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Abstract. The function lattice, or generalized Boolean algebra, is the set of `-tuples with the
ith coordinate an integer between 0 and a bound ni. Two `-tuples t-intersect if they have at
least t common nonzero coordinates. We prove a Hilton–Milner type theorem for systems of
t-intersecting `-tuples.
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1. Introduction

Let t, `, and n1 ≤ n2 ≤ ·· · ≤ n` be positive integers. Denote by F`(n1, . . . , n`) the set of
all `-tuples

{k = (k1, . . . , k`) : 0 ≤ ki ≤ ni, 1 ≤ i ≤ `} .

The support of an `-tuple k is the set of the non-zero coordinates: supp(k) = {i : ki 6= 0} .
We can define a partial ordering on F`(n1, . . . , n`) by j ≤ k if supp(j)⊂ supp(k) and for
all i ∈ supp(j) we have ji = ki. This partially ordered set is called the function lattice
(see for example [5]). Another frequently used name is generalized Boolean algebra,
because the case n1 = n` = 1, i.e., when all ni are equal to 1, is just the case of (charac-
teristic vectors of) set systems on an `-element underlying set.

We say that two `-tuples j and k are t-intersecting if there are at least t different
integers i ∈ supp(j)∩ supp(k) such that ji = ki, or, with other words, if there is an `-
tuple t with support of size t such that t ≤ k and t ≤ j. Denote by mt(n1, . . . , n`) the
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maximum cardinality of t-intersecting `-tuples in F`(n1, . . . , n`) and by Mt(n1, . . . , n`)
the set of all t-intersecting families with this cardinality. The problems to determine
the value mt(n1, . . . , n`) and to describe the structures of the families in Mt(n1, . . . , n`),
have a very long and notable history even in the case n` > 1, and this is the case we are
concentrating on in this note.

We start with the history of the case t = 1. C. Berge (1974, [4]) determined mt(n1,
. . . , n`) and Mt(n1, . . . , n`) when all `-tuples have `-element supports. Different proofs
of Berge’s result were given by Hsieh (1975, [19]) and by Livingston (1979, [21]) in
the case when n1 = n`. The first result for set systems with uniform support size dif-
ferent from `, but with n1 = n`, is due to Frankl (published in 1983, [9]). Moreover,
Engel (1984, [10]) handled the case with n1 = n`, when the supports of the `-tuples
are arbitrary. In fact, Engel proved a Bollobás-type inequality (in the spirit of [8]) for
the set of intersecting `-tuples; a simpler proof of this last result is due to P.L. Erdős,
U. Faigle and W. Kern (1992, [12]). In 2001 C. Bey gave a complete solution to the
t = 1 case, for arbitrary ni’s and any uniform support size (2001, [6]), using his general
weighted intersection theorem. This case shows interesting connections to the complete
intersection theorem of R. Ahlswede and L. Khachatrian ([2]).

For arbitrary values of t, the first result is due to D. Kleitman (1966, [20]) in the
case when n1 = n` = 2, and all supports are of size `. Then P. Frankl and Z. Füredi
handled the case t ≥ 15, all supports are of size `, and n1 = n` (1980, [14]), using
Frankl’s version of the Erdős-Ko-Rado theorem (see [11]). Later A. Moon generalized
this result for cross t-intersecting families (1982, [22]). The paper by Deza and Frankl
(1983, [9]) also contains the solution for the case when all supports are of the same size
k and n1 = n`, for ` large enough as a function of k and t. H-D. Gronau proved the
first result for t-intersecting families with `-element supports in the case of non-equal
ni’s (1983, [16]). R. Ahlswede and L. Khachatrian (1998, [3]), and independently P.
Frankl and N. Tokushige (1998, [15]), solved the t-intersecting problem for arbitrary t
for `-tuples with full support, applying Ahlswede and Khachatrian’s seminal complete
intersection theorem for set systems (1997, [2]). Finally C. Bey (1999, [5]) determined
all parameters `, k, t, n, for which “fixing t coordinates” yields the solution to the inter-
section problem.

