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Abstract

Let § be a finite set with some rank function r such that the Whitney numbers
w; = |{xeS]|r(x)=i}| are log-concave. Given k, me N so that w,_, <w, < w,, . set
W=w,+w., + -+ w,,,. Generalizing a theorem of Kleitman and Milner, we prove that
every F < § with cardinality |F| > W has average rank at least (kw, + - + (k + mjw, )/ W,
provided the normalized profile vector (x,,....x,) of F satisfies the following LYM-type
inequality: x, + X, + - + x, < m+ 1.

1. Introduction

Extremal set theory studies the combinatorial structure of sets that maximize
certain parameters under various constraints. A fundamental result in this direction is
due to Sperner [11], who proved that in the ordered set of all subsets of a finite set no
antichain is larger than the level corresponding to the largest binomial coefficient. It
was subsequently discovered that Sperner’s result is a consequence of the fact that
profile vectors of antichains in Boolean algebras satisfy a basic linear inequality
[12,10.9] known as LYM-inequality. We will come back to a more detailed dis-
cussion of these concepts in Section 3.

Many important ordered sets (e.g., lattices of subspaces of finite vector spaces,
lattices of subspaces of finite affine spaces, divisor lattices of integers) share with
Boolean algebras the property that their antichains satisfy the LY M-condition. Hence
analogous results follow for these ordered sets.

Kleitman and Milner [8] determined the best-possible lower bound on the average
rank of an antichain in a Boolean algebra if the antichain has at least size (}). Odlyzko
pointed out that the theorem of Kleitman and Milner actually may be deduced by
solving an associated linear program (cf. [6]). The solution of the latter only makes
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use of the LYM-inequality and the fact that the binomial coefficients are logarithmi-
cally concave.

It is the purpose of this note to derive an m-analogue of the theorem of Kleitman
and Milner by looking at the average rank of sets with cardinality at least the sum of
m + 1 successive level numbers. We start out with a very general model: a finite set
S with some ‘rank’ function r. No special property of S or r is assumed at the outset.
r induces a partition of the ground set S into blocks

Pi={xeS|r(x)=i}.

We study the profile vectors of subsets F = § and normalize these relative to the rank
function r. By definition, an (m + 1)-set F is a subset of S whose normalized profile lies
in the simplex S,, = R"*! with (0, 1)-vertices, which we call the Sperner polytope (see
Section 2). Re-interpretation of the vertices of S, immediately yields well-known
results on Sperner (m + 1)-families in a wider context (see Section 3).

In order to obtain results on the average rank of an (m + 1)-set, we generalize
Odlyzko’s linear program accordingly. The difficulty consists in the determination of
the optimal solution of the associated dual program. Therefore, we study the feasibil-
ity region of the dual program and find the optimal solution from our geometric
analysis in Section 2. Our argument is valid if the Whitney numbers w; = |P;|,
associated with the rank function r, are logarithmically concave.

[t is curious to note that, from an algebraic point of view, our argument in Section 2
essentially establishes a new non-linear inequality for log-concave sequences of
numbers (Proposition 2). While this inequality follows directly from the geometry, it
appears to be more involved to give an ad hoc purely algebraic proof.

2. A linear programming model

For the integer parameters 0 < m < n, we define the m-Sperner polytope S,, < R"*!

to be the collection of all vectors x = (xq. X, ..., X,) that satisfy the linear inequalities
Xo+ X+ -+ x, <m+ 1, (2.1)
0< <1 (i=0,1,...,n). (2.2)

The following observation is then immediate.

Proposition 1. The vertices of S,, are exactly the (0, 1)-vectors v € R"* ' with at most
m + 1 non-zero components.

Let now wo,w,,....w, be n + 1 (strictly) positive real weights. For technical rea-
sons, it is convenient to define w_, = 0. We call the number

w(X) = wgXg + -+ + wpX,,
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the weight of the vector x = (x¢,x,,...,X,). while
W(X) =W, X; + 2w,X5 + - + Iw;X; + -+ + AW,X,

is the weighted rank of x. Given W e R, we want to determine a lower bound on the
average rank w(x)/w(x) of an arbitrary x € §,, with w(x) > W.

