Non-Trivial t-Intersection in the Function Lattice*

Péter L. Erdős ${ }^{1}$, Ákos Seress ${ }^{2}$, and László A. Székely ${ }^{3}$
${ }^{1}$ A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, P.O. Box 127, Budapest 1364, Hungary
elp@renyi.hu
${ }^{2}$ Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
akos@math.ohio-state.edu
${ }^{3}$ Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA szekely@math.sc.edu

Received September 29, 2004
AMS Subject Classification: 05D05

Abstract

The function lattice, or generalized Boolean algebra, is the set of ℓ-tuples with the i th coordinate an integer between 0 and a bound n_{i}. Two ℓ-tuples t-intersect if they have at least t common nonzero coordinates. We prove a Hilton-Milner type theorem for systems of t-intersecting ℓ-tuples.

Keywords: generalized Boolean algebra, intersecting chains, Erdős-Ko-Rado theorem, HiltonMilner theorem, kernel method

1. Introduction

Let t, ℓ, and $n_{1} \leq n_{2} \leq \cdots \leq n_{\ell}$ be positive integers. Denote by $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$ the set of all ℓ-tuples

$$
\left\{\mathbf{k}=\left(k_{1}, \ldots, k_{\ell}\right): 0 \leq k_{i} \leq n_{i}, 1 \leq i \leq \ell\right\} .
$$

The support of an ℓ-tuple \mathbf{k} is the set of the non-zero coordinates: $\operatorname{supp}(\mathbf{k})=\left\{i: k_{i} \neq 0\right\}$. We can define a partial ordering on $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$ by $\mathbf{j} \leq \mathbf{k}$ if $\operatorname{supp}(\mathbf{j}) \subset \operatorname{supp}(\mathbf{k})$ and for all $i \in \operatorname{supp}(\mathbf{j})$ we have $j_{i}=k_{i}$. This partially ordered set is called the function lattice (see for example [5]). Another frequently used name is generalized Boolean algebra, because the case $n_{1}=n_{\ell}=1$, i.e., when all n_{i} are equal to 1 , is just the case of (characteristic vectors of) set systems on an ℓ-element underlying set.

We say that two ℓ-tuples \mathbf{j} and \mathbf{k} are t-intersecting if there are at least t different integers $i \in \operatorname{supp}(\mathbf{j}) \cap \operatorname{supp}(\mathbf{k})$ such that $j_{i}=k_{i}$, or, with other words, if there is an ℓ tuple \mathbf{t} with support of size t such that $\mathbf{t} \leq \mathbf{k}$ and $\mathbf{t} \leq \mathbf{j}$. Denote by $m_{t}\left(n_{1}, \ldots, n_{\ell}\right)$ the

[^0]maximum cardinality of t-intersecting ℓ-tuples in $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$ and by $M_{t}\left(n_{1}, \ldots, n_{\ell}\right)$ the set of all t-intersecting families with this cardinality. The problems to determine the value $m_{t}\left(n_{1}, \ldots, n_{\ell}\right)$ and to describe the structures of the families in $M_{t}\left(n_{1}, \ldots, n_{\ell}\right)$, have a very long and notable history even in the case $n_{\ell}>1$, and this is the case we are concentrating on in this note.

We start with the history of the case $t=1$. C. Berge (1974, [4]) determined $m_{t}\left(n_{1}\right.$, $\left.\ldots, n_{\ell}\right)$ and $M_{t}\left(n_{1}, \ldots, n_{\ell}\right)$ when all ℓ-tuples have ℓ-element supports. Different proofs of Berge's result were given by Hsieh (1975, [19]) and by Livingston (1979, [21]) in the case when $n_{1}=n_{\ell}$. The first result for set systems with uniform support size different from ℓ, but with $n_{1}=n_{\ell}$, is due to Frankl (published in 1983, [9]). Moreover, Engel $(1984,[10])$ handled the case with $n_{1}=n_{\ell}$, when the supports of the ℓ-tuples are arbitrary. In fact, Engel proved a Bollobás-type inequality (in the spirit of [8]) for the set of intersecting ℓ-tuples; a simpler proof of this last result is due to P.L. Erdős, U. Faigle and W. Kern (1992, [12]). In 2001 C. Bey gave a complete solution to the $t=1$ case, for arbitrary n_{i} 's and any uniform support size (2001, [6]), using his general weighted intersection theorem. This case shows interesting connections to the complete intersection theorem of R. Ahlswede and L. Khachatrian ([2]).

For arbitrary values of t, the first result is due to D. Kleitman (1966, [20]) in the case when $n_{1}=n_{\ell}=2$, and all supports are of size ℓ. Then P. Frankl and Z. Füredi handled the case $t \geq 15$, all supports are of size ℓ, and $n_{1}=n_{\ell}$ (1980, [14]), using Frankl's version of the Erdős-Ko-Rado theorem (see [11]). Later A. Moon generalized this result for cross t-intersecting families (1982, [22]). The paper by Deza and Frankl (1983, [9]) also contains the solution for the case when all supports are of the same size k and $n_{1}=n_{\ell}$, for ℓ large enough as a function of k and t. H-D. Gronau proved the first result for t-intersecting families with ℓ-element supports in the case of non-equal n_{i} 's (1983, [16]). R. Ahlswede and L. Khachatrian (1998, [3]), and independently P. Frankl and N. Tokushige (1998, [15]), solved the t-intersecting problem for arbitrary t for ℓ-tuples with full support, applying Ahlswede and Khachatrian's seminal complete intersection theorem for set systems (1997, [2]). Finally C. Bey (1999, [5]) determined all parameters ℓ, k, t, n, for which "fixing t coordinates" yields the solution to the intersection problem.

All these results can be summarized in the following structural way: under some conditions for the parameter values, the (often unique) optimal t-intersecting family consists of all ℓ-tuples that are greater or equal than a fixed ℓ-tuple \mathbf{t} with support size t. In the literature such set systems are called trivially t-intersecting families. As it is well known in the theory of t-intersecting set systems, there is a long-standing effort to solve the nontrivial t-intersection problem: what is the size and the structure of the maximum t-intersecting families where the total intersection of the sets has less than t elements. The first such result is due to A.J.H. Hilton and E.C. Milner (1967, [18]). The complete solution is again due to R. Ahlswede and L. Khachatrian (1996, [1]).

As far as these authors are aware, the only t-intersection result known for the function lattice $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$ is due to C. Bey and K. Engel (2000, [7, Example 10, 11 and Lemma 18]): this is the complete solution to the non-trivial t-intersection problem in the case of equal n_{i} 's.