All these results can be summarized in the following structural way: under some
conditions for the parameter values, the (often unique) optimal t-intersecting family
consists of all `-tuples that are greater or equal than a fixed `-tuple t with support size t.
In the literature such set systems are called trivially t-intersecting families. As it is well
known in the theory of t-intersecting set systems, there is a long-standing effort to solve
the nontrivial t-intersection problem: what is the size and the structure of the maximum
t-intersecting families where the total intersection of the sets has less than t elements.
The first such result is due to A.J.H. Hilton and E.C. Milner (1967, [18]). The complete
solution is again due to R. Ahlswede and L. Khachatrian (1996, [1]).

As far as these authors are aware, the only t-intersection result known for the func-
tion lattice F`(n1, . . . , n`) is due to C. Bey and K. Engel (2000, [7, Example 10, 11 and
Lemma 18]): this is the complete solution to the non-trivial t-intersection problem in
the case of equal ni’s.

The goal of this paper is to prove a more general non-trivial t-intersection result
for the subset of the function lattice F`(n1, . . . , n`) consisting of `-tuples with a fixed
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size k of the support, for some parameter values t < k < ` and n1 ≤ n2 ≤ ·· · ≤ n`. The
result is based on a Hilton–Milner type theorem for poset series, proved by the authors
(2000, [13]). The proof of this latter uses the so-called kernel method, introduced by
A. Hajnal and B. Rothschild (1973, [17]), therefore all of our results are valid only
from a threshold for the parameters. We note that, perhaps surprisingly, the application
of [13] is not for the natural partial order of F`(n1, . . . , n`). We shall investigate families
of intersecting chains in the natural partial order of F`(n1, . . . , n`) in a forthcoming
paper. Of course, a direct application of the kernel method may yield similar results,
but citing [13] saves a lot of work. We admit that the methods of [7] are likely to allow
generalization to the case of different ni’s.

In Section 2 we recall the necessary details from [13], while in Section 3 we re-
formulate the t-intersection problem of the function lattice and apply for it the method
described in Section 2.

2. Non-Trivial t-Intersection Results for Posets

A t-chain L in a poset P is a strict chain of elements L = (x1 < x2 < · · · < xt). For a
given t-chain L = (x1 < x2 < · · · < xt), let TP,k(x1, x2, . . . , xt) denote the set of k-chains
in P which contain L as a subset. Define TP,k(x1, x2, . . . ,xt) = |TP,k(x1, x2, . . . , xt)|.
Sometimes we write T instead of TP,k, when it does not cause ambiguity. Also define
rt(P, k) = maxTP,k(x1, x2, . . . , xt), where the maximum is taken for t-chains x1 < x2 <
· · · < xt in P. It follows from the definition that

ri(P, k) ≥ ri+1(P, k). (2.1)

For a t-chain X ⊂ P and y /∈ X , let T (X , y) denote the number of k-chains which
contain X and y. For a t-chain X and a k-chain L in P, such that |X ∪L | = k + 1, let
y∗L ∈ L \X such that T (X , y∗L) minimize T (X , y) for the elements y ∈ L \X , and set

τ(X , L) = ∑
y∈L\X , y6=y∗L

T (X , y). (2.2)

Also define
Mτ(P, k) = max

X ,L
τ(X , L), (2.3)

and
M∗

τ (P, k) = max
X ,L

τ(X ,L)=Mτ(P,k)

T (X , y∗L). (2.4)

Now the following Hilton-Milner type theorem holds:

Theorem 2.1. For fixed 1 ≤ t < k, and a sequence of posets Pn, let us be given a
maximum sized family Fn of non-trivially t-intersecting k-chains in Pn. Assume further
that

lim
n→∞

rt+2(Pn, k)/M∗
τ (Pn, k) = 0. (2.5)

Then, for n sufficiently large, Fn has one of the following two descriptions:
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(i) there exists a t-chain X and a (k+1− t)-chain Y , such that X ∩Y = /0; and Fn is
the following set of k-chains:

F (X , Y ) ={L : X ⊆ L and L ∩Y 6= /0}
∪{L : Y ⊆ L and |L ∩X | = t −1}, (2.6)

where the second set of chains is non-empty;
(ii) there exists a (t +2)-chain Z, and Fn is the following set of k-chains:

F (Z) = {L : |L ∩Z| ≥ t +1}, (2.7)

and |
⋂

L∈Fn L ∩Z| ≤ t −1.

