SHARPENING THE LYM INEQUALITY

PÉTER L. ERDŐS ${ }^{1}$, P. FRANKL, D. J. KLEITMAN ${ }^{2}$, M. E. SAKS ${ }^{3}$
and L. A. SZÉKELY ${ }^{4}$

Received 30 September, 1989
Revised 18 September, 1990

The level sequence of a Sperner family \mathscr{F} is the sequence $f(\mathscr{F})=\left\{f_{i}(\mathscr{F})\right\}$, where $f_{i}(\mathscr{F})$ is the number of i element sets of \mathscr{F}. The $L Y M$ inequality gives a necessary condition for an integer sequence to be the level sequence of a Sperner family on an n element set. Here we present an indexed family of inequalities that sharpen the $L Y M$ inequality.

1. Introduction

A collection \mathscr{F} of subsets of a set X is a Sperner family of X if no member of \mathscr{F} is a subset of another. Sperner theory is a rich area in combinatorial theory; the seminal result in the area is the well known:
Theorem 1. (Sperner) [9] If \mathscr{F} is a Sperner family of a set of cardinality n, then

$$
|\mathscr{F}| \leq\binom{ n}{\left\lfloor\frac{n}{2}\right\rfloor}
$$

More detailed information about the structure of Sperner families can be obtained by considering their level sequences. The level sequence of a family $\mathcal{F}, f(\mathscr{F})=$ $\left\{f_{i}(\mathscr{F})\right\}$, has $f_{i}(\mathscr{F})$ equal to the number of members of \mathscr{F} with exactly $i i$ elements. Sperner's theorem asserts that $\sum_{i} f_{i}(\mathcal{F}) \leq\binom{ n}{\left[\frac{n}{2}\right\rfloor}$. A stronger restriction on the level sequence was proved independently by Lubell, Yamamoto and Meshalkin:
Theorem 2. (The $L Y M$ inequality) [7], [10], [8] If \mathscr{F} is a Sperner family of an n-set then

$$
\sum_{i=0}^{n} \frac{f_{i}(\mathscr{F})}{\binom{n}{i}} \leq 1
$$

[^0]We say that a sequence $f=\left\{f_{i}: i \in \mathbb{Z}\right\}$ is realizable as a Sperner family of an n-set, or n-realizable for short, if there is a Sperner family \mathscr{F} of an n-set such that $f=f(\mathscr{F})$. Theorem 2 gives an important necessary (but far from sufficient) condition for f to be n-realizable. On the other hand, Clements and Daykin et. al. gave necessary and sufficient conditions for n-realizability based in the notion of a highly structured class of Sperner families called canonical Sperner families (defined in section 2). Their result asserts:

Theorem 3. ([1], [2]) For each n-realizable sequence f there is a unique canonical Sperner family \mathscr{F} such that $f=f(\mathscr{F})$.

In this note, we use Theorem 3 to derive a sequence of inequalities each of which strengthens the $L Y M$ inequality. The first of these strengthenings yields, for instance, an immediate proof of Sperner's stronger theorem that a maximum size Sperner family on an n-set consists of sets of the same size. It has also been used by Kleitman and Sha [6] to bound the number of linear extensions of the lattice of subsets of a set.

2. Preliminaries

To define the notion of canonical Sperner family (which appears in Theorem 3) requires some preliminary definitions. Assume that the base set X is totally ordered, $X=\left\{\alpha_{1}<\alpha_{2}<\ldots<\alpha_{n}\right\}$. This total ordering induces a total ordering on 2^{X}, called the antilexicographic order:

$$
A<_{A L} B \Leftrightarrow \max \left\{\alpha_{j}: \alpha_{j} \in(A \backslash B) \cup(B \backslash A)\right\} \in A
$$

Let $X^{(i)}$ denote the collection of i element subsets of X and $A L(i)$ denote the restriction of $A L$ to $X^{(i)}$. Also, let $A L(i, t)$ denote the first t subsets of $X^{(i)}$ under $A L(i)$.

