Annals of Combinatorics 9 (2005) 177-187 0218-0006/05/020177-11 DOI 10.1007/s00026-005-0249-3

Annals of Combinatorics

Non-Trivial *t*-Intersection in the Function Lattice^{*}

Péter L. Erdős¹, Ákos Seress², and László A. Székely³

¹A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, P.O. Box 127, Budapest 1364, Hungary

elp@renyi.hu

²Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA akos@math.ohio-state.edu

³Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA szekely@math.sc.edu

Received September 29, 2004

AMS Subject Classification: 05D05

Abstract. The function lattice, or generalized Boolean algebra, is the set of ℓ -tuples with the *i*th coordinate an integer between 0 and a bound n_i . Two ℓ -tuples *t*-intersect if they have at least *t* common nonzero coordinates. We prove a Hilton–Milner type theorem for systems of *t*-intersecting ℓ -tuples.

Keywords: generalized Boolean algebra, intersecting chains, Erdős-Ko-Rado theorem, Hilton-Milner theorem, kernel method

1. Introduction

Let t, ℓ , and $n_1 \le n_2 \le \cdots \le n_\ell$ be positive integers. Denote by $\mathbb{F}_\ell(n_1, \ldots, n_\ell)$ the set of all ℓ -tuples

$$\{\mathbf{k} = (k_1, \ldots, k_\ell) : 0 \le k_i \le n_i, 1 \le i \le \ell\}.$$

The *support* of an ℓ -tuple **k** is the set of the non-zero coordinates: supp(**k**) = { $i: k_i \neq 0$ }. We can define a partial ordering on $\mathbb{F}_{\ell}(n_1, \ldots, n_{\ell})$ by $\mathbf{j} \leq \mathbf{k}$ if supp(\mathbf{j}) \subset supp(\mathbf{k}) and for all $i \in \text{supp}(\mathbf{j})$ we have $j_i = k_i$. This partially ordered set is called the *function lattice* (see for example [5]). Another frequently used name is *generalized Boolean algebra*, because the case $n_1 = n_{\ell} = 1$, i.e., when all n_i are equal to 1, is just the case of (characteristic vectors of) set systems on an ℓ -element underlying set.

We say that two ℓ -tuples **j** and **k** are *t*-intersecting if there are at least *t* different integers $i \in \text{supp}(\mathbf{j}) \cap \text{supp}(\mathbf{k})$ such that $j_i = k_i$, or, with other words, if there is an ℓ -tuple **t** with support of size *t* such that $\mathbf{t} \leq \mathbf{k}$ and $\mathbf{t} \leq \mathbf{j}$. Denote by $m_t(n_1, \ldots, n_\ell)$ the

^{*} The work of the first author was partially supported by Hungarian NSF grants T37846, T34702, T48826. The work of the second author was partially supported by the NSF grant CCR-0097995. The work of the third author was partially supported by the NSF grants 007 2187 and 030 2307.

maximum cardinality of *t*-intersecting ℓ -tuples in $\mathbb{F}_{\ell}(n_1, \ldots, n_{\ell})$ and by $M_t(n_1, \ldots, n_{\ell})$ the set of all *t*-intersecting families with this cardinality. The problems to determine the value $m_t(n_1, \ldots, n_{\ell})$ and to describe the structures of the families in $M_t(n_1, \ldots, n_{\ell})$, have a very long and notable history even in the case $n_{\ell} > 1$, and this is the case we are concentrating on in this note.

We start with the history of the case t = 1. C. Berge (1974, [4]) determined $m_t(n_1, \ldots, n_\ell)$ and $M_t(n_1, \ldots, n_\ell)$ when all ℓ -tuples have ℓ -element supports. Different proofs of Berge's result were given by Hsieh (1975, [19]) and by Livingston (1979, [21]) in the case when $n_1 = n_\ell$. The first result for set systems with uniform support size different from ℓ , but with $n_1 = n_\ell$, is due to Frankl (published in 1983, [9]). Moreover, Engel (1984, [10]) handled the case with $n_1 = n_\ell$, when the supports of the ℓ -tuples are arbitrary. In fact, Engel proved a Bollobás-type inequality (in the spirit of [8]) for the set of intersecting ℓ -tuples; a simpler proof of this last result is due to P.L. Erdős, U. Faigle and W. Kern (1992, [12]). In 2001 C. Bey gave a complete solution to the t = 1 case, for arbitrary n_i 's and any uniform support size (2001, [6]), using his general weighted intersection theorem. This case shows interesting connections to the complete intersection theorem of R. Ahlswede and L. Khachatrian ([2]).

For arbitrary values of *t*, the first result is due to D. Kleitman (1966, [20]) in the case when $n_1 = n_{\ell} = 2$, and all supports are of size ℓ . Then P. Frankl and Z. Füredi handled the case $t \ge 15$, all supports are of size ℓ , and $n_1 = n_{\ell}$ (1980, [14]), using Frankl's version of the Erdős-Ko-Rado theorem (see [11]). Later A. Moon generalized this result for cross *t*-intersecting families (1982, [22]). The paper by Deza and Frankl (1983, [9]) also contains the solution for the case when all supports are of the same size k and $n_1 = n_{\ell}$, for ℓ large enough as a function of k and t. H-D. Gronau proved the first result for *t*-intersecting families with ℓ -element supports in the case of non-equal n_i 's (1983, [16]). R. Ahlswede and L. Khachatrian (1998, [3]), and independently P. Frankl and N. Tokushige (1998, [15]), solved the *t*-intersecting problem for arbitrary *t* for ℓ -tuples with full support, applying Ahlswede and Khachatrian's seminal complete intersection theorem for set systems (1997, [2]). Finally C. Bey (1999, [5]) determined all parameters ℓ, k, t, n , for which "fixing *t* coordinates" yields the solution to the intersection problem.

All these results can be summarized in the following structural way: under some conditions for the parameter values, the (often unique) optimal *t*-intersecting family consists of all ℓ -tuples that are greater or equal than a fixed ℓ -tuple **t** with support size *t*. In the literature such set systems are called *trivially t*-intersecting families. As it is well known in the theory of *t*-intersecting set systems, there is a long-standing effort to solve the *nontrivial t*-intersection problem: what is the size and the structure of the maximum *t*-intersecting families where the total intersection of the sets has less than *t* elements. The first such result is due to A.J.H. Hilton and E.C. Milner (1967, [18]). The complete solution is again due to R. Ahlswede and L. Khachatrian (1996, [1]).

