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Abstract. The function lattice, or generalized Boolean algebra, is the set of /-tuples with the
ith coordinate an integer between 0 and a bound n;. Two {-tuples t-intersect if they have at
least + common nonzero coordinates. We prove a Hilton—Milner type theorem for systems of
t-intersecting ¢-tuples.
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1. Introduction

Lett, {,and n; < ny < --- < ny be positive integers. Denote by Fy(ny,..., n¢) the set of
all /-tuples
{k=(ki,...,ke): 0 <k <m, 1 <i< L}

The support of an {-tuple k is the set of the non-zero coordinates: supp(k) = {i: k; # 0} .
We can define a partial ordering on Fy(ny, ..., ny) by j <k if supp(j) C supp(k) and for
all i € supp(j) we have j; = k;. This partially ordered set is called the function lattice
(see for example [5]). Another frequently used name is generalized Boolean algebra,
because the case ny = ny = 1, i.e., when all n; are equal to 1, is just the case of (charac-
teristic vectors of) set systems on an ¢-element underlying set.

We say that two ¢-tuples j and k are -intersecting if there are at least ¢ different
integers i € supp(j) Nsupp(k) such that j; = k;, or, with other words, if there is an ¢-
tuple t with support of size ¢ such that t <k and t < j. Denote by m,(ny,...,ny) the
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maximum cardinality of z-intersecting ¢-tuples in F¢(ny,..., ny) and by M;(ny,..., n¢)
the set of all f-intersecting families with this cardinality. The problems to determine
the value my (ny,. .., ny) and to describe the structures of the families in M, (ny, ..., ny),

have a very long and notable history even in the case n, > 1, and this is the case we are
concentrating on in this note.

We start with the history of the case r = 1. C. Berge (1974, [4]) determined m, (n1,
..., ng) and My(ny, ..., ng) when all {-tuples have ¢-element supports. Different proofs
of Berge’s result were given by Hsieh (1975, [19]) and by Livingston (1979, [21]) in
the case when n; = ny. The first result for set systems with uniform support size dif-
ferent from ¢, but with n; = ny, is due to Frankl (published in 1983, [9]). Moreover,
Engel (1984, [10]) handled the case with n; = ny, when the supports of the ¢-tuples
are arbitrary. In fact, Engel proved a Bollobds-type inequality (in the spirit of [8]) for
the set of intersecting /-tuples; a simpler proof of this last result is due to P.L.. Erd&s,
U. Faigle and W. Kern (1992, [12]). In 2001 C. Bey gave a complete solution to the
t =1 case, for arbitrary n;’s and any uniform support size (2001, [6]), using his general
weighted intersection theorem. This case shows interesting connections to the complete
intersection theorem of R. Ahlswede and L. Khachatrian ([2]).

For arbitrary values of ¢, the first result is due to D. Kleitman (1966, [20]) in the
case when n; = ny = 2, and all supports are of size {. Then P. Frankl and Z. Fiiredi
handled the case ¢ > 15, all supports are of size ¢, and n; = ny (1980, [14]), using
FranklI’s version of the Erd6s-Ko-Rado theorem (see [11]). Later A. Moon generalized
this result for cross 7-intersecting families (1982, [22]). The paper by Deza and Frankl
(1983, [9]) also contains the solution for the case when all supports are of the same size
k and n; = ny, for ¢ large enough as a function of k and . H-D. Gronau proved the
first result for ¢-intersecting families with /-element supports in the case of non-equal
n;’s (1983, [16]). R. Ahlswede and L. Khachatrian (1998, [3]), and independently P.
Frankl and N. Tokushige (1998, [15]), solved the ¢-intersecting problem for arbitrary ¢
for {-tuples with full support, applying Ahlswede and Khachatrian’s seminal complete
intersection theorem for set systems (1997, [2]). Finally C. Bey (1999, [5]) determined
all parameters ¢, k, ¢, n, for which “fixing ¢ coordinates” yields the solution to the inter-
section problem.

