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We give pseudo-LYM inequalities in some posets and we give a new restriction
in this way for their antichains. Typically these posets fail the LYM inequality and
some of them are known to not be Sperner. Q 1997 Academic Press

1. INTRODUCTION

Let us be given a ranked partially ordered set PP, in which the set of
Želements of rank r is denoted by PP . Following tradition and naturalr

.notation, the smallest rank in a poset is either 0 or 1. The profile of an
< <antichain AA in PP is the sequence of cardinalities f s AA l PP . The posetr r

w xPP satisfies the LYM inequality 6, 12, 13, 17 if for every antichain AA,

fr F 1.Ý < <PPrr

A vast amount of literature investigates which posets have the LYM
Ž .property i.e., posets which satisfy the inequality above . The LYM prop-

Ž .erty has become a central issue for two reasons: a the LYM property
seems to be the most straightforward means to prove that a poset has the

< < Ž .Sperner property, i.e., the largest antichain has size max PP ; b the LYMr r
property is equivalent to some other, perhaps more illuminating, proper-
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Ž w x. w xties of the poset see e.g., 8 . Recently Ahlswede and Zhang 3 extended
the ‘‘classical’’ LYM inequality on the inclusion partial order of the power
set into an elegant identity, and LYM inequalities of several other posets

w xhave been extended into a corresponding AZ type identity 1, 2, 4, 16 .
One important poset that fails the LYM inequality is the partition lattice

w x w xof a set 15 . Contrary to a longstanding conjecture of Rota 14 , it does not
w xeven satisfy the Sperner property 7 .

The purpose of the present paper is to prove pseudo-LYM inequalities
Ž .for five posets that fail with one exception the LYM inequality. The

merit of the pseudo-LYM inequality is that it still describes a severe
restriction on the profile of an antichain. We also give the AZ identity
form of the inequalities and we characterize how equality may hold.

Three posets studied in this paper}the partition lattice, the poset of
chains of a Boolean algebra, and the poset of chains of subspaces of a
finite vector space}all share the property that a poset element can be
defined as a set of subsets of a universe. The divisor lattice of a given
number and the generalized Boolean algebra exhibit behavior analogous
to the preceding phenomenon. This property expectedly implies pseudo-
LYM inequalities in other posets as well.

2. THE PARTITION LATTICE

Let S be an n-element set and let PP be its partition lattice. We say a
partition a is less than partition g iff g is a refinement of a . For a
partition family AA in PP and for k G 1, 0 - i F i F ??? F i , let1 2 k

Ž .f AA denote the number of elements of AA of k classes, with classk ; i , i , . . . , i1 2 k

sizes i , i , . . . , i .1 2 k

THEOREM 2.1. Let AA / B denote an antichain in the partition lattice PP

of an n G 2 element set, i.e., no element of AA is a refinement of another. We
ha¨e

f AA k!Ž .k ; i , i , . . . , i1 2 k F 1. 1Ž .Ý n n y 1kG1;
i , i , . . . , i ž /1 2 k i , i , . . . , iž / k y 11 2 k

THEOREM 2.2. Let AA / B denote a set of partitions of an n G 2 element
set. Assume that AA does not contain the coarsest partition consisting of a
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single class. We ha¨e

N g k!Ž .
s 1, 2Ž .Ý n n y 1 kggPP ž / ž /i , i , . . . , iž / k y 1 21 2 k

where the g g PP summation ¨ariable has k G 2 classes of sizes 0 -
Ž .i , i , . . . , i , and N g counts unordered pairs of classes A, B g g such that1 2 k

for all a g AA, of which g is a refinement, A and B are subsets of different
classes of a .