As far as these authors are aware, the only *t*-intersection result known for the function lattice $\mathbb{F}_{\ell}(n_1, \ldots, n_{\ell})$ is due to C. Bey and K. Engel (2000, [7, Example 10, 11 and Lemma 18]): this is the complete solution to the non-trivial *t*-intersection problem in the case of equal n_i 's.

The goal of this paper is to prove a more general non-trivial *t*-intersection result for the subset of the function lattice $\mathbb{F}_{\ell}(n_1, \dots, n_{\ell})$ consisting of ℓ -tuples with a fixed

size *k* of the support, for some parameter values $t < k < \ell$ and $n_1 \le n_2 \le \cdots \le n_\ell$. The result is based on a Hilton–Milner type theorem for poset series, proved by the authors (2000, [13]). The proof of this latter uses the so-called *kernel method*, introduced by A. Hajnal and B. Rothschild (1973, [17]), therefore all of our results are valid only from a threshold for the parameters. We note that, perhaps surprisingly, the application of [13] is *not* for the natural partial order of $\mathbb{F}_{\ell}(n_1, \ldots, n_{\ell})$. We shall investigate families of intersecting chains in the natural partial order of $\mathbb{F}_{\ell}(n_1, \ldots, n_{\ell})$ in a forthcoming paper. Of course, a direct application of the kernel method may yield similar results, but citing [13] saves a lot of work. We admit that the methods of [7] are likely to allow generalization to the case of different n_i 's.

In Section 2 we recall the necessary details from [13], while in Section 3 we reformulate the *t*-intersection problem of the function lattice and apply for it the method described in Section 2.

2. Non-Trivial *t*-Intersection Results for Posets

A *t*-chain \mathcal{L} in a poset P is a strict chain of elements $\mathcal{L} = (x_1 < x_2 < \cdots < x_t)$. For a given *t*-chain $\mathcal{L} = (x_1 < x_2 < \cdots < x_t)$, let $\mathcal{T}_{P,k}(x_1, x_2, \dots, x_t)$ denote the set of *k*-chains in P which contain \mathcal{L} as a subset. Define $T_{P,k}(x_1, x_2, \dots, x_t) = |\mathcal{T}_{P,k}(x_1, x_2, \dots, x_t)|$. Sometimes we write T instead of $T_{P,k}$, when it does not cause ambiguity. Also define $r_t(P,k) = \max T_{P,k}(x_1, x_2, \dots, x_t)$, where the maximum is taken for *t*-chains $x_1 < x_2 < \cdots < x_t$ in P. It follows from the definition that

$$r_i(P,k) \ge r_{i+1}(P,k).$$
 (2.1)

For a *t*-chain $X \subset P$ and $y \notin X$, let T(X, y) denote the number of *k*-chains which contain *X* and *y*. For a *t*-chain *X* and a *k*-chain *L* in *P*, such that $|X \cup L| = k + 1$, let $y_L^* \in L \setminus X$ such that $T(X, y_L^*)$ minimize T(X, y) for the elements $y \in L \setminus X$, and set

$$\tau(\mathcal{X}, \mathcal{L}) = \sum_{y \in \mathcal{L} \setminus \mathcal{X}, \ y \neq y_{\mathcal{L}}^*} T(\mathcal{X}, y).$$
(2.2)

Also define

$$M_{\tau}(P,k) = \max_{X,\mathcal{L}} \tau(X,\mathcal{L}), \qquad (2.3)$$

and

$$M^{*}_{\tau}(P,k) = \max_{\substack{X,L\\\tau(X,L)=M_{\tau}(P,k)}} T(X, y^{*}_{L}).$$
(2.4)

Now the following Hilton-Milner type theorem holds:

Theorem 2.1. For fixed $1 \le t < k$, and a sequence of posets P_n , let us be given a maximum sized family \mathcal{F}_n of non-trivially t-intersecting k-chains in P_n . Assume further that

$$\lim_{t \to 0} r_{t+2}(P_n, k) / M_{\tau}^*(P_n, k) = 0.$$
(2.5)

Then, for n sufficiently large, \mathcal{F}_n has one of the following two descriptions:

(i) there exists a t-chain X and a (k+1-t)-chain Y, such that $X \cap Y = 0$; and \mathcal{F}_n is the following set of k-chains:

$$\mathcal{F}(\mathcal{X},\mathcal{Y}) = \{ \mathcal{L} \colon \mathcal{X} \subseteq \mathcal{L} \text{ and } \mathcal{L} \cap \mathcal{Y} \neq \emptyset \} \\ \cup \{ \mathcal{L} \colon \mathcal{Y} \subseteq \mathcal{L} \text{ and } |\mathcal{L} \cap \mathcal{X}| = t - 1 \},$$
(2.6)

where the second set of chains is non-empty;

(ii) there exists a (t+2)-chain Z, and \mathcal{F}_n is the following set of k-chains:

$$\mathcal{F}(Z) = \{ \mathcal{L} \colon |\mathcal{L} \cap Z| \ge t+1 \}, \tag{2.7}$$

and $\left|\bigcap_{\mathcal{L}\in\mathcal{T}_n}\mathcal{L}\cap\mathcal{Z}\right| \leq t-1.$

3. New Results

Let $t < k < \ell$ and $n_1 \le \dots \le n_\ell$ be positive integers. We define two families $\mathcal{F}_1(t, k; n_1, \dots, n_\ell)$ and $\mathcal{F}_2(t, k; n_1, \dots, n_\ell)$ of non-trivially *t*-intersecting families in $\mathbb{F}_\ell(n_1, \dots, n_\ell)$ with support size *k* as follows.

