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The level sequence of a Sperner family ,~ is the sequence f(,~) - {fi(~)}, where fi(~) is the 
number of i element sets of 4. The LYM inequality gives a necessary condition for an integer 
sequence to be the level sequence of a Sperner family on an n element set. Here we present an 
indexed family of inequalities that sharpen the LYM inequality. 

1. I n t r o d u c t i o n  

A collection :~ of subsets of a set X is a Sperner family of X if no member  of 
5~ is a subset of another.  Sperner theory is a rich area in combinatorial  theory; the 
seminal result in the area is the well known: 

Theorem 1. (Sperner) [9] I f  ~ is a Sperner family of a set of cardinality n, then 

<_ n �9 g 

More detailed information about  the s t ructure  of Sperner families can be ob- 
tained by considering their level sequences. The level sequence of a family 4 ,  f ( ~ )  = 
{fi(Y)},  has f i (~)  equal to the number  of members  of ~ with exac t ly ' / e l emen t s .  
Sperner 's  theorem asserts tha t  ~fi(2~)<_ ([~j) .  A stronger restriction on the level 

i 
sequence was proved independent ly  by Lubell, Yamamoto  and Meshalkin: 

Theorem 2. (The L Y M  inequality) [7], [10], [8] I f  2~ is a Sperner family of an n-set 
then 

-~ fi(~). < 1. 

i=o - 
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We say that a sequence f = {fi  : i  �9 Z} is realizable as a Sperner family of 
an n-set, or n-realizable for short, if there is a Sperner family :~ of an n-set such 
that f = f(5~). Theorem 2 gives an important necessary (but far from suff• 
condition for f to be n-realizable. On the other hand, Clements and Daykin et. al. 
gave necessary and sufficient conditions for n-realizability based in the notion of a 
highly structured class of Sperner families called canonical Sperner families (defined 
in section 2). Their result asserts: 

Theorem 3. ([1], [2]) For each n-realizable sequence f there is a unique canonical 
Sperner family ~ such that f = f(:~). 

In this note, we use Theorem 3 to derive a sequence of inequalities each of 
which strengthens the L Y M  inequality. The first of these strengthenings yields, for 
instance, an immediate proof of Sperner's stronger theorem that  a maximum size 
Sperner family on an n-set consists of sets of the same size. It has also been used 
by Kleitman and Sha [6] to bound the number of linear extensions of the lattice of 
subsets of a set. 

2. P r e l i m i n a r i e s  

To define the notion of canonical Sperner family (which appears in Theorem 3) 
requires some preliminary definitions. Assume that  the base set X is totally ordered, 
X = {al  < a2 < . . .  < an}. This total ordering induces a total ordering on 2 X, called 
the antilexicogr~phic order: 

A ( A L  S r max{aj  : a j  e (A \ B) t3 (B \ A)} �9 A. 

Let X (i) denote the collection of i element subsets of X and AL(i)  denote the 
restriction of AL to X (i). Also, let AL(i , t )  denote the first t subsets of X(i) under 
Ag(i) .  

A Sperner family ~ is canonical if for some integers to , t l , . . . , tn ,  ~ consists of 
the minimal sets (with respect to inclusion) of AL(  O, to) U AL(1,  t l ) t3 . . . U AL(  n, tn ). 
Generally this form is not unique, but if we suppose, that the condition fi  ( ~ ) =  0 (i = 
0, . . . ,  n) implies that ti = 0 then this form becomes unique. The connections between 
the parameters f i (~) ' s  and ti's are determined by the Kruskal-Katona Theorem ([4] 
and [51). 

In addition to Theorem 3, we will need an additional fact about canonical Sperner 
families. For a Sperner gamily 5~ on {al . . . .  , an} and for every pair k, i (k < n and 0 < 
i < 2 k - 1 )  define $i,k to be { A � 9  ,an} =Ti}  where T i is the ith set 

of {an_k+l,... ,Oln} in the AL order. Then for each 0<  k < n ,  ~;O,k,~;1,k,... ,~2k--l,k 
is a partition. 

Proposition 4. H5 ~ is a canonical Sperner family of { a l , . . . ,  an} and 0 < i < j <_ 2 k -  1 
then every set in ~;i,k has cardinality less than or equal to every set in ~j,k. 
Proof. :~ is the set of minimal sets (with respect to inclusion) of AL(O, to) U. . .  U 
AL(n,  tn) for some t0 , . . . , tn .  Suppose i < j and A �9 ~j,k with [A[ = a. Then A �9 
AL(a,  ta) and by definition of AL order, AL(a, ta)  contains all sets of size a whose 
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intersection with ( a n - k + l , . . . ,  an} is Ti. Thus if IB[ > [A I and Bn{an-k+l , . . . ,  an} = 
T/ then  B has a subset in AL(a, ta) so B r  ~. | 

The following definitions concerning sequences of integers will be needed. For 
simplicity, all such sequences, f = {fi}, are assumed to have index set X. The support 
of f ,  supp (f) = {i : fi # 0}. A sequence g is a prefix of f if there is an index j such 
that g i=f i  if i < j ,  gi=O if i > j  and O<gj <f j .  There is a natural total ordering on 
prefixes of f with g < h if gi <- hi for all i. Finally, define the operations + and - on 
lJrSfixes componentwise. 