3. New Results

Let t < k < ` and n1 ≤ ·· · ≤ n` be positive integers. We define two families F1(t, k;n1,
. . . , n`) and F2(t, k;n1, . . . , n`) of non-trivially t-intersecting families in F`(n1, . . . , n`)
with support size k as follows.

(i) Let j1, j2, . . . , jk+1 be integers satisfying 1 ≤ ji ≤ ni for i ∈ [1, k + 1]. We define
F1(t, k;n1, . . . , n`) as the set of `-tuples k = (k1, . . . , k`) with support size k which
belong to the set

{k : ki = ji for all i ∈ [1, t] and for at least one i ∈ [t +1, k +1]}

∪{k : ki = ji for all i ∈ [t +1, k +1] and for t −1 values i ∈ [1, t]}. (3.1)

(ii) Let j1, j2, . . . , jt+2 be integers satisfying 1 ≤ ji ≤ ni for i ∈ [1, t + 2]. We define
F2(t, k;n1, . . . , n`) as the set of `-tuples k = (k1, . . . , k`) with support size k which
belong to the set

{k : ki = ji for at least t +1 values i ∈ [1, t +2]}. (3.2)

Note that |F1(t, k;n1, . . . , n`)| and |F2(t, k;n1, . . . , n`)| do not depend on the particular
choices of the ji. Our goal is to give sufficient conditions for the parameter values
t, k, `, n1, . . . , n` which ensure that either F1 or F2 is of maximum size among the non-
trivially t-intersecting families of `-tuples with support size k.

Given n1 ≤ ·· · ≤ n`, we define a partially ordered set (P (n1, . . . , n`), ≺) as follows.
The underlying set is P (n1, . . . , n`) := {(i, j) : 1 ≤ i ≤ `, 1 ≤ j ≤ ni}, and (i1, j1) ≺
(i2, j2) if and only if i1 < i2. The map k = (k1, . . . , k`) 7→ {(i, ki) ∈ P (n1, . . . , n`) : ki 6=
0} is obviously a bijection between F`(n1, . . . , n`) and the chains in the poset (P (n1, . . . ,
n`), ≺), and `-tuples with support size k are mapped to k-chains. Therefore, t-intersec-
ting families of `-tuples in F`(n1, . . . , n`) with support size k correspond to t-intersecting
k-chains in (P (n1, . . . , n`), ≺). For a subset Y ⊆ P (n1, . . . , n`), we define the support
of Y as the set of first coordinates of the elements of Y ; namely, supp(Y ) = {i ≤
` : ∃ j ≤ ni (i, j) ∈ Y }. We start with the determination of the quantities rt+2, Mτ, and
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M∗
τ defined in Section 2. Note that for any m-chain L in P = (P (n1, . . . , n`), ≺), we

have
TP ,k(L) = ∑

A⊂[1, `]\supp(L)
|A|=k−m

∏
i∈A

ni. (3.3)

Proposition 3.1. Let t < k < `, let P = (P (n1, . . . , n`), ≺) and let L be an m-chain in
P . Suppose that (i, ki) ∈ L and j 6∈ supp(L) with j < i, and let L∗ = (L \{(i, ki)})∪
{( j, k j)} for some k j ≤ n j. Then TP ,k(L∗) ≥ TP ,k(L), with equality if and only if n j =
n j+1 = · · · = ni.

