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Abstract

In the Boolean lattice the BLYM inequality holds with equality if and only if the
Sperner family consists of one complete level of subsets. In this paper we extend
this strict BLYM-property to a subclass of normal posets. On the basis of this result
we prove a strict two-part Sperner theorem of the direct product of any two posets
from the same subclass.

1 Introduction

One of the central theme in extremal set theory is Sperner’s theorem [15] from
1928, and its generalizations. A Sperner family (or an antichain) H is a family
of subsets on the underlying finite set X such that none of them is a proper
subset of another. Sperner’s theorem states that a family consisting of all
subsets with the same cardinality �|X|/2� is a largest Sperner family on X.

An early generalization of the Sperner theorem is the BLYM (Bollobás 1965
[3], Lubell 1966 [11], Yamamoto 1954 [16] and Meshalkin 1963 [12]) inequality.

Theorem 1.1 If Pi(H) denotes the number of i-element sets in the Sperner

family H (the array of these quantities are called the profile vector of the
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family), then
n∑

i=0

Pi(H)(
|X|
i

) ≤ 1. (1)

Paul Erdős found another generalization of the Sperner theorem:

Theorem 1.2 (Paul Erdős [4]) Assume that set systemsHi (i = 1, 2, . . . , k)
are pairwise disjoint Sperner families on the underlying set X, then

k∑
i=1

|Hi| ≤
k−1∑
i=0

⎛
⎝ |X|⌊

|X|+1−k

2

⌋
+ i

⎞
⎠ , (2)

where the sum includes the k largest binomial coefficients.

For 0 < k ≤ |X|, a family H is called an k-Sperner family, if no k+1 sets in H
form a chain for inclusion. A dual Dilworth theorem for posets immediately
implies that any k-Sperner family can be decomposed into the union of k
pairwise disjoint Sperner families, therefore Theorem 1.2 gives a sharp upper
bound on the size of k-Sperner families.

The following common generalizations of the BLYM inequality and Theo-
rem 1.2 has been folklore and was first in print in [6].

Theorem 1.3 (Folklore) If H is a k-Sperner family on X, then

n∑
i=0

Pi(H)(
|X|
i

) ≤ k,

with equality if and only if H contains every subset of k given distinct sizes.

We say that the Boolean lattice satisfies the strict k-BLYM inequality.

In the mid sixties Katona and Kleitman discovered independently and almost
simultaneously that one can relax the condition of the Sperner theorem while
keeping its conclusion: Let X = X1 � X2 be a fixed partition. A family
H ⊂ 2X is called a two-part Sperner family if ∀E, F ∈ H E � F ⇒ ∀i :
F \E 
⊆ Xi. Since Sperner families are also two-part Sperner families (for any
two-partition), therefore no maximum two-part Sperner family can be smaller
than a maximum Sperner family. But the next is also true:

Theorem 1.4 (G.O.H. Katona [7] and D.J. Kleitman [9].) The size of

a two-part Sperner family cannot exceed the size of a maximum Sperner family.
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A family H of subsets on a given underlying set X with 2 partition classes is
called homogeneous, if for any subset ofX the sizes of the subset’s intersections
with the partition classes already determine whether this particular subset
belongs to the family H. Since in the profile matrix (which is actually the
two-dimensional profile vector) of a homogeneous two-part Sperner family no
column/raw can contain more than one non-zero element therefore the profile
matrix cannot contain more than min{|X1|+ 1; |X2|+ 1} non-zero elements.

A two-part Sperner family is called well-paired if it is homogeneous and -
roughly speaking - if larger levels from X1 are paired with larger ones from X2

and smaller levels with smaller ones. The well-pairing is clearly not unique,
but actually all well-paired two-part Sperner families achieve maximum size.
As it later turned out, the two-part Sperner theorem is strict:

Theorem 1.5 (P.L. Erdős and G.O.H. Katona [5]) A two-part Sperner

family H has maximum size if and only if H is a well-paired family.

In [14], [6] and [1] further proofs were given. One of the main tools in [1] was
the following strict BLYM-type inequality:

Theorem 1.6 (two-part BLYM-inequality, [1]) LetH be a two-part Sper-

ner family on the underlying set X1 �X2 where |X2| ≤ |X1|. Then

∑
i,j

Mij(H)(
|X1|
i

)(
|X2|
j

) ≤ |X2|+ 1. (3)

Furthermore, if H is a maximum size two-part Sperner family, then equality

holds andH is homogenous. Consequently the two-part Sperner families satisfy

the strict BLYM-inequality.