All these results can be summarized in the following structural way: under some
conditions for the parameter values, the (often unique) optimal ¢-intersecting family
consists of all ¢-tuples that are greater or equal than a fixed ¢-tuple t with support size 7.
In the literature such set systems are called #rivially t-intersecting families. As it is well
known in the theory of 7-intersecting set systems, there is a long-standing effort to solve
the nontrivial t-intersection problem: what is the size and the structure of the maximum
t-intersecting families where the total intersection of the sets has less than ¢ elements.
The first such result is due to A.J.H. Hilton and E.C. Milner (1967, [18]). The complete
solution is again due to R. Ahlswede and L. Khachatrian (1996, [1]).

As far as these authors are aware, the only 7-intersection result known for the func-
tion lattice Fy(ny,.. ., ny) is due to C. Bey and K. Engel (2000, [7, Example 10, 11 and
Lemma 18]): this is the complete solution to the non-trivial #-intersection problem in
the case of equal n;’s.

The goal of this paper is to prove a more general non-trivial 7-intersection result
for the subset of the function lattice Fy(n,..., n;) consisting of ¢-tuples with a fixed
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size k of the support, for some parameter values r < k < fand ny <ny <--- <ny. The
result is based on a Hilton—Milner type theorem for poset series, proved by the authors
(2000, [13]). The proof of this latter uses the so-called kernel method, introduced by
A. Hajnal and B. Rothschild (1973, [17]), therefore all of our results are valid only
from a threshold for the parameters. We note that, perhaps surprisingly, the application
of [13] is not for the natural partial order of F¢(n,..., ng). We shall investigate families
of intersecting chains in the natural partial order of Fy(ni,..., n¢) in a forthcoming
paper. Of course, a direct application of the kernel method may yield similar results,
but citing [13] saves a lot of work. We admit that the methods of [7] are likely to allow
generalization to the case of different n;’s.

In Section 2 we recall the necessary details from [13], while in Section 3 we re-
formulate the #-intersection problem of the function lattice and apply for it the method
described in Section 2.

2. Non-Trivial 7-Intersection Results for Posets

A t-chain L in a poset P is a strict chain of elements £L = (x; < xy < --- < x;). For a
given r-chain £ = (x; <x2 <--- <x;), let Tpi(x1, x2,..., x;) denote the set of k-chains
in P which contain £ as a subset. Define Tpi(x1,x2, ...,x) = [Tpi(x1, x2,..., x|
Sometimes we write T instead of Tpy, when it does not cause ambiguity. Also define
r¢(P, k) = max Tpr(x1, x2,..., %), where the maximum is taken for #-chains x| < x» <
.-+ < xy in P. It follows from the definition that

ri(P k) > ris1 (P k). 2.0

For a t-chain X C P and y ¢ X, let T(X,y) denote the number of k-chains which
contain X and y. For a r-chain X and a k-chain £ in P, such that [ XU L| = k+ 1, let
y% € L\ X such that T(X, y} ) minimize 7 (X, y) for the elements y € £\ X, and set

WX, L)= )  T(Xy). 2.2
YEL\X, y#y}
Also define
M (P, k) = max (X, L), (2.3)
X, L
and
MPK)=  max  T(X.y}). 24)

WX, L)=Mx(P,k)
Now the following Hilton-Milner type theorem holds:
Theorem 2.1. For fixed 1 <t < k, and a sequence of posets Py, let us be given a

maximum sized family F, of non-trivially t-intersecting k-chains in P,. Assume further
that

1im ri2(Pa, &)/ M; (P, k) = 0. 2.5)

Then, for n sufficiently large, F,, has one of the following two descriptions:
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(i) there exists a t-chain X and a (k+ 1 —1t)-chain Y, such that XN = 0; and F, is
the following set of k-chains:

F(X,9)={L: XC Land LNY #0}
U{L: ¥ C Land |LNX|=t—1}, (2.6)

where the second set of chains is non-empty;
(ii) there exists a (t +2)-chain Z, and T, is the following set of k-chains:

F(Z)={L: |LNZ|>1+1}, (2.7)

and |Npeq, LNZ| <t —1.