Proof of Theorem 2.2. Consider AA f, which consists of all possible
Ž frefinements of partitions taken from AA. In other words, let AA be the

. Žfilter generated by AA. Let us call a sequence of partitions a cat from
.catena if it starts with the coarsest partition, the following partitions are

derived from the previous one by splitting a class into two nonempty
further classes, and it ends with the finest partition into singletons. Clearly,
the number of cats is

n n y 1 2
??? ,ž / ž / ž /2 2 2

since one may count cats starting from the finest partition and joining two
Ž .classes at any step. Any cat g , g , . . . , g has a smallest i ) 1 with1 2 n

g g AA f. We claimi

n y k !Ž .k y 1 k y 2 2N g ??? =Ž .Ý ž / ž / ž /2 2 2 i y 1 ! i y 1 ! ??? i y 1 !Ž . Ž . Ž .1 2 kggPP

k i i y 1 2 n n y 1 2j j= ??? s ??? , 3Ž .Ł ž / ž / ž / ž /½ 5ž / ž / 2 2 2 22 2js1

where g runs through the partitions into at least two classes. Note that

1 2
??? s 1,ž / ž /2 2

Ž . Ž .since the value of the empty product is 1. Formula 3 implies formula 2
Ž .through simple algebra. We show that both sides of 3 count all cats. We

Ž .have already concluded this about the right-hand side RHS . On the
Ž .left-hand side LHS , for every cat we specify the partition g , with which

the cat enters AA f. For a given g , we count the number of cats entering AA f
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in g . There are

kn y k !Ž . i i y 1 2j j ???Ł ž /½ 5ž / ž / 2i y 1 ! i y 1 ! ??? i y 1 !Ž . Ž . Ž . 2 2js11 2 k

Žways to build the part of the cat between g and the finest partition. Any i j
element classes can be built in

i i y 1 2j j ??? ž /ž / ž / 22 2

ways from singletons independently, and one even has the freedom to
.choose which class to make a step in. Connecting g and the coarsest

partition, we have to join two classes of g such that the coarser partition
obtained is not in AA f, and then finish the cat in

k y 1 k y 2 2
???ž / ž / ž /2 2 2

ways. Observe that the number of choices for the coarser partition is
Ž .exactly N g .

Observe that Theorem 2.2 implies Theorem 2.1. If an antichain AA

Ž .contains the coarsest partition consisting of one class, then AA s PP and 11
is straightforward to check. If AA is an antichain, g g AA, and g has k G 2

kŽ . Ž .classes, then N g s . Consider the terms from g g AA only, since the2

others have a nonnegative contribution.

Ž .THEOREM 2.3. Equality holds in 1 iff AA s PP for a certain k G 1.k

Proof. It is an easy exercise to show that the choice AA s PP yieldsk
Ž .equality in 1 and we leave this exercise to the reader. Assume that

equality holds. If the coarsest partition is in AA, then AA s PP . Hence we1
may assume that the coarest parition is not in AA. The antichain AA is

Ž .maximal for inclusion; otherwise we could further increase the LHS of 1 .
Assume k to be the largest number of classes for any g g AA. We show that
PP ; AA, and since AA is an antichain, we are at home. Assume to thek

Ž .contrary that d s A , A , . . . , A g AA and for a certain element x,1 2 k
X Ž � 4 � 4 . Žd s A y x / B, A j x , A , . . . , A f AA. We can assume this1 2 3 k

because it is easy to see that any element of PP can be obtained from anyk
other element of PP by iterating the following step: move an elementk

. Xfrom a nonsingleton class to another class. We show that d has a positive
Ž .contribution to the LHS of 1 . There exists an e g AA which is coarser

than d X, due to the maximality of AA. e is not coarser than d , since AA is an
� 4 � 4antichain. Hence, in e the sets A y x and A j x are subsets of1 2
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different classes. The last conclusion holds for all e g AA which is coarser
X Ž X. Ž � 4 � 4.than d ; therefore in N d the pair A y x , A j x has been1 2

counted.

A weighted version of Theorem 2.1 might provide a nontrivial upper
bound for the largest antichain in the partition lattice.

The partition lattice is not self-dual, i.e., turning it upside down, the new
lattice PP

U is not isomorphic to the original. Most texts call PP
U a partition

lattice. The pseudo-LYM inequality can be extended in PP
U into an AZ

identity, which is different from the AZ identity in PP.
Let g denote a partition of the universe into k - n nonempty classes of

size i , i , . . . , i . Let AA / B denote a set of partitions. Also assume that1 2 k
AA does not consist of a single partition of n classes.