(i) Let $j_1, j_2, ..., j_{k+1}$ be integers satisfying $1 \le j_i \le n_i$ for $i \in [1, k+1]$. We define $\mathcal{F}_1(t, k; n_1, ..., n_\ell)$ as the set of ℓ -tuples $\mathbf{k} = (k_1, ..., k_\ell)$ with support size k which belong to the set

$$\{\mathbf{k}: k_i = j_i \text{ for all } i \in [1, t] \text{ and for at least one } i \in [t+1, k+1] \}$$

$$\cup \{ \mathbf{k} : k_i = j_i \text{ for all } i \in [t+1, k+1] \text{ and for } t-1 \text{ values } i \in [1, t] \}.$$
 (3.1)

(ii) Let $j_1, j_2, ..., j_{t+2}$ be integers satisfying $1 \le j_i \le n_i$ for $i \in [1, t+2]$. We define $\mathcal{F}_2(t, k; n_1, ..., n_\ell)$ as the set of ℓ -tuples $\mathbf{k} = (k_1, ..., k_\ell)$ with support size k which belong to the set

$$\{\mathbf{k}: k_i = j_i \text{ for at least } t+1 \text{ values } i \in [1, t+2]\}.$$
(3.2)

Note that $|\mathcal{F}_1(t, k; n_1, ..., n_\ell)|$ and $|\mathcal{F}_2(t, k; n_1, ..., n_\ell)|$ do not depend on the particular choices of the j_i . Our goal is to give sufficient conditions for the parameter values $t, k, \ell, n_1, ..., n_\ell$ which ensure that either \mathcal{F}_1 or \mathcal{F}_2 is of maximum size among the non-trivially *t*-intersecting families of ℓ -tuples with support size *k*.

Given $n_1 \leq \cdots \leq n_\ell$, we define a partially ordered set $(\mathcal{P}(n_1, \ldots, n_\ell), \prec)$ as follows. The underlying set is $\mathcal{P}(n_1, \ldots, n_\ell) := \{(i, j): 1 \leq i \leq \ell, 1 \leq j \leq n_i\}$, and $(i_1, j_1) \prec (i_2, j_2)$ if and only if $i_1 < i_2$. The map $\mathbf{k} = (k_1, \ldots, k_\ell) \mapsto \{(i, k_i) \in \mathcal{P}(n_1, \ldots, n_\ell): k_i \neq 0\}$ is obviously a bijection between $\mathbb{F}_\ell(n_1, \ldots, n_\ell)$ and the chains in the poset $(\mathcal{P}(n_1, \ldots, n_\ell), \prec)$, and ℓ -tuples with support size k are mapped to k-chains. Therefore, t-intersecting families of ℓ -tuples in $\mathbb{F}_\ell(n_1, \ldots, n_\ell)$ with support size k correspond to t-intersecting k-chains in $(\mathcal{P}(n_1, \ldots, n_\ell), \prec)$. For a subset $\mathcal{Y} \subseteq \mathcal{P}(n_1, \ldots, n_\ell)$, we define the *support* of \mathcal{Y} as the set of first coordinates of the elements of \mathcal{Y} ; namely, $\operatorname{supp}(\mathcal{Y}) = \{i \leq \ell : \exists j \leq n_i \ (i, j) \in \mathcal{Y}\}$. We start with the determination of the quantities r_{t+2}, M_{τ} , and

180

 M^*_{τ} defined in Section 2. Note that for any *m*-chain \mathcal{L} in $\mathcal{P} = (\mathcal{P}(n_1, \ldots, n_\ell), \prec)$, we have

$$T_{\mathcal{P},k}(\mathcal{L}) = \sum_{\substack{A \subset [1,\ell] \setminus \text{supp}(\mathcal{L}) \\ |A| = k-m}} \prod_{i \in A} n_i.$$
(3.3)

Proposition 3.1. Let $t < k < \ell$, let $\mathcal{P} = (\mathcal{P}(n_1, ..., n_\ell), \prec)$ and let \mathcal{L} be an m-chain in \mathcal{P} . Suppose that $(i, k_i) \in \mathcal{L}$ and $j \notin \text{supp}(\mathcal{L})$ with j < i, and let $\mathcal{L}^* = (\mathcal{L} \setminus \{(i, k_i)\}) \cup \{(j, k_j)\}$ for some $k_j \leq n_j$. Then $T_{\mathcal{P},k}(\mathcal{L}^*) \geq T_{\mathcal{P},k}(\mathcal{L})$, with equality if and only if $n_j = n_{j+1} = \cdots = n_i$.

Proof. We obtain $T_{\mathcal{P},k}(\mathcal{L}^*)$ from $T_{\mathcal{P},k}(\mathcal{L})$ by replacing each occurrence of n_j by n_i in the sum in (3.3). Hence the inequalities $n_j \leq n_{j+1} \leq \cdots \leq n_i$ imply both assertions of the proposition.

Let $\sigma_i(x_1, x_2, ..., x_m)$ denote the *i*th elementary symmetric polynomial in variables $x_1, x_2, ..., x_m$. We define $\sigma_0(x_1, x_2, ..., x_m) = 1$.

Lemma 3.2. Let $t < k < \ell$ and let $\mathcal{P} = (\mathcal{P}(n_1, \ldots, n_\ell), \prec)$. Then

$$r_{t+2}(\mathcal{P},k) = \sum_{\substack{A \subset [t+3,\ell] \\ |A| = k-t-2}} \prod_{i \in A} n_i = \sigma_{k-t-2}(n_{t+3},\dots,n_{\ell}).$$
(3.4)

Proof. Proposition 3.1 implies that for (t+2)-chains \mathcal{L} in \mathcal{P} , the quantity $T_{\mathcal{P},k}(\mathcal{L})$ is maximized when $\operatorname{supp}(\mathcal{L}) = [1, t+2]$.

Lemma 3.3. Let $t < k < \ell$ and let $\mathcal{P} = (\mathcal{P}(n_1, ..., n_\ell), \prec)$. Then for any t-chain X and k-chain \mathcal{L} in \mathcal{P} with $|X \cup \mathcal{L}| = k + 1$, we have $M_{\tau}(\mathcal{P}, k) = \tau(X, \mathcal{L})$ if and only if the multiset relations $\{n_i: i \in \text{supp}(X)\} = \{n_i: 1 \le i \le t\}$ and $\{n_i: i \in \text{supp}(\mathcal{L})\} \supseteq \{n_i: t+1 \le i \le k\}$ hold.

Proof. We first note that the condition $|X \cup L| = k + 1$ implies that X and L have t - 1 common elements and $|L \setminus X| = k - t + 1$. Moreover, since $\tau(X, L)$ is the sum of only k - t values T(X, y) with $y \in L \setminus X$, it is possible that for a fixed *t*-chain X, $\tau(X, L)$ is maximized for some L even though T(X, y) = 0 for some $y \in L \setminus X$.