3. New Results

Lett <k < fandn; <--- <ny be positive integers. We define two families 7 (z, k;ny,
...,ng) and Fo(t, k;ny, ..., ng) of non-trivially 7-intersecting families in Fy(ny, ..., ny)
with support size k as follows.

(i) Let ji, j2,..., jr+1 be integers satisfying 1 < j; < n; fori € [1, k+ 1]. We define
Fi(t, k;ny,..., ng) as the set of ¢-tuples k = (ky, ..., k¢) with support size k which
belong to the set

{k: k; =j; forall i €[1,¢] and for at leastone i € [t+1,k+ 1]}
U{k: k; = ji forall i€ [t+1,k+1]andforz—1valuesi€ [1,¢]}.  (3.1)

(i) Let ji, j2,..., ji+2 be integers satisfying 1 < j; < n; fori € [1,1+2]. We define
Fa(t, k;ny, ..., ng) as the set of ¢-tuples k = (ky, ..., k) with support size k which
belong to the set

{k: k; = j; for at least# + 1 valuesi € [1,7+2]}. (3.2)

Note that | Fi (¢, k;n1,. .., ne)| and | F2(¢, k;ny, ..., ng)| do not depend on the particular
choices of the j;. Our goal is to give sufficient conditions for the parameter values
t,k, ¢, ny,..., ng which ensure that either 47 or %, is of maximum size among the non-
trivially 7-intersecting families of ¢-tuples with support size k.

Given nj < --- < ny, we define a partially ordered set (P(n1,..., ng), <) as follows.
The underlying set is P(ni,...,ne) :={(, j): 1 <i</{, 1<j<mn;}, and (i1, 1) <
(i2, jo) if and only if i} < ip. The map k = (ky,..., k¢) — {(i, ki) € P(ny,...,ne): ki #
0} is obviously a bijection between Fy(n,.. ., n¢) and the chains in the poset (P(ny,...,
ng), <), and ¢-tuples with support size k are mapped to k-chains. Therefore, ¢-intersec-
ting families of ¢-tuples in Fy(ny, ..., ny) with support size k correspond to z-intersecting
k-chains in (P(ny,...,n¢), <). For a subset 9 C P(ny,..., ng), we define the support
of 9 as the set of first coordinates of the elements of 9’; namely, supp(9) = {i <
0: 37 <n; (i, j) € Y}. We start with the determination of the quantities r;12, M, and
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M defined in Section 2. Note that for any m-chain £ in P = (P(ny,..., ne), <), we

have
TTJ((L) = Z Hni. (33)
AC[1,{]\supp(L) i€A
|A|=k—m

Proposition 3.1. Lett <k </, let P = (P(ny,...,ny), <) and let L be an m-chain in
P. Suppose that (i, ki) € L and j & supp(L) with j <i, and let L* = (L\{(i, ki) }) U
{(J, kj)} for some kj < nj. Then Tp (L*) > Tp (L), with equality if and only if n; =
nji1=--=n

Proof. We obtain Tp ;(L*) from Tp (L) by replacing each occurrence of n; by n; in
the sum in (3.3). Hence the inequalities n; < nj; < --- < n; imply both assertions of

the proposition. |
Let 6;(x1, x2,. .., Xm) denote the ith elementary symmetric polynomial in variables
X1, X2, Xm. We define 6o(x1, x2,...,%n) = L.

Lemma 3.2, Lett <k < {andlet P = (P(ny,...,ng), <). Then

ra(® k)= Y []ni=oci—a(nuis,...,no). (34)
ACi+3,(] i€A
|A|=k—1-2

Proof. Proposition 3.1 implies that for (r +2)-chains £ in P, the quantity Tp ;(L) is
maximized when supp(L£) = [1,1+2]. |

Lemma 3.3. Let t < k < { and let P = (P(n1,...,ny), <). Then for any t-chain X
and k-chain L in P with | XU L] = k+ 1, we have M(P, k) = (X, L) if and only if
the multiset relations {n;: i € supp(X)} = {n;: 1 <i <t} and {n;: i € supp(L)} D
{ni: t+1<i<k} hold.

