SHARPENING THE LYM INEQUALITY

PÉTER L. ERDŐS¹, P. FRANKL, D. J. KLEITMAN², M. E. SAKS³ and L. A. SZÉKELY⁴

Received 30 September, 1989 Revised 18 September, 1990

The level sequence of a Sperner family \mathcal{F} is the sequence $f(\mathcal{F}) = \{f_i(\mathcal{F})\}$, where $f_i(\mathcal{F})$ is the number of *i* element sets of \mathcal{F} . The *LYM* inequality gives a necessary condition for an integer sequence to be the level sequence of a Sperner family on an *n* element set. Here we present an indexed family of inequalities that sharpen the *LYM* inequality.

1. Introduction

A collection \mathcal{F} of subsets of a set X is a Sperner family of X if no member of \mathcal{F} is a subset of another. Sperner theory is a rich area in combinatorial theory; the seminal result in the area is the well known:

Theorem 1. (Sperner) [9] If \mathcal{F} is a Sperner family of a set of cardinality n, then

$$|\mathcal{F}| \leq \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

More detailed information about the structure of Sperner families can be obtained by considering their *level sequences*. The level sequence of a family \mathcal{F} , $f(\mathcal{F}) = \{f_i(\mathcal{F})\}$, has $f_i(\mathcal{F})$ equal to the number of members of \mathcal{F} with exactly *i* elements. Sperner's theorem asserts that $\sum_i f_i(\mathcal{F}) \leq {\binom{n}{2}}$. A stronger restriction on the level sequence was proved independently by Lubell, Yamamoto and Meshalkin:

Theorem 2. (The LYM inequality) [7], [10], [8] If \mathcal{F} is a Sperner family of an n-set then

$$\sum_{i=0}^{n} \frac{f_i(\mathcal{F})}{\binom{n}{i}} \leq 1.$$

AMS subject classification code (1991): 05 D 05

¹ Research supported in part by Alexander v. Humboldt-Stiftung

 $^{^2}$ Research supported in part by NSF under grant DMS-86-06225 and AFOSR grant OSR-86-0078

³ Research supported in part by NSF grant CCR-8911388

⁴ Research supported in part by OTKA 327 0113

We say that a sequence $f = \{f_i : i \in \mathbb{Z}\}$ is *realizable* as a Sperner family of an *n*-set, or *n*-realizable for short, if there is a Sperner family \mathcal{F} of an *n*-set such that $f = f(\mathcal{F})$. Theorem 2 gives an important necessary (but far from sufficient) condition for f to be *n*-realizable. On the other hand, Clements and Daykin et. al. gave necessary and sufficient conditions for *n*-realizability based in the notion of a highly structured class of Sperner families called canonical Sperner families (defined in section 2). Their result asserts:

Theorem 3. ([1], [2]) For each n-realizable sequence f there is a unique canonical Sperner family \mathcal{F} such that $f = f(\mathcal{F})$.

In this note, we use Theorem 3 to derive a sequence of inequalities each of which strengthens the LYM inequality. The first of these strengthenings yields, for instance, an immediate proof of Sperner's stronger theorem that a maximum size Sperner family on an *n*-set consists of sets of the same size. It has also been used by Kleitman and Sha [6] to bound the number of linear extensions of the lattice of subsets of a set.

2. Preliminaries

To define the notion of canonical Sperner family (which appears in Theorem 3) requires some preliminary definitions. Assume that the base set X is totally ordered, $X = \{\alpha_1 < \alpha_2 < \ldots < \alpha_n\}$. This total ordering induces a total ordering on 2^X , called the antilexicographic order:

$$A <_{AL} B \Leftrightarrow \max\{\alpha_j : \alpha_j \in (A \setminus B) \cup (B \setminus A)\} \in A.$$

Let $X^{(i)}$ denote the collection of *i* element subsets of *X* and AL(i) denote the restriction of AL to $X^{(i)}$. Also, let AL(i,t) denote the first *t* subsets of $X^{(i)}$ under AL(i).

A Sperner family \mathcal{F} is canonical if for some integers t_0, t_1, \ldots, t_n , \mathcal{F} consists of the minimal sets (with respect to inclusion) of $AL(0,t_0) \cup AL(1,t_1) \cup \ldots \cup AL(n,t_n)$. Generally this form is not unique, but if we suppose, that the condition $f_i(\mathcal{F}) = 0$ $(i = 0, \ldots, n)$ implies that $t_i = 0$ then this form becomes unique. The connections between the parameters $f_i(\mathcal{F})$'s and t_i 's are determined by the Kruskal-Katona Theorem ([4] and [5]).