A Sperner family $\mathscr{F}^{\text {is }}$ canonical if for some integers $t_{0}, t_{1}, \ldots, t_{n}, \mathscr{F}$ consists of the minimal sets (with respect to inclusion) of $A L\left(0, t_{0}\right) \cup A L\left(1, t_{1}\right) \cup \ldots \cup A L\left(n, t_{n}\right)$. Generally this form is not unique, but if we suppose, that the condition $f_{i}(\mathscr{F})=0(i=$ $0, \ldots, n$) implies that $t_{i}=0$ then this form becomes unique. The connections between the parameters $f_{i}(\mathscr{F})$'s and t_{i} 's are determined by the Kruskal-Katona Theorem ([4] and [5]).

In addition to Theorem 3, we will need an additional fact about canonical Sperner families. For a Sperner gamily \mathcal{F} on $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and for every pair $k, i(k \leq n$ and $0 \leq$ $i \leq 2^{k}-1$) define $\mathscr{F}^{i, k}$ to be $\left\{A \in \mathscr{F}: A \cap\left\{\alpha_{n-k+1}, \ldots, \alpha_{n}\right\}=T_{i}\right\}$ where T_{i} is the $i^{\text {th }}$ set of $\left\{\alpha_{n-k+1}, \ldots, \alpha_{n}\right\}$ in the $A L$ order. Then for each $0 \leq k \leq n, \mathcal{F}^{0, k}, \mathscr{F} 1, k, \ldots, \mathcal{F}^{2}-1, k$ is a partition.

Proposition 4. If \mathscr{F} is a canonical Sperner family of $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $0 \leq i<j \leq 2^{k}-1$ then every set in $\mathscr{F}^{i, k}$ has cardinality less than or equal to every set in $\mathscr{F}^{j, k}$.
Proof. \mathscr{F} is the set of minimal sets (with respect to inclusion) of $A L\left(0, t_{0}\right) \cup \ldots \cup$ $A L\left(n, t_{n}\right)$ for some t_{0}, \ldots, t_{n}. Suppose $i<j$ and $A \in \mathcal{F}^{j, k}$ with $|A|=a$. Then $A \in$ $A L\left(a, t_{a}\right)$ and by definition of $A L$ order, $A L\left(a, t_{a}\right)$ contains all sets of size a whose
intersection with $\left\{\alpha_{n-k+1}, \ldots, \alpha_{n}\right\}$ is T_{i}. Thus if $|B|>|A|$ and $B \cap\left\{\alpha_{n-k+1}, \ldots, \alpha_{n}\right\}=$ T_{i} then B has a subset in $A L\left(a, t_{a}\right)$ so $B \notin \mathscr{F}$.

The following definitions concerning sequences of integers will be needed. For simplicity, all such sequences, $f=\left\{f_{i}\right\}$, are assumed to have index set \mathbb{Z}. The support of $f, \operatorname{supp}(f)=\left\{i: f_{i} \neq 0\right\}$. A sequence g is a prefix of f if there is an index j such that $g_{i}=f_{i}$ if $i<j, g_{i}=0$ if $i>j$ and $0 \leq g_{j} \leq f_{j}$. There is a natural total ordering on prefixes of f with $g \leq h$ if $g_{i} \leq h_{i}$ for all i. Finally, define the operations + and - on prèfixes componentwise.

An easy consequence of Proposition 4 is
Proposition 5. Let \mathscr{F} be a canonical Sperner family on $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ with $f=f(\mathscr{F})$. For $k \leq n$ and $0 \leq i \leq 2^{k}-1$, let $f^{i, k}=f\left(\mathscr{F}^{i}, k\right)$. Then
(i) $f^{0, k}$ is a prefix of f,
(ii) For $1 \leq i \leq 2^{k}-2, f^{i, k}$ is a prefix of $f-\left(f^{0, k}+f^{1, k}+\ldots+f^{i-1, k}\right)$,
(iii) $f^{2^{k}-1, k}=f-\left(f^{0, k}+\ldots+f^{2^{k}-2, k}\right)$.