The goal of this paper is to prove a more general non-trivial t-intersection result for the subset of the function lattice $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$ consisting of ℓ-tuples with a fixed
size k of the support, for some parameter values $t<k<\ell$ and $n_{1} \leq n_{2} \leq \cdots \leq n_{\ell}$. The result is based on a Hilton-Milner type theorem for poset series, proved by the authors (2000, [13]). The proof of this latter uses the so-called kernel method, introduced by A. Hajnal and B. Rothschild (1973, [17]), therefore all of our results are valid only from a threshold for the parameters. We note that, perhaps surprisingly, the application of [13] is not for the natural partial order of $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$. We shall investigate families of intersecting chains in the natural partial order of $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$ in a forthcoming paper. Of course, a direct application of the kernel method may yield similar results, but citing [13] saves a lot of work. We admit that the methods of [7] are likely to allow generalization to the case of different n_{i} 's.

In Section 2 we recall the necessary details from [13], while in Section 3 we reformulate the t-intersection problem of the function lattice and apply for it the method described in Section 2.

2. Non-Trivial t-Intersection Results for Posets

A t-chain \mathcal{L} in a poset P is a strict chain of elements $\mathcal{L}=\left(x_{1}<x_{2}<\cdots<x_{t}\right)$. For a given t-chain $\mathcal{L}=\left(x_{1}<x_{2}<\cdots<x_{t}\right)$, let $\mathcal{T}_{P, k}\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ denote the set of k-chains in P which contain \mathcal{L} as a subset. Define $T_{P, k}\left(x_{1}, x_{2}, \ldots, x_{t}\right)=\left|\mathcal{I}_{P, k}\left(x_{1}, x_{2}, \ldots, x_{t}\right)\right|$. Sometimes we write T instead of $T_{P, k}$, when it does not cause ambiguity. Also define $r_{t}(P, k)=\max T_{P, k}\left(x_{1}, x_{2}, \ldots, x_{t}\right)$, where the maximum is taken for t-chains $x_{1}<x_{2}<$ $\cdots<x_{t}$ in P. It follows from the definition that

$$
\begin{equation*}
r_{i}(P, k) \geq r_{i+1}(P, k) \tag{2.1}
\end{equation*}
$$

For a t-chain $X \subset P$ and $y \notin X$, let $T(X, y)$ denote the number of k-chains which contain X and y. For a t-chain X and a k-chain \mathcal{L} in P, such that $|X \cup \mathcal{L}|=k+1$, let $y_{\mathcal{L}}^{*} \in \mathcal{L} \backslash \mathcal{X}$ such that $T\left(X, y_{\mathcal{L}}^{*}\right)$ minimize $T(X, y)$ for the elements $y \in \mathcal{L} \backslash \mathcal{X}$, and set

$$
\begin{equation*}
\tau(X, \mathcal{L})=\sum_{y \in \mathcal{L} \backslash X, y \neq y_{\mathcal{L}}^{*}} T(X, y) . \tag{2.2}
\end{equation*}
$$

Also define

$$
\begin{equation*}
M_{\tau}(P, k)=\max _{X, L} \tau(X, \mathcal{L}) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{\tau}^{*}(P, k)=\max _{\substack{X, \mathcal{L} \\ \tau(X, L)=M_{\tau}(P, k)}} T\left(X, y_{\mathcal{L}}^{*}\right) . \tag{2.4}
\end{equation*}
$$

Now the following Hilton-Milner type theorem holds:
Theorem 2.1. For fixed $1 \leq t<k$, and a sequence of posets P_{n}, let us be given a maximum sized family \mathcal{F}_{n} of non-trivially t-intersecting k-chains in P_{n}. Assume further that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} r_{t+2}\left(P_{n}, k\right) / M_{\tau}^{*}\left(P_{n}, k\right)=0 \tag{2.5}
\end{equation*}
$$

Then, for n sufficiently large, \mathcal{F}_{n} has one of the following two descriptions:
(i) there exists a t-chain \mathcal{X} and $a(k+1-t)$-chain \mathcal{Y}, such that $\mathcal{X} \cap \mathcal{Y}=\emptyset$; and \mathcal{F}_{n} is the following set of k-chains:

$$
\begin{align*}
\mathcal{F}(\mathcal{X}, \mathcal{Y})= & \{\mathcal{L}: \mathcal{X} \subseteq \mathcal{L} \text { and } \mathcal{L} \cap \mathcal{Y} \neq \mathfrak{\emptyset}\} \\
& \cup\{\mathcal{L}: \mathcal{Y} \subseteq \mathcal{L} \text { and }|\mathcal{L} \cap \mathcal{X}|=t-1\} \tag{2.6}
\end{align*}
$$

where the second set of chains is non-empty;
(ii) there exists $a(t+2)$-chain \mathcal{Z}, and \mathcal{F}_{n} is the following set of k-chains:

$$
\begin{equation*}
\mathcal{F}(Z)=\{\mathcal{L}:|\mathcal{L} \cap Z| \geq t+1\} \tag{2.7}
\end{equation*}
$$

and $\left|\bigcap_{\mathcal{L} \in \mathcal{F}_{n}} \mathcal{L} \cap Z\right| \leq t-1$.

3. New Results

Let $t<k<\ell$ and $n_{1} \leq \cdots \leq n_{\ell}$ be positive integers. We define two families $\mathcal{F}_{1}\left(t, k ; n_{1}\right.$, $\left.\ldots, n_{\ell}\right)$ and $\mathcal{F}_{2}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)$ of non-trivially t-intersecting families in $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$ with support size k as follows.
(i) Let $j_{1}, j_{2}, \ldots, j_{k+1}$ be integers satisfying $1 \leq j_{i} \leq n_{i}$ for $i \in[1, k+1]$. We define $\mathcal{F}_{1}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)$ as the set of ℓ-tuples $\mathbf{k}=\left(k_{1}, \ldots, k_{\ell}\right)$ with support size k which belong to the set

$$
\begin{align*}
& \left\{\mathbf{k}: k_{i}=j_{i} \text { for all } i \in[1, t] \text { and for at least one } i \in[t+1, k+1]\right\} \\
& \cup\left\{\mathbf{k}: k_{i}=j_{i} \text { for all } i \in[t+1, k+1] \text { and for } t-1 \text { values } i \in[1, t]\right\} . \tag{3.1}
\end{align*}
$$

(ii) Let $j_{1}, j_{2}, \ldots, j_{t+2}$ be integers satisfying $1 \leq j_{i} \leq n_{i}$ for $i \in[1, t+2]$. We define $\mathcal{F}_{2}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)$ as the set of ℓ-tuples $\mathbf{k}=\left(k_{1}, \ldots, k_{\ell}\right)$ with support size k which belong to the set

$$
\begin{equation*}
\left\{\mathbf{k}: k_{i}=j_{i} \text { for at least } t+1 \text { values } i \in[1, t+2]\right\} \tag{3.2}
\end{equation*}
$$

Note that $\left|\mathcal{F}_{1}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)\right|$ and $\left|\mathcal{F}_{2}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)\right|$ do not depend on the particular choices of the j_{i}. Our goal is to give sufficient conditions for the parameter values $t, k, \ell, n_{1}, \ldots, n_{\ell}$ which ensure that either \mathcal{F}_{1} or \mathcal{F}_{2} is of maximum size among the nontrivially t-intersecting families of ℓ-tuples with support size k.