In addition to Theorem 3, we will need an additional fact about canonical Sperner families. For a Sperner gamily \mathcal{F} on $\{\alpha_1, \ldots, \alpha_n\}$ and for every pair $k, i \ (k \leq n \text{ and } 0 \leq i \leq 2^k - 1)$ define $\mathcal{F}^{i,k}$ to be $\{A \in \mathcal{F} : A \cap \{\alpha_{n-k+1}, \ldots, \alpha_n\} = T_i\}$ where T_i is the i^{th} set of $\{\alpha_{n-k+1}, \ldots, \alpha_n\}$ in the AL order. Then for each $0 \leq k \leq n, \mathcal{F}^{0,k}, \mathcal{F}^{1,k}, \ldots, \mathcal{F}^{2^k-1,k}$ is a partition.

Proposition 4. If \mathcal{F} is a canonical Sperner family of $\{\alpha_1, \ldots, \alpha_n\}$ and $0 \le i < j \le 2^k - 1$ then every set in $\mathcal{F}^{i,k}$ has cardinality less than or equal to every set in $\mathcal{F}^{j,k}$.

Proof. \mathcal{F} is the set of minimal sets (with respect to inclusion) of $AL(0,t_0) \cup \ldots \cup AL(n,t_n)$ for some t_0,\ldots,t_n . Suppose i < j and $A \in \mathcal{F}^{j,k}$ with |A| = a. Then $A \in AL(a,t_a)$ and by definition of AL order, $AL(a,t_a)$ contains all sets of size a whose

288

intersection with $\{\alpha_{n-k+1}, \ldots, \alpha_n\}$ is T_i . Thus if |B| > |A| and $B \cap \{\alpha_{n-k+1}, \ldots, \alpha_n\} =$ T_i then B has a subset in $AL(a, t_a)$ so $B \notin \mathcal{F}$.

The following definitions concerning sequences of integers will be needed. For simplicity, all such sequences, $f = \{f_i\}$, are assumed to have index set \mathbb{Z} . The support of f, supp $(f) = \{i: f_i \neq 0\}$. A sequence g is a prefix of f if there is an index j such that $g_i = f_i$ if i < j, $g_i = 0$ if i > j and $0 \le g_j \le f_j$. There is a natural total ordering on prefixes of f with $g \le h$ if $g_i \le h_i$ for all i. Finally, define the operations + and - on préfixes componentwise.

An easy consequence of Proposition 4 is

Proposition 5. Let \mathcal{F} be a canonical Sperner family on $\{\alpha_1, \ldots, \alpha_n\}$ with $f = f(\mathcal{F})$. For $k \leq n$ and $0 \leq i \leq 2^k - 1$, let $f^{i,k} = f(\mathcal{F}^{i,k})$. Then

- (i) $f^{0,k}$ is a prefix of f, (ii) For $1 \le i \le 2^k 2$, $f^{i,k}$ is a prefix of $f (f^{0,k} + f^{1,k} + ... + f^{i-1,k})$,
- (iii) $f^{2^k-1,k} = f (f^{0,k} + \ldots + f^{2^k-2,k}).$

A sequence f satisfies the property LYM_n if

$$f_i = 0 \text{ if } i < 0 \text{ or } i > n;$$
$$\sum_{i=0}^n \frac{f_i}{\binom{n}{i}} \le 1.$$

The shift sequence ρf of f is defined by $(\rho f)_i = f_{i+1}$. For $k \ge 0$, $\rho^k f$ is given by $(\varrho^k f)_i = f_{i+k}.$

3. A stronger version of LYM

In this section we prove the first strengthening of the LYM inequality.

Theorem 6. Let f be a nonzero sequence with $supp(f) \subseteq \{0, 1, \ldots, n\}$. Let g be the maximal prefix of f (with respect to the prefix ordering) such that ϱg satisfies LYM_{n-1} and let q be the largest index such that $g_q \neq 0$ (or q=0 if no such index exists). Then if f is n-realizable,

(1)
$$\sum_{i=0}^{q} \frac{q}{i} \frac{f_i}{\binom{n}{i}} + \sum_{i=q+1}^{n} \frac{n-q}{n-i} \frac{f_i}{\binom{n}{i}} \le 1.$$

Remark: The theorem sharpens the LYM inequality since the coefficients of $f_i/\binom{n}{i}$ are at least 1.