Proof. We first note that the condition |[X U £| = k+ 1 implies that X and £ have s —1
common elements and | £\ X| = k—t+ 1. Moreover, since T(X, L) is the sum of only
k—t values T(X,y) with y € L\ X, it is possible that for a fixed ¢-chain X, ©(X, L) is
maximized for some £ even though T (X, y) =0 for some y € L\ X.

For a fixed ¢-chain X, Proposition 3.1 implies that T(X, L) is maximized for a k-
chain £ whose support contains the k — ¢ smallest elements of [1, ¢] \ supp(X). More-
over, another application of Proposition 3.1 shows that if X’ is obtained by replacing an
element (i1, j;) € X with some (iz, j») satisfying i» < ij and i the smallest number not
in supp(X) thent(X’, L") > (X, L) for an optimal L’ constructed in the way described
in the previous sentence. Hence M (P, k) = t(X, L) for X, L with supp(X) = [1, ¢] and
supp(L) 2 [t + 1, k]. Finally, Proposition 3.1 also implies that if supp(X’) # [1,¢] or
supp(L') 2 [t+ 1,k then T(X', L") < M(P, k), unless the condition about the multiset
of n; values described in the statement of the lemma holds. |

Lemma 3.4. Lett < k < { and let P = (P(n1,...,ny), <). Then

M:(Tvk): Z Hnizckftfl(nlﬁ*l;"'ar@a"'vn[)' (3.5)
AC[t+1,0\{k+1} icA
|A|=k—1—1
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Proof. Let X be a t-chain and L be a k-chain with [ XU L] =k+ 1 and ©(X, L) =
M (P, k). Then, by Lemma 3.3, we have the multiset relations {n;: i € supp(X)} =
{ni: 1 <i<t}and {n;: i €supp(L)} D {ni: t+1 <i<k}. Also, we have k <
|supp(X U L)| < k+ 1. If [supp(X U L)| = k then there exists y; = (i, k;) € L\ X with
i €supp(X) andso T'(X, y% ) =0. If [supp(X U L)| = k+ 1 then Proposition 3.1 implies
that 7(X, y) is minimized in £\ X for the y}; = (i, k;) € L\ X with i = maxsupp(L\ X)
and, in order to maximize T'(X, y} ), we have to choose maxsupp(L \ X) as small as
possible. Combining these observations, we obtain that max 7' (X, y} ) is achieved in
the case supp(X) = [1, 1], supp(L\ X) = [t+ 1, k+ 1], and supp(y? ) = {k+ 1}, leading
to (3.5). |

The following two lemmas will be useful at the comparison of r,» and Mj.

Lemma 3.5. Lett, k, ¢ satisfy k >t+2 and £ > 2k—t — 1, and let P = (P(ny,..., ny),
<). Then

k—t-2
£—=2k+1+2
Proof. On one hand, if A C [t + 1, ¢] satisfies |A| =k —t—2 and k+ 1 € A then

(P, K) < <1+ ><skt2<n,+1,...,rm...,ng>.

< Ysclk+2,0)\A s
W= o) = (k—1—3)

n;i.
ieA\ [k +1}
On the other hand, any (k —¢ —2)-element subset B of [f+ 1, £]\ {k+ 1} can be obtained

at most k —t — 2 ways by replacing k4 1 by an element j > k+2 of B. Hence Lemma 3.2
implies

rIJrZ(Tv k) == Gk7t72(nz+3a sy n[)
<Ok r-2(ri1,---,10)
k—t—2 _
< (1+m>(5k12(”t+la---7”k+17---7né)' 1
Lemma 3.6. Lett, k, ¢ satisfy k >t +2 and let P = (P(ny,...,np), <). Then
N {—k+1 _
M (P, k) > ne T—i—1 Okt 2(Mttyeos Mht1s-e e, M) (3.6)