For a fixed *t*-chain X, Proposition 3.1 implies that $\tau(X, \mathcal{L})$ is maximized for a *k*-chain \mathcal{L} whose support contains the k - t smallest elements of $[1, \ell] \setminus \text{supp}(X)$. Moreover, another application of Proposition 3.1 shows that if X' is obtained by replacing an element $(i_1, j_1) \in X$ with some (i_2, j_2) satisfying $i_2 < i_1$ and i_2 the smallest number not in supp(X) then $\tau(X', \mathcal{L}') \geq \tau(X, \mathcal{L})$ for an optimal \mathcal{L}' constructed in the way described in the previous sentence. Hence $M_{\tau}(\mathcal{P}, k) = \tau(X, \mathcal{L})$ for X, \mathcal{L} with supp(X) = [1, t] and $\text{supp}(\mathcal{L}) \supseteq [t + 1, k]$. Finally, Proposition 3.1 also implies that if $\text{supp}(X') \neq [1, t]$ or $\text{supp}(\mathcal{L}') \supseteq [t + 1, k]$ then $\tau(X', \mathcal{L}') < M_{\tau}(\mathcal{P}, k)$, unless the condition about the multiset of n_i values described in the statement of the lemma holds.

Lemma 3.4. Let $t < k < \ell$ and let $\mathcal{P} = (\mathcal{P}(n_1, \ldots, n_\ell), \prec)$. Then

$$M_{\tau}^{*}(\mathcal{P},k) = \sum_{\substack{A \subset [t+1,\ell] \setminus \{k+1\} \\ |A|=k-t-1}} \prod_{i \in A} n_{i} = \sigma_{k-t-1}(n_{t+1},\dots,\widehat{n_{k+1}},\dots,n_{\ell}).$$
(3.5)

Proof. Let X be a *t*-chain and \mathcal{L} be a *k*-chain with $|X \cup \mathcal{L}| = k + 1$ and $\tau(X, \mathcal{L}) = M_{\tau}(\mathcal{P}, k)$. Then, by Lemma 3.3, we have the multiset relations $\{n_i: i \in \operatorname{supp}(X)\} = \{n_i: 1 \leq i \leq t\}$ and $\{n_i: i \in \operatorname{supp}(\mathcal{L})\} \supseteq \{n_i: t+1 \leq i \leq k\}$. Also, we have $k \leq |\operatorname{supp}(X \cup \mathcal{L})| \leq k+1$. If $|\operatorname{supp}(X \cup \mathcal{L})| = k$ then there exists $y_{\mathcal{L}}^* = (i, k_i) \in \mathcal{L} \setminus X$ with $i \in \operatorname{supp}(X)$ and so $T(X, y_{\mathcal{L}}^*) = 0$. If $|\operatorname{supp}(X \cup \mathcal{L})| = k+1$ then Proposition 3.1 implies that T(X, y) is minimized in $\mathcal{L} \setminus X$ for the $y_{\mathcal{L}}^* = (i, k_i) \in \mathcal{L} \setminus X$ with $i = \max \operatorname{supp}(\mathcal{L} \setminus X)$ and, in order to maximize $T(X, y_{\mathcal{L}}^*)$, we have to choose max $\operatorname{supp}(\mathcal{L} \setminus X)$ as small as possible. Combining these observations, we obtain that $\max T(X, y_{\mathcal{L}}^*)$ is achieved in the case $\operatorname{supp}(X) = [1, t]$, $\operatorname{supp}(\mathcal{L} \setminus X) = [t+1, k+1]$, and $\operatorname{supp}(y_{\mathcal{L}}^*) = \{k+1\}$, leading to (3.5).

The following two lemmas will be useful at the comparison of r_{t+2} and M_{τ}^* .

Lemma 3.5. Let t, k, ℓ satisfy $k \ge t+2$ and $\ell \ge 2k-t-1$, and let $\mathcal{P} = (\mathcal{P}(n_1, \ldots, n_\ell), \prec)$. Then

$$r_{t+2}(\mathcal{P},k) \leq \left(1 + \frac{k-t-2}{\ell-2k+t+2}\right) \sigma_{k-t-2}(n_{t+1},\ldots,\widehat{n_{k+1}},\ldots,n_{\ell}).$$

Proof. On one hand, if $A \subseteq [t+1, \ell]$ satisfies |A| = k - t - 2 and $k+1 \in A$ then

$$\prod_{i\in A} n_i \leq \frac{\sum_{s\in [k+2,\ell]\setminus A} n_s}{(\ell-k-1)-(k-t-3)} \prod_{i\in A\setminus\{k+1\}} n_i.$$

On the other hand, any (k-t-2)-element subset *B* of $[t+1, \ell] \setminus \{k+1\}$ can be obtained at most k-t-2 ways by replacing k+1 by an element $j \ge k+2$ of *B*. Hence Lemma 3.2 implies

$$\begin{aligned} r_{t+2}(\mathcal{P},k) &= \mathbf{\sigma}_{k-t-2}(n_{t+3},\ldots,n_{\ell}) \\ &\leq \mathbf{\sigma}_{k-t-2}(n_{t+1},\ldots,n_{\ell}) \\ &\leq \left(1 + \frac{k-t-2}{\ell-2k+t+2}\right) \mathbf{\sigma}_{k-t-2}(n_{t+1},\ldots,\widehat{n_{k+1}},\ldots,n_{\ell}). \end{aligned}$$

Lemma 3.6. Let t, k, ℓ satisfy $k \ge t + 2$ and let $\mathcal{P} = (\mathcal{P}(n_1, \dots, n_\ell), \prec)$. Then

$$M_{\tau}^{*}(\mathcal{P},k) \ge n_{t+1} \, \frac{\ell - k + 1}{k - t - 1} \, \sigma_{k-t-2}(n_{t+1}, \dots, \widehat{n_{k+1}}, \dots, n_{\ell}). \tag{3.6}$$

Proof. Using the fact that any (k-t-2)-element subset *B* of $[t+1, \ell] \setminus \{k+1\}$ can be obtained $(\ell - t - 1) - (k - t - 2) = \ell - k + 1$ ways by deleting an element different from k+1 from a (k-t-1)-element subset of $[t+1, \ell] \setminus \{k+1\}$, we have

$$(k-t-1)\sigma_{k-t-1}(n_{t+1},...,\widehat{n_{k+1}},...,n_{\ell})$$

= $\sum_{\substack{s=t+1\\s\neq k+1}}^{\ell} n_s \sigma_{k-t-2}(n_{t+1},...,\widehat{n_s},...,\widehat{n_{k+1}},...,n_{\ell})$
≥ $n_{t+1}(\ell-k+1)\sigma_{k-t-2}(n_{t+1},...,\widehat{n_{k+1}},...,n_{\ell}).$

Hence Lemma 3.4 implies (3.6).