An easy consequence of Proposition 4 is 

Proposition 5. Let ~ be a canonical Sperner family o n  {al,...,an} with f =f(5~). 
For k<_n and O K i < 2 k - 1 ,  let fi,k =f(~i ,k) .  Then 

(i) fO,k is a prefix of f ,  
(ii) For 1 < i < 2 k - 2, fi,k is a prefix of f - (]0,k + f l ,k  + . . .  + f i - l , k ) ,  

(iii) f 2k-l'k = f - (fO,k +. . .  + f2k-2,k). | 

A sequence f satisfies the property L Y M n  if 

fi = 0 if i < 0 or i > n; 

i=0 (-~.} -<1' 

The shift sequence o f  of f is defined by (of)i = fi+l. For k >_ O, ok f is given by 

(0k] ) i  = f i+k-  

3. A stronger version of  L Y M  

In this section we prove the first strengthening of the L Y M  inequality. 

Theorem 6. Let f be a nonzero sequence with supp(f)  C {0,1, . . . ,n}.  Let g be 
the maximal prefix of f (with respect to the prefix ordering) such that og satisfies 
L Y M n - 1  and let q be the largest index such that gq~O (or q---O i f  no such index 
exists). Then if f is n-realizable, 

~-~q ]i n n - q  di <:1. 

i=q+ l 

Remark: The theorem sharpens the L Y M  inequality since the coefficients of f / / (n)  
are at least 1. 

Remark: The theorem implies the strict version of Sperner's theorem, i.e., the only 
Sperner families of cardinality ([~j) are X(t'~ j) and X(['~ 7). To see this, write (1) in 

the form y~(l+Ai)(fi/[,~J ). Then each A i is nonnegative with A i = 0 only if i= q and 
q n n n = [yJ of [y].  Thus if ~ fi = ([~j) the summation simplifies to l + ~ ( A i f i ) / ( ( [ ~ j ) ) .  
The summation must be O, which implies that fi =0 unless q= [~J or [~]. 
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Proof of Theorem 6. 

Claim. f - g  satisfies LYMn-1.  

Proof. Let :~ be the canonical Sperner family with f = f(:~), which exists by Theorem 
3. As defined in the previous section, :~0,1 = {A E :~ : an e A} and :~1,1 = {A C :~ : an 
A}. Deleting an from each set in :~0,1 yields a Sperner family on {al ,a2, . . . ,an} 
with level sequence Q f0,1. By Proposition 5, f0,1 is a prefix of f so, by choice of g, 
f0,1 _<g, and fl,1 = f _ f 0 , 1  >_f_g. Since fl,1 satisfies LYMn-1,  f - g  does as well.| 

By the claim and the fact that  gi = 0 if i > q 

(2) ( f - g ) q + ~  fi <1. 

By the choice of g, 

(3) Z fi ~ - q l -  n_-------i- + <1 .  
�9 

~<q 

Multiplying (2) by q/n and (3) by (n - q)/n and summing yields 

i<q--1 i>q 

as required. | 

4. A sequence  of  inequal i t ies  

We now present inequalities, one for each integer k < n, that strengthen the 
L Y M  inequality, where the case k = 0 in the L Y M  inequality itself and the case k = 
1 is the result of the previous section. First we need some definitions and preliminary 
lemmas. 

For an integer i, let B(i) be the set of nonzero bit positions in the binary 
expansion of i, i.e., i = ~ 2J, and let b(i) = IB(i)l. If f is a sequence with 

jeB(i) 
support in {0, . . . ,n} and 0 < k < n, the (k,n)-segmentation of f is the collection 

f0, f l  . . . ,  f2k-1 of sequences where 
(i) f0 is maximal prefix of f such that okfO satisfies LYMn_ k 

(ii) For each 1 < i < 2 k - 2, f i  in the maximal prefix of f - fO _ f l  - . . .  _ f i -1 
such that Qk-b(i) f i  satisfies LYMn_ k. 

(iii) f 2k-l--  f -  f 0  f l  - . . . -  f2k--2. 

Note that  each of fo, fo + f l ,  fo + f l  + f2 , . . ,  are prefixes of f .  Let q0 = 0 and 
for 1 < i < 2 k -  1, let qi be the largest index in supp(f0 + f l +  ... + f i -1)  (or 0 if 
supp (f0 + f l  + . . .  + f i -1 )  = r Let q2~ = n. Note that  all nonzero terms of f i  have 
indices between qi and qi+l. 



SHARPENING THE LYM INEQUALITY 291 

Lemma 7. f 2k-1 satisfies LYMn_ k. 

Proof. Let ,~ be the canonical family with level sequence f .  Let T i denote the ith 
subset of {C~n_k+l , . . .  ,O~n} in AL order; then deleting T/ from each member of ~i,k 
yields a Sperner family on {a l , . . . , an_k}  and thus Qk-b(i)fi,k satisfies LYMn_ k for 
each i. Furthermore, Proposition 5 implies that fO,k, fO,k + f l , k  fO,k +fl ,k  +f2,k , . . .  
are prefixes of f .  