Given $n_{1} \leq \cdots \leq n_{\ell}$, we define a partially ordered set $\left(\mathbb{P}\left(n_{1}, \ldots, n_{\ell}\right), \prec\right)$ as follows. The underlying set is $\mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right):=\left\{(i, j): 1 \leq i \leq \ell, \quad 1 \leq j \leq n_{i}\right\}$, and $\left(i_{1}, j_{1}\right) \prec$ $\left(i_{2}, j_{2}\right)$ if and only if $i_{1}<i_{2}$. The map $\mathbf{k}=\left(k_{1}, \ldots, k_{\ell}\right) \mapsto\left\{\left(i, k_{i}\right) \in \mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right): k_{i} \neq\right.$ $0\}$ is obviously a bijection between $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$ and the chains in the poset $\left(\mathcal{P}\left(n_{1}, \ldots\right.\right.$, $\left.\left.n_{\ell}\right), \prec\right)$, and ℓ-tuples with support size k are mapped to k-chains. Therefore, t-intersecting families of ℓ-tuples in $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$ with support size k correspond to t-intersecting k-chains in $\left(\mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right), \prec\right)$. For a subset $\mathcal{Y} \subseteq \mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right)$, we define the support of \mathcal{Y} as the set of first coordinates of the elements of \mathscr{Y}; namely, $\operatorname{supp}(\mathscr{Y})=\{i \leq$ $\left.\ell: \exists j \leq n_{i}(i, j) \in \mathscr{Y}\right\}$. We start with the determination of the quantities r_{t+2}, M_{τ}, and
M_{τ}^{*} defined in Section 2. Note that for any m-chain \mathcal{L} in $\mathcal{P}=\left(\mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right), \prec\right)$, we have

$$
\begin{equation*}
T_{\mathcal{P}, k}(\mathcal{L})=\sum_{\substack{A \subset[1, \ell] \backslash \operatorname{supp}(\mathcal{L}) \\|A|=k-m}} \prod_{i \in A} n_{i} . \tag{3.3}
\end{equation*}
$$

Proposition 3.1. Let $t<k<\ell$, let $\mathcal{P}=\left(\mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right)\right.$, $)$ and let \mathcal{L} be an m-chain in P. Suppose that $\left(i, k_{i}\right) \in \mathcal{L}$ and $j \notin \operatorname{supp}(\mathcal{L})$ with $j<i$, and let $\mathcal{L}^{*}=\left(\mathcal{L} \backslash\left\{\left(i, k_{i}\right)\right\}\right) \cup$ $\left\{\left(j, k_{j}\right)\right\}$ for some $k_{j} \leq n_{j}$. Then $T_{P, k}\left(\mathcal{L}^{*}\right) \geq T_{P, k}(\mathcal{L})$, with equality if and only if $n_{j}=$ $n_{j+1}=\cdots=n_{i}$.

Proof. We obtain $T_{\mathcal{P}, k}\left(\mathcal{L}^{*}\right)$ from $T_{\mathcal{P}, k}(\mathcal{L})$ by replacing each occurrence of n_{j} by n_{i} in the sum in (3.3). Hence the inequalities $n_{j} \leq n_{j+1} \leq \cdots \leq n_{i}$ imply both assertions of the proposition.

Let $\sigma_{i}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ denote the i th elementary symmetric polynomial in variables $x_{1}, x_{2}, \ldots, x_{m}$. We define $\sigma_{0}\left(x_{1}, x_{2}, \ldots, x_{m}\right)=1$.
Lemma 3.2. Let $t<k<\ell$ and let $\mathcal{P}=\left(\mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right)\right.$, $)$. Then

$$
\begin{equation*}
r_{t+2}(\mathcal{P}, k)=\sum_{\substack{A \subset[t+3, \ell] \\|A|=k-t-2}} \prod_{i \in A} n_{i}=\sigma_{k-t-2}\left(n_{t+3}, \ldots, n_{\ell}\right) . \tag{3.4}
\end{equation*}
$$

Proof. Proposition 3.1 implies that for $(t+2)$-chains \mathcal{L} in \mathcal{P}, the quantity $T_{\mathcal{P}, k}(\mathcal{L})$ is maximized when $\operatorname{supp}(\mathcal{L})=[1, t+2]$.

Lemma 3.3. Let $t<k<\ell$ and let $\mathcal{P}=\left(\mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right)\right.$, $\left.\prec\right)$. Then for any t-chain X and k-chain \mathcal{L} in \mathcal{P} with $|X \cup \mathcal{L}|=k+1$, we have $M_{\tau}(\mathcal{P}, k)=\tau(X, \mathcal{L})$ if and only if the multiset relations $\left\{n_{i}: i \in \operatorname{supp}(X)\right\}=\left\{n_{i}: 1 \leq i \leq t\right\}$ and $\left\{n_{i}: i \in \operatorname{supp}(\mathcal{L})\right\} \supseteq$ $\left\{n_{i}: t+1 \leq i \leq k\right\}$ hold.

Proof. We first note that the condition $|X \cup \mathcal{L}|=k+1$ implies that X and \mathcal{L} have $t-1$ common elements and $|\mathcal{L} \backslash \mathcal{X}|=k-t+1$. Moreover, since $\tau(\mathcal{X}, \mathcal{L})$ is the sum of only $k-t$ values $T(X, y)$ with $y \in \mathcal{L} \backslash X$, it is possible that for a fixed t-chain $\mathcal{X}, \tau(X, \mathcal{L})$ is maximized for some \mathcal{L} even though $T(X, y)=0$ for some $y \in \mathcal{L} \backslash X$.