Proof. We obtain TP ,k(L∗) from TP ,k(L) by replacing each occurrence of n j by ni in
the sum in (3.3). Hence the inequalities n j ≤ n j+1 ≤ ·· · ≤ ni imply both assertions of
the proposition.

Let σi(x1, x2, . . . , xm) denote the ith elementary symmetric polynomial in variables
x1, x2, . . . , xm. We define σ0(x1, x2, . . . , xm) = 1.

Lemma 3.2. Let t < k < ` and let P = (P (n1, . . . , n`), ≺). Then

rt+2(P , k) = ∑
A⊂[t+3, `]
|A|=k−t−2

∏
i∈A

ni = σk−t−2(nt+3, . . . , n`). (3.4)

Proof. Proposition 3.1 implies that for (t + 2)-chains L in P , the quantity TP ,k(L) is
maximized when supp(L) = [1, t +2].

Lemma 3.3. Let t < k < ` and let P = (P (n1, . . . , n`), ≺). Then for any t-chain X
and k-chain L in P with |X ∪L | = k + 1, we have Mτ(P , k) = τ(X , L) if and only if
the multiset relations {ni : i ∈ supp(X )} = {ni : 1 ≤ i ≤ t} and {ni : i ∈ supp(L)} ⊇
{ni : t +1 ≤ i ≤ k} hold.

Proof. We first note that the condition |X ∪L | = k +1 implies that X and L have t −1
common elements and |L \X | = k− t +1. Moreover, since τ(X , L) is the sum of only
k− t values T (X , y) with y ∈ L \X , it is possible that for a fixed t-chain X , τ(X , L) is
maximized for some L even though T (X , y) = 0 for some y ∈ L \X .

For a fixed t-chain X , Proposition 3.1 implies that τ(X , L) is maximized for a k-
chain L whose support contains the k− t smallest elements of [1, `]\ supp(X ). More-
over, another application of Proposition 3.1 shows that if X ′ is obtained by replacing an
element (i1, j1) ∈ X with some (i2, j2) satisfying i2 < i1 and i2 the smallest number not
in supp(X ) then τ(X ′, L ′)≥ τ(X , L) for an optimal L ′ constructed in the way described
in the previous sentence. Hence Mτ(P , k) = τ(X , L) for X , L with supp(X ) = [1, t] and
supp(L) ⊇ [t + 1, k]. Finally, Proposition 3.1 also implies that if supp(X ′) 6= [1, t] or
supp(L ′) 6⊇ [t +1, k] then τ(X ′, L ′) < Mτ(P , k), unless the condition about the multiset
of ni values described in the statement of the lemma holds.

Lemma 3.4. Let t < k < ` and let P = (P (n1, . . . , n`), ≺). Then

M∗
τ (P , k) = ∑

A⊂[t+1, `]\{k+1}
|A|=k−t−1

∏
i∈A

ni = σk−t−1(nt+1, . . . , n̂k+1, . . . , n`). (3.5)
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Proof. Let X be a t-chain and L be a k-chain with |X ∪L | = k + 1 and τ(X , L) =
Mτ(P , k). Then, by Lemma 3.3, we have the multiset relations {ni : i ∈ supp(X )} =
{ni : 1 ≤ i ≤ t} and {ni : i ∈ supp(L)} ⊇ {ni : t + 1 ≤ i ≤ k}. Also, we have k ≤
|supp(X ∪L)| ≤ k +1. If |supp(X ∪L)| = k then there exists y∗L = (i, ki) ∈ L \X with
i∈ supp(X ) and so T (X , y∗L ) = 0. If |supp(X ∪L)|= k+1 then Proposition 3.1 implies
that T (X , y) is minimized in L \X for the y∗L = (i, ki)∈ L \X with i = maxsupp(L \X )
and, in order to maximize T (X , y∗L), we have to choose maxsupp(L \X ) as small as
possible. Combining these observations, we obtain that maxT (X , y∗L) is achieved in
the case supp(X ) = [1, t], supp(L \X ) = [t +1, k+1], and supp(y∗L ) = {k+1}, leading
to (3.5).