By the definition of f i  it is easy to prove by induction that f 0 +  f l  + . . .  + f i >  
fO,k + f l,k + . , . + fi,k for all i<_2 k - 2 .  Hence 

f2k-~,k = f _ (fO,k + f l ,k  + . . .  + f2k- l ,k)  

> f _ (fO + f l  + . . .  + f2k-2) 

= f 2k-1" 

Since f 2k-l'k satisfies LYMn_k,  so does f 2k-1. II 

Subsequently we use the notation (x)j for the falling factorial polynomial 
x ( x -  1)... ( x - j  + 1) where (x)0 = 1. 

Corollary 8. Let f be n-realizable and k <_ n. Then for any choice of nonnegative 
AO,A1,...,A2n_ 1 with ~ A i < I ,  we have 

(4) 2~-i  q~§ (n)k f [  < 1. 

j = 0  i---qj 

Proof. By part (ii) of the definition of the (n,k)-segmentation and Lemma 6, 
~k-b(j)fj satisfies LYMn_ k for all 0 < j  < 2k-1.  Multiplying the j th such inequality 
by Aj and summing on j yields (4). | 

To get a strengthening of the L Y M  inequality, we want to choose A0,..., ~2n-1 
in the corollary so that Aj(n)k/(i)k_b(j)(n--i)b(j ) > 1 for each j and for qj <_i <-qj+l. 
Such a selection of Aj is given by the following. Let A = {1,.. . ,  n}, B = {0,.. . ,  k - 1 }  
and let I be the set of injections from B to A, so II[=(n)k. For 0_<j_<2k-1, let Ij 
denote the set of injections r that map the integers in B(j) to a number bigger than 
qj and each integer in B\B( j )  to a number less than or equal to qj+l. We will prove: 

Claim 1. IX01 + - . - +  112k_11 < (n)k. 

Claim 2. [Ij[ >__ (i)k_b(j)(n- i)b(j ) for qj < i < qj+l. 

b(j) 
claim a. c~.-IIjl= E (b(f)(qj+i-qj)m(,~-q~+l)b(5)-.~(qj+i-m)k-b(j). 

m=0 

From these claims, we get that Aj = cj/(n)k is an appropriate choice and the 
following strengthening of L Y M  is obtained. 
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Theo rem 9. Let f be a sequence and fO, f l , . . . ,  f2k--1 be the (n, k)-segmentation of 
f . Then if f is n-realizable, 

2k--1 qj+l 

E E  ej Z 
j=0 i-=qj (i)k-b( j)(n --i)b(J) ~i) ~- 1. 

To prove the theorem it is enough to prove the claims. 

P r o o f  of  Claim 1. This follows from the fact tha t  the Ii's are disjoint. Suppose 0 <  
j <j '  < 2 k - 1. Then  t e B(j  r) \ B(j) for some 0 < t < k - 1, which implies tha t  r(t) <_ 
qj+l if r C I(j) and r(t) > qj, >_ qj if r e I( j  I) which means tha t  Ij and Ij, are disjoint.., 

P r o o f  of  Claim 2. /3" contains the set on injections tha t  map  B \ B ( j )  to  {1 , . . . , i }  
and B(j) to { i +  1 , . . . , n} ,  and there are (i)k_b(j)(n--i)b(j) to  these. | 

P r o o f  of  Claim 3. The members  of Ij can be constructed exactly once as follows. 
Sdlect the number  m of elements of B(j) tha t  are mapped  to {qj+l,qj+2,.. .  ,q j+l} ,  

where 0 < m <: b(j). For each such m, there are (b(mJ)) ways to select these m elements, 
(qj+l-qj)m ways to map them, (n-qj+l)b(j)_m ways to map the remaining elements 

of B(j) and (qj+l  -m)k-b(j)  ways to map the elements of B - B j .  | 

Remark .  The  set of coefficients {cj} occurr ing on Theorem 9 are not unique. For 
k = 2, we give another  set of coefficients. 

Theorem 10. Suppose k = 2, and q3 <: n or q2 = q3 = n, then Theorem 2 holds with 
the following coemcients: 

cO = (ql)2, Cl = q2(n-  ql), c2 = q3(n-  q2), e3 -- ( n -  q3)2. 

3 
Proof. It  is sufficient to  prove tha t  ~ cj < (n)2. After elementary a lgebra  we see, 

j=0 
tha t  this is equivalent to 

- q3 - 1 ) ( q 3  - q2 )  + (q l  - 1)(q  - q l )  > 0 .  

This proves the theorem since ql > 0 because f0 = 0. | 

Note  tha t  Theorem 10 sharpens Theorem 9 for k = 2 in almost  every cases since 
the coefficients in Theorem 2 are 

co---- (ql)2, Cl = q 2 ( n - q l ) - ( q 2  - ql), c2 = q 3 ( n - q 2 ) - ( q 3 - q 2 ) ,  c3=(n -q3 )2 .  
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