Lemma 3.7. Let $t < k < \ell$ and $\mathcal{P} = (\mathcal{P}(n_1, \ldots, n_\ell), \prec)$. If X is a t-chain and \mathcal{Y} is a (k+1-t)-chain with $X \cap \mathcal{Y} = \emptyset$ then $|\mathcal{F}(X, \mathcal{Y})| \le |\mathcal{F}_1(t, k; n_1, \ldots, n_\ell)|$ for the families of chains defined in (2.6) and (3.1), respectively.

Proof. First note that $|\operatorname{supp}(X) \cap \operatorname{supp}(\mathcal{Y})| \leq 1$, because otherwise there is no *k*-chain containing \mathcal{Y} and t-1 elements of X as required in (2.6). If $|\operatorname{supp}(X) \cap \operatorname{supp}(\mathcal{Y})| = 1$, say $(i, f_i) \in X$ and $(i, g_i) \in \mathcal{Y}$ for some $f_i \neq g_i$, then there exists exactly one *k*-chain in $\mathcal{F}(X, \mathcal{Y})$ which contains (i, g_i) , namely, $(\mathcal{Y} \cup X) \setminus \{(i, f_i)\}$. Hence, if we define $\mathcal{Y}_1 = (\mathcal{Y} \setminus \{(i, g_i)\}) \cup \{(j, 1)\}$ for some $j \notin \operatorname{supp}(X \cup \mathcal{Y})$ then $|\mathcal{F}(X, \mathcal{Y})| \leq |\mathcal{F}(X, \mathcal{Y}_1)|$, because $\mathcal{F}(X, \mathcal{Y}_1)$ contains all but one chain from $\mathcal{F}(X, \mathcal{Y})$ and it contains *t* chains not in $\mathcal{F}(X, \mathcal{Y})$ (the chains obtained by deleting an element of X from $X \cup \mathcal{Y}$). Therefore, it is enough to prove that $|\mathcal{F}(X, \mathcal{Y})| \leq |\mathcal{F}_1(t, k; n_1, \dots, n_\ell)|$ for chains X, \mathcal{Y} with $\operatorname{supp}(X) \cap \operatorname{supp}(\mathcal{Y}) = \emptyset$.

Suppose now that $\operatorname{supp}(\mathcal{X}) \cap \operatorname{supp}(\mathcal{Y}) = \emptyset$. There are exactly *t* chains in $\mathcal{F}(\mathcal{X}, \mathcal{Y})$ containing \mathcal{Y} and there are *t* chains in $\mathcal{F}_1(t, k; n_1, \dots, n_\ell)$ with support containing [t + 1, k + 1]; hence it is enough to show that for the set of chains

$$\mathcal{F}^*(\mathcal{X}, \mathcal{Y}) = \{ \mathcal{L} \colon \mathcal{X} \subseteq \mathcal{L} \text{ and } \mathcal{L} \cap \mathcal{Y} \neq \emptyset \},\$$

and

$$\mathcal{F}_1^*(t,k;n_1,\ldots,n_\ell) = \{ \mathcal{L} \in \mathcal{F}_1(t,k;n_1,\ldots,n_\ell) \colon \operatorname{supp}(\mathcal{L}) \supseteq [1,t] \},\$$

we have $|\mathcal{F}^*(\mathcal{X}, \mathcal{Y})| \leq |\mathcal{F}_1^*(t, k; n_1, \dots, n_\ell)|$. If $\operatorname{supp}(\mathcal{X}) \neq [1, t]$ then we define a new set of chains by the following shifting operation. Let $i_1 \in [1, t]$ be the smallest number not in $\operatorname{supp}(\mathcal{X})$ and let $i_2 \in \operatorname{supp}(\mathcal{X})$ with $i_2 > i_1$, say $(i_2, k_{i_2}) \in \mathcal{X}$. For a k-chain $\mathcal{L} \in \mathcal{F}^*(\mathcal{X}, \mathcal{Y})$, let

$$f(\mathcal{L}) = \begin{cases} (\mathcal{L} \setminus \{(i_2, k_{i_2})\}) \cup \{(i_1, 1)\}, & \text{if } i_1 \notin \text{supp}(\mathcal{L}), \\ (\mathcal{L} \setminus \{(i_1, k_{i_1}), (i_2, k_{i_2})\}) \cup \{(i_1, 1), (i_2, k_{i_1})\}, & \text{if } (i_1, k_{i_1}) \in \mathcal{L} \text{ for some} \\ k_{i_1} \leq n_{i_1}. \end{cases}$$

$$(3.7)$$

Moreover, define $X' = (X \setminus \{(i_2, k_{i_2})\}) \cup \{(i_1, 1)\}$ and

$$\mathcal{Y}' = \begin{cases} \mathcal{Y}, & \text{if } i_1 \notin \text{supp}(\mathcal{Y}), \\ (\mathcal{Y} \setminus \{(i_1, k_{i_1})\}) \cup \{(i_2, k_{i_1})\}, & \text{if } (i_1, k_{i_1}) \in \mathcal{Y} \text{ for some } k_{i_1} \leq n_{i_1}. \end{cases}$$
(3.8)

Then it is clear that f is an injection from $\mathcal{F}^*(\mathcal{X}, \mathcal{Y})$ into $\mathcal{F}^*(\mathcal{X}', \mathcal{Y}')$, and so $|\mathcal{F}^*(\mathcal{X}, \mathcal{Y})| \leq |\mathcal{F}^*(\mathcal{X}', \mathcal{Y}')|$ and $|\mathcal{F}(\mathcal{X}, \mathcal{Y})| \leq |\mathcal{F}(\mathcal{X}', \mathcal{Y}')|$. Repeating this procedure, we arrive to some *t*-chain \mathcal{X}'' and (k+1-t)-chain \mathcal{Y}'' such that $|\mathcal{F}^*(\mathcal{X}, \mathcal{Y})| \leq |\mathcal{F}^*(\mathcal{X}'', \mathcal{Y}'')|$ and $\operatorname{supp}(\mathcal{X}'') = [1, t]$ and $\operatorname{supp}(\mathcal{X}'') \cap \operatorname{supp}(\mathcal{Y}'') = \emptyset$. It is enough to show that $|\mathcal{F}^*(\mathcal{X}'', \mathcal{Y}'')| \leq |\mathcal{F}_1^*(t, k; n_1, \dots, n_\ell)|$.