Although the classes of a partition are unlabelled by definition, it is easy
to introduce a natural order on them: for example, we can consider the
lexicographic order of the subsets of S. Therefore we may speak about the
jth class of a partition g .

Ž . Ž .Let N g , j, a 1 F j F k, 1 F a F i y 1 denote the number of parti-j
tions g X which can be obtained from g by splitting the jth partition class
into classes of size a and i y a, such that g X is not in AA f. Then we havej

THEOREM 2.5.

i y1jk 2 ? k!? N g , j, aŽ .
s 1, 4Ž .Ý Ý Ý n in y 1g jjs1 as1 n y kŽ .ž / ž /i , i , . . . , iž / k y 1 a1 2 k

where g again denotes a partition of the unï erse into k - n nonempty classes
of size i , i , . . . , i1 2 k

Ž .It is not difficult to derive the pseudo-LYM inequality 1 from this AZ
Ž .identity. The proof consists of counting all cats like in 3 ,

i y1jk ik 2 2lN g , j, a ??? ???Ž .Ý Ý Ý Łž / ž / ž /½ 5ž /2 2 22l : l/jg js1 as1

n y k y 1 !Ž .i y aa 2 2j= ??? ??? ,ž / ž / ž /ž /2 2 2 a y 1 ! i y a y 1 ! i y 1 !Ž . Ž .Ž .2 Łj l
l : l/j

5Ž .

and using simple algebra.
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3. MULTISETS

Let us be given n , n , . . . , n balls of colour 1, 2, . . . , q. Balls of the1 2 q
Ž .same colour are not distinguishable. The multiset k s k , . . . , k is a1 q

selection of k , k , . . . , k balls, 0 F k F n , of colour i. There are differ-1 2 q i i
ent generalizations of the set inclusion to multiset inclusion. One general-

Ž .ization is that a multiset k s k , k , . . . , k is a subset of the multiset1 2 q
Ž .t s t , t , . . . , t iff k F t for all i. There is a largest multiset n s1 2 q i i

Ž .n , n , . . . , n . Take q different primes, p , p , . . . , p , and establish a1 2 q 1 2 q
one-to-one correspondence between the subsets of the multiset n and the
divisors of pn1 pn2 ??? pn q. Since k F t if and only if pk1 pk 2 ??? pk q divides1 2 q 1 2 q

pt1 pt2 ??? ptq, the emerging poset is isomorphic to the divisor lattice of the1 2 q

number pn1 pn2 ??? pn q. We recall this model as the dï isor lattice of PP.1 2 q
Ž . Ž .Another generalization is that k s k , k , . . . , k F t s t , t , . . . , t1 2 q 1 2 q

� 4iff k s 0 or t s k hold for all i. This model is kown as generalizedi i i
Ž w x. Ž w x.Boolean algebra e.g., 9 or space of integer sequences e.g., 11 .

3.1. Dï isor Lattices

Let PP denote the divisor lattice of the integer pn1 pn2 ??? pn2. The rank1 2 q
Ž . Ž .function r k of this poset is defined as k q k q ??? qk , so r n s n1 2 q 1

Ž w x.q ??? qn . This poset is known to be LYM e.g., 5, Theorem 4.2.3 . Hereq
we prove another inequality for antichains.

THEOREM 3.1. Let AA / B denote an antichain in the poset PP. Then we
ha¨e

nn n q1 2
???ž / ž /k k kž /1 2 q

F 1. 6Ž .Ý
r nŽ .kgAA ž /r kŽ .

Ž .Equality holds in 6 iff AA is the set of all multisets of rank l for a certain l.