For a fixed t-chain X, Proposition 3.1 implies that $\tau(X, \mathcal{L})$ is maximized for a k chain \mathcal{L} whose support contains the $k-t$ smallest elements of $[1, \ell] \backslash \operatorname{supp}(X)$. Moreover, another application of Proposition 3.1 shows that if X^{\prime} is obtained by replacing an element $\left(i_{1}, j_{1}\right) \in \mathcal{X}$ with some $\left(i_{2}, j_{2}\right)$ satisfying $i_{2}<i_{1}$ and i_{2} the smallest number not in $\operatorname{supp}(X)$ then $\tau\left(X^{\prime}, \mathcal{L}^{\prime}\right) \geq \tau(X, \mathcal{L})$ for an optimal \mathcal{L}^{\prime} constructed in the way described in the previous sentence. Hence $M_{\tau}(\mathcal{P}, k)=\tau(X, \mathcal{L})$ for \mathcal{X}, \mathcal{L} with $\operatorname{supp}(X)=[1, t]$ and $\operatorname{supp}(\mathcal{L}) \supseteq[t+1, k]$. Finally, Proposition 3.1 also implies that if $\operatorname{supp}\left(X^{\prime}\right) \neq[1, t]$ or $\operatorname{supp}\left(\mathscr{L}^{\prime}\right) \nsupseteq[t+1, k]$ then $\tau\left(X^{\prime}, \mathscr{L}^{\prime}\right)<M_{\tau}(\mathcal{P}, k)$, unless the condition about the multiset of n_{i} values described in the statement of the lemma holds.

Lemma 3.4. Let $t<k<\ell$ and let $\mathcal{P}=\left(\mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right), \prec\right)$. Then

$$
\begin{equation*}
M_{\tau}^{*}(\mathcal{P}, k)=\sum_{\substack{A \subset[t+1, \ell] \backslash\{k+1\} \\|A|=k-t-1}} \prod_{i \in A} n_{i}=\sigma_{k-t-1}\left(n_{t+1}, \ldots, \widehat{n_{k+1}}, \ldots, n_{\ell}\right) \tag{3.5}
\end{equation*}
$$

Proof. Let X be a t-chain and \mathcal{L} be a k-chain with $|X \cup \mathcal{L}|=k+1$ and $\tau(X, \mathcal{L})=$ $M_{\tau}(\mathcal{P}, k)$. Then, by Lemma 3.3, we have the multiset relations $\left\{n_{i}: i \in \operatorname{supp}(X)\right\}=$ $\left\{n_{i}: 1 \leq i \leq t\right\}$ and $\left\{n_{i}: i \in \operatorname{supp}(\mathcal{L})\right\} \supseteq\left\{n_{i}: t+1 \leq i \leq k\right\}$. Also, we have $k \leq$ $|\operatorname{supp}(X \cup \mathcal{L})| \leq k+1$. If $|\operatorname{supp}(X \cup \mathcal{L})|=k$ then there exists $y_{\mathcal{L}}^{*}=\left(i, k_{i}\right) \in \mathcal{L} \backslash X$ with $i \in \operatorname{supp}(X)$ and so $T\left(X, y_{\mathcal{L}}^{*}\right)=0$. If $|\operatorname{supp}(X \cup \mathcal{L})|=k+1$ then Proposition 3.1 implies that $T(X, y)$ is minimized in $\mathcal{L} \backslash X$ for the $y_{\mathcal{L}}^{*}=\left(i, k_{i}\right) \in \mathcal{L} \backslash X$ with $i=\max \operatorname{supp}(\mathcal{L} \backslash X)$ and, in order to maximize $T\left(X, y_{\mathcal{L}}^{*}\right)$, we have to choose $\max \operatorname{supp}(\mathcal{L} \backslash X)$ as small as possible. Combining these observations, we obtain that $\max T\left(X, y_{\mathcal{L}}^{*}\right)$ is achieved in the case $\operatorname{supp}(X)=[1, t], \operatorname{supp}(\mathcal{L} \backslash X)=[t+1, k+1]$, and $\operatorname{supp}\left(y_{\mathcal{L}}^{*}\right)=\{k+1\}$, leading to (3.5).

The following two lemmas will be useful at the comparison of r_{t+2} and M_{τ}^{*}.
Lemma 3.5. Let t, k, ℓ satisfy $k \geq t+2$ and $\ell \geq 2 k-t-1$, and let $\mathcal{P}=\left(\mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right)\right.$, $\prec)$. Then

$$
r_{t+2}(\mathcal{P}, k) \leq\left(1+\frac{k-t-2}{\ell-2 k+t+2}\right) \sigma_{k-t-2}\left(n_{t+1}, \ldots, \widehat{n_{k+1}}, \ldots, n_{\ell}\right)
$$

Proof. On one hand, if $A \subseteq[t+1, \ell]$ satisfies $|A|=k-t-2$ and $k+1 \in A$ then

$$
\prod_{i \in A} n_{i} \leq \frac{\sum_{s \in[k+2, \ell] \backslash A} n_{s}}{(\ell-k-1)-(k-t-3)} \prod_{i \in A \backslash\{k+1\}} n_{i}
$$

On the other hand, any $(k-t-2)$-element subset B of $[t+1, \ell] \backslash\{k+1\}$ can be obtained at most $k-t-2$ ways by replacing $k+1$ by an element $j \geq k+2$ of B. Hence Lemma 3.2 implies

$$
\begin{aligned}
r_{t+2}(\mathcal{P}, k) & =\sigma_{k-t-2}\left(n_{t+3}, \ldots, n_{\ell}\right) \\
& \leq \sigma_{k-t-2}\left(n_{t+1}, \ldots, n_{\ell}\right) \\
& \leq\left(1+\frac{k-t-2}{\ell-2 k+t+2}\right) \sigma_{k-t-2}\left(n_{t+1}, \ldots, \widehat{n_{k+1}}, \ldots, n_{\ell}\right)
\end{aligned}
$$

Lemma 3.6. Let t, k, ℓ satisfy $k \geq t+2$ and let $\mathcal{P}=\left(\mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right), \prec\right)$. Then

$$
\begin{equation*}
M_{\tau}^{*}(\mathcal{P}, k) \geq n_{t+1} \frac{\ell-k+1}{k-t-1} \sigma_{k-t-2}\left(n_{t+1}, \ldots, \widehat{n_{k+1}}, \ldots, n_{\ell}\right) \tag{3.6}
\end{equation*}
$$

Proof. Using the fact that any $(k-t-2)$-element subset B of $[t+1, \ell] \backslash\{k+1\}$ can be obtained $(\ell-t-1)-(k-t-2)=\ell-k+1$ ways by deleting an element different from $k+1$ from a $(k-t-1)$-element subset of $[t+1, \ell] \backslash\{k+1\}$, we have

$$
\begin{aligned}
& (k-t-1) \sigma_{k-t-1}\left(n_{t+1}, \ldots, \widehat{n_{k+1}}, \ldots, n_{\ell}\right) \\
& =\sum_{\substack{s=t+1 \\
s \neq k+1}}^{\ell} n_{s} \sigma_{k-t-2}\left(n_{t+1}, \ldots, \widehat{n_{s}}, \ldots, \widehat{n_{k+1}}, \ldots, n_{\ell}\right) \\
& \geq n_{t+1}(\ell-k+1) \sigma_{k-t-2}\left(n_{t+1}, \ldots, \widehat{n_{k+1}}, \ldots, n_{\ell}\right) .
\end{aligned}
$$

Hence Lemma 3.4 implies (3.6).