A sequence f satisfies the property $L Y M_{n}$ if

$$
\begin{gathered}
f_{i}=0 \text { if } i<0 \text { or } i>n ; \\
\sum_{i=0}^{n} \frac{f_{i}}{\binom{n}{i}} \leq 1
\end{gathered}
$$

The shift sequence ϱf of f is defined by $(\varrho f)_{i}=f_{i+1}$. For $k \geq 0, \varrho^{k} f$ is given by $\left(\varrho^{k} f\right)_{i}=f_{i+k}$.

3. A stronger version of $L Y M$

In this section we prove the first strengthening of the $L Y M$ inequality.
Theorem 6. Let f be a nonzero sequence with $\operatorname{supp}(f) \subseteq\{0,1, \ldots, n\}$. Let g be the maximal prefix of f (with respect to the prefix ordering) such that ϱg satisfies $L Y M_{n-1}$ and let q be the largest index such that $g_{q} \neq 0$ (or $q=0$ if no such index exists). Then if f is n-realizable,

$$
\begin{equation*}
\sum_{i=0}^{q} \frac{q}{i} \frac{f_{i}}{\binom{n}{i}}+\sum_{i=q+1}^{n} \frac{n-q}{n-i} \frac{f_{i}}{\binom{n}{i}} \leq 1 \tag{1}
\end{equation*}
$$

Remark: The theorem sharpens the $L Y M$ inequality since the coefficients of $f_{i} /\binom{n}{i}$ are at least 1 .
Remark: The theorem implies the strict version of Sperner's theorem, i.e., the only Sperner families of cardinality $\left(\begin{array}{c}\left.\frac{n}{2}\right\rfloor\end{array}\right)$ are $X^{\left(\left\lfloor\frac{n}{2}\right\rfloor\right)}$ and $X^{\left(\left\lceil\frac{n}{2}\right\rceil\right)}$. To see this, write (1) in the form $\sum\left(1+\Delta_{i}\right)\left(f_{i} /\left\lfloor\frac{n}{2}\right\rfloor\right)$. Then each Δ_{i} is nonnegative with $\Delta_{i}=0$ only if $i=q$ and $q=\left\lfloor\frac{n}{2}\right\rfloor$ of $\left\lceil\frac{n}{2}\right\rceil$. Thus if $\sum f_{i}=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ the summation simplifies to $1+\sum\left(\Delta_{i} f_{i}\right) /\left(\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}\right)$. The summation must be 0 , which implies that $f_{i}=0$ unless $q=\left\lfloor\frac{n}{2}\right\rfloor$ or $\left\lceil\frac{n}{2}\right\rceil$.

Proof of Theorem 6.

Claim. $f-g$ satisfies $L Y M_{n-1}$.
Proof. Let \mathscr{F} be the canonical Sperner family with $f=f(\mathscr{F})$, which exists by Theorem 3. As defined in the previous section, $\mathscr{F}^{0,1}=\left\{A \in \mathscr{F}: \alpha_{n} \in A\right\}$ and $\mathscr{F}^{1,1}=\left\{A \in \mathscr{F}: \alpha_{n} \notin\right.$ $A\}$. Deleting α_{n} from each set in $\mathscr{F}^{0,1}$ yields a Sperner family on $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ with level sequence $\varrho f^{0,1}$. By Proposition $5, f^{0,1}$ is a prefix of f so, by choice of g, $f^{0,1} \leq g$, and $f^{1,1}=f-f^{0,1} \geq f-g$. Since $f^{1,1}$ satisfies $L Y M_{n-1}, f-g$ does as well.

By the claim and the fact that $g_{i}=0$ if $i>q$

$$
\begin{equation*}
\frac{(f-g)_{q}}{\binom{n-1}{q}}+\sum_{i>q} \frac{f_{i}}{\binom{n-1}{i}} \leq 1 \tag{2}
\end{equation*}
$$

By the choice of g,

$$
\begin{equation*}
\sum_{i<q} \frac{f_{i}}{\binom{n-1}{i-1}}+\frac{g_{q}}{\binom{n-1}{q-1}} \leq 1 \tag{3}
\end{equation*}
$$

Multiplying (2) by q / n and (3) by ($n-q$)/n and summing yields

$$
\sum_{i \leq q-1} \frac{q}{i} \frac{f_{i}}{\binom{n}{i}}+\frac{f_{q}}{\binom{n}{q}}+\sum_{i>q} \frac{n-q}{n-i} \frac{f_{q}}{\binom{n}{i}} \leq 1
$$

as required.

