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We prove Erdős–Ko–Rado and Hilton-Milner type theorems for t-intersecting k-chains in
posets using the kernel method. These results are common generalizations of the original
EKR and HM theorems, and our earlier results for intersecting k-chains in the Boolean
algebra. For intersecting k-chains in the c-truncated Boolean algebra we also prove an
exact EKR type theorem (for all n) using the shift method. An application of the general
theorem gives a similar result for t-intersecting chains if n is large enough.

1. Introduction

One of the basic results in extremal set theory is the Erdős–Ko–Rado
(EKR) theorem [7]: if F is an intersecting family of k-element subsets of
[n]={1,2, . . . ,n} (i.e. every two members of F have at least one element in
common) and n≥2k then |F|≤

(n−1
k−1

)
and this bound is attained. A similar

result holds for t-intersecting k-element subsets (Frankl, [11]; Wilson, [21]):
if n ≥ (k− t+1)(t+1) and F is a t-intersecting family, then |F| ≤

(n−t
k−t

)
.

Many generalizations and analogues of the EKR theorem have been found.
These theorems conclude that the “largest number of pairwise intersecting
objects” is achieved by a “trivial intersection pattern”, where some subob-
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jects is shared by all objects. We are going to refer to these theorems as
EKR type theorems, and a few of them will be explicitly cited later.
The k-subsets of [n] can be considered as chains of length k in the (total)

order 1< 2< · · ·< n; using this terminology, the EKR theorem is a result
about intersecting k-chains in a special partially ordered set.
Let Bc

n denote the inclusion poset of the sets {X ⊂ [n] : c ≤ |X| ≤
n− c}. A k-chain in Bc

n is a sequence of elements L= (L1,L2, . . . ,Lk) such
that Li ⊂ Li+1, but Li �= Li+1 for i = 1,2, . . . ,k− 1. Note that B0

n is the
Boolean algebra, while B1

n is the truncated Boolean algebra where the empty
set and the universe are eliminated. A family F of k-chains in Bc

n is t-
intersecting if any two chains in F have at least t elements in common. A
1-intersecting family is simply called intersecting. In an earlier paper [8] we
proved an EKR type theorem for intersecting k-chains in Bc

n for c=0,1 and
promised generalizations for general c and t-intersecting chains, and also a
Hilton-Milner (HM) (see [16]) type theorem. We also promised a common
generalization of the EKR theorem and our theorem. In this paper we deliver
all these results.
The paper is organized as follows. Section 2 generalizes our earlier EKR

type result on intersecting k-chains for every c. The proof is based on the
shifting technique [12], and in most parts it is applicable for general t as well.
In Section 3 we prove EKR and HM type theorems for t-intersecting chains
in posets. The proofs utilize the kernel method [15] and therefore work from
some threshold. These results likely have a number of applications; however,
in this paper, we focus on Bc

n. Applications of our general method to Bc
n

are given in Section 4. It is worth mentioning that since the EKR type
theorem for t-intersecting chains does not hold for all possible n,k,c and t,
the method of Section 2 alone is probably not appropriate to prove an exact
EKR type theorem for general t.
We give a brief account on the history of our problems. M. Simonovits

and V. T. Sós proposed a research program on ”structured intersection the-
orems” [19,20], which has developed a fairly large literature. They inves-
tigated the maximum number of graphs on n vertices such that any two
intersect in a prescribed graph, e.g. a path or cycle. The following prob-
lem fits into their scheme: given a graph G, what is the maximum number
of pairwise intersecting complete k-subgraphs? In this paper we study the
latter problem if G is the comparability graph of a poset.
P. L. Erdős, Faigle, and Kern [6] pointed out that certain results of Deza,

Frankl [5, Thm. 5.8] and Frankl, Füredi [13] on intersecting sequences of
integers may be interpreted as results on intersecting families of chains in
some partially ordered sets. They posed the problem of finding the largest
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number of pairwise intersecting k-chains in the truncated Boolean algebra
Bc

n. Füredi solved this problem first, using the kernel method, for c=0,1 and
n > 6k logk (personal communication). We solved the problem for c = 0,1
and every n [8]. Ahlswede and Cai [1] also solved the problem for c=0.
We refer to two good surveys on EKR type theorems: Deza and Frankl [5],

Frankl [12]. We mention here that the EKR problem for t-intersecting sets
has been completely solved for arbitrary n and k by Ahlswede and Khacha-
trian [2,3].
We are indebted to Éva Czabarka for pointing out an errror in an earlier

version of our paper.

2. Exact EKR type theorem for intersecting chains

In this section we generalize our previous results in [8]: we prove an exact
EKR type theorem for intersecting k-chains in Bc

n for every meaningful value
of n,c and k. Our earlier results covered only the cases c=0 and 1. We give
here a complete proof for c ≥ 1. We think that the results about shifting
t-intersecting chains may be interesting for their own sake. Throughout the
paper we use the following notation: in truncated Boolean algebras, script
letters L,H, ... denote chains and the corresponding capital letters with sub-
scripts, i.e. L1,L2, ...,Lk,H1,H2, ...,Hk denote elements of the chains in their
order.

2.1. Shifting families of chains in Bc
n

In this subsection we introduce the shifting of chains, a tool that we need to
prove tight EKR type theorems for intersecting chains in Bc

n. This method
can be also useful in studying t-intersecting chains, therefore we present it
in generality exceeding our needs.
We reduce the EKR type problem to the examination of so-called com-

pressed sets of chains and prove that compressed sets of chains satisfy a
strong intersection property. This subsection is a more or less straightfor-
ward generalization of shifting in Bn [8]. Let us start with some notation.