Lemma 3.7. Let $t<k<\ell$ and $\mathcal{P}=\left(\mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right), \prec\right)$. If X is a t-chain and \mathcal{Y} is a $(k+1-t)$-chain with $\mathcal{X} \cap \mathcal{Y}=\emptyset$ then $|\mathcal{F}(X, \mathcal{Y})| \leq\left|\mathcal{F}_{1}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)\right|$ for the families of chains defined in (2.6) and (3.1), respectively.

Proof. First note that $|\operatorname{supp}(X) \cap \operatorname{supp}(\mathscr{Y})| \leq 1$, because otherwise there is no k-chain containing \mathcal{Y} and $t-1$ elements of X as required in (2.6). If $|\operatorname{supp}(X) \cap \operatorname{supp}(\mathscr{Y})|=$ 1 , say $\left(i, f_{i}\right) \in \mathcal{X}$ and $\left(i, g_{i}\right) \in \mathscr{Y}$ for some $f_{i} \neq g_{i}$, then there exists exactly one k chain in $\mathcal{F}(X, \mathcal{Y})$ which contains $\left(i, g_{i}\right)$, namely, $(\mathcal{Y} \cup X) \backslash\left\{\left(i, f_{i}\right)\right\}$. Hence, if we define $\mathscr{Y}_{1}=\left(\mathcal{Y} \backslash\left\{\left(i, g_{i}\right)\right\}\right) \cup\{(j, 1)\}$ for some $j \notin \operatorname{supp}(\mathcal{X} \cup \mathcal{Y})$ then $|\mathcal{F}(\mathcal{X}, \mathcal{Y})| \leq$ $\left|\mathcal{F}\left(X, \mathscr{Y}_{1}\right)\right|$, because $\mathcal{F}\left(X, \mathscr{Y}_{1}\right)$ contains all but one chain from $\mathcal{F}(X, \mathscr{Y})$ and it contains t chains not in $\mathcal{F}(X, \mathcal{Y})$ (the chains obtained by deleting an element of X from $X \cup \mathscr{Y})$. Therefore, it is enough to prove that $|\mathcal{F}(X, \mathcal{Y})| \leq\left|\mathcal{F}_{1}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)\right|$ for chains \mathcal{X}, \mathcal{Y} with $\operatorname{supp}(X) \cap \operatorname{supp}(\mathscr{Y})=\emptyset$.

Suppose now that $\operatorname{supp}(X) \cap \operatorname{supp}(\mathcal{Y})=\emptyset$. There are exactly t chains in $\mathcal{F}(X, \mathcal{Y})$ containing \mathcal{Y} and there are t chains in $\mathcal{F}_{1}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)$ with support containing $[t+$ $1, k+1]$; hence it is enough to show that for the set of chains

$$
\mathcal{F}^{*}(\mathcal{X}, \mathcal{Y})=\{\mathcal{L}: \mathcal{X} \subseteq \mathcal{L} \text { and } \mathcal{L} \cap \mathcal{Y} \neq \emptyset\}
$$

and

$$
\mathcal{F}_{1}^{*}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)=\left\{\mathcal{L} \in \mathcal{F}_{1}\left(t, k ; n_{1}, \ldots, n_{\ell}\right): \operatorname{supp}(\mathcal{L}) \supseteq[1, t]\right\}
$$

we have $\left|\mathcal{F}^{*}(X, \mathscr{Y})\right| \leq\left|\mathcal{F}_{1}^{*}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)\right|$. If $\operatorname{supp}(X) \neq[1, t]$ then we define a new set of chains by the following shifting operation. Let $i_{1} \in[1, t]$ be the smallest number not in $\operatorname{supp}(X)$ and let $i_{2} \in \operatorname{supp}(X)$ with $i_{2}>i_{1}$, say $\left(i_{2}, k_{i_{2}}\right) \in X$. For a k-chain $\mathcal{L} \in \mathcal{F}^{*}(X, \mathcal{Y})$, let

$$
f(\mathcal{L})= \begin{cases}\left(\mathcal{L} \backslash\left\{\left(i_{2}, k_{i_{2}}\right)\right\}\right) \cup\left\{\left(i_{1}, 1\right)\right\}, & \text { if } i_{1} \notin \operatorname{supp}(\mathcal{L}) \tag{3.7}\\ \left(\mathcal{L} \backslash\left\{\left(i_{1}, k_{i_{1}}\right),\left(i_{2}, k_{i_{2}}\right)\right\}\right) \cup\left\{\left(i_{1}, 1\right),\left(i_{2}, k_{i_{1}}\right)\right\}, & \text { if }\left(i_{1}, k_{i_{1}}\right) \in \mathcal{L} \text { for some } \\ & k_{i_{1}} \leq n_{i_{1}}\end{cases}
$$

Moreover, define $X^{\prime}=\left(X \backslash\left\{\left(i_{2}, k_{i_{2}}\right)\right\}\right) \cup\left\{\left(i_{1}, 1\right)\right\}$ and

$$
\mathcal{Y}^{\prime}= \begin{cases}\mathscr{Y}, & \text { if } i_{1} \notin \operatorname{supp}(\mathscr{Y}), \tag{3.8}\\ \left(\mathcal{Y} \backslash\left\{\left(i_{1}, k_{i_{1}}\right)\right\}\right) \cup\left\{\left(i_{2}, k_{i_{1}}\right)\right\}, & \text { if }\left(i_{1}, k_{i_{1}}\right) \in \mathscr{Y} \text { for some } k_{i_{1}} \leq n_{i_{1}} .\end{cases}
$$

Then it is clear that f is an injection from $\mathcal{F}^{*}(X, \mathcal{Y})$ into $\mathcal{F}^{*}\left(X^{\prime}, \mathcal{Y}^{\prime}\right)$, and so $\mid \mathcal{F}^{*}(X$, $\mathcal{Y})\left|\leq\left|\mathcal{F}^{*}\left(X^{\prime}, \mathcal{Y}^{\prime}\right)\right|\right.$ and $| \mathcal{F}(X, \mathcal{Y})\left|\leq\left|\mathcal{F}\left(X^{\prime}, \mathcal{Y}^{\prime}\right)\right|\right.$. Repeating this procedure, we arrive to some t-chain $X^{\prime \prime}$ and $(k+1-t)$-chain $\mathcal{Y}^{\prime \prime}$ such that $\left|\mathcal{F}^{*}(X, \mathcal{Y})\right| \leq\left|\mathcal{F}^{*}\left(X^{\prime \prime}, \mathcal{Y}^{\prime \prime}\right)\right|$ and $\operatorname{supp}\left(X^{\prime \prime}\right)=[1, t]$ and $\operatorname{supp}\left(X^{\prime \prime}\right) \cap \operatorname{supp}\left(\mathcal{Y}^{\prime \prime}\right)=\emptyset$. It is enough to show that $\left|\mathcal{F}^{*}\left(X^{\prime \prime}, \mathcal{Y}^{\prime \prime}\right)\right|$ $\leq\left|\mathcal{F}_{1}^{*}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)\right|$.