Note that, in view of Proposition 1, our problem is only meaningful if W does not
exceed the sum of the m + 1 largest weights. Assuming feasibility, we hence want to
solve the linear program

n
min Yy iw;x;
i=0

n

st Y x;<m+ 1,

i=0
(P,) "
Z wix; = W,
i=0
0 <1

Equivalently, we may study the linear programming dual

n

max —(m+ HYu+ Wv — Y z

(D) st.—u+wp—z;<iw; (i=0,1,....,n),
ur,z; =0

From an algorithmic point of view, our problem just amounts of solving (P,,). If we
wish to derive qualitative statements, we may study (D,,) as any feasible solution of
(D,,) vields a lower bound for the objective function in ( P,,). We will also impose more
structure on our set of weights.

2.1. The case m = 0 and log-concavity

In this subsection, we will assume throughout m = 0. Thus the restrictions x; < 1 in
(Py) are redundant and the dual (D) becomes
max — u + Wr
(Do) st.—u+wer<iw, (i=0,1....,n),
u,v = 0.

The feasibility region R, of (D,) is the area in the non-negative orthant of R? bounded
by the lines

Li={(u,r)e R*| —u+ wpr=iw;}.
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Assume for the moment 0 < wy < w; < --- < w,. Then the slopes of the lines L; are
strictly positive and monotonically decreasing. In particular, L, ; n L; # 0 for
i=1,....n Setting V, = (0,0), we denote furthermore by V; = (u;, ;) the point L;_,
and L, have in common. Are the Vs the vertices of the feasibility region R,? Clearly,
this will be the case if the V’s are increasing in their second component, say (because
then the corresponding segments of the lines L; must be part of the boundary of the
feasibility region).

To formulate a sufficient condition for the latter, recall that the w;’s are said to be
log-concave if fori=1,....n — 1,

w,~2 =W, (Wigg.
Theorem 1. Let the weights w; be log-concave and strictly increasing. Then the points V;
defined above are the vertices of the feasibility region Ry of the linear program (Dy).

Moreover, for any 0 < W < w,, the primal program (P,) has a unique optimal solution.

Proof. The second component of V; = (u;,v;) is computed as

. Wi .
vy =1+ e (i=1,....n).
Wi — Wiy
Hence
2
Wi — W oWy
tp— iy =1+~ d : ! > 0,
(Wi = wio ) (wiop — wiy)

proving that V..., V, are the vertices of R,,.

Assume now, w.lo.g., w,_; < W < w,. Then the vertex ¥, = (u,v,) optimizes (Dg)
as one can easily see by comparing the slopes of the lines L, _; and L, with the slope of
the (dual) objective function. V) satisfies the dual restrictions

:iVV,' lflzk—l.l\,

-~ U + Wit . o
e WLk{<1w,~ if i#k— 1k,
u, >0, 1, >0

From complementary slackness, we therefore conclude that every optimal solution
X =(Xo,...,X,) of (Py) in turn must satisfy

Xo+ X+ 4+ X, =1,
WoXo + WiX, + o + w,%, = W,
x;i=0 foralli#k— 1k
These conditions determine X: X, ., and X, are unique coefficients for representing

W as a convex combination of w,_, and w,. [

As a consequence, we obtain the generalization of Greene and Kleitman [6] of
a theorem due to Kleitman and Milner [8]:
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Corollary 1.1. Let the weights w; be log-concave and strictly increasing. Then every

Xx € S with weights w(x) = w, has average rank

Q—

=

~

A (X

-

H(x
( = k.
Moreover, w(x)/w(x)} = k if and only if x is the (0, 1}-vector with component values ‘1" in

position k and *0" otherwise.
It is useful to observe that also the concept of normalized matching (see, e.g., [6])
becomes simple in the present context. We will discuss it in the present abstract setting

and refer the reader to Section 3 for an interepretation in more familiar terms.
.,X,) €Sy is an arbitrary Sperner vector, we consider the compo-