THEOREM 3.2. Let AA / B denote a subset of PP. Assume that AA /
�Ž .40, 0, . . . , 0 . Then we ha¨e

njrŁ js1 kž /k ji s 1. 7Ž .Ý Ý r kŽ . r nŽ .� 0i: k G1kgPP i
fŽ .k , . . . , k y1, . . . , k fAA ž /1 i q r kŽ .
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Proof. Consider the set AA f which consists of all possible elements of PP

containing some member taken from AA, that is, the filter generated by AA.
Define a cat as a maximal sequence of multisets t , t , . . . , t such that1 2 r Žn.
for every index i multiset t includes and is not equal to t . It is easy toiq1 i
see that every cat has a smallest index i such that t g AA f. We can counti

Ž .all cats like in 2 :
Ž . Ž .On the other hand, the total number of cats is r n !r n ! ??? n ! , since1 q

any cat can be described as a permutation with repetition of the coloured
balls of the model. On the other hand, grouping the cats by the multiset k
with which they first enter AA f, the multiset t in this cat, just below k, does
not contain any element in AA. Therefore we have

r k y 1 ! r n y r k !Ž . Ž . Ž .Ž . Ž .
Ý Ý k ! ??? k y 1 ! ??? k ! n y k ! ??? n y k !Ž . Ž . Ž .1 i q 1 1 q qi: k G1kgPP i

fŽ .k , . . . , k y1, . . . , k fAA1 i q

r n !Ž .
s . 8Ž .

n ! ??? n !1 q

Ž .Now simple algebra gives 7 .
Ž .Turning to the proof of Theorem 3.1 let AA be an antichain. If 0, . . . , 0

Ž .belongs to AA, then 6 is straightforward to check. Otherwise if k g AA, then
Ž .the inner sum in 7 runs for every i; therefore the value of this sum is 1.

Consider the terms from k g AA only, since the others have a nonnegative
contribution.

Ž .Finally, if 6 holds with equality, then antichain AA is maximal for
inclusion. It is easy to see that the choice AA s PP yields equality for eachl

Ž .l. If 0, . . . , 0 g AA, then AA s PP . Otherwise we can apply Theorem 3.2.0
Assume that the maximal rank among the elements of AA is l. Then we
show that PP ; AA. Otherwise we can find multisets k g AA and t f AA ofl
rank l such that there are indices i and j for which k y 1 s t , k q 1 s t ,i i j j
and all other coordinates are equal. Now, like in the proof of Theorem 2.3,

Ž .it is easy to see that the contribution of multiset t is the LHS of 7 is
positive, a contradiction.

Finally note that, as we have already mentioned, the divisor lattice
satisfies the ‘‘real’’ LYM inequality. That is,

Žw x.THEOREM 3.3 5, Theorem 4.2.3 . Let AA be an antichain in the dï isor
lattice PP. Then

1
F 1.Ý Nr Žk.kgAA
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The lth Whitney number N of the divisor lattice isl

nn n q1 2N s ??? .Ýl ž / ž /k k kž /1 2 qk qk q ??? qk sl1 2 q

It seems to be that none of Theorems 3.1 and 3.3 is a consequence of the
other.

3.2. Generalized Boolean Algebra

We recall that in the generalized Boolean algebra PP multiset k s
Ž . Ž . � 4k , k , . . . , k F t s t , t , . . . , t iff k s 0 or t s k holds for all i.1 2 q 1 2 q i i i

Ž .The set s k of the nonzero coordinates is called the support of the
Ž . < Ž . <multiset k. The rank function r is defined as r k s s k . Now one can

state the following results:

THEOREM 3.4. Let AA / B be an antichain in PP. Then we ha¨e

1
F 1. 9Ž .Ý qkgAA Ł nig sŽk. iž /r kŽ .

Ž .Equality holds in 9 iff AA consists of all the element of rank l for a certain l.

Before we state the AZ identity for generalized Boolean algebra PP we
need a notation: let A and B be arbitrary subsets of a poset. If no element

<of A is comparable to any element of B, then we write A ) - B. If A has
<just a unique element a, then we write a ) - B.

�Ž .4THEOREM 3.5. Let AA / B, AA / 0, 0, . . . , 0 denote an arbitrary family
of multisets in PP. We ha¨e

<F s t k g PP : r k s q & k ) - AA� 4Ž . Ž . Ž .Ž .t g AA : t F k q s 1.Ý qŁ nq is1 ikgPP r k Ł nŽ . ig sŽk. iž /r kŽ .
10Ž .