Definition. For c≤m1<m2< · · ·<mt≤n−c, let T c
n,k(m1,m2, . . . ,mt) denote

the set of those k-chains in Bc
n which contain as elements the initial segments

[m1], [m2], . . . , [mt]. (We say that M ∈Bc
n is an initial segment ifM=[m] for

some 1≤m≤n or M =∅.) Set T c
n,k(m1,m2, . . . ,mt)= |T c

n,k(m1,m2, . . . ,mt)|.
Clearly T c

n,k(m1,m2, . . . ,mt) is also the cardinality of the set of those k-chains
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in Bc
n,k which contain any specified subchain of length t with specified sizes

m1,m2, . . . ,mt.
Let F be a family of pairwise t-intersecting k-chains from Bc

n and let
1 ≤ i < j ≤ n be integers. The (i,j) chain-shift Sij(F) of the family F is
defined as follows.
For every k-chain L=(L1, . . .Lk)∈F , let Sij(L)=(L′

1, . . . ,L
′
k) where

L′
l =

{
Ll \ {j} ∪ {i} if j ∈ Ll and i �∈ Ll,
Ll otherwise.

We say that L′
l is a shift of Ll. Shifting preserves set containment, so Sij(L)

is a k-chain. The shifted family Sij(F) is obtained by the following rule:
replace every k-chain L∈F by Sij(L) if and only if (1) Sij(L) �=L and (2)
Sij(L) �∈F .
It is clear from the definition that |Sij(F)| = |F|. Moreover, shifting

preserves the t-intersection property.

Lemma 2.1. If F is a t-intersecting family of k-chains in Bc
n then Sij(F)

is also t-intersecting.

Proof. Let L1,L2 ∈Sij(F); we have to prove that they contain t common
elements. We distinguish three cases:
Case 1: L1,L2∈F . In this case it is obvious that L1 and L2 t-intersect.
Case 2: L1,L2 �∈F . In this case, there are L3,L4∈F such that L1=Sij(L3)

and L2=Sij(L4). Let {M1,M2, . . . ,Mt}⊂L3∩L4. Then the shift ofMi (which
may be Mi itself) is a common element of L1 and L2 for i=1,2, . . . , t. Note
that the shifts of the Mi’s are distinct, since they make a t-chain which is
shifted into a t-chain.
Case 3: L1 �∈ F and L2 ∈ F . Then let L3 ∈ F such that L1 = Sij(L3).

There may be two reasons why L2 was not replaced. If L2 = Sij(L2) then
let {M1,M2, . . . ,Mt}⊂L2∩L3. The shift of Ms (s=1,2, . . . , t) is itself (since
L2=Sij(L2)) so Ms∈L2∩Sij(L3)=L2∩L1 as well.
The other reason is that L2 �= Sij(L2) but Sij(L2)∈F . In this subcase,

let {M1,M2, . . . ,Mt}⊂L3∩Sij(L2). It is impossible that j ∈Ms and i �∈Ms

sinceMs is the shift of some element of L2. Also, it is impossible that i∈Ms

and j �∈Ms because there is some K∈L3 such that j∈K and i �∈K (because
Sij(L3) �=L3) and one of K,Ms must contain the other. SoMs (s=1,2, . . . , t)
is a set containing either both of i,j or neither of i,j. In either case, from
Ms∈Sij(L2) we have Ms∈L2 so Ms∈L1∩L2.
We say that the family F of t-intersecting k-chains is compressed if F is

invariant for all chain-shift operations Sij, 1≤ i< j≤n. By Lemma 2.1, for
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any intersecting family F , repeated applications of chain-shifts result in a
compressed family of the same size.
Compressed families satisfy a strong intersection property.

Lemma 2.2. Let F be a compressed family of t-intersecting k-chains. Then
for any L1,L2∈F , there are at least t initial segments in their intersection
L1∩L2.

Proof. Suppose that the lemma is not true and let L1 ∈ F be a minimal
counterexample in the sense that

(i) there exists L2 ∈ F such that L1 ∩L2 contains fewer than t initial
segments

(ii)
∑

L∈L1

∑
x∈Lx is minimal among all L1 satisfying (i).

Take a set M ∈L1∩L2 which is not an initial segment. Since M is not an
initial segment, there exist 1≤ i < j ≤ n such that i �∈M and j ∈M . Then
Sij(L1) �= L1, so Sij(L1) is not a counterexample. Therefore, there exist t
initial segments {K1,K2, . . . ,Kt}⊂Sij(L1)∩L2. It is impossible that j∈Ks

and i �∈Ks since Ks is an initial segment (s=1,2, . . . , t). Also, it is impossible
that i∈Ks and j �∈Ks because Ks,M ∈L2 and so one of them must contain
the other. So Ks is a set containing both of i,j or neither of i,j. In either
case Ks∈L1 (s=1,2, . . . , t), and {K1,K2, . . . ,Kt}⊂L1∩L2, a contradiction.

2.2. Exact EKR type theorems for Bc
n

We give a tight upper bound for the number of intersecting k-chains in Bc
n,

which works for all n and c, using the shift method. This method, however,
fails to give characterization of the extremes. The case c = 0 was already
handled by shifting in our previous paper [8] and we omit it here. The proof
of the cases c≥1 is a generalization of the original shifting proof of the case
c=1, but it is described in the language of injections instead of estimates.
Recall that for c≤m≤ n− c, T c

n,k(m) denotes the set of those k-chains
in Bc

n which contain as element the initial segment [m], and that T c
n,k(m)=

|T c
n,k(m)|. Clearly T c

n,k(m) is also the cardinality of the set of those k-chains
in Bc

n,k which contain any specified subchain of length 1 with specified size
m.
We prove a slightly stronger result which is more appropriate for induc-

tion:

Theorem 2.1. Let c≥1 and let F be a family of intersecting k-chains inBc
n.