Proof. Using the fact that any (k — — 2)-element subset B of [t + 1, £] \ {k+ 1} can be
obtained (¢ —t —1) — (k—t—2) = £ —k+ 1 ways by deleting an element different from
k+1froma (k—t— 1)-element subset of [r+ 1, ¢]\ {k+ 1}, we have

(k_t_ I)katfl(nl”rla-"a ’/ﬁ(:f’\l)"'?n[)
4
= Z ns6k7t72(nl+la"'7ﬁt&'a"'vn/ﬁle"' ’ I’l[)
s=1+1
s#k+1
> I’l;+1(€—k+ 1)6k7t72(nt+17' () @7' () nf)'

Hence Lemma 3.4 implies (3.6). |
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Lemma 3.7. Lett <k < {and P = (P(ny,...,ne), <). If X is a t-chain and ¥ is a
(k+1—1t)-chainwith XNY =0 then | F (X, V)| <|Fi(t, k;n1,..., ng)| for the families
of chains defined in (2.6) and (3.1), respectively.

Proof. First note that |supp(X) Nsupp(9')| < 1, because otherwise there is no k-chain
containing 9 and 7 — 1 elements of X as required in (2.6). If [supp(X) Nsupp(Y)| =
1, say (i, fi) € X and (i, g;) € ) for some f; # g;, then there exists exactly one k-
chain in F (X, 9") which contains (i, g;), namely, (9”UX)\ {(i, f;)}. Hence, if we
define 97 = (9°\ {(i, £)}) U {(j, 1)} for some j & supp(X U9) then | (X, 9)| <
|F (X, 91)|, because F (X, 91 ) contains all but one chain from F (X, ) and it contains
t chains not in F (X, &) (the chains obtained by deleting an element of X from X U%).
Therefore, it is enough to prove that | F (X, 9)| < |Fi(t, k;ni,..., ng)| for chains X, &
with supp(X) Nsupp(9) = 0.

Suppose now that supp(X) Nsupp(9’) = 0. There are exactly ¢ chains in F (X, )
containing 9 and there are ¢ chains in ;(z, k;ny,..., ny) with support containing [r +
1, k+ 1]; hence it is enough to show that for the set of chains

FX,9)={L: XC Land LNY # 0},

and
Fr(t, kny,...,ng) ={L € F(t, kni,...,ng): supp(L) D [1,1]},

we have | F*(X, 9)| < |F(t, ksny,..., ng)|. If supp(X) # [1, t] then we define a new
set of chains by the following shifting operation. Let i; € [, ¢] be the smallest number
not in supp(X) and let ir € supp(X) with i» > iy, say (i2, ki,) € X. For a k-chain
LeF*X,9), let

(L\{ (22, ki) }) UL (i1, D, if iy & supp(L),
FL) = (L\{(ir, ki), (iz, ki) V) UL (i1, 1), (i, ki, )}, if (i1, ki,) € L for some
ki, <ny,.
3.7)
Moreover, define X' = (X \ {(i2, k;,) }) U{(i1, 1)} and
.Y if i & supp(Y),
y = 3.8)

(I \A{(i1, ki) })U{(i2, ki) }, if (i1, kiy) € O for some k;, < n, .

Then it is clear that f is an injection from ¥ *(X, ) into F*(X’, 9”), and so |F*(X,
N <|FH(X', 9" and | F (X, Y)| < |F (X', 9")|. Repeating this procedure, we arrive
to some #-chain X" and (k+ 1 —1)-chain 9" such that | F*(X, )| < |F* (X", 9")| and
supp(X”) =1, t] and supp(X") Nsupp(9”) = 0. It is enough to show that | F * (X", 7"
<|F(t, kny,..., ng)l.

If supp(9”) # [t+ 1, k+1] then let i; € [r+ 1, k+ 1] be the smallest number not
in supp(9”) and let i» € supp(9”) with i» > iy, say (i2, ki) € 9””. By renumbering
the i>th coordinate, we may assume that k;, < n;. We apply the following modifi-
cation of the shifting operation described in the previous paragraph. For a k-chain
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LeFHX", 9", let

(L\A{(i2, 2)H) U{(in, j2)}, if iy ¢ supp(L) and
(i, j2) € L with j» <ny,
(L\A{ G, ) V{2, 1)}, if ip ¢ supp(L) and
g(L)= (i1, j1) € L,
(LA 1y 1), (2, j2)H) U{(i1s j2), (2, j1)}s  if (ins 1), (i2, j2) € L and
J2 <y,
L, otherwise.