4. A sequence of inequalities

We now present inequalities, one for each integer $k \leq n$, that strengthen the $L Y M$ inequality, where the case $k=0$ in the $L Y M$ inequality itself and the case $k=$ 1 is the result of the previous section. First we need some definitions and preliminary lemmas.

For an integer i, let $B(i)$ be the set of nonzero bit positions in the binary expansion of i, i.e., $i=\sum_{j \in B(i)} 2^{j}$, and let $b(i)=|B(i)|$. If f is a sequence with support in $\{0, \ldots, n\}$ and $0 \leq k \leq n$, the (k, n)-segmentation of f is the collection $f^{0}, f^{1}, \ldots, f^{2^{k}-1}$ of sequences where
(i) f^{0} is maximal prefix of f such that $\varrho^{k} f^{0}$ satisfies $L Y M_{n-k}$
(ii) For each $1 \leq i \leq 2^{k}-2, f^{i}$ in the maximal prefix of $f-f^{0}-f^{1}-\ldots-f^{i-1}$ such that $\varrho^{k-b(i)} f^{i}$ satisfies $L Y M_{n-k}$.
(iii) $f^{2^{k}-1}=f-f^{0}-f^{1}-\ldots-f^{2^{k}-2}$.

Note that each of $f^{0}, f^{0}+f^{1}, f^{0}+f^{1}+f^{2}, \ldots$ are prefixes of f. Let $q_{0}=0$ and for $1 \leq i \leq 2^{k}-1$, let q_{i} be the largest index in $\operatorname{supp}\left(f^{0}+f^{1}+\ldots+f^{i-1}\right.$) (or 0 if $\left.\operatorname{supp}\left(f^{0}+f^{1}+\ldots+f^{i-1}\right)=\emptyset\right)$. Let $q_{2^{n}}=n$. Note that all nonzero terms of f^{i} have indices between q_{i} and q_{i+1}.

Lemma 7. $f^{2^{k}-1}$ satisfies $L Y M_{n-k}$.
Proof. Let \mathscr{F} be the canonical family with level sequence f. Let T_{i} denote the $i^{\text {th }}$ subset of $\left\{\alpha_{n-k+1}, \ldots, \alpha_{n}\right\}$ in $A L$ order; then deleting T_{i} from each member of $\mathscr{F}^{i, k}$ yields a Sperner family on $\left\{\alpha_{1}, \ldots, \alpha_{n-k}\right\}$ and thus $\varrho^{k-b(i)} f^{i, k}$ satisfies $L Y M_{n-k}$ for each i. Furthermore, Proposition 5 implies that $f^{0, k}, f^{0, k}+f^{1, k}, f^{0, k}+f^{1, k}+f^{2, k}, \ldots$ are prefixes of f.

By the definition of f^{i}, it is easy to prove by induction that $f^{0}+f^{1}+\ldots+f^{i} \geq$ $f^{0, k}+f^{1, k}+\ldots+f^{i, k}$ for all $i \leq 2^{k}-2$. Hence

$$
\begin{aligned}
f^{2^{k}-1, k} & =f-\left(f^{0, k}+f^{1, k}+\ldots+f^{2^{k}-1, k}\right) \\
& \geq f-\left(f^{0}+f^{1}+\ldots+f^{2^{k}-2}\right) \\
& =f^{2^{k}-1}
\end{aligned}
$$

Since $f^{2^{k}-1, k}$ satisfies $L Y M_{n-k}$, so does $f^{2^{k}-1}$.
Subsequently we use the notation $(x)_{j}$ for the falling factorial polynomial $x(x-1) \cdots(x-j+1)$ where $(x)_{0}=1$.