Then |F|≤T c
n,k(c), and there is an injection φ :F→T c

n,k(c) such that every
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chain L= (L1,L2, . . . ,Lk) ∈F and its image φ(L) =H= (H1,H2, . . . ,Hk) ∈
T c

n,k(c) satisfy
|Lk| ≥ |Hk|.(1)

Proof. We use induction on n and k. If k=1 or n=2c then |F|≤1 and it
is trivial to check that the theorem holds. These simple facts are the base
cases of the induction. Assume the hypothesis for n′ < n and k′ ≤ k, and
also for n′=n and k′<k. We may assume that F , a family of intersecting
k-chains in Bc

n, is already compressed. We distinguish two cases:
Case 1: For all L∈F , n−c /∈L1. Define

Fi = {L ∈ F : Li+1 \ Li = {n− c}}, (i = 1, 2, . . . , k − 1)(2)
Fk = {L ∈ F : |Lk| = n− c and n− c /∈ Lk},(3)

F0 = F −
k⋃

j=1

Fj.(4)

We use the shorthand notation I(n,k)=T c
n,k(c). Similarly define

I(n, k)i = {H ∈ I(n, k) : Hi+1 \Hi = {n − c}}, (i = 1, 2, . . . , k − 1)
I(n, k)k = {H ∈ I(n, k) : |Hk| = n− c and n− c �∈ Hk},

I(n, k)0 = I(n, k)−
k⋃

j=1

I(n, k)j.

Deleting n−c from each element of each chain of F0 we obtain a family F ′
0

of intersecting k-chains in Bc
n−1 on the underlying set ˆ[n]=[n]\{n−c}. We

obtain the family I(n,k)′0 similarly. Now it is clear that I(n,k)′0 coincides
with I(n−1,k) on the underlying set ˆ[n]. Applying our inductive hypothesis,
there exists an injection φ′

0 :F ′
0→I(n,k)′0 not increasing the size of the kth

elements of the chains.
This injection can be lifted to a suitable injection φ0 :F0→I(n,k)0 the

following way. Assume that Lj is the first element of L∈F0 which contains
the number (n−c) (j∈{2, . . . ,k}, or such a j does not exist at all). Assume
that the deletion of (n−c) turns L into L′∈F ′

0. If φ
′
0(L′)=(H ′

1,H
′
2, . . . ,H

′
k),

then define

φ0(L) = (H ′
1, . . . ,H

′
j−1,H

′
j ∪ {n− c}, . . . ,H ′

k ∪ {n − c}),

if such a j existed, and φ0(L) = φ′
0(L′) otherwise. Now the inequality (1)

obviously holds for the map φ0.
Deleting n−c from every set in every chain in Fi for i=1,2, . . . ,k−1, we

obtain a family F ′
i of intersecting (k−1)-chains in Bc

n−1 on the underlying
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set ˆ[n]. We similarly obtain I(n,k)′i, which coincides with I(n−1,k−1)i for
every i. By the inductive hypothesis, there exist injections φ′

i :F ′
i→I(n,k)′i

with property (1). These injections can be lifted to suitable injections φi

(i=1,2, . . . ,k−1) from Fi into I(n,k)i the following way. We know that Li+1

is the first element of L∈Fi which contains the number (n−c). Assume that
the deletion of (n− c) turns L into L′ ∈ F ′

i . If φ
′
i(L′) = (H ′

1,H
′
2, . . . ,H

′
k−1),

then define

φi(L) = (H ′
1, . . . ,H

′
i,H

′
i ∪ {n− c}, . . . ,H ′

k−1 ∪ {n− c}).

Now the inequality (1) obviously holds for the map φi.
Finally, define the family of chains F ′

k by deleting the largest set Lk from
every chain in Fk. (Remember that for all L∈Fk, |Lk|=n− c.) We obtain
the family Ik(n,k)′ similarly, by deleting the kth element of every chain in
Ik(n,k). Observe that F ′

k is a family of intersecting (k−1)-chains in Bc
n−1

on the underlying set ˆ[n], since the sets that we dropped are not initial
segments in the original underlying set [n]. Furthermore, I(n,k)′k coincides
with I(n−1,k−1) on the underlying set ˆ[n]. Therefore, by hypothesis, there
exists an injection φ∗

k :F ′
k→I(n,k)′k=I(n−1,k−1) satisfying inequality (1).

Now we lift φ∗
k into a suitable φk :Fk→I(n,k)k by a greedy procedure.

By the inductive hypothesis, we have a map φ∗
k : F ′

k→I(n,k)′k, which for
every L′∈F ′

k assigns a φ∗
k(L′)=H∈I(n,k)′k, such that |Lk−1|≥ |Hk−1|. We

want to define an injection φk : Fk→I(n,k)k such that (φk(L))′ = φ∗
k(L′).