(3.9)
Moreover, define 9" = (9" \ {(i2, ki,)}) U{(i1, ki,) }. Then g is an injection from
FHX", ") into FH(X", ¥"), and so | F* (X", Y")| < |FH(X", ¥")| and | F (X",
YN < |F (X", Y"™)|. Repeating this procedure, we arrive to a member of the family
_‘}?(l‘,k;nl,...,ng). |

Lemma 3.8. Let t < k < { and let P = (P(ny,...,n¢), <). If Zis a (t +2)-chain
then |F(Z)| < |Fa(t, k;ny, ..., ne)| for the families of chains defined in (2.7) and (3.2),
respectively.

Proof. Given F(2), if supp(Z) # [1, ¢t + 2] then we can apply the shifting procedure
described in (3.9), not decreasing the size of ¥ (Z), and eventually arriving to a set of
chains in the family %> (z, k;ny, ..., ng). |

Lemma 3.9. For F; and F; from (3.1) and (3.2),

|f1| :Gk*[(nﬂrl?"'?n[)_ck*l(nﬂrl_17"'7nk+1_17nk+27"'an[)_'—tv

142
1Bl =Y Or—r1(ni i3, ng) = (14 1)Op—y—2(mi43,..., ng).
i=1

Proof. Explanation for | F;|. The second line of (3.1) yields the term ¢, and the cardi-
nality arising from the first line of (3.1) is obtained as a difference, counting all func-
tions k with k; = j; forall i € [1,¢], and subtracting the number of functions k with
ki = j; forall i€ [1,1] thathave noi € [t + 1, k+ 1] with k; = j;.

Explanation for | #3|. Fix a (¢ +2)-chain Z with support [1, 7+ 2]. Fori € [1,7+2],
the number of k-chains intersecting 2 in coordinates 1,2,...,i—1,i+1,...,t4+21is
Ok—r—1(ni, my43,...,ng). Adding these expressions for all i € [1, 4 2], the k-chains
intersecting 2 in exactly r + 1 coordinates are counted once, and the k-chains inter-
secting Z in ¢ + 2 coordinates are counted ¢ 4-2 times. The negative term reduces the
multiplicity of the latter ones to one. |

In order to apply Theorem 2.1, we have to find values of the parameters ¢, k, ¢, ny,
..., ng such that the hypothesis of the theorem is satisfied.

Theorem 3.10. Lert < k < ¢ be fixed. Then there exists a bound n(t, k, £) such that if
n > n(t, k, ) then for any non-trivially t-intersecting family F of £-tuples with support



Non-Trivial 7-Intersection in the Function Lattice 185

kinFy(n,...,n) we have
|F| <max{|F1(t, k;n,...,n)|, |Fa(t, k;n, ..., n)|}.
Moreover, if k > 2t + 1 then for large enough n we have
|Fi(t, ksn,...,n)| > |Fa(t, ksn,..., n)|
and ift+1 < k <2t+1 then for large enough n we have
|Fi(t, ksn, ..., n)| < |Fa(t, k;n,..., n)l.

Proof. Let B, = (P(n,...,n), <) By Lemmas 3.2 and 3.4, we have 42 (%,, k) =
(ll(j:%) k=1=2 and M ( an,k ( 11) k=1=1 Hence

hm r;+2( ) . k_t—l 1

lim-—— .~ =0 3.10
Py s S L g 3.10)

and so Theorem 2.1, together with Lemmas 3.7 and 3.8, implies that for large enough n
one of the maximum sized families of z-intersecting /-tuples with support k in Fy(n, ...,
n)is F1 = Fi(t, ksn,...,n) or Fo = Fo(t, k;n, ..., n).