Proof. The proof is very similar to the previous one. Let AA f be the
filter generated by AA in PP. Define a cat as a strictly increasing sequence
of multisets t , t , t , . . . , t . The rank of the ith element in a cat is i. It is0 1 2 q
easy to see that every cat has a smallest index i such that t g AA f. Wei
count all cats:

On the one hand, the total number of cats is q!n , . . . , n , since any cat1 q

is described with the entering order of the nonzero coordinates and with
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values of those coordinates. In coordinate i this value can be 1, 2, . . . , n .i
On the other hand, let us group the cats by the multiset k with which they

f Žfirst enter AA . Let t be the multiset in this cat just below k that is
Ž . Ž . . Ž . Ž .r t s r k y 1 . Now s k _ s t must belong to the support of every

element of AA which is smaller than k. Finally those cats which never enter
AA f have maximal elements k which are uncomparable to AA, that is,

<k ) - AA. Therefore it is easy to check that the LHS of the next equality
counts all the cats as well:

s t r k y 1 ! q y r k ! n q q!Ž . Ž . Ž .Ž . Ž .Ý F Ł Ýi
Ž .ifs k Ž .kgPP tgAA: tFk k : r k sq

<k)-AA

q

s q! n . 11Ž .Ł i
is1

Ž .Now simple algebra gives 10 .

<We remark, that if AA is a generator of the entire poset, that is, x ) - AA

Ž .holds for no x g PP, then the second item in the LHS of 10 is 0.
The proof of Theorem 3.4 is similar to the proof of Theorem 3.1. It is

Ž .enough to notice that if AA is an antichain in 10 and k g AA, then the
Ž .cardinality of the intersection is exactly r k .
Ž .We remark that in the case of n s n for all i Theorems 3.4 and 3.5i

become the proper LYM inequality and AZ identity. Finally, if n s 1,
then we get back the original LYM inequality and AZ identity.

4. THE CHAIN POSET

Let us be given an n element set X. For k G 1, a k-chain in the power
Ž .set of X is a sequence l s L ; L ; ??? ; L , where L is a subset of1 2 k i

X and L / L . We say that a k-chain contains an l-chain if the first as ai iq1
k-element set contains the second as an l-element subset. In this way all
chains in the power set of X make a poset CC for inclusion: this is the
chain poset. We note here that Erdos, Seress, and Szekely proved an˝ ´

w xErdos]Ko]Rado theorem for the chain poset 10 . If, in addition, one˝
forbits B and X as elements in chains, then the chain poset can be
thought of as an ‘‘ordered partition version’’ of the partition lattice, which

Ž .is no longer lattice at all. Namely, for a k-chain l s L ; L ; ??? ; L1 2 k
Ž .with L / B and L / X, L , L y L , . . . , L y L , X y L is an1 k 1 2 1 k ky1 k

w xordered partition of X. The counterexample already quoted 15 easily can
be adapted to the chain poset to show that it fails the LYM property.
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Ž .For a chain family AA in CC, let f AA denote the number ofk ; i , i , . . . , i1 2 k

k-chains in AA in which the elements of the chain have sizes i - i - ???1 2
- i .k

THEOREM 4.1. Let AA / B be an antichain in CC. Then

f AAŽ .k ; i , i , . . . , i1 2 k F 1. 12Ž .Ý n n q 1k ; i , i , . . . , i1 2 k ž /i , i y i , . . . , i y i , n y iž / k1 2 1 k ky1 k

Ž .Equality holds in 12 iff AA is the set of all k-chains for a certain k.