Remark: The theorem implies the strict version of Sperner's theorem, i.e., the only Sperner families of cardinality $\binom{n}{\lfloor \frac{n}{2} \rfloor}$ are $X^{(\lfloor \frac{n}{2} \rfloor)}$ and $X^{(\lceil \frac{n}{2} \rceil)}$. To see this, write (1) in the form $\sum (1+\Delta_i)(f_i/\lfloor \frac{n}{2} \rfloor)$. Then each Δ_i is nonnegative with $\Delta_i = 0$ only if i = q and $q = \lfloor \frac{n}{2} \rfloor$ of $\lceil \frac{n}{2} \rceil$. Thus if $\sum f_i = \binom{n}{\lfloor \frac{n}{2} \rfloor}$ the summation simplifies to $1 + \sum (\Delta_i f_i) / (\binom{n}{\lfloor \frac{n}{2} \rfloor})$. The summation must be 0, which implies that $f_i = 0$ unless $q = \lfloor \frac{n}{2} \rfloor$ or $\lceil \frac{n}{2} \rceil$.

Proof of Theorem 6.

Claim. f - g satisfies LYM_{n-1} .

Proof. Let \mathscr{F} be the canonical Sperner family with $f = f(\mathscr{F})$, which exists by Theorem 3. As defined in the previous section, $\mathscr{F}^{0,1} = \{A \in \mathscr{F} : \alpha_n \in A\}$ and $\mathscr{F}^{1,1} = \{A \in \mathscr{F} : \alpha_n \notin A\}$. Deleting α_n from each set in $\mathscr{F}^{0,1}$ yields a Sperner family on $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ with level sequence $\varrho f^{0,1}$. By Proposition 5, $f^{0,1}$ is a prefix of f so, by choice of g, $f^{0,1} \leq g$, and $f^{1,1} = f - f^{0,1} \geq f - g$. Since $f^{1,1}$ satisfies LYM_{n-1} , f - g does as well.

By the claim and the fact that $g_i = 0$ if i > q

(2)
$$\frac{(f-g)_q}{\binom{n-1}{q}} + \sum_{i>q} \frac{f_i}{\binom{n-1}{i}} \le 1.$$

By the choice of g,

(3)
$$\sum_{i < q} \frac{f_i}{\binom{n-1}{i-1}} + \frac{g_q}{\binom{n-1}{q-1}} \le 1.$$

Multiplying (2) by q/n and (3) by (n-q)/n and summing yields

$$\sum_{i \leq q-1} \frac{q}{i} \frac{f_i}{\binom{n}{i}} + \frac{f_q}{\binom{n}{q}} + \sum_{i > q} \frac{n-q}{n-i} \frac{f_q}{\binom{n}{i}} \leq 1,$$

as required.

4. A sequence of inequalities

We now present inequalities, one for each integer $k \leq n$, that strengthen the LYM inequality, where the case k=0 in the LYM inequality itself and the case k=1 is the result of the previous section. First we need some definitions and preliminary lemmas.

For an integer *i*, let B(i) be the set of nonzero bit positions in the binary expansion of *i*, i.e., $i = \sum_{j \in B(i)} 2^j$, and let b(i) = |B(i)|. If *f* is a sequence with support in $\{0, \ldots, n\}$ and $0 \le k \le n$, the (k, n)-segmentation of *f* is the collection $f^0, f^1, \ldots, f^{2^k-1}$ of sequences where

(i) f^0 is maximal prefix of f such that $\rho^k f^0$ satisfies LYM_{n-k}

- (ii) For each $1 \le i \le 2^k 2$, f^i in the maximal prefix of $f f^0 f^1 \ldots f^{i-1}$ such that $\rho^{k-b(i)} f^i$ satisfies LYM_{n-k} .
- (iii) $f^{2^k-1} = f f^0 f^1 \dots f^{2^k-2}$.

Note that each of $f^0, f^0 + f^1, f^0 + f^1 + f^2, \ldots$ are prefixes of f. Let $q_0 = 0$ and for $1 \le i \le 2^k - 1$, let q_i be the largest index in $\operatorname{supp}(f^0 + f^1 + \ldots + f^{i-1})$ (or 0 if $\operatorname{supp}(f^0 + f^1 + \ldots + f^{i-1}) = \emptyset$). Let $q_{2^n} = n$. Note that all nonzero terms of f^i have indices between q_i and q_{i+1} .