Such a definition is possible if any L′ has at most as many pre-images under
′ than φ∗

k(L′). This is the case, since the number of pre-images of L′ under
′ is at most (

n− 1− |Lk−1|
n− c− |Lk−1|

)
,(5)

and the number of pre-images of φ∗
k(L′) under ′ is exactly(

n− 1− |Hk−1|
n− c− |Hk−1|

)
.(6)

It is easy to see, that (6) is at least as big as (5), since |Lk−1|≥|Hk−1|.
Finally, φ=φ0∪(

⋃k
i=1φi) is an appropriate injection from F into T c

n,k(c),
satisfying (1). The reason is that the φi’s were such injections by construc-
tion, and their ranges are disjoint.
Case 2: There exists a chain L∈F such that n− c∈L1. We claim that

Lk=[n−c] and this is the only initial segment in L. Since each Li contains
n−c and |Li|≤n−c, [n−c] is the only initial segment which may occur in L.
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On the other hand, by Lemma 2.2, L contains at least one initial segment,
proving our claim. Note that the inequality

|F| ≤ T c
n,k(c)(7)

is sufficient to finish the proof of Case 2 since, by Lemma 2.2, for every
L′∈F , [n−c]∈L′. Therefore any injection φ :F→T c

n,k(c) would be suitable.
But this inequality clearly holds since the dual of F is a subset of T c

n,k(c).

3. Results for chains of posets

In this section we prove EKR and HM type theorems for chains of posets.
The basic technique is the kernel method introduced by Hajnal and Roth-
schild [15]. The limitation of this method is that it works just from some
threshold.

3.1. Review of sunflowers

In this subsection we review facts about sunflowers that we use in the kernel
method. A set system {A1,A2, . . . ,Am} is called a sunflower or delta-system,
if Ai∩Aj=

⋂m
l=1Al for all 1≤ i<j≤m. The sets Ai are called the petals and⋂m

l=1Al is called the kernel of the sunflower.
We say that a set system H is of rank k, if |H| ≤ k for all H ∈H; and

H is t-intersecting, if |H1 ∩H2| ≥ t for all H1,H2 ∈ H. For t ≥ 1, we say
that H is non-trivially t-intersecting, if it is t-intersecting, and |⋂H|<t. We
say that H is critically t-intersecting, if it is t-intersecting, and deleting any
x∈H from any H ∈H, the resulting set system H\{H}∪{H \{x}} is not
t-intersecting.
Estimates in the kernel method are usually based on the following simple

observation.

Lemma 3.3. Let H be a critically t-intersecting system (t≥ 1) of rank k.
Then H does not contain a sunflower with k+1 petals.

Proof. Indeed, if {H1,H2, . . . ,Hk+1} is a sunflower in H, then any H ∈H
must intersect the kernel K of the sunflower in at least t elements, since
a ≤ k-element set cannot intersect each of the k+1 disjoint sets H1 \K,
H2 \K,. . . , Hk+1 \K. Hence the deletion of H1 \K from H1 (if H1 �= K)
results a t-intersecting set system, contradicting the minimality of H.
We will also need the Erdős-Rado theorem [9]:

Lemma 3.4. For every i and l, there exists a number f(i, l), such that any
family of f(i, l) sets of size i each, contains a sunflower with l petals.
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3.2. EKR and HM type theorems for chains in posets

Throughout Subsection 3.2, let us be given a fixed k and a sequence of posets
Pn. A t-chain L in Pn is a strict chain of elements L=(x1<x2< · · ·<xt). For
a given t-chain L=(x1<x2< · · ·<xt), let Tn,k(x1,x2, . . . ,xt) denote the set
of k-chains in Pn which contain L as a subset. Define Tn,k(x1,x2, . . . ,xt) =
|Tn,k(x1,x2, . . . ,xt)|. Sometimes we write T instead of Tn,k, when it does
not cause ambiguity. Also define rt(n) =maxTn,k(x1,x2, . . . ,xt), where the
maximum is taken for t-chains x1 <x2 < · · ·<xt in Pn. It follows from the
definition that

ri(n) ≥ ri+1(n).(8)
A family F of k-chains in Pn is t-intersecting, if any two k-chains of F

share at least t elements of the poset.

Theorem 3.2. For fixed 1≤ t < k, and a sequence of posets Pn, let us be
given a family Fn of t-intersecting k-chains in Pn. Assume that

lim
n→∞

rt+1(n)/rt(n) = 0.(9)

Then, for n sufficiently large, |Fn| ≤ rt(n), and equality implies that the
elements of Fn share a t-subchain.

Proof. Let us be given a family Fn of t-intersecting k-chains. We reduce
Fn to a critically t-intersecting family H as follows: we repeatedly delete an
element xi of a chain L if the chain L\{xi} still intersects all other chains in
at least t elements. We neglect the possible multiplicities with which chains
arise. We write H=Ht ∪Ht+1 ∪ ·· · ∪Hk, where Hi contains the i-element
chains from H. If Ht �=∅, then H=Ht, and Ht is contained by every L∈Fn,
hence |Fn|≤rt(n).
If Ht= ∅, we argue the following way. By Lemmas 3.3 and 3.4 we have

|Hi| ≤ f(i,k+1), and F has at most ri(n) chains containing any element
of Hi. Combining these observations with (8) and (9), we obtain |Fn| ≤∑k

i=t+1 f(i,k+1)ri(n)=O(rt+1(n))=o(rt(n)).