Corollary 8. Let f be n-realizable and $k \leq n$. Then for any choice of nonnegative $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{2^{n}-1}$ with $\sum \lambda_{i} \leq 1$, we have

$$
\begin{equation*}
\sum_{j=0}^{2^{k}-1} \sum_{i=q_{j}}^{q_{j+1}} \lambda_{j} \frac{(n)_{k}}{(i)_{k-b(j)}(n-i)_{b(j)}} \frac{f_{i}^{j}}{\binom{n}{i}} \leq 1 \tag{4}
\end{equation*}
$$

Proof. By part (ii) of the definition of the (n, k)-segmentation and Lemma 6, $\varrho^{k-b(j)} f^{j}$ satisfies $L Y M_{n-k}$ for all $0 \leq j \leq 2^{k}-1$. Multiplying the $j^{\text {th }}$ such inequality by λ_{j} and summing on j yields (4).

To get a strengthening of the $L Y M$ inequality, we want to choose $\lambda_{0}, \ldots, \lambda_{2^{n}-1}$ in the corollary so that $\lambda_{j}(n)_{k} /(i)_{k-b(j)}(n-i)_{b(j)} \geq 1$ for each j and for $q_{j} \leq i \leq q_{j+1}$. Such a selection of λ_{j} is given by the following. Let $A=\{1, \ldots, n\}, B=\{0, \ldots, k-1\}$ and let I be the set of injections from B to A, so $|I|=(n)_{k}$. For $0 \leq j \leq 2^{k}-1$, let I_{j} denote the set of injections r that map the integers in $B(j)$ to a number bigger than q_{j} and each integer in $B \backslash B(j)$ to a number less than or equal to q_{j+1}. We will prove:
Claim 1. $\left|I_{0}\right|+\ldots+\left|I_{2^{k}-1}\right| \leq(n)_{k}$.
Claim 2. $\left|I_{j}\right| \geq(i)_{k-b(j)}(n-i)_{b(j)}$ for $q_{j} \leq i \leq q_{j+1}$.
Claim 3. $c_{j} \equiv\left|I_{j}\right|=\sum_{m=0}^{b(j)}\binom{b(j)}{m}\left(q_{j+1}-q_{j}\right)_{m}\left(n-q_{j+1}\right)_{b(j)-m}\left(q_{j+1}-m\right)_{k-b(j)}$.
From these claims, we get that $\lambda_{j}=c_{j} /(n)_{k}$ is an appropriate choice and the following strengthening of $L Y M$ is obtained.

Theorem 9. Let f be a sequence and $f^{0}, f^{1}, \ldots, f^{2^{k}-1}$ be the (n, k)-segmentation of f. Then if f is n-realizable,

$$
\sum_{j=0}^{2^{k}-1} \sum_{i=q_{j}}^{q_{j+1}} \frac{c_{j}}{(i)_{k-b(j)}(n-i)_{b(j)}} \frac{f_{i}^{j}}{\binom{n}{i}} \leq 1
$$

To prove the theorem it is enough to prove the claims.
Proof of Claim 1. This follows from the fact that the I_{i} 's are disjoint. Suppose $0 \leq$ $j<j^{\prime} \leq 2^{k}-1$. Then $t \in B\left(j^{\prime}\right) \backslash B(j)$ for some $0 \leq t \leq k-1$, which implies that $r(t) \leq$ q_{j+1} if $r \in I(j)$ and $r(t)>q_{j^{\prime}} \geq q_{j}$ if $r \in I\left(j^{\prime}\right)$ which means that I_{j} and $I_{j^{\prime}}$ are disjoint.

Proof of Claim 2. I_{j} contains the set on injections that map $B \backslash B(j)$ to $\{1, \ldots, i\}$ and $B(j)$ to $\{i+1, \ldots, n\}$, and there are $(i)_{k-b(j)}(n-i)_{b(j)}$ to these.

Proof of Claim 3. The members of I_{j} can be constructed exactly once as follows. Select the number m of elements of $B(j)$ that are mapped to $\left\{q_{j}+1, q_{j}+2, \ldots, q_{j+1}\right\}$, where $0 \leq m \leq b(j)$. For each such m, there are $\binom{b(j)}{m}$ ways to select these m elements, $\left(q_{j+1}-q_{j}\right)_{m}$ ways to map them, $\left(n-q_{j+1}\right)_{b(j)-m}$ ways to map the remaining elements of $B(j)$ and $\left(q_{j+1}-m\right)_{k-b(j)}$ ways to map the elements of $B-B_{j}$.