If $\operatorname{supp}(\mathcal{Y}'') \neq [t+1, k+1]$ then let $i_1 \in [t+1, k+1]$ be the smallest number not in $\operatorname{supp}(\mathcal{Y}'')$ and let $i_2 \in \operatorname{supp}(\mathcal{Y}'')$ with $i_2 > i_1$, say $(i_2, k_{i_2}) \in \mathcal{Y}''$. By renumbering the i_2 th coordinate, we may assume that $k_{i_2} \leq n_{i_1}$. We apply the following modification of the shifting operation described in the previous paragraph. For a k-chain $\mathcal{L} \in \mathcal{F}^*(\mathcal{X}'', \mathcal{Y}'')$, let

$$g(\mathcal{L}) = \begin{cases} (\mathcal{L} \setminus \{(i_2, j_2)\}) \cup \{(i_1, j_2)\}, & \text{if } i_1 \notin \text{supp}(\mathcal{L}) \text{ and} \\ (i_2, j_2) \in \mathcal{L} \text{ with } j_2 \leq n_1, \\ (\mathcal{L} \setminus \{(i_1, j_1)\}) \cup \{(i_2, j_1)\}, & \text{if } i_2 \notin \text{supp}(\mathcal{L}) \text{ and} \\ (i_1, j_1) \in \mathcal{L}, \\ (\mathcal{L} \setminus \{(i_1, j_1), (i_2, j_2)\}) \cup \{(i_1, j_2), (i_2, j_1)\}, & \text{if } (i_1, j_1), (i_2, j_2) \in \mathcal{L} \text{ and} \\ j_2 \leq n_1, \\ \mathcal{L}, & \text{otherwise.} \end{cases}$$

$$(3.9)$$

Moreover, define $\mathcal{Y}''' = (\mathcal{Y}'' \setminus \{(i_2, k_{i_2})\}) \cup \{(i_1, k_{i_2})\}$. Then *g* is an injection from $\mathcal{F}^*(\mathcal{X}'', \mathcal{Y}'')$ into $\mathcal{F}^*(\mathcal{X}'', \mathcal{Y}'')$, and so $|\mathcal{F}^*(\mathcal{X}'', \mathcal{Y}'')| \leq |\mathcal{F}^*(\mathcal{X}''', \mathcal{Y}''')|$ and $|\mathcal{F}(\mathcal{X}'', \mathcal{Y}'')| \leq |\mathcal{F}(\mathcal{X}''', \mathcal{Y}''')|$ and $|\mathcal{F}(\mathcal{X}'', \mathcal{Y}'')| \leq |\mathcal{F}(\mathcal{X}''', \mathcal{Y}''')|$. Repeating this procedure, we arrive to a member of the family $\mathcal{F}_1^*(t, k; n_1, \ldots, n_\ell)$.

Lemma 3.8. Let $t < k < \ell$ and let $\mathcal{P} = (\mathcal{P}(n_1, \ldots, n_\ell), \prec)$. If \mathcal{Z} is a (t+2)-chain then $|\mathcal{F}(\mathcal{Z})| \leq |\mathcal{F}_2(t, k; n_1, \ldots, n_\ell)|$ for the families of chains defined in (2.7) and (3.2), respectively.

Proof. Given $\mathcal{F}(\mathcal{Z})$, if supp $(\mathcal{Z}) \neq [1, t+2]$ then we can apply the shifting procedure described in (3.9), not decreasing the size of $\mathcal{F}(\mathcal{Z})$, and eventually arriving to a set of chains in the family $\mathcal{F}_2(t, k; n_1, \dots, n_\ell)$.

Lemma 3.9. For \mathcal{F}_1 and \mathcal{F}_2 from (3.1) and (3.2),

$$|\mathcal{F}_{1}| = \sigma_{k-t}(n_{t+1}, \dots, n_{\ell}) - \sigma_{k-t}(n_{t+1} - 1, \dots, n_{k+1} - 1, n_{k+2}, \dots, n_{\ell}) + t,$$

$$|\mathcal{F}_{2}| = \sum_{i=1}^{t+2} \sigma_{k-t-1}(n_{i}, n_{t+3}, \dots, n_{\ell}) - (t+1)\sigma_{k-t-2}(n_{t+3}, \dots, n_{\ell}).$$

Proof. Explanation for $|\mathcal{F}_1|$. The second line of (3.1) yields the term *t*, and the cardinality arising from the first line of (3.1) is obtained as a difference, counting all functions **k** with $k_i = j_i$ for all $i \in [1, t]$, and subtracting the number of functions **k** with $k_i = j_i$ for all $i \in [1, t]$ that have no $i \in [t + 1, k + 1]$ with $k_i = j_i$.

Explanation for $|\mathcal{F}_2|$. Fix a (t+2)-chain \mathbb{Z} with support [1, t+2]. For $i \in [1, t+2]$, the number of *k*-chains intersecting \mathbb{Z} in coordinates $1, 2, \ldots, i-1, i+1, \ldots, t+2$ is $\sigma_{k-t-1}(n_i, n_{t+3}, \ldots, n_{\ell})$. Adding these expressions for all $i \in [1, t+2]$, the *k*-chains intersecting \mathbb{Z} in exactly t+1 coordinates are counted once, and the *k*-chains intersecting \mathbb{Z} in t+2 coordinates are counted t+2 times. The negative term reduces the multiplicity of the latter ones to one.

In order to apply Theorem 2.1, we have to find values of the parameters $t, k, \ell, n_1, \ldots, n_\ell$ such that the hypothesis of the theorem is satisfied.

