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ERDŐS-KO-RADO THEOREMS OF HIGHER
ORDER

Péter L. Erdős and László A. Székely

Abstract We survey conjectured and proven Ahlswede-type higher-order general-
izations of the Erdős-Ko-Rado theorem.
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This paper is dedicated to the 60th birthday of Professor Rudolf
Ahlswede.

1. INTRODUCTION
Rudolf Ahlswede’s seminal work in extremal combinatorics includes:

• the Ahlswede-Daykin (or Four Function) inequality [4, 5] which pro-
vides for a common generalization of many correlation inequalities;
• the Ahlswede-Zhang identity, which unexpectedly turns the familiar
LYM inequality into an identity [13];
• the complete solution (in joint work with L. Khachatrian [6, 7] ) for
maximizing the number of t-intersecting k-element sets—a problem dat-
ing back to the 30’s [22];
• breakthrough results in Erdős type number theory (using the shifting
technique in joint works [9, 10, 11] with L. Khachatrian) on problems
like what is the maximum number of positive integers up to n such that
no two of them are relatively primes, and related results.

The present survey paper focuses on higher order extremal problems
in the sense of Ahlswede [3, 14]. The traditional questions about set sys-
tems sound like “how many sets can one have under certain restrictions”
while the new higher order questions ask “how many families of sets can
one have under certain restrictions”. R. Ahlswede et al. have started this
research, with strong motivation from information theory [3, 14]. They
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propose that any problem about set systems may give rise to four higher-
order problems. For illustration, the classic Erdős-Ko-Rado theorem [22]
sets an upper bound, on how many pairwise intersecting k-element sub-
sets of an n-element set can one find. The four higher-order problems
each ask how many pairwise disjoint families of k-element subsets of an
n-element set can have such that for any two families:
(1) there exists an element of the first family which intersects all elements
of the second family;
(2) there exists an element of the first family and an element of the
second family that intersect;
(3) for all elements of the first family there exists an element of the
second family, which intersects it;
(4) all elements of the first family intersect all elements of the second
family.
One may not expect, of course, that all new problems generated in this
way make sense and are interesting. But some of them yield elegant
generalizations of known results. Ahlswede conjectured a bound

(n−1
k−1

)
for the problem (1), which would have given a higher-level generalization
of the classic Erdős-Ko-Rado theorem. (For an intersecting family of k-
sets {Ai : i ∈ I} one makes the family of singleton families {{Ai} : i ∈ I}.
If an upper bound holds for the second family, then it holds for the first
family.) However, it was shown in [1] that although the conjecture holds
for k = 2, 3, it is false for k ≥ 8. The proof of the counterexample uses
the probabilistic method. In this paper we restrict our interest to higher
order generalizations of the Erdős-Ko-Rado theorem. The higher order
generalizations of Sperner’s theorem [8, 14, 15] will not be considered
here.

In this paper we do not take narrowly the definition of Ahlswede-
type higher-order extremal problems, since we rather do not insist on
the pairwise disjointness of the families, but require that the sets in the
same family have a certain additional structural property (make classes
of a partition or be comparable for inclusion, etc.).

It is instructive to compare the concept of higher order generaliza-
tion to other generalizing principles in combinatorics. Gian-Carlo Rota
taught us to look for analogues of theorems valid on the power set lat-
tice on the subspace lattice and the partition lattice. In the setting of
Erdős-Ko-Rado theorems, Miklós Simonovits and Vera Sós initiated the
study of “structured intersection theorems” [34, 35]: they look for the
largest number of “structures” (graphs, arithmetic progressions, etc.)
that pairwise intersect in a required type of “substructre”.

If we understand higher order generalization in a broader sense, where
we want to bound the number of families instead of the number of sets,
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it turns out that these three directions for generalization frequently over-
lap.

Excellent references on Erdős-Ko-Rado type theorems for set systems
are [20, 28, 30].

2. INTERSECTING CHAINS IN POSETS
This section reviews results on intersecting chains in posets. A k-chain

in a poset is a set of k distinct poset elements, such that any two elements
are comparable in the poset. We say that