If $\operatorname{supp}\left(\mathcal{Y}^{\prime \prime}\right) \neq[t+1, k+1]$ then let $i_{1} \in[t+1, k+1]$ be the smallest number not in $\operatorname{supp}\left(\mathcal{Y}^{\prime \prime}\right)$ and let $i_{2} \in \operatorname{supp}\left(\mathcal{Y}^{\prime \prime}\right)$ with $i_{2}>i_{1}$, say $\left(i_{2}, k_{i_{2}}\right) \in \mathcal{Y}^{\prime \prime}$. By renumbering the i_{2} th coordinate, we may assume that $k_{i_{2}} \leq n_{i_{1}}$. We apply the following modification of the shifting operation described in the previous paragraph. For a k-chain
$\mathcal{L} \in \mathcal{F}^{*}\left(X^{\prime \prime}, \mathcal{Y}^{\prime \prime}\right)$, let

$$
g(\mathcal{L})=\left\{\begin{array}{lc}
\left(\mathcal{L} \backslash\left\{\left(i_{2}, j_{2}\right)\right\}\right) \cup\left\{\left(i_{1}, j_{2}\right)\right\}, & \text { if } i_{1} \notin \operatorname{supp}(\mathcal{L}) \text { and } \tag{3.9}\\
\left(i_{2}, j_{2}\right) \in \mathcal{L} \text { with } j_{2} \leq n_{1}, \\
\left(\mathcal{L} \backslash\left\{\left(i_{1}, j_{1}\right)\right\}\right) \cup\left\{\left(i_{2}, j_{1}\right)\right\}, & \text { if } i_{2} \notin \operatorname{supp}(\mathcal{L}) \text { and } \\
\left(\mathcal{L} \backslash\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)\right\}\right) \cup\left\{\left(i_{1}, j_{2}\right),\left(i_{2}, j_{1}\right)\right\}, & \text { if }\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right) \in \mathcal{L}, \\
& j_{2} \leq n_{1}, \\
\mathcal{L}, & \text { otherwise. }
\end{array}\right.
$$

Moreover, define $\mathcal{Y}^{\prime \prime \prime}=\left(\mathcal{Y}^{\prime \prime} \backslash\left\{\left(i_{2}, k_{i_{2}}\right)\right\}\right) \cup\left\{\left(i_{1}, k_{i_{2}}\right)\right\}$. Then g is an injection from $\mathcal{F}^{*}\left(X^{\prime \prime}, \mathcal{Y}^{\prime \prime}\right)$ into $\mathcal{F}^{*}\left(X^{\prime \prime \prime}, \mathcal{Y}^{\prime \prime \prime}\right)$, and so $\left|\mathcal{F}^{*}\left(X^{\prime \prime}, \mathcal{Y}^{\prime \prime}\right)\right| \leq\left|\mathcal{F}^{*}\left(X^{\prime \prime \prime}, \mathcal{Y}^{\prime \prime \prime}\right)\right|$ and $\mid \mathcal{F}\left(X^{\prime \prime}\right.$, $\left.\mathcal{Y}^{\prime \prime}\right)\left|\leq\left|\mathcal{F}\left(X^{\prime \prime \prime}, \mathcal{Y}^{\prime \prime \prime}\right)\right|\right.$. Repeating this procedure, we arrive to a member of the family $\mathcal{F}_{1}^{*}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)$.

Lemma 3.8. Let $t<k<\ell$ and let $\mathcal{P}=\left(\mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right), \prec\right)$. If Z is a $(t+2)$-chain then $|\mathcal{F}(Z)| \leq\left|\mathcal{F}_{2}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)\right|$ for the families of chains defined in (2.7) and (3.2), respectively.

Proof. Given $\mathcal{F}(Z)$, if $\operatorname{supp}(Z) \neq[1, t+2]$ then we can apply the shifting procedure described in (3.9), not decreasing the size of $\mathcal{F}(Z)$, and eventually arriving to a set of chains in the family $\mathcal{F}_{2}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)$.

Lemma 3.9. For \mathcal{F}_{1} and \mathcal{F}_{2} from (3.1) and (3.2),

$$
\begin{aligned}
& \left|\mathcal{F}_{1}\right|=\sigma_{k-t}\left(n_{t+1}, \ldots, n_{\ell}\right)-\sigma_{k-t}\left(n_{t+1}-1, \ldots, n_{k+1}-1, n_{k+2}, \ldots, n_{\ell}\right)+t \\
& \left|\mathcal{F}_{2}\right|=\sum_{i=1}^{t+2} \sigma_{k-t-1}\left(n_{i}, n_{t+3}, \ldots, n_{\ell}\right)-(t+1) \sigma_{k-t-2}\left(n_{t+3}, \ldots, n_{\ell}\right)
\end{aligned}
$$

Proof. Explanation for $\left|\mathcal{F}_{1}\right|$. The second line of (3.1) yields the term t, and the cardinality arising from the first line of (3.1) is obtained as a difference, counting all functions \mathbf{k} with $k_{i}=j_{i}$ for all $i \in[1, t]$, and subtracting the number of functions \mathbf{k} with $k_{i}=j_{i}$ for all $i \in[1, t]$ that have no $i \in[t+1, k+1]$ with $k_{i}=j_{i}$.

Explanation for $\left|\mathcal{F}_{2}\right|$. Fix a $(t+2)$-chain Z with support $[1, t+2]$. For $i \in[1, t+2]$, the number of k-chains intersecting Z in coordinates $1,2, \ldots, i-1, i+1, \ldots, t+2$ is $\sigma_{k-t-1}\left(n_{i}, n_{t+3}, \ldots, n_{\ell}\right)$. Adding these expressions for all $i \in[1, t+2]$, the k-chains intersecting Z in exactly $t+1$ coordinates are counted once, and the k-chains intersecting Z in $t+2$ coordinates are counted $t+2$ times. The negative term reduces the multiplicity of the latter ones to one.

In order to apply Theorem 2.1, we have to find values of the parameters t, k, ℓ, n_{1}, \ldots, n_{ℓ} such that the hypothesis of the theorem is satisfied.