The following two lemmas will be useful at the comparison of rt+2 and M∗
τ .

Lemma 3.5. Let t, k, ` satisfy k ≥ t +2 and ` ≥ 2k− t −1, and let P = (P (n1, . . . , n`),
≺). Then

rt+2(P , k) ≤
(

1+
k− t −2

`−2k + t +2

)
σk−t−2(nt+1, . . . , n̂k+1, . . . , n`).

Proof. On one hand, if A ⊆ [t +1, `] satisfies |A| = k− t −2 and k +1 ∈ A then

∏
i∈A

ni ≤
∑s∈[k+2, `]\A ns

(`− k−1)− (k− t−3) ∏
i∈A\{k+1}

ni.

On the other hand, any (k−t−2)-element subset B of [t +1, `]\{k+1} can be obtained
at most k−t−2 ways by replacing k+1 by an element j ≥ k+2 of B. Hence Lemma 3.2
implies

rt+2(P , k) = σk−t−2(nt+3, . . . , n`)

≤ σk−t−2(nt+1, . . . , n`)

≤

(
1+

k− t −2
`−2k + t +2

)
σk−t−2(nt+1, . . . , n̂k+1, . . . , n`).

Lemma 3.6. Let t, k, ` satisfy k ≥ t +2 and let P = (P (n1, . . . , n`), ≺). Then

M∗
τ (P , k) ≥ nt+1

`− k +1
k− t −1

σk−t−2(nt+1, . . . , n̂k+1, . . . , n`). (3.6)

Proof. Using the fact that any (k− t −2)-element subset B of [t +1, `]\{k +1} can be
obtained (`− t−1)− (k− t−2) = `−k+1 ways by deleting an element different from
k +1 from a (k− t −1)-element subset of [t +1, `]\{k +1}, we have

(k− t −1)σk−t−1(nt+1, . . . , n̂k+1, . . . , n`)

=
`

∑
s=t+1
s6=k+1

nsσk−t−2(nt+1, . . . , n̂s, . . . , n̂k+1, . . . , n`)

≥ nt+1(`− k +1)σk−t−2(nt+1, . . . , n̂k+1, . . . , n`).

Hence Lemma 3.4 implies (3.6).
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Lemma 3.7. Let t < k < ` and P = (P (n1, . . . , n`), ≺). If X is a t-chain and Y is a
(k+1− t)-chain with X ∩Y = /0 then |F (X , Y )| ≤ |F1(t, k;n1, . . . , n`)| for the families
of chains defined in (2.6) and (3.1), respectively.

Proof. First note that |supp(X )∩ supp(Y )| ≤ 1, because otherwise there is no k-chain
containing Y and t − 1 elements of X as required in (2.6). If |supp(X )∩ supp(Y )| =
1, say (i, fi) ∈ X and (i, gi) ∈ Y for some fi 6= gi, then there exists exactly one k-
chain in F (X , Y ) which contains (i, gi), namely, (Y ∪ X ) \ {(i, fi)}. Hence, if we
define Y1 = (Y \ {(i, gi)})∪ {( j, 1)} for some j 6∈ supp(X ∪ Y ) then |F (X , Y )| ≤
|F (X , Y1)|, because F (X , Y1) contains all but one chain from F (X , Y ) and it contains
t chains not in F (X , Y ) (the chains obtained by deleting an element of X from X ∪Y ).
Therefore, it is enough to prove that |F (X , Y )| ≤ |F1(t, k;n1, . . . , n`)| for chains X , Y
with supp(X )∩ supp(Y ) = /0.