If x = (x0.x,,
nents x, and x, ,,. Writing v, ., = 1 — x;,; and using the inequality x; + x;.; < 1, we
(2.3)

derive the normalized matching property
If the weights w; are strictly positive (not necessarily monotone), we may write

Xp < Virr
X, = A/w and vy, = A*/w,; and obtain the equivalent expression

om the point of view of (2.3). So

A A*
)
) = W and that w, = w; ., for some
,x,) € 8o as follows:

W Weil
We want to analyze the optimal solutions of (Pg) fr
=
' = (x/O’ x/l k]

assume that x = (x¢,Xxy,....X,) € Sy satisfies w(x
[ > 1. Suppose x; ., >0 and define the vector

X; if i#k k+1
, Wi+ .
Xp={ X+ —— Xy M i=k,
0o M ifi=k+1
= w(x) = W. Moreover, the weighted ranks satisfy
(2.4)

Then we have w(x’)
W(x/) = ‘{'(x) - [W‘k+1xk+l,
contradicting the optimality of the solution. Let h € {0,...,n} be such that
e Xhals e es Xp)

W, = Max w;.
Then (2.4) implies that necessarily x,.; = 0 must hold whenever x = (x,,
is optimal for (P,). Consequently, for h as above, (P,) is equivalent to the linear

program
h

min Y iw,x;
i=0

h
st Y <1
i=0
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In the case of positive log-concave weights w;, there is an index h such that w; < w,, ,
for i< h and w; > w,,, for i = h. Hence the assumption of monotone weights in
Theorem 1 is not necessary.

2.2. The case m > 1

We will now assume that the weights w; are (strictly positive and) log-concave. In
particular, there is an index 0 < h < » such that

Wo < Wy < < W Z2Wpo 20 2 W,

Given an arbitrary index 0 < k < h, we set
K:=max{i|w; >w,_;},

where w_; = 0. As before, we are interested in the lines
Li={(ur)e R —u+ we=iw, ).

Fixing the line L, _,, we denote by V¥~ ! = (¥ 1, ¥~ 1) the intersection of L, _; with

Lemma 1. %, > " fori=k,...K—1.

Proof. The statement is clear if h = 0 and thus k = 0. Assume now k < i< h and
recall from the proof of Theorem 1 in this case

Viv1 > Uy

Since v, = v{ "' and the slopes of the lines Z; are positive and decreasing for i < h, we
must have

il >of ! as long as wiy, > w,.

In the case w;,, < w;, we compute from the definition

Gl =ik L k=)
Wi — Wi

Hence

wilw; — wig )

Ailsh ' =14+(k—1) > 0. O

Wiy — Wi Hwy — we—q)
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Lemma 2. Let m>0 be such that k+m<K and consider the point
Viim= (k5 metiim). Then

P ko = iw for i=k,....,.k+m—1,
— Uksm T Wilksm .
< iw; otherwise.

Proof. We consider several cases.

(1) 0 < i< k—2: By Theorem 1, the point V), is a vertex of the feasibility region
Ro. In particular ¥V, satisfies the restriction — u + w;r < iw;. Because the slope of
L, is smaller than the slope of L; and v, < vf7 % holds, also V¥ ) must satisfy the
restriction.

(2) k<i<k+m~1: We know from Lemma 1 that v¥ ! < vf; ] holds. Because
the slope of L, is not bigger than the slope of L,_, and both slopes are positive,
we obtain

k-1 k-l
= Ugm T Wilksm 2 10,

(3) k+m+ 1 <i<K: The line L; goes through the points (0,i) and V¥ ! while
L, connects (0.k — 1) and V¥ ! Because i >k — 1 and v¥~! > ¢k7 ), the point
Vi s must lie in the half-plane determined by — u + wp < iw;.