The study of the Sperner problem for partially ordered sets (or poset, for short)
emerged naturally. One of the early encounter is Baker’s observation ([2],
1969), that every regular poset (see later its definition) satisfies the Sperner
property. Somewhat later Schonheim [13] and Katona [8] generalized the two-
part Sperner theorem for certain posets.

In 1974 Kleitman proved an important result (see Theorem 2.1) which is
suitable to prove BLYM-type theorems for normal posets. What is interesting
here, however, that normal posets generally do not satisfy the strict Sperner
property.

In this extended abstract our main objective is to find the right setup for
the strict BLYM inequality and strict two-part Sperner theorem for direct
products of posets. We describe a subclass of normal posets which satisfy
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the strict k-BLYM inequality. We extend the two-part BLYM inequality to
direct products of two such posets. This allows us to prove our main result
(Theorem 2.3): a strict two-part Sperner theorem for direct products.

2 Definitions and results

In the remaining of this paper each poset P has a rank function r. We denote
the collection of elements of rank i by Li(P ) and call it the ith level of the
poset, where i = 0, 1, . . . , r(P ), and r(P ) is the maximum rank in P . Symbol
Ni(P ) denotes the ith Whitney number of P , that is Ni(P ) = |Li(P )|. With
some abuse of notation we will use simply Li and Ni when this does not cause
confusion.

Denote G(P ) = (V,E) the usual Hasse diagram of the ranked poset P , and
denote Gi(P ) the induced bipartite subgraphs between the ith and (i + 1)th
levels (for i = 0, . . . , r(P ) − 1). The poset P is called rank-connected if for
each i the bipartite graph Gi(P ) is connected.

A poset P is called regular if for every element a ∈ P of a given rank, both
the number of elements which cover a and the number of elements covered by
a do not depend on the choice of a. For the lower (resp. upper) degree of an
element a ∈ P (vertex in G(P )) we use the notation d−(a) (resp. d+(a)). For
the notions of normal posets and regular chain covering we use the common
definitions. Recall that every regular poset is normal.

The following important result was used for a wide range of posets to prove
their strong Spernerity and k-BLYM inequalities.

Theorem 2.1 (D.J. Kleitman [10]) The following statements are equiva-

lent: (i) P is normal; (ii) P satisfies BLYM inequality; (iii) P satisfies k-
BLYM inequality for k = 1, 2, . . . , r(P ); (iv) there exists a regular chain cov-

ering of P .

Note that the ealier Baker’s result [2], which actually says that every reg-
ular poset satisfies BLYM inequality (and the proof is based on the regular
chain covering), is a special case of Theorem 2.1. To prove our main result
(Theorem 2.3) we actually use this weaker version of Kleitman’s result.

The examples given in Figure 1 show that the condition of Theorem 2.1 is not
sufficient for proving strict BLYM (or k-BLYM) inequality: These posets are
normal but they do not posses the strict Sperner property (and therefore the
strict BLYM inequality). The poset at Figure 1b is not regular, and the poset
at Figure 1a, while it is regular, it is not rank-connected.

H. Aydinian, P.L. Erdős / Electronic Notes in Discrete Mathematics 38 (2011) 87–9290



(a) (b)

Fig. 1.

Now we are ready to report our findings. We start with the generalization of
the strict k-BLYM inequality:

Theorem 2.2 Let P be a regular unimodal poset satisfying rank-connectivity

and let F ⊂ P be a k-Sperner system Then

∑
a∈F

1

Nr(a)

≤ k, (4)

and equality holds if and only if F is homogeneous. Furthermore - as a con-

sequence - the strict k-Sperner theorem also holds.

Using this fact, similarly to paper [1] one can prove the following strict 2-part
Sperner theorem:

Theorem 2.3 Let P1 and P2 be regular, unimodal posets, both satisfying rank-

connectivity. Let F ⊂ P1 × P2 be a maximum size two-part Sperner system.

Then F is a well paired homogeneous system.

The following result plays a key role in the proof of Theorem 2.3:

Lemma 2.4 Let P1, P2 be regular, unimodal, rank-connected posets. Let F be

a maximum size two-part Sperner system. Assume that n2 ≤ n1. Then

∑
(a,b)∈F

1

N
(1)
r(a)N

(2)
r(b)

= n2 + 1. (5)
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