Lemma 7. f^{2^k-1} satisfies LYM_{n-k} .

Proof. Let \mathcal{F} be the canonical family with level sequence f. Let T_i denote the i^{th} subset of $\{\alpha_{n-k+1},\ldots,\alpha_n\}$ in AL order; then deleting T_i from each member of $\mathcal{F}^{i,k}$ yields a Sperner family on $\{\alpha_1,\ldots,\alpha_{n-k}\}$ and thus $\varrho^{k-b(i)}f^{i,k}$ satisfies LYM_{n-k} for each i. Furthermore, Proposition 5 implies that $f^{0,k}, f^{0,k} + f^{1,k}, f^{0,k} + f^{1,k} + f^{2,k},\ldots$ are prefixes of f.

By the definition of f^i , it is easy to prove by induction that $f^0 + f^1 + \ldots + f^i \ge f^{0,k} + f^{1,k} + \ldots + f^{i,k}$ for all $i \le 2^k - 2$. Hence

$$f^{2^{k}-1,k} = f - (f^{0,k} + f^{1,k} + \dots + f^{2^{k}-1,k})$$

$$\geq f - (f^{0} + f^{1} + \dots + f^{2^{k}-2})$$

$$= f^{2^{k}-1}.$$

Since $f^{2^{k}-1,k}$ satisfies LYM_{n-k} , so does $f^{2^{k}-1}$.

Subsequently we use the notation $(x)_j$ for the falling factorial polynomial $x(x-1)\cdots(x-j+1)$ where $(x)_0=1$.

Corollary 8. Let f be n-realizable and $k \leq n$. Then for any choice of nonnegative $\lambda_0, \lambda_1, \ldots, \lambda_{2^n-1}$ with $\sum \lambda_i \leq 1$, we have

(4)
$$\sum_{j=0}^{2^{k}-1} \sum_{i=q_{j}}^{q_{j+1}} \lambda_{j} \frac{(n)_{k}}{(i)_{k-b(j)}(n-i)_{b(j)}} \frac{f_{i}^{j}}{\binom{n}{i}} \leq 1.$$

Proof. By part (ii) of the definition of the (n,k)-segmentation and Lemma 6, $\rho^{k-b(j)}f^j$ satisfies LYM_{n-k} for all $0 \le j \le 2^k - 1$. Multiplying the j^{th} such inequality by λ_j and summing on j yields (4).

To get a strengthening of the LYM inequality, we want to choose $\lambda_0, \ldots, \lambda_{2^n-1}$ in the corollary so that $\lambda_j(n)_k/(i)_{k-b(j)}(n-i)_{b(j)} \ge 1$ for each j and for $q_j \le i \le q_{j+1}$. Such a selection of λ_j is given by the following. Let $A = \{1, \ldots, n\}, B = \{0, \ldots, k-1\}$ and let I be the set of injections from B to A, so $|I| = (n)_k$. For $0 \le j \le 2^k - 1$, let I_j denote the set of injections r that map the integers in B(j) to a number bigger than q_j and each integer in $B \setminus B(j)$ to a number less than or equal to q_{j+1} . We will prove:

Claim 1. $|I_0| + \ldots + |I_{2^k - 1}| \le (n)_k$.

Claim 2. $|I_j| \ge (i)_{k-b(j)} (n-i)_{b(j)}$ for $q_j \le i \le q_{j+1}$. Claim 3. $c_j \equiv |I_j| = \sum_{m=0}^{b(j)} {b(j) \choose m} (q_{j+1} - q_j)_m (n - q_{j+1})_{b(j)-m} (q_{j+1} - m)_{k-b(j)}$.

From these claims, we get that $\lambda_j = c_j/(n)_k$ is an appropriate choice and the following strengthening of LYM is obtained.

Theorem 9. Let f be a sequence and $f^0, f^1, \ldots, f^{2^{k}-1}$ be the (n,k)-segmentation of f. Then if f is n-realizable,

$$\sum_{j=0}^{2^{k}-1} \sum_{i=q_{j}}^{q_{j+1}} \frac{c_{j}}{(i)_{k-b(j)}(n-i)_{b(j)}} \frac{f_{i}^{j}}{\binom{n}{i}} \leq 1.$$

To prove the theorem it is enough to prove the claims.