(4) K+ 1 <i<n L;intersects the v-axis of the (u, v)-plane in (0, i) and has slope
(w)™' = (wx) ™", Lg passes through (0, K) with slope (wg) ™~ !. By case (3) above, V. ),
satisfies the restriction

—u+ wgt < Kwy.
Hence, a fortiori,

—up Fowat )l <iwg U
It might be interesting to remark at this point that, from an algebraic point of view,
checking whether the inequalities in Lemma 2 hold amounts to asking whether the
inequality (¢ — a)ww, < (¢ — b)ww, + (b — a)ywyw, is true for any a < b < ¢ with

w, < min{w,.w,|. Hence Lemma 2 implies the following algebraic relation, which we
state without going through the details.

Proposition 2. Let wy, ..., w, be a positive log-concave sequence of real numbers. Then
forall0<a<b<c<nwithw,<w,

(¢ — aww, < (c — byww, + (b — a)wpw,.

We are now in the position to formulate our main result, which offers the solution
of the linear program (P,,) for the choice W = wy + - + Wi .
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Theorem 2. Let wy,...,w, be a positive log-concave sequence and k and m such that
k< hand w, € wisp. Let furthermore x = (Xg, X1, ..., X,) Satisfy the conditions

Xo+ Xy 4+ o+ x, < m+ |,
WoXo + WX + -+ WX, Z W + oo+ Wi,
0< ;< 1.
Then
WXy + 2W,oXs + o0 4 nw,x, = kw + - + (kK + m)wi .
Moreover, equality holds if and only if
1 ifk<i<k+m,
0 {O otherm.se.
Proof. Consider the dual program (D,,) with restrictions
—u+ wir — z; < iw;,
ur,z; = 0.

Choosing (u*, v*) = (uf; L, vk L), we set

-¥

w, +u* —wp* fk<i<k+m,
0 0therw1se.

Lemma 2 implies that (u* v*,z}, ..., z¥) satisfies the restrictions of (D,,). Moreover,
the objective function value associated with that dual solution is

kwy + -+ (k + m)we, .

Hence we have found an optimal solution for (D). It remains to show that the
minimal solution of (P,,) is uniquely determined. A closer look at the proof of Lemma
2 reveals that in fact strict inequality holds:

<iW,‘ fig<k-2,
— ki wak L o >iw ifk<i<k+m—1,
<iw; fizk+m+ 1.

Applying the complementary slackness conditions to an arbitrary optimal solution

x* = (x¥,....x¥) of (P,,), we, therefore, see
0 1f1<k—2,
x¥={1 fk<ig<k+m-—1,
0 fk=2k+m+ L
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Hence
xl’(“*l + -\’z‘+m < 1~
f - %k _+_ . * > w
Wi—1Xk—1 T WikamXk~m 2 Wkt m-

Because wy,_; < Wiy . Xy = 1 follows. =

Note that the hypothesis w; < wy,,, in Theorem 2 can generally not be removed.
This is easy to see already with the choice w; = (7) (i =0,...,n).

3. LYM-sets

We now interpret the results of Section 2 for a finite set S. We assume that S is
partitioned into n + 1 pairwise disjoint subsets P;:

S:P()UPIU"'UP,.,.
The partition induces a rank function r on S via
r(s)y=1 ifseP,.

Conversely, each partition of S may be thought of as being induced by some ‘rank
function’. Fixing the partition ( Py, ..., P,) we define the associated Whitney numbers
fori=0,1,....n

W = ‘P||

Given any subset F < S, the profile of F (relative to (Py, Py, ..., P,)) is the vector
(fo(F)..... f,(F)), where

SlFy=|F n Pil=|{xeFlr(x)=1ijl.
It is customary to normalize a profile vector f={(f,....[,) to the vector
x(f) = (xo(f).....x,( f)) satisfying

) = fiwe

We say that F < Sis an L YM-set if its normalized profile vector x = (x,, ..., x,,) lies in
the Sperner polytope So, 1.e., if