Note that for the poset 1<2< · · ·<n, we have rt(n)=
(n−t
k−t

)
. We get back

the original EKR theorem for n large enough, with the kernel method proof
[15].
For a t-chain X ⊂ Pn and y /∈ X , let T (X ,y) denote the number of k-

chains which contain X and y. For a t-chain X and a k-chain L in Pn, such
that |X ∪L|=k+1, let y∗L∈L\X such that T (X ,y∗L) minimize T (X ,yL) for
the elements y∈L\X , and set

τ(X ,L) =
∑

y∈L\X , y 
=y∗
L

T (X , y).(10)
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Also define
Mτ (n) = maxX ,L

τ(X ,L),(11)

and
M∗

τ (n) = max
X ,L:

τ(X ,L)=Mτ (n)

T (X , y∗L).(12)

Now the following Hilton-Milner type theorem holds:

Theorem 3.3. For fixed 1≤ t < k, and a sequence of posets Pn, let us be
given a maximum sized family Fn of non-trivially t-intersecting k-chains in
Pn. Assume further that

lim
n→∞

rt+2(n)/M∗
τ (n) = 0.(13)

Then, for n sufficiently large, Fn has one of the following two descriptions:

(i) there exists a t-chain X and a (k+1−t)-chain Y, such that X ∩Y=∅;
and Fn is the following set of k-chains:

{L : X ⊆ L and L ∩ Y �= ∅} ∪ {L : Y ⊆ L and |L ∩ X | = t− 1},(14)

where the second set of chains is non-empty;
(ii) there exists a (t+2)-chain Z, and Fn is the following set of k-chains:

{L : |L ∩ Z| ≥ t+ 1},(15)

and |⋂L∈Fn
L∩Z|≤ t−1.

Proof. We reduce Fn to a critically t-intersecting family

H = Ht ∪Ht+1 ∪ · · · ∪ Hk

as we did in the proof of Theorem 3.2. Note that Ht=∅ by assumption.
First we observe that the chains X and L which defineM∗

τ (n) in (12) pro-
vide a feasible X and Y=L\X in (14), yielding a construction of non-trivially
t-intersecting k-chains. Inclusion-exclusion shows that this construction con-
tains at least

Mτ (n) +M∗
τ (n)−O(rt+2(n))(16)

k-chains, and so does the maximum sized Fn.
We partition Fn=F ′∪F ′′, where

F ′ = {L ∈ F : ∃H ∈ Hi such that H ⊂ L for some i ≥ t+ 2},
F ′′ = Fn \ F ′.
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First we estimate |F ′|. By Lemmas 3.3 and 3.4 we have |Hi| ≤ f(i,k+1),
and Fn has at most ri(n) chains containing any element of Hi. Using (8),

|F ′| ≤
k∑

i=t+2

f(i, k + 1)ri(n) = O(rt+2(n)).(17)

We distinguish cases.
Case 1: Either |Ht+1| = 2 or there exist H1, H2, H3 ∈ Ht+1, such that
|H1∩H2∩H3|= t.
It easily follows that Ht+1 is a sunflower with kernel X =

⋂Ht+1 of size t.
We have |Ht+1|≤k+1−t, otherwise for every L∈Fn, X ⊂L, contradicting

our assumption.
If |Ht+1| = k+1− t, then any L ∈ Fn not containing X , contains Y =⋃Ht+1 \

⋂Ht+1. It is easy to see that Ht+2 = · · ·=Hk−1 = ∅, and H ∈Hk

implies |H∩X|= t−1 and |H∩Y|=k+1−t. X and Y are chains, since they
are contained in some k-chains, and X ∩Y=∅ (by definition). We are in the
situation described in Part (i) of the Theorem.
If |Ht+1| = l < k+ 1− t, then any L ∈ Fn not containing X contains

{y1, . . . ,yl}=
⋃Ht+1 \

⋂Ht+1. Also |L∩X |≤ t−1, and hence equal to t−1,
since otherwise L cannot t-intersect the members of Ht+1. Hence X and L
are chains, and |X ∪L|= k+1. Therefore X and L were considered in the
definition of Mτ (n) in (11). Using (10), (11), and (17), respectively, we have

|F ′′| ≤
l∑

i=1

T (X , yi) ≤Mτ (n),

|F ′| = O(rt+2(n)).

Our Fn has at most |F ′|+ |F ′′|≤Mτ (n)+O(rt+2(n)) k-chains, and hence is
short of optimum by (16) and (13).
Case 2: |Ht+1| ≥ 3 and for all distinct H1, H2, H3 ∈ Ht+1, we have
|H1∩H2∩H3|<t.
We fix H1, H2, H3∈Ht+1. It is not difficult to see that |H1∩H2∩H3|= t−1
and |H1∪H2∪H3|= t+2. We show that the choice Z=H1∪H2∪H3 is ap-
propriate to exhibit that we are in Part (ii) of the Theorem. For any H∈H,
|H ∩Z|≥ t+1, otherwise H cannot intersect all of H1,H2,H3 in at least t
elements. We use that H is critically t-intersecting. Assume that for some
H ′ ∈H, H ′ \Z �= ∅. Then H ′ can be changed to H ′′ =Z ∩H ′, keeping the
t-intersection property, and contradicting the criticality. Similarly, assume
that for some H ′ ∈ H, |H ′ ∩Z| = t+ 2. Then any element of H ′ can be
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deleted, keeping the t-intersection property, and contradicting the critical-
ity. The last claim to prove is that Z is a chain. Note that H1,H2,H3 were
chains, and any two elements of Z are contained by some Hi.
Case 3: Ht+1=∅.
In this case Fn=F ′, and its size is estimated by (17). By (16) and (13), the
optimal choice for Part (i) in the theorem beats this size for n large enough.
Case 4: |Ht+1|=1.
Then Ht+1 = {H}. For any y1 ∈ H, define X = H \ {y1}. From here the
situation is identical with the |Ht+1|= l<k+1− t subcase of Case 1.