THEOREM 4.2. Let AA / B denote a set of chains in CC. We ha¨e

X
XF lAA 2 l ; lÝ n n q 1lgCC ž /i , i y i , . . . , i y i , n y iž / k1 2 1 k ky1 k

< < <l g CC : l s n q 1 & l ) - AA� 4Ž . Ž .
q s 1. 13Ž .

n!

f � 4Proof. Consider the set AA s d g CC: 'a g AA with a ; d . Define a
cat as a maximal sequence of chains for proper inclusion, l ; l ; ??? ;1 2
l . It is easy to see that l in a cat has to be an i-chain. It is also easy tonq1 i
see that every cat has a smallest index i such that l g AA f. One counts alli

Ž . Ž .cats like in 2 . On the one hand, the total number of cats is n q 1 !n!,
Ž .since there are n! n-chains of subsets and each gives rise to n q 1 ! cats.

On the other hand, grouping the cats by the chain l with which they first
enter AA f and handling separately those cats which do not enter at all, one
has

Xl ky1 ! nq1yk !i ! i y i ! ??? i y i ! nyi !Ž . Ž . Ž . Ž . Ž .Ý F 1 2 1 k ky1 k
X

lgCC AA2l ;l

q n q 1 !s n q 1 !n!. 14Ž . Ž . Ž .Ý
< <l : l snq1

<l)-AA

Ž . Ž .It is obvious that 14 implies 13 and the missing details of the proof
are easy to fill.
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5. CHAIN POSET OF SUBSPACES OF A VECTOR SPACE

Let us be given an n-dimensional vector space V over the finite field
Ž . ŽGF q . For k G 1, a k-chain of subspaces of X is a sequence l s L ;1

.L ; ??? ; L , where L is a subspace of X and L / L . We say that2 k i i iq1
a k-chain contains an l-chain if the first as a k-element set contains the
second as an l-element subset. In this way all chains of subspaces of V
make a poset VV for inclusion: this is the subspace chain poset.

Recall the following definitions of the q-generalization of factorials and
multinomial coefficients:

n
2 iy1w xn !s 1 q q q q q ??? qq ,Ž .q Ł

is1

w xa q a q ??? qa !a q a q ??? qa q1 2 m1 2 m s .a , a , . . . , a w x w x w xa ! a ! ??? a !1 2 m q q qq 1 2 m

Ž .For a family AA in VV , let f AA denote the number of k-chains ink ; i , i , . . . , i1 2 k

AA in which the dimensions of the elements of the chain have sizes
i - i - ??? - i .1 2 k

THEOREM 5.1. Let AA / B be an antichain in CC. Then

f AAŽ .k ; i , i , . . . , i1 2 k F 1. 15Ž .Ý n n q 1k ; i , i , . . . , i1 2 k ž /i , i y i , . . . , i y i , n y i k1 2 1 k ky1 k q

Ž .Equality holds in 15 iff AA is the set of all k-chains for a certain k.

THEOREM 5.2. Let AA / B denote a set of chains in VV . We ha¨e

X
XF lAA 2 l ; lÝ n n q 1lgVV k ž /i , i y i , . . . , i y i , n y i k1 2 1 k ky1 k q

< < <l g VV : l s n q 1 & l ) - AA� 4Ž . Ž .
q s 1. 16Ž .w xn !q

f � 4Proof. Consider the set AA s d g VV : 'a g AA with a ; d . Define a
cat as a maximal sequence of chains for proper inclusion, l ; l ; ??? ;1 2
l . It is easy to see that l in a cat has to be an i-chain. Furthermore,nq1 i
every cat has a smallest index i such that l g AA f. One counts all cats likei
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Ž . Ž . w xin 14 . On the one hand, the total number of cats is n q 1 ! n !, sinceq
there are

q n y 1 q n y q q n y q ny1

w x? ??? s n !q2 n ny1q y 1 q y q q y q

Ž . Ž .n q 1 -chains of subspaces, and each gives rise to n q 1 ! cats. On the
other hand, grouping the cats by the chain l with which they first enter AA f

and handling separately those which do not enter at all, one has

X w x w xl k y 1 ! n q 1 y k ! i ! i y i ! ???Ž . Ž .Ý F q q1 2 1
X

lgVV AA2l ;l

w x w xi y i ! n y i !q qk ky1 k

w xq n q 1 !s n q 1 ! n !. 17Ž . Ž . Ž .qÝ
< <l : l snq1

<l)-AA

The end of the proof proceeds like before.
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