Remark. The set of coefficients $\left\{c_{j}\right\}$ occurring on Theorem 9 are not unique. For $k=2$, we give another set of coefficients.

Theorem 10. Suppose $k=2$, and $q_{3}<n$ or $q_{2}=q_{3}=n$, then Theorem 2 holds with the following coefficients:

$$
c_{0}=\left(q_{1}\right)_{2}, c_{1}=q_{2}\left(n-q_{1}\right), c_{2}=q_{3}\left(n-q_{2}\right), c_{3}=\left(n-q_{3}\right)_{2}
$$

Proof. It is sufficient to prove that $\sum_{j=0}^{3} c_{j} \leq(n)_{2}$. After elementary algebra we see, that this is equivalent to

$$
\left(n-q_{3}-1\right)\left(q_{3}-q_{2}\right)+\left(q_{1}-1\right)\left(q_{2}-q_{1}\right) \geq 0
$$

This proves the theorem since $q_{1}>0$ because $f_{0}=0$.
Note that Theorem 10 sharpens Theorem 9 for $k=2$ in almost every cases since the coefficients in Theorem 2 are
$c_{0}=\left(q_{1}\right)_{2}, c_{1}=q_{2}\left(n-q_{1}\right)-\left(q_{2}-q_{1}\right), c_{2}=q_{3}\left(n-q_{2}\right)-\left(q_{3}-q_{2}\right), c_{3}=\left(n-q_{3}\right)_{2}$.

References

[1] G. C. Clements: A minimization problem concerning subsets of finite sets, Discrete Mathematics 4 (1973), 123-128.
[2] D. E. Daykin, J. Godfrey, and A. J. W. Hilton: Existence theorems for Sperner families, J. Combinatorial Theory (A) 17 (1974), 245-251.
[3] C. Greene, and A. J. W. Hilton: Some results on Sperner families, J. Comb. Theory (A) 26 (1979), 202-209.
[4] G. O. H. Katona: A theorem of finite sets, Theory of graphs, Proc. Coll. Tihany, 1966, Akadémiai Kiadó, 1966, 187-207.
[5] J. B. Kruskal: The number of simplices in a complex, Mathematical Optimization Techniques, Univ. of Calif. Press, Berkeley and Los Angeles (1963), 251-278.
[6] D. J. Kleitman, J. Sha: The number of linear extensions of subset ordering, Discrete Mathematics 63 (1978), 271-278.
[7] D. Lubell: A short proof of Sperner's lemma, J. Combinatorial Theory 1 (1966), 299.
[8] L. D. Meshalkin: A generalization of Sperner's theorem on the number of subsets of a finite set, Teor. Verojatnost i Primen. 8 (1963), 219-220, in Russian.
[9] E. Sperner: Ein Satz über Untermengen einer endliche Menge, Math. Z. 27 (1928), 544-548.
[10] K. Yamamoto: Logarithmic order of free distributive lattices, J. Math. Soc. Japan 6 (1954), 343-353.
P. L. Erdős

Mathematical Institute of the
Hungarian Academy of Sciences, Budapest
and
Institute of Operations Research, University of Bonn erdos@cwi.nl
D. J. Kleitman

Massachusetts Institute of Technology, Cambridge, MA 02139
U.S.A.
djk@math.mit.edu
L. A. Székely

Eötvös University,

Budapest
and
University of New Mexico, Albuquerque
szekely@gauss.unm.edu

P. Frankl
University of Paris VII
2 Place Jussieu
Paris 75005 , France
combinatorics@cs.meiji.ac.jo

M. E. Saks
University of California, San Diego
saks@ucsd.edu

[^0]: AMS subject classification code (1991): 05 D 05
 ${ }^{1}$ Research supported in part by Alexander v. Humboldt-Stiftung
 ${ }^{2}$ Research supported in part by NSF under grant DMS-86-06225 and AFOSR grant OSR-860078
 ${ }^{3}$ Research supported in part by NSF grant CCR-8911388
 ${ }^{4}$ Research supported in part by OTKA 3270113