Note that for the poset 1 < 2 < · · · < n, we have rt+2(n) =
(n−t−2
k−t−2

)
,

T (X ,y) =
(n−t−1
k−t−1

)
, τ(X ,L) = (k− t)

(n−t−1
k−t−1

)
, and M∗

τ (n) =
(n−t−1
k−t−1

)
, and (13)

holds. Therefore we get back the old t-intersecting Hilton-Milner theorem
(Hilton and Milner, [16] for t=1 and Frankl [10]), for n large enough.
We also remark that the previous proof generalizes for a much more

general situation: it uses only the fact that chains with length at most k in
a poset form a down-ideal. Therefore Theorem 3.3 has close connection to
the Chvátal conjecture (see, for example, Miklós, [18]). We shall return to
this issue in a forthcoming paper.

4. t-intersecting chains in Bc
n

In this section we apply the general results we just proved for EKR and
Hilton-Milner type theorems to t-intersecting k-chains in Bc

n for n large
enough.
We show an example below to point out that the t-intersecting EKR type

theorem in Bc
n will not hold for all values of n,k,t, i.e. the largest family

is not all chains containing a particular t-chain. This is much like the case
of the ordinary t-intersecting EKR theorem, and therefore we may expect a
t-intersecting EKR type theorem in Bc

n for large values of n only. Hence we
may not expect the use of shifting and have to use the kernel method.
Take a system F of (n−3)-intersecting (n−1)-chains (i.e. maximal chains)

in B1
n. We have |T 1

n,n−3(1,2, . . . ,n− 3)| = O(1). On the other hand, if F
contains the chain ([1], [2], . . . , [n−1]) and the chains ([1], [2], . . . , [i−1], [i−1]∪
{i+1}, [i+1], . . . , [n−1]) for all i=1,2, . . . ,n−1, then F is (n−3)-intersecting
and |F|=n.
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4.1. Technicalities on Stirling numbers and Bc
n

This subsection will characterize which t-chains in Bc
n are contained by the

largest number of k-chains. This characterization in Theorem 4.4 will be
obtained from a sequence of lemmas.
For a chain L= (L1,L2, . . . ,Lk) in Bc

n, we define its dual by L∗ = ([n] \
Lk, . . . , [n]\L1). For a family of k-chains F , define F∗= {L∗ : L∈F}. If F
was t-intersecting, then so is F∗. Clearly, |T c

n,k(m1,m2, . . . ,mt)∗|= |T c
n,k(n−

mt,n−mt−1, . . . ,n−m1)|. Hence we have
Lemma 4.5. T c

n,k(m1,m2, . . . ,mt)=T c
n,k(n−mt,n−mt−1, . . . ,n−m1).

Lemma 4.6. There is a bijection

T c
n,k(m,m+ 1, . . . ,m+ t− 1)←→ T c

n−t+1,k−t+1(m).

Proof. A bijection can be defined the following way. For each L =
(L1, . . . ,Lk)∈T c

n,k(m1,m1+1, . . . ,m1+ t−1), we delete the initial segments
[m+1], [m+2], . . . , [m+ t− 1] from L and replace all the remaining Li by
Li \ [m+1,m+ t−1].
Each chain L= (L1, . . . ,Lk) defines an ordered partition [n] =L1∪ (L2 \

L1)∪·· · ∪ (Lk \Lk−1)∪ ([n]\Lk). For c≥ 1, all parts are non-empty, and L
corresponds to a surjection from [n] to [k+1]. This indicates that we have
to deal with Stirling numbers of the second kind. Let S(n,k) denote the
Stirling number of the second kind. We need the basic recurrence

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).(18)

The following results are easy exercises:

T 1
n,k = (k + 1)!S(n, k + 1),(19)

where T 1
n,k denotes the number of all k-chains in B1

n; and for t≥2 using (18)
we obtain

T 0
n,k(0, 1, . . . , t− 2, n) = (k − t+ 1)!S(n − t+ 2, k − t+ 1)(20)

T 0
n,k(n) = (k − 1)!S(n, k − 1) + k!S(n, k) = (k − 1)!S(n + 1, k).(21)

We slightly generalize the notation T c
n,k and T c

n,k to T
c1,c2
n,k and T c1,c2

n,k ,
by allowing chains whose smallest element is of size at least c1 and whose
largest element is of size at most n−c2.

Lemma 4.7. For all n,k, c1≤ c2, and c1≤m≤n−c2, we have T c1,c2
n,k (m)≤

T c1,c2
n,k (c1).
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Proof. Let us be given any sequence c1= l1 <l2 < · · ·<li≤m<li+1 < · · ·<
lk≤n−c2. We claim that the number of chains in T c1,c2

n,k (c1) with |Lj |= lj is
at least as large as the number of chains in T c1,c2

n,k (m) with |L′
j |= lj+m− li

for j≤ i and |L′
j |= lj for j≥ i+1. Routine calculations show that the number

of chains of the first type is

(n− c1)!
(l2 − l1)!(l3 − l2)! · · · (lk − lk−1)!(n− lk)!,

and the number of chains of the second type is

m!(n−m)!
(l1 +m− li)!(l2− l1)! · · · (li− li−1)!(li+1−m)!(li+2− li+1)! · · · (lk− lk−1)!(n − lk)!

.

Hence our claim boils down to proving

(n− c1)!(c1 +m− li)!(li+1 −m)! ≥ m!(n−m)!(li+1 − li)!.(22)

Either c1+m≥ li+1 or c1+m<li+1. In the first case (22) is equivalent to(
n

m

)(
c1 +m− li

m− li

)
≥
(
n

c1

)(
li+1 − li
m− li

)
.

