; i, 

j )  = iWj defined by the matr ix  

W =  0 . 

3 
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