Theorem 3.10. Let $t<k<\ell$ be fixed. Then there exists a bound $n(t, k, \ell)$ such that if $n>n(t, k, \ell)$ then for any non-trivially t-intersecting family \mathcal{F} of ℓ-tuples with support
k in $\mathbb{F}_{\ell}(n, \ldots, n)$ we have

$$
|\mathcal{F}| \leq \max \left\{\left|\mathcal{F}_{1}(t, k ; n, \ldots, n)\right|,\left|\mathcal{F}_{2}(t, k ; n, \ldots, n)\right|\right\}
$$

Moreover, if $k>2 t+1$ then for large enough n we have

$$
\left|\mathcal{F}_{1}(t, k ; n, \ldots, n)\right|>\left|\mathcal{F}_{2}(t, k ; n, \ldots, n)\right|
$$

and if $t+1<k \leq 2 t+1$ then for large enough n we have

$$
\left|\mathcal{F}_{1}(t, k ; n, \ldots, n)\right|<\left|\mathcal{F}_{2}(t, k ; n, \ldots, n)\right| .
$$

Proof. Let $\mathcal{P}_{n}=(\mathcal{P}(n, \ldots, n), \prec)$. By Lemmas 3.2 and 3.4, we have $r_{t+2}\left(\mathcal{P}_{n}, k\right)=$ $\binom{l-t-2}{k-t-2} n^{k-t-2}$ and $M_{\tau}^{*}\left(P_{n}, k\right)=\binom{l-t-1}{k-t-1} n^{k-t-1}$. Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{r_{t+2}\left(\mathscr{P}_{n}, k\right)}{M_{\tau}^{*}\left(\mathscr{P}_{n}, k\right)}=\lim _{n \rightarrow \infty} \frac{k-t-1}{l-t-1} \cdot \frac{1}{n}=0 \tag{3.10}
\end{equation*}
$$

and so Theorem 2.1, together with Lemmas 3.7 and 3.8, implies that for large enough n one of the maximum sized families of t-intersecting ℓ-tuples with support k in $\mathbb{F}_{\ell}(n, \ldots$, $n)$ is $\mathcal{F}_{1}=\mathcal{F}_{1}(t, k ; n, \ldots, n)$ or $\mathcal{F}_{2}=\mathcal{F}_{2}(t, k ; n, \ldots, n)$.

Our final task is to compare $\left|\mathcal{F}_{1}(t, k ; n, \ldots, n)\right|$ and $\left|\mathcal{F}_{2}(t, k ; n, \ldots, n)\right|$. From Lemma 3.9 we have

$$
\begin{equation*}
\left|\mathcal{F}_{1}\right|=t+\binom{l-t}{k-t} n^{k-t}-\sum_{i=0}^{k-t}\binom{k+1-t}{i}\binom{l-k-1}{k-t-i}(n-1)^{i} n^{k-t-i} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mathcal{F}_{2}\right|=(t+2)\binom{l-t-1}{k-t-1} n^{k-t-1}-(t+1)\binom{l-t-2}{k-t-2} n^{k-t-2} . \tag{3.12}
\end{equation*}
$$

Suppose now that $t+2 \leq k$. For fixed t, k, ℓ, as $n \rightarrow \infty$, we expand (3.11) and (3.12) as polynomials of n. There is nothing to do with (3.12), as it is already written in polynomial form. In (3.11), the coefficient of n^{k-t} in $\left|\mathcal{F}_{1}\right|$ is

$$
\binom{l-t}{k-t}-\sum_{i=0}^{k-t}\binom{k+1-t}{i}\binom{l-k-1}{k-t-i}=0
$$

the coefficient of n^{k-t-1} in $\left|\mathcal{F}_{1}\right|$ is

$$
\begin{aligned}
\sum_{i=1}^{k-t} i\binom{k+1-t}{i}\binom{l-k-1}{k-t-i} & =\sum_{i=1}^{k-t}(k+1-t)\binom{k-t}{i-1}\binom{l-k-1}{k-t-i} \\
& =(k+1-t)\binom{l-t-1}{k-t-1},
\end{aligned}
$$

and similarly the coefficient of n^{k-t-2} in $\left|\mathcal{F}_{1}\right|$ is

$$
-\sum_{i=1}^{k-t}\binom{i}{2}\binom{k+1-t}{i}\binom{l-k-1}{k-t-i}=-\frac{(k+1-t)(k-t)}{2}\binom{l-t-2}{k-t-2}
$$

We compare $\left|\mathcal{F}_{1}\right|$ and $\left|\mathcal{F}_{2}\right|$ for large n. The leading term in both is n^{k-t-1}, with coefficients $(k+1-t)\binom{l-t-1}{k-t-1}$ and $(t+2)\binom{l-t-1}{k-t-1}$. Therefore, if $k+1-t>t+2$, i.e. $k>2 t+1$, then for large enough n we have $\left|\mathcal{F}_{1}\right|>\left|\mathcal{F}_{2}\right|$ and if $k<2 t+1$ then for large enough n we have $\left|\mathcal{F}_{1}\right|<\left|\mathcal{F}_{2}\right|$. If $k-t-1=t+2$, i.e. $k=2 t+1$, then the main terms have equal coefficients. We compare the coefficients of the next term, $n^{k-t-2}=n^{t-1}$ in $\left|\mathcal{F}_{1}\right|$ and $\left|\mathcal{F}_{2}\right|$, which are $-\frac{(t+2)(t+1)}{2}\binom{l-t-2}{t-1}$ and $-(t+1)\binom{l-t-2}{t-1}$, respectively. We have $\left|\mathcal{F}_{1}\right|<\left|\mathcal{F}_{2}\right|$.

Theorem 3.11. Let $t<k$ be fixed. Then there exists a bound $\ell(t, k)$ such that if $\ell>$ $\ell(t, k)$ then for any non-trivially t-intersecting family \mathcal{F} of ℓ-tuples with support k in $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$ we have

$$
|\mathcal{F}| \leq \max \left\{\left|\mathcal{F}_{1}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)\right|,\left|\mathcal{F}_{2}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)\right|\right\}
$$

Proof. Let $\mathcal{P}_{\ell}=\left(\mathcal{P}\left(n_{1}, \ldots, n_{\ell}\right), \prec\right)$. If $k=t+1$ then $r_{t+2}\left(\mathcal{P}_{\ell}, k\right)=0$ and $M_{\tau}^{*}\left(\mathcal{P}_{\ell}, k\right)>0$. If $k \geq t+2$ then by Lemmas 3.5 and 3.6, for $\ell \geq 2 k-t-1$ we have

$$
\begin{equation*}
\frac{r_{t+2}\left(P_{\ell}, k\right)}{M_{\tau}^{*}\left(\mathscr{P}_{\ell}, k\right)} \leq\left(1+\frac{k-t-2}{\ell-2 k+t+2}\right) \cdot \frac{1}{n_{t+1}} \cdot \frac{k-t-1}{\ell-k+1} \tag{3.13}
\end{equation*}
$$

and therefore

$$
\lim _{\ell \rightarrow \infty} \frac{r_{t+2}\left(\mathscr{P}_{\ell}, k\right)}{M_{\tau}^{*}\left(\mathscr{P}_{\ell}, k\right)}=0
$$

So Theorem 2.1, together with Lemmas 3.7 and 3.8, implies that for large enough ℓ one of the maximum sized families of t-intersecting ℓ-tuples with support k in $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$ is $\mathcal{F}_{1}=\mathcal{F}_{1}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)$ or $\mathcal{F}_{2}=\mathcal{F}_{2}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)$.