This inequality holds termwise. In the other case (22) is equivalent to

(n − c1)n−c1−m ≥ (n−m)n−li+1
(li+1 − li)li+1−c1−m.

It is easy to see that (n−c1)n−c1−m=(n−c1)n−li+1
(li+1−c1)li+1−c1−m. Finally,

n−c1≥n−m and therefore (n−c1)n−li+1
≥(n−m)n−li+1

; li+1−c1≥ li+1−li,
and therefore (li+1−c1)li+1−c1−m≥(li+1− li)li+1−c1−m.
Using the claim we may partition T c1,c2

n,k (c1) and T c1,c2
n,k (m) such that we

have bijection between the sets of classes and the classes in T c1,c2
n,k (c1) are at

least as big as the corresponding classes.

Theorem 4.4. For all c≥1, n,k,t and m1< · · ·<mt,

T c
n,k(m1,m2, . . . ,mt) ≤ T c

n,k(c, c+ 1, . . . , c+ t− 1).(23)

For 1≤ t<k and n≥k+2c−1 equality holds if and only if
(i) mi=c+ i−1 for i=1,2, . . . , t or
(ii) mi=n−c− t+ i for i=1,2, . . . , t, or
(iii) c = 1, t ≥ 2, and there exists 1 ≤ j ≤ t such that mi = c+ i− 1 for

i=1,2, . . . , j and mi=n−c− t+ i for i=j+1, . . . , t.
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If c=0 and t=1<k≤n+1, then (23) holds, and (23) holds with equality
if and only if m1=c or m1=n−c. If c=0, for all t≥2, n,k and m1< · · ·<mt,

T 0
n,k(m1,m2, . . . ,mt) ≤ T 0

n,k(0, 1, . . . , t− 2, n).

For 2≤ t<k and n≥k+1, equality holds if and only if there exists 1≤ j<t
such that mi=c+i−1 for i=1,2, . . . , j and mi=n−c−t+i for i=j+1, . . . , t.

Proof.We focus on the proof of the inequality and leave the characterization
of equalities as an exercise to the Reader. The dual extremities are explained
by Lemma 4.5. The case t=1 is covered by Lemma 4.7, so we may suppose
that t≥2.
Suppose first that c ≥ 1. Given a sequence m1 < m2, · · · < mt, using

Lemma 4.7 with setting n = mi+1 −mi−1, c1 = c2 = 1, we obtain that
T c

n,k(m1,m2, . . . ,mt) does not decrease when we change mi to mi−1+1 for
any i=2,3, . . . , t−1. Iterating this estimate yields

T c
n,k(m1,m2, . . . ,mt) ≤ T c

n,k(m1,m1 + 1, . . . ,m1 + t− 2,mt).

Applying Lemma 4.7 with setting c1=1, c2=c, and n−m1− t+2 for n, we
obtain

T c
n,k(m1,m1 + 1, . . . ,m1 + t− 2,mt) ≤ T c

n,k(m1,m1 + 1, . . . ,m1 + t− 1).

Lemma 4.6 yields that the latter is equal to T c
n−t+1,k−t+1(m1). Another

application of Lemma 4.7 shows that T c
n−t+1,k−t+1(m1) ≤ T c

n−t+1,k−t+1(c).
Finally, by Lemma 4.6, T c

n−t+1,k−t+1(c)=T c
n,k(c,c+1, . . . , c+ t−1).

In the case c= 0, t≥ 2, applying Lemma 4.7 with setting n=m2, c1 =
0, c2=1, we obtain

T 0
n,k(m1,m2, . . . ,mt) ≤ T 0

n,k(0,m2, . . . ,mt).

By a similar argument,

T 0
n,k(0,m2, . . . ,mt) ≤ T 0

n,k(0,m2, . . . ,mt−1, n).

After that, a sequence of applications of Lemma 4.7 with n=mi+1−mi−1,
c1=c2=1 yields T 0

n,k(0,m2, . . . ,mt−1,n)≤T 0
n,k(0,1, . . . , t−2,n).
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4.2. Asymptotic results for Bc
n

In this subsection we prove asymptotic EKR and Hilton-Milner type theo-
rems for Bc

n.
For fixed k, we have the following asymptotics ([4], p. 293):

S(n, k) ∼ kn/k!.(24)

Using (24), it is easy to prove the following lemma:

Lemma 4.8. Assume that k is fixed and c=O(n/ logn). Then almost all,
i.e. (1− o(1))S(n,k)k!, ordered partitions of n elements into k non-empty
parts have the property that all classes have sizes at least c.

Proof. The number of ordered partitions not having the required property
is at most

k
c−1∑
i=1

(
n

i

)
S(n− i, k − 1)(k − 1)!.(25)

In order to estimate (25), note that S(n− i,k−1)(k−1)!=O((k−1)n) and
that

(n
1

)
+ ...+

( n
c−1

)
<
(n+c
c−1

)
by the identity

∑n
k=0

(m+k
k

)
=
(m+n+1

n

)
. In view

of (24), one has to verify that
(n+c
c−1

)
(k−1)n= o(kn). We estimate

(n+c
c−1

)
by

( (n+c)e
c−1 )

c−1. Since ( (n+c)e
c−1 )

c−1 is an increasing function in c, we just have to

check ( (n+c)e
c−1 )

c−1(k−1)n=o(kn) for c= c′n
logn , which is an easy exercise.