Suppose now that supp(X )∩ supp(Y ) = /0. There are exactly t chains in F (X , Y )
containing Y and there are t chains in F1(t, k;n1, . . . , n`) with support containing [t +
1, k +1]; hence it is enough to show that for the set of chains

F ∗(X , Y ) = {L : X ⊆ L and L ∩Y 6= /0},

and
F ∗

1 (t, k;n1, . . . , n`) = {L ∈ F1(t, k;n1, . . . , n`) : supp(L) ⊇ [1, t]},

we have |F ∗(X , Y )| ≤ |F ∗
1 (t, k;n1, . . . , n`)|. If supp(X ) 6= [1, t] then we define a new

set of chains by the following shifting operation. Let i1 ∈ [1, t] be the smallest number
not in supp(X ) and let i2 ∈ supp(X ) with i2 > i1, say (i2, ki2) ∈ X . For a k-chain
L ∈ F ∗(X , Y ), let

f (L) =





(L \{(i2, ki2)})∪{(i1, 1)}, if i1 6∈ supp(L),

(L \{(i1, ki1), (i2, ki2)})∪{(i1, 1), (i2, ki1)}, if (i1, ki1) ∈ L for some
ki1 ≤ ni1 .

(3.7)
Moreover, define X ′ = (X \{(i2, ki2)})∪{(i1, 1)} and

Y ′ =





Y , if i1 6∈ supp(Y ),

(Y \{(i1, ki1)})∪{(i2, ki1)}, if (i1, ki1) ∈ Y for some ki1 ≤ ni1 .
(3.8)

Then it is clear that f is an injection from F ∗(X , Y ) into F ∗(X ′, Y ′), and so |F ∗(X ,
Y )| ≤ |F ∗(X ′, Y ′)| and |F (X , Y )| ≤ |F (X ′, Y ′)|. Repeating this procedure, we arrive
to some t-chain X ′′ and (k+1−t)-chain Y ′′ such that |F ∗(X , Y )| ≤ |F ∗(X ′′, Y ′′)| and
supp(X ′′) = [1, t] and supp(X ′′)∩supp(Y ′′) = /0. It is enough to show that |F ∗(X ′′, Y ′′)|
≤ |F ∗

1 (t, k;n1, . . . , n`)|.
If supp(Y ′′) 6= [t + 1, k + 1] then let i1 ∈ [t + 1, k + 1] be the smallest number not

in supp(Y ′′) and let i2 ∈ supp(Y ′′) with i2 > i1, say (i2, ki2) ∈ Y ′′. By renumbering
the i2th coordinate, we may assume that ki2 ≤ ni1 . We apply the following modifi-
cation of the shifting operation described in the previous paragraph. For a k-chain



184 P.L. Erdős, Á. Seress, and L.A. Székely

L ∈ F ∗(X ′′, Y ′′), let

g(L) =





(L \{(i2, j2)})∪{(i1, j2)}, if i1 6∈ supp(L) and
(i2, j2) ∈ L with j2 ≤ n1,

(L \{(i1, j1)})∪{(i2, j1)}, if i2 6∈ supp(L) and
(i1, j1) ∈ L ,

(L \{(i1, j1), (i2, j2)})∪{(i1, j2), (i2, j1)}, if (i1, j1),(i2, j2) ∈ L and
j2 ≤ n1,

L , otherwise.
(3.9)

Moreover, define Y ′′′ = (Y ′′ \ {(i2, ki2)})∪ {(i1, ki2)}. Then g is an injection from
F ∗(X ′′, Y ′′) into F ∗(X ′′′, Y ′′′), and so |F ∗(X ′′, Y ′′)| ≤ |F ∗(X ′′′, Y ′′′)| and |F (X ′′,
Y ′′)| ≤ |F (X ′′′, Y ′′′)|. Repeating this procedure, we arrive to a member of the family
F ∗

1 (t, k;n1, . . . , n`).

Lemma 3.8. Let t < k < ` and let P = (P (n1, . . . , n`), ≺). If Z is a (t + 2)-chain
then |F (Z)| ≤ |F2(t, k;n1, . . . , n`)| for the families of chains defined in (2.7) and (3.2),
respectively.

Proof. Given F (Z), if supp(Z) 6= [1, t + 2] then we can apply the shifting procedure
described in (3.9), not decreasing the size of F (Z), and eventually arriving to a set of
chains in the family F2(t, k;n1, . . . , n`).