Theorem 3.12. Let $t<k<\ell$ be fixed, satisfying $\ell \geq 2 k-t-1$. Then there exists a bound $n(t, k, \ell)$ such that if $n_{t+1}>n(t, k, \ell)$ then for any non-trivially t-intersecting family \mathcal{F} of ℓ-tuples with support k in $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$ we have $|\mathcal{F}| \leq \max \left\{\mid \mathcal{F}_{1}\left(t, k ; n_{1}\right.\right.$, $\left.\ldots, n_{\ell}\right)\left|,\left|\mathcal{F}_{2}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)\right|\right\}$.

Proof. Let $\mathcal{P}_{n_{t+1}}=\left(\mathcal{P}\left(n_{1}, \ldots, n_{t+1}, \ldots, n_{\ell}\right), \prec\right)$. If $k=t+1$ then $r_{t+2}\left(\mathcal{P}_{n_{t+1}}, k\right)=0$ and $M_{\tau}^{*}\left(P_{n_{t+1}}, k\right)>0$. If $k \geq t+2$ then, analogously to (3.13) in the proof of Theorem 3.11,

$$
\begin{equation*}
\frac{r_{t+2}\left(\mathscr{P}_{n_{t+1}}, k\right)}{M_{\tau}^{*}\left(\mathscr{P}_{n_{t+1}}, k\right)} \leq\left(1+\frac{k-t-2}{\ell-2 k+t+2}\right) \cdot \frac{1}{n_{t+1}} \cdot \frac{k-t-1}{\ell-k+1} \tag{3.14}
\end{equation*}
$$

and therefore

$$
\lim _{n_{t+1} \rightarrow \infty} \frac{r_{t+2}\left(\mathcal{P}_{n_{t+1}}, k\right)}{M_{\tau}^{*}\left(\mathscr{P}_{n_{t+1}}, k\right)}=0
$$

So Theorem 2.1, together with Lemmas 3.7 and 3.8, implies that for large enough n_{t+1} one of the maximum sized families of t-intersecting ℓ-tuples with support k in $\mathbb{F}_{\ell}\left(n_{1}, \ldots, n_{\ell}\right)$ is $\mathcal{F}_{1}=\mathcal{F}_{1}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)$ or $\mathcal{F}_{2}=\mathcal{F}_{2}\left(t, k ; n_{1}, \ldots, n_{\ell}\right)$.

Acknowledgments. We are indebted to two anonymous referees, who pointed out a minor error in an earlier version of the manuscript.

References

1. R. Ahlswede and L.H. Khachatrian, The complete nontrivial-intersection theorem for systems of finite sets, J. Combin. Theory Ser. A 76 (1996) 121-138.
2. R. Ahlswede and L.H. Khachatrian, The complete intersection theorem for systems of finite sets, Europ. J. Combin. 18 (1997) 125-136.
3. R. Ahlswede and L.H. Khachatrian, The diametric theorem in hamming spaces-optimal anticodes, Adv. Appl. Math. 20 (1998) 429-449.
4. C. Berge, Nombres de coloration de l'hypergraphe h-parti complet, Hypergraph Seminar, In: Proceedings of the First Working Seminar on Hypergraphs, 1972, C. Berge and D. RayChaudhuri, Eds., Lect. Notes in Math. Vol. 411. Springer-Verlag, Berlin-New York (1974) pp. 13-20.
5. C. Bey, The Erdős-Ko-Rado bound for the function lattice, Discrete Appl. Math. 95 (1999) 115-125.
6. C. Bey, An intersection theorem for weighted sets, Discrete Math. 235 (2001) 145-150.
7. C. Bey and K. Engel, Old and new results for the weighted t-intersection problem via AKmethods, In: Numbers, Information and Complexity, Althöfer, Ingo, Eds. et al., Dordrecht: Kluwer Academic Publishers (2000) pp. 45-74.
8. B. Bollobás, Sperner systems consisting of pairs of complementary subsets, J. Combin. Theory Ser. A 15 (1973) 363-366.
9. M. Deza and P. Frankl, Erdős-Ko-Rado theorem - 22 years later, SIAM J. Alg. Disc. Methods 4 (1983) 419-431.
10. K. Engel, An Erdős-Ko-Rado theorem for the subcubes of a cube, Combinatorica 4 (1984) 133-140.
11. P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961) 313-320.
12. P.L. Erdős, U. Faigle, and W. Kern, A group-theoretic setting for some intersecting Sperner families, Combin. Probab. Comput. 1 (1992) 323-334.
13. P.L. Erdős, Á. Seress, and L.A. Székely, Erdős-Ko-Rado and Hilton-Milner type theorems for intersecting chains in posets, Combinatorica 20 (2000) 27-45.
14. P. Frankl and Z. Füredi, The Erdős-Ko-Rado theorem for integer sequences, SIAM J. Alg. Disc. Methods 1 (1980) 376-381.
15. P. Frankl and N. Tokushige, The Erdős-Ko-Rado theorem for integer sequence, Combinatorica 19 (1999) 55-63.
16. H-D.O.F. Gronau, More on the EKR theorem for integer sequences, J. Combin. Theory Ser. A 35 (1983) 279-288.
17. A. Hajnal and B. Rothschild, A generalization of the Erdős-Ko-Rado theorem on finite set systems, J. Combin. Theory Ser. A 15 (1973) 359-362.
18. A.J.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 18 (1967) 369-384.
19. W.N. Hsieh, Systems of finite vector spaces, Discrete Math. 12 (1975) 1-16.
20. D. Kleitman, On a combinatorial conjecture of Erdős, J. Combin. Theory 1 (1966) 209-214.
21. M.L. Livingston, An ordered version of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 26 (1979) 162-165.
22. A. Moon, An analogue of Erdős-Ko-Rado theorem for hamming schemes $H(n, q)$, J. Combin. Theory Ser. A 32 (1982) 386-390.

[^0]: * The work of the first author was partially supported by Hungarian NSF grants T37846, T34702, T48826. The work of the second author was partially supported by the NSF grant CCR-0097995. The work of the third author was partially supported by the NSF grants 0072187 and 0302307.