Given a sequence c≤m1 <m2 < · · ·<mt ≤ n− c, let g1 ≥ g2 ≥ ·· · ≥ gt+1

denote the sequence m1,m2−m1,m3−m2, . . . ,mt−mt−1,n−mt after sorting.
We refer to these numbers as gaps. (24):

Lemma 4.9. Assume that 1 ≤ t ≤ k− 2 are fixed, 1 ≤ c ≤ n/ logn, and
(g1−g2)→∞. Then

T c
n,k(m1,m2, . . . ,mt) ∼ (k + 1− t)g1.(26)

Proof. Observe that T c
n,k(m1,m2, . . . ,mt)=∑

a1+a2+···+at+1=k−t

ai≥0

T c,1
m1,a1

· T 1
m2−m1,a2

· · ·T 1
mt−mt−1,at

· T 1,c
n−mt,at+1

,(27)

where T c1,c2
n,k and T c

n,k count all chains in the respective truncated Boolean
algebra. These T ’s count ordered partitions. It is easy to see that T 1

u,v =
S(u,v+1)(v+1)! and hence T 1

u,v∼(v+1)u for any fixed v by (24). The first
and last factors cannot be estimated directly by (24), since in them a certain
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class has size at least c. If m1=g1 then, in particular, m1≥n/(t+1) and by
Lemma 4.8, T c,1

m1,a1
∼ (a1+1)m1 . If m1 <g1 then we use the upper estimate

T c,1
m1,a1

≤T 1
m1,a1

. The term T 1,c
n−mt,at+1

is handled similarly.
Working out asymptotic formula for a finite sum like (27), only the dom-

inant term counts, if there is a single dominant term. A single dominant
term is achieved when the largest possible base meets the largest possible
exponent.

Theorem 4.5. Assume that F is a maximum size family of t-intersecting
k-chains in Bc

n. Then, for fixed 1 ≤ t < k and (n− c) sufficiently large, F
consists of all k-chains containing a specific t-chainM1,M2, . . . ,Mt, such that
|Mi|=mi, and m1,m2, . . . ,mt maximizes T

c
n,k(m1,m2, . . . ,mt), as described

in Theorem 4.4.

Proof. For (n− c) large, the application of Theorem 3.2 is possible, since
Theorem 4.4 explicitly gives the size of rt(n). We have to check that condition
(9) from Theorem 3.2 holds. For c≥1, we have rt+1(n)=T c

n,k(c,c+1, . . . , c+t),
rt(n)=T c

n,k(c,c+1, . . . , c+t−1), and rt+1(n)/rt(n)<1/(n−c−t+1), since there
are n−c−t+1 ways to choose a (c+t)-element set containing [c+t−1]. For c=0,
Theorem 4.4 yields rt+1(n) = T 0

n,k(0,1, . . . , t− 1,n), rt(n) = T 0
n,k(0,1, . . . , t−

2,n). For t≥2, rt+1(n)/rt(n)<1/(n−t+2), since there are n−t+2 ways to
choose a (t−1)-element set containing [t−2]. For t=1, r2(n)=T 0

n,k(0,n)=
(k−1)!S(n,k−1) and r1(n)=T 0

n,k(n)= (k−1)!S(n,k−1)+k!S(n,k), from
Theorem 4.4 and (20), (21). By (24), S(n,k− 1) = o(S(n,k)) as n goes to
infinity. It implies limn→∞ r2(n)/r1(n) = 0, and hence condition (9) from
Theorem 3.2 holds. (We note that the extreme cases for c= 0, t= 1 were
already characterized for all n in our previous paper [8].)

Theorem 4.6. For fixed 1≤ t≤k−3, n large, and c≤n/ logn, any maximum
sized family of non-trivially t-intersecting k-chains in Bc

n is described by (15)
in Part (ii) of Theorem 3.3, where the sizes of Z are

(c, c + 1, . . . , c+ t+ 1) or (n− c− t− 1, . . . , n− c)

for c≥2; and the sizes of Z are

(c, c + 1, . . . , c+ i, n− c− t+ i, . . . , n− c− 1, n − c)

for c=0,1, with any 0≤ i<t.
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Proof. We treat here only the case c≥ 2, and leave c=0,1 to the Reader.
First we show that condition (13) of Theorem 3.3 holds. We have

rt+2(n) = T c
n,k(c, c+ 1, . . . , c+ t+ 1) ∼ (k − t− 1)n−c−t−1

by Theorem 4.4 and Lemma 4.9. A pair X ,L defining Mτ (n) must have the
property that the sizes of its elements are within O(1) distance either from
c or from (n−c). Hence M∗

τ (n)≥(k− t)n−c−O(1), and (13) holds.
Looking at possible extremal families of type (i) or (ii) from Theorem 3.3,

one realizes that they decompose to a union of constant number of terms of
families T c1,c2

u,v (m1, ...,ms). Lemma 4.9 applies to each of these families.
It is not difficult to see that the best candidates to realize Part (i) of

Theorem 3.3 are X ={[c], . . . , [c+t−1]} and Y={[c+t], . . . , [k+c]}, while the
best candidate to realize Part (ii) is Z as given above. The reason is that
the family of t-intersecting k-chains Fn that they define beats gapwise all
other constructions of the respective type. Let us denote by Fn(X ,Y) (resp.
Fn(Z)) the family defined by (14) using this X and Y (resp. the family
defined by (15) using this Z.) Finally, we have to decide if |Fn(X ,Y)| or
|Fn(Z)| is bigger. Using Lemma 4.9, we obtain

|Fn(Z)| ∼ (t+ 1)(k − t)n−t−c−1 + (k − t)n−t−c = (k + 1)(k − t)n−t−c−1,

|Fn(X ,Y)| ∼
k+1−t∑

i=1

(k − t)n+1−c−t−i.

|Fn(Z)| wins.
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