Lemma 3.9. For F1 and F2 from (3.1) and (3.2),

|F1| = σk−t(nt+1, . . . , n`)−σk−t(nt+1 −1, . . . , nk+1 −1, nk+2, . . . , n`)+ t,

|F2| =
t+2

∑
i=1

σk−t−1(ni, nt+3, . . . , n`)− (t +1)σk−t−2(nt+3, . . . , n`).

Proof. Explanation for |F1|. The second line of (3.1) yields the term t, and the cardi-
nality arising from the first line of (3.1) is obtained as a difference, counting all func-
tions k with ki = ji for all i ∈ [1, t], and subtracting the number of functions k with
ki = ji for all i ∈ [1, t] that have no i ∈ [t +1, k +1] with ki = ji.

Explanation for |F2|. Fix a (t +2)-chain Z with support [1, t +2]. For i ∈ [1, t +2],
the number of k-chains intersecting Z in coordinates 1, 2, . . . , i− 1, i + 1, . . . , t + 2 is
σk−t−1(ni, nt+3, . . . , n`). Adding these expressions for all i ∈ [1, t + 2], the k-chains
intersecting Z in exactly t + 1 coordinates are counted once, and the k-chains inter-
secting Z in t + 2 coordinates are counted t + 2 times. The negative term reduces the
multiplicity of the latter ones to one.

In order to apply Theorem 2.1, we have to find values of the parameters t, k, `, n1,
. . . , n` such that the hypothesis of the theorem is satisfied.

Theorem 3.10. Let t < k < ` be fixed. Then there exists a bound n(t, k, `) such that if
n > n(t, k, `) then for any non-trivially t-intersecting family F of `-tuples with support
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k in F`(n, . . . , n) we have

|F | ≤ max{|F1(t, k;n, . . . , n)|, |F2(t, k;n, . . . , n)|}.

Moreover, if k > 2t +1 then for large enough n we have

|F1(t, k;n, . . . , n)| > |F2(t, k;n, . . . , n)|

and if t +1 < k ≤ 2t +1 then for large enough n we have

|F1(t, k;n, . . . , n)| < |F2(t, k;n, . . . , n)|.

Proof. Let Pn = (P (n, . . . , n), ≺). By Lemmas 3.2 and 3.4, we have rt+2(Pn, k) =(l−t−2
k−t−2

)
nk−t−2 and M∗

τ (Pn, k) =
(l−t−1

k−t−1

)
nk−t−1. Hence

lim
n→∞

rt+2(Pn, k)
M∗

τ (Pn, k)
= lim

n→∞

k− t −1
l − t −1

·
1
n

= 0 (3.10)

and so Theorem 2.1, together with Lemmas 3.7 and 3.8, implies that for large enough n
one of the maximum sized families of t-intersecting `-tuples with support k in F`(n, . . . ,
n) is F1 = F1(t, k;n, . . . , n) or F2 = F2(t, k;n, . . . , n).

Our final task is to compare |F1(t, k;n, . . . , n)| and |F2(t, k;n, . . . , n)|. From
Lemma 3.9 we have

|F1| = t +

(
l − t
k− t

)
nk−t −

k−t

∑
i=0

(
k +1− t

i

)(
l − k−1
k− t − i

)
(n−1)ink−t−i (3.11)

and

|F2| = (t +2)

(
l − t −1
k− t −1

)
nk−t−1 − (t +1)

(
l − t −2
k− t −2

)
nk−t−2. (3.12)

Suppose now that t + 2 ≤ k. For fixed t, k, `, as n → ∞, we expand (3.11) and (3.12)
as polynomials of n. There is nothing to do with (3.12), as it is already written in
polynomial form. In (3.11), the coefficient of nk−t in |F1| is

(
l− t
k− t

)
−

k−t

∑
i=0

(
k +1− t

i

)(
l − k−1
k− t − i

)
= 0,

the coefficient of nk−t−1 in |F1| is

k−t

∑
i=1

i
(

k +1− t
i

)(
l − k−1
k− t − i

)
=

k−t

∑
i=1

(k +1− t)
(

k− t
i−1

)(
l − k−1
k− t − i

)