Proof of Claim 1. This follows from the fact that the I_i 's are disjoint. Suppose $0 \le j < j' \le 2^k - 1$. Then $t \in B(j') \setminus B(j)$ for some $0 \le t \le k - 1$, which implies that $r(t) \le q_{j+1}$ if $r \in I(j)$ and $r(t) > q_{j'} \ge q_j$ if $r \in I(j')$ which means that I_j and $I_{j'}$ are disjoint.

Proof of Claim 2. I_j contains the set on injections that map $B \setminus B(j)$ to $\{1, \ldots, i\}$ and B(j) to $\{i+1, \ldots, n\}$, and there are $(i)_{k-b(j)}(n-i)_{b(j)}$ to these.

Proof of Claim 3. The members of I_j can be constructed exactly once as follows. Select the number m of elements of B(j) that are mapped to $\{q_j+1, q_j+2, \ldots, q_{j+1}\}$, where $0 \le m \le b(j)$. For each such m, there are $\binom{b(j)}{m}$ ways to select these m elements, $(q_{j+1}-q_j)_m$ ways to map them, $(n-q_{j+1})_{b(j)-m}$ ways to map the remaining elements of B(j) and $(q_{j+1}-m)_{k-b(j)}$ ways to map the elements of $B-B_j$.

Remark. The set of coefficients $\{c_j\}$ occurring on Theorem 9 are not unique. For k=2, we give another set of coefficients.

Theorem 10. Suppose k = 2, and $q_3 < n$ or $q_2 = q_3 = n$, then Theorem 2 holds with the following coefficients:

$$c_0 = (q_1)_2, \ c_1 = q_2(n-q_1), \ c_2 = q_3(n-q_2), \ c_3 = (n-q_3)_2.$$

Proof. It is sufficient to prove that $\sum_{j=0}^{3} c_j \leq (n)_2$. After elementary algebra we see, that this is equivalent to

$$(n-q_3-1)(q_3-q_2)+(q_1-1)(q_2-q_1)\geq 0.$$

This proves the theorem since $q_1 > 0$ because $f_0 = 0$.

Note that Theorem 10 sharpens Theorem 9 for k=2 in almost every cases since the coefficients in Theorem 2 are

$$c_0 = (q_1)_2, \ c_1 = q_2(n-q_1) - (q_2-q_1), \ c_2 = q_3(n-q_2) - (q_3-q_2), \ c_3 = (n-q_3)_2.$$

References

 G. C. CLEMENTS: A minimization problem concerning subsets of finite sets, Discrete Mathematics 4 (1973), 123-128.

- [2] D. E. DAYKIN, J. GODFREY, and A. J. W. HILTON: Existence theorems for Sperner families, J. Combinatorial Theory (A) 17 (1974), 245-251.
- C. GREENE, and A. J. W. HILTON: Some results on Sperner families, J. Comb. Theory (A) 26 (1979), 202–209.
- [4] G. O. H. KATONA: A theorem of finite sets, Theory of graphs, Proc. Coll. Tihany, 1966, Akadémiai Kiadó, 1966, 187–207.
- [5] J. B. KRUSKAL: The number of simplices in a complex, Mathematical Optimization Techniques, Univ. of Calif. Press, Berkeley and Los Angeles (1963), 251–278.
- [6] D. J. KLEITMAN, J. SHA: The number of linear extensions of subset ordering, Discrete Mathematics 63 (1978), 271–278.
- [7] D. LUBELL: A short proof of Sperner's lemma, J. Combinatorial Theory 1 (1966), 299.
- [8] L. D. MESHALKIN: A generalization of Sperner's theorem on the number of subsets of a finite set, *Teor. Verojatnost i Primen.* 8 (1963), 219–220, in Russian.
- [9] E. SPERNER: Ein Satz über Untermengen einer endliche Menge, Math. Z. 27 (1928), 544-548.
- [10] K. YAMAMOTO: Logarithmic order of free distributive lattices, J. Math. Soc. Japan 6 (1954), 343-353.

P. Frankl

P. L. Erdős

Mathematical Institute of the Hungarian Academy of Sciences, Budapest and Institute of Operations Research, University of Bonn erdos@cwi.nl

D. J. Kleitman

Massachusetts Institute of Technology, Cambridge, MA 02139 U.S.A. djk@math.mit.edu

L. A. Székely

Eötvös University, Budapest and University of New Mexico, Albuquerque szekely@gauss.unm.edu University of Paris VII 2 Place Jussieu

Paris 75005, France combinatorics@cs.meiji.ac.jo

M. E. Saks

University of California, San Diego saks@ucsd.edu