Theorem 3.10. Let $t < k < \ell$ be fixed. Then there exists a bound $n(t, k, \ell)$ such that if $n > n(t, k, \ell)$ then for any non-trivially t-intersecting family \mathcal{F} of ℓ -tuples with support

184

k in $\mathbb{F}_{\ell}(n, \ldots, n)$ we have

$$|\mathcal{F}| \leq \max\{|\mathcal{F}_1(t,k;n,\ldots,n)|, |\mathcal{F}_2(t,k;n,\ldots,n)|\}.$$

Moreover, if k > 2t + 1 *then for large enough n we have*

$$|\mathcal{F}_1(t,k;n,\ldots,n)| > |\mathcal{F}_2(t,k;n,\ldots,n)|$$

and if $t + 1 < k \le 2t + 1$ then for large enough n we have

$$|\mathcal{F}_1(t,k;n,\ldots,n)| < |\mathcal{F}_2(t,k;n,\ldots,n)|.$$

Proof. Let $\mathcal{P}_n = (\mathcal{P}(n, \ldots, n), \prec)$. By Lemmas 3.2 and 3.4, we have $r_{t+2}(\mathcal{P}_n, k) = \binom{l-t-2}{k-t-2}n^{k-t-2}$ and $M^*_{\tau}(\mathcal{P}_n, k) = \binom{l-t-1}{k-t-1}n^{k-t-1}$. Hence

$$\lim_{n \to \infty} \frac{r_{t+2}(\mathcal{P}_n, k)}{M_{\tau}^*(\mathcal{P}_n, k)} = \lim_{n \to \infty} \frac{k - t - 1}{l - t - 1} \cdot \frac{1}{n} = 0$$
(3.10)

and so Theorem 2.1, together with Lemmas 3.7 and 3.8, implies that for large enough *n* one of the maximum sized families of *t*-intersecting ℓ -tuples with support *k* in $\mathbb{F}_{\ell}(n, ..., n)$ is $\mathcal{F}_1 = \mathcal{F}_1(t, k; n, ..., n)$ or $\mathcal{F}_2 = \mathcal{F}_2(t, k; n, ..., n)$.

Our final task is to compare $|\mathcal{F}_1(t,k;n,\ldots,n)|$ and $|\mathcal{F}_2(t,k;n,\ldots,n)|$. From Lemma 3.9 we have

$$|\mathcal{F}_{1}| = t + \binom{l-t}{k-t} n^{k-t} - \sum_{i=0}^{k-t} \binom{k+1-t}{i} \binom{l-k-1}{k-t-i} (n-1)^{i} n^{k-t-i}$$
(3.11)

and

$$|\mathcal{F}_2| = (t+2) \binom{l-t-1}{k-t-1} n^{k-t-1} - (t+1) \binom{l-t-2}{k-t-2} n^{k-t-2}.$$
 (3.12)

Suppose now that $t + 2 \le k$. For fixed t, k, ℓ , as $n \to \infty$, we expand (3.11) and (3.12) as polynomials of n. There is nothing to do with (3.12), as it is already written in polynomial form. In (3.11), the coefficient of n^{k-t} in $|\mathcal{F}_1|$ is

$$\binom{l-t}{k-t} - \sum_{i=0}^{k-t} \binom{k+1-t}{i} \binom{l-k-1}{k-t-i} = 0,$$

the coefficient of n^{k-t-1} in $|\mathcal{F}_1|$ is

$$\sum_{i=1}^{k-t} i \binom{k+1-t}{i} \binom{l-k-1}{k-t-i} = \sum_{i=1}^{k-t} (k+1-t) \binom{k-t}{i-1} \binom{l-k-1}{k-t-i}$$
$$= (k+1-t) \binom{l-t-1}{k-t-1},$$

and similarly the coefficient of n^{k-t-2} in $|\mathcal{F}_1|$ is

$$-\sum_{i=1}^{k-t} \binom{i}{2} \binom{k+1-t}{i} \binom{l-k-1}{k-t-i} = -\frac{(k+1-t)(k-t)}{2} \binom{l-t-2}{k-t-2}$$

We compare $|\mathcal{F}_1|$ and $|\mathcal{F}_2|$ for large *n*. The leading term in both is n^{k-t-1} , with coefficients $(k+1-t)\binom{l-t-1}{k-t-1}$ and $(t+2)\binom{l-t-1}{k-t-1}$. Therefore, if k+1-t > t+2, i.e. k > 2t+1, then for large enough *n* we have $|\mathcal{F}_1| > |\mathcal{F}_2|$ and if k < 2t+1 then for large enough *n* we have $|\mathcal{F}_1| > |\mathcal{F}_2|$ and if k < 2t+1 then for large enough *n* we have $|\mathcal{F}_1| > |\mathcal{F}_2|$. If k-t-1=t+2, i.e. k=2t+1, then the main terms have equal coefficients. We compare the coefficients of the next term, $n^{k-t-2} = n^{t-1}$ in $|\mathcal{F}_1|$ and $|\mathcal{F}_2|$, which are $-\frac{(t+2)(t+1)}{2}\binom{l-t-2}{t-1}$ and $-(t+1)\binom{l-t-2}{t-1}$, respectively. We have $|\mathcal{F}_1| < |\mathcal{F}_2|$.

Theorem 3.11. Let t < k be fixed. Then there exists a bound $\ell(t, k)$ such that if $\ell > \ell(t, k)$ then for any non-trivially t-intersecting family \mathcal{F} of ℓ -tuples with support k in $\mathbb{F}_{\ell}(n_1, \ldots, n_{\ell})$ we have

$$|\mathcal{F}| \leq \max\{|\mathcal{F}_1(t,k;n_1,\ldots,n_\ell)|, |\mathcal{F}_2(t,k;n_1,\ldots,n_\ell)|\}.$$

Proof. Let $\mathcal{P}_{\ell} = (\mathcal{P}(n_1, \dots, n_{\ell}), \prec)$. If k = t + 1 then $r_{t+2}(\mathcal{P}_{\ell}, k) = 0$ and $M^*_{\tau}(\mathcal{P}_{\ell}, k) > 0$. If $k \ge t+2$ then by Lemmas 3.5 and 3.6, for $\ell \ge 2k - t - 1$ we have

$$\frac{r_{t+2}(\mathcal{P}_{\ell},k)}{M^*_{\tau}(\mathcal{P}_{\ell},k)} \le \left(1 + \frac{k-t-2}{\ell-2k+t+2}\right) \cdot \frac{1}{n_{t+1}} \cdot \frac{k-t-1}{\ell-k+1}$$
(3.13)

and therefore

$$\lim_{\ell \to \infty} \frac{r_{t+2}(\mathcal{P}_{\ell}, k)}{M_{\tau}^*(\mathcal{P}_{\ell}, k)} = 0$$

So Theorem 2.1, together with Lemmas 3.7 and 3.8, implies that for large enough ℓ one of the maximum sized families of *t*-intersecting ℓ -tuples with support *k* in $\mathbb{F}_{\ell}(n_1, \ldots, n_{\ell})$ is $\mathcal{F}_1 = \mathcal{F}_1(t, k; n_1, \ldots, n_{\ell})$ or $\mathcal{F}_2 = \mathcal{F}_2(t, k; n_1, \ldots, n_{\ell})$.