Our final task is to compare |F(t, k;n,...,n)| and |%2(t, k;n,...,n)|. From
Lemma 3.9 we have

and l X l )
|Tz|=(t+2)<k:tt:1)nk“ (+1)(k_t:2> nk12, (3.12)

Suppose now that ¢ +2 < k. For fixed ¢, k, ¢, as n — oo, we expand (3.11) and (3.12)
as polynomials of n. There is nothing to do with (3.12), as it is already written in
polynomial form. In (3.11), the coefficient of n*~ in | | is

I—t\ & (k+1—1\[I—k—1
()5 () () =

the coefficient of ¥~ 1 in | F| is
(k) (k- i k—r1\ (1—k—1
= k+1—t
L) () B () )

—(k+1—1) (é:i:i)

and similarly the coefficient of n~'~2 in | ;| is

—Z( )(k+1—t> (zk__ktj) :_(k+1—2t)(k—t) <Ilc:tt:§>
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We compare |F;| and || for large n. The leading term in both is /=1, with co-
efficients (k+1—7)(!'"1) and (r+2)(.'"}). Therefore, if k+1—1>1+2, ie.
k > 2t + 1, then for large enough n we have | 71| > | #2| and if k < 2¢ + 1 then for large
enough n we have | Fi| < |F2|. If k—1—1=1+2,i.e. k=2t+ 1, then the main terms
have equal coefficients. We compare the coefficients of the next term, n* =2 = n'~! in
| 1| and | #>|, which are — W (7% and —(r+1)(*,"}?), respectively. We have
FARSVEIE i

Theorem 3.11. Let t < k be fixed. Then there exists a bound ((t, k) such that if ¢ >
L(t, k) then for any non-trivially t-intersecting family F of {-tuples with support k in
F(ni,..., ng) we have

|F| <max{|Fi(t, k;ny,...,n0)|, | F2(t, ksny,... )|}

Proof. Let By = (P(n1,...,ng), <). f k=141 then r,12(P, k) = 0 and M (P, k) > 0.
If k > t + 2 then by Lemmas 3.5 and 3.6, for £ > 2k —t — 1 we have

ri42( P, k) k—t—2 1 k—t—-1
_— <t — 3.13
M (P, k) — +€—2k+t+2 ny1 L—k+1 ( )
and therefore -
tim 7220 _

f{—o0 M;(T/, k)

So Theorem 2.1, together with Lemmas 3.7 and 3.8, implies that for large enough ¢ one
of the maximum sized families of #-intersecting ¢-tuples with support k in Fy(ny,. .., ny)
is _‘}] = _‘}](t, k;nl,...,ng) or _‘7:2 = _‘]:2(1‘, k;nl,..., ng). [ |

Theorem 3.12. Lett < k < ¢ be fixed, satisfying ¢ > 2k —t — 1. Then there exists a
bound n(t, k, £) such that if n.r1 > n(t, k, £) then for any non-trivially t-intersecting
Sfamily F of {-tuples with support k in Fy(ny,..., ng) we have | F| < max{|Fi(t, k;n,
ceey ng)|, |f]"2(l‘, k;nl,...,ng)|}.

Proof. Let B, = (P(n1,...,niy1,...,np), <). f k=1 +1then r,2(B,,,,, k) =0and
M;(T

Ml k) > 0. If k >t 4 2 then, analogously to (3.13) in the proof of Theorem 3.11,

rt+z(Tn,H,k)< - k—t=2 \ 1 k—t—1
M: (B, k) — (—2k+t+2) nmyy L—k+1

41

(3.14)

and therefore
rl+2(fpnr+1 ) k)
im —
np1—o ME (P, k)

Net1
So Theorem 2.1, together with Lemmas 3.7 and 3.8, implies that for large enough
ny+1 one of the maximum sized families of z-intersecting ¢-tuples with support k in
Fg(nl,...,ng) is 1 = fl(t, k;nl,...,ng) or HHh = Tz(t, k;nl,...,ng). [ |

=0.
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