Xo+ X+ - +x, <1,

The normalized matching property (2.3) of Section 2 has now the following interpreta-
tion. Let F, = P, be arbitrary and call G,,, S Py, a shadow of F, if

Fr U (P \Gyyy)

is an LYM-set. Then the cardinality A of F; and the cardinality A* of the shadow G, 4,
are related via (2.3), which is the usual normalized matching condition (see Graham
and Harper [5] and Greene and Kleitman [6]).
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‘Typical’ examples of LYM-sets arise as follows. Take S to be a Boolean algebra
with (lattice) rank function r (and hence w; = (7)). Then every antichain of S is an
LYM-set [12,10,9]. Similar examples are provided by subspace lattices of finite
vector spaces equipped with the dimension function or by divisor lattices of integers,
where the rank of an element is the number of factors in a prime factor decomposition.
For more examples of ordered sets whose antichains are LYM, see, e.g., [2]. The
examples above are implied by a general construction that goes back to Kleitman [7].

Assume that % is a family of subsets (‘chains’) of S such that for all x,y € S and
i=0,...n

(C)|CnPl=1 forall Ce%:

(C,) |{Ce¥|xeC}|=1{Ce¥%|yeC}| =c, Whenever r(x)=r(y).

Proposition 3. If € satisfies the conditions (C,) and (C,) and F < S is such that
[FNCl< 1 forall Ce¥, then Fis LYM.

Proof. By (C,) and (C;), we must have ¢; = |%|/w;. Because each C € ¥ contains at
most one element of F,

%12 ) cum = ) fici,
=0

xeF

where ( fy.f.....f,) is the profile vector of F. Hence
S
1> fi—
.Z:of Wi

As an illustration, we give a standard construction for families ¢ with properties (C,)
and (C,). Let G be some group of permutations acting on the set S. Assume that
Py.P,,.... P, are the orbits of G. We now choose an arbitrary (but fixed) subset C = §
such that for i = 0,1, ....n,

|C ~P=1.
Then the family
€= .CgeG)

will have the desired properties. We say that the subset F < Sis an (LYM) (m + 1)-set
if its profile ( fy., ....f,) satisfies

‘~+"»+-~-+’f)"<m+ 1.

Wo oWy W
Equivalently, F is an (m + 1)-set if its normalized profile vector lies in the Sperner
polytope S,,. Thus every union of (at most) m + 1 LYM-sets is an (m + 1)-set. We
remark, however, that there may exist (m + 1)-sets which cannot be expressed as
unions of 1-sets.
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On the other hand, Proposition 1 shows that extremal (m + 1)-sets are very
canonical: an (m + 1)-set F corresponds to a vertex of S,, if and only if F is a union of
at most m + 1 blocks of the partition (P, Py, ..., P,). (In the case of a Boolean algebra
S = #,, this result was obtained by Erdos et al. [4]. It generalizes a result of Erdos
[3], which in turn is a generalization of the original result, i.e. m = 0, of Sperner [11]
formulated for antichains. For so-called regular ordered sets, whose antichains are
known to be LYM, the analogous statement is deduced as Corollary 8.55 in Aigner
[1]). For the subset F = S, consider the average rank

_ 1
F)= er(.\).

xeF

With the notation w; = |P|, we may write 7(F) in terms of the normalized profile
vector x = (xq, ..., x,) of F:

wiNg 4 2w, + e 4 awyY,

~y
P

WoXg + WXy + - + w,X,

Thus Theorem 2 implies

Corollary 2. Let r:S — {0.....n} be a (surjective) rank function such that the Whitney
numbers
wi=l{xeS|rx)=1i}

are logarithmically concave. Let k be such that wy,_; < wy < wyy, and define
W=w,+ -+ wiy,. Then every (m + l)-set F = § with |F| > W has average rank

Awe + o+ (kK + mw i

Wi+ o Wi

r(F) =

Moreover, equality holds if and only if

=7

F:PkU"'UPk+"1‘ _I
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