Theorem 3.12. Let $t < k < \ell$ be fixed, satisfying $\ell \ge 2k - t - 1$. Then there exists a bound $n(t, k, \ell)$ such that if $n_{t+1} > n(t, k, \ell)$ then for any non-trivially t-intersecting family \mathcal{F} of ℓ -tuples with support k in $\mathbb{F}_{\ell}(n_1, \ldots, n_{\ell})$ we have $|\mathcal{F}| \le \max\{|\mathcal{F}_1(t, k; n_1, \ldots, n_{\ell})|, |\mathcal{F}_2(t, k; n_1, \ldots, n_{\ell})|\}$.

Proof. Let $\mathcal{P}_{n_{t+1}} = (\mathcal{P}(n_1, \dots, n_{t+1}, \dots, n_\ell), \prec)$. If k = t+1 then $r_{t+2}(\mathcal{P}_{n_{t+1}}, k) = 0$ and $M^*_{\tau}(\mathcal{P}_{n_{t+1}}, k) > 0$. If $k \ge t+2$ then, analogously to (3.13) in the proof of Theorem 3.11,

$$\frac{r_{t+2}(\mathcal{P}_{n_{t+1}},k)}{M_{\tau}^*(\mathcal{P}_{n_{t+1}},k)} \le \left(1 + \frac{k-t-2}{\ell-2k+t+2}\right) \cdot \frac{1}{n_{t+1}} \cdot \frac{k-t-1}{\ell-k+1}$$
(3.14)

and therefore

$$\lim_{n_{t+1}\to\infty}\frac{r_{t+2}(\mathcal{P}_{n_{t+1}},k)}{M_{\tau}^*(\mathcal{P}_{n_{t+1}},k)}=0$$

So Theorem 2.1, together with Lemmas 3.7 and 3.8, implies that for large enough n_{t+1} one of the maximum sized families of *t*-intersecting ℓ -tuples with support *k* in $\mathbb{F}_{\ell}(n_1, \ldots, n_{\ell})$ is $\mathcal{F}_1 = \mathcal{F}_1(t, k; n_1, \ldots, n_{\ell})$ or $\mathcal{F}_2 = \mathcal{F}_2(t, k; n_1, \ldots, n_{\ell})$.

Acknowledgments. We are indebted to two anonymous referees, who pointed out a minor error in an earlier version of the manuscript.

References

- R. Ahlswede and L.H. Khachatrian, The complete nontrivial-intersection theorem for systems of finite sets, J. Combin. Theory Ser. A 76 (1996) 121–138.
- R. Ahlswede and L.H. Khachatrian, The complete intersection theorem for systems of finite sets, Europ. J. Combin. 18 (1997) 125–136.
- R. Ahlswede and L.H. Khachatrian, The diametric theorem in hamming spaces-optimal anticodes, Adv. Appl. Math. 20 (1998) 429–449.
- C. Berge, Nombres de coloration de l'hypergraphe *h*-parti complet, Hypergraph Seminar, In: Proceedings of the First Working Seminar on Hypergraphs, 1972, C. Berge and D. Ray-Chaudhuri, Eds., Lect. Notes in Math. Vol. 411. Springer-Verlag, Berlin-New York (1974) pp. 13–20.
- 5. C. Bey, The Erdős-Ko-Rado bound for the function lattice, Discrete Appl. Math. **95** (1999) 115–125.
- 6. C. Bey, An intersection theorem for weighted sets, Discrete Math. 235 (2001) 145-150.
- C. Bey and K. Engel, Old and new results for the weighted *t*-intersection problem via AKmethods, In: Numbers, Information and Complexity, Althöfer, Ingo, Eds. et al., Dordrecht: Kluwer Academic Publishers (2000) pp. 45–74.
- B. Bollobás, Sperner systems consisting of pairs of complementary subsets, J. Combin. Theory Ser. A 15 (1973) 363–366.
- M. Deza and P. Frankl, Erdős-Ko-Rado theorem 22 years later, SIAM J. Alg. Disc. Methods 4 (1983) 419–431.
- K. Engel, An Erdős-Ko-Rado theorem for the subcubes of a cube, Combinatorica 4 (1984) 133–140.
- 11. P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) **12** (1961) 313–320.
- P.L. Erdős, U. Faigle, and W. Kern, A group-theoretic setting for some intersecting Sperner families, Combin. Probab. Comput. 1 (1992) 323–334.
- P.L. Erdős, Á. Seress, and L.A. Székely, Erdős-Ko-Rado and Hilton-Milner type theorems for intersecting chains in posets, Combinatorica 20 (2000) 27–45.
- P. Frankl and Z. Füredi, The Erdős-Ko-Rado theorem for integer sequences, SIAM J. Alg. Disc. Methods 1 (1980) 376–381.
- P. Frankl and N. Tokushige, The Erdős-Ko-Rado theorem for integer sequence, Combinatorica 19 (1999) 55–63.
- H-D.O.F. Gronau, More on the EKR theorem for integer sequences, J. Combin. Theory Ser. A 35 (1983) 279–288.
- A. Hajnal and B. Rothschild, A generalization of the Erdős-Ko-Rado theorem on finite set systems, J. Combin. Theory Ser. A 15 (1973) 359–362.
- A.J.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2) 18 (1967) 369–384.
- 19. W.N. Hsieh, Systems of finite vector spaces, Discrete Math. 12 (1975) 1-16.
- 20. D. Kleitman, On a combinatorial conjecture of Erdős, J. Combin. Theory 1 (1966) 209–214.
- M.L. Livingston, An ordered version of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 26 (1979) 162–165.
- 22. A. Moon, An analogue of Erdős-Ko-Rado theorem for hamming schemes H(n,q), J. Combin. Theory Ser. A **32** (1982) 386–390.