=(k +1− t)
(

l − t −1
k− t −1

)
,

and similarly the coefficient of nk−t−2 in |F1| is

−
k−t

∑
i=1

(
i
2

)(
k +1− t

i

)(
l − k−1
k− t − i

)
= −

(k +1− t)(k− t)
2

(
l− t −2
k− t −2

)
.
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We compare |F1| and |F2| for large n. The leading term in both is nk−t−1, with co-
efficients (k + 1− t)

(l−t−1
k−t−1

)
and (t + 2)

(l−t−1
k−t−1

)
. Therefore, if k + 1− t > t + 2, i.e.

k > 2t +1, then for large enough n we have |F1| > |F2| and if k < 2t +1 then for large
enough n we have |F1| < |F2|. If k− t −1 = t +2, i.e. k = 2t +1, then the main terms
have equal coefficients. We compare the coefficients of the next term, nk−t−2 = nt−1 in
|F1| and |F2|, which are − (t+2)(t+1)

2

(l−t−2
t−1

)
and −(t +1)

(l−t−2
t−1

)
, respectively. We have

|F1| < |F2|.

Theorem 3.11. Let t < k be fixed. Then there exists a bound `(t, k) such that if ` >
`(t, k) then for any non-trivially t-intersecting family F of `-tuples with support k in
F`(n1, . . . , n`) we have

|F | ≤ max{|F1(t, k;n1, . . . , n`)|, |F2(t, k;n1, . . . , n`)|}.

Proof. Let P` = (P (n1, . . . , n`), ≺). If k = t +1 then rt+2(P`, k) = 0 and M∗
τ (P`, k) > 0.

If k ≥ t +2 then by Lemmas 3.5 and 3.6, for ` ≥ 2k− t −1 we have

rt+2(P`, k)
M∗

τ (P`, k)
≤

(
1+

k− t −2
`−2k + t +2

)
·

1
nt+1

·
k− t −1
`− k +1

(3.13)

and therefore

lim
`→∞

rt+2(P`, k)
M∗

τ (P`, k)
= 0.

So Theorem 2.1, together with Lemmas 3.7 and 3.8, implies that for large enough ` one
of the maximum sized families of t-intersecting `-tuples with support k in F`(n1, . . . , n`)
is F1 = F1(t, k;n1, . . . , n`) or F2 = F2(t, k;n1, . . . , n`).

Theorem 3.12. Let t < k < ` be fixed, satisfying ` ≥ 2k− t − 1. Then there exists a
bound n(t, k, `) such that if nt+1 > n(t, k, `) then for any non-trivially t-intersecting
family F of `-tuples with support k in F`(n1, . . . , n`) we have |F | ≤ max{|F1(t, k;n1,
. . . , n`)|, |F2(t, k;n1, . . . , n`)|}.

Proof. Let Pnt+1 = (P (n1, . . . , nt+1, . . . , n`), ≺). If k = t +1 then rt+2(Pnt+1 , k) = 0 and
M∗

τ (Pnt+1 , k) > 0. If k ≥ t +2 then, analogously to (3.13) in the proof of Theorem 3.11,

rt+2(Pnt+1 , k)
M∗

τ (Pnt+1 , k)
≤

(
1+

k− t −2
`−2k + t +2

)
·

1
nt+1

·
k− t −1
`− k +1

(3.14)

and therefore

lim
nt+1→∞

rt+2(Pnt+1 , k)
M∗

τ (Pnt+1 , k)
= 0.

So Theorem 2.1, together with Lemmas 3.7 and 3.8, implies that for large enough
nt+1 one of the maximum sized families of t-intersecting `-tuples with support k in
F`(n1, . . . , n`) is F1 = F1(t, k;n1, . . . , n`) or F2 = F2(t, k;n1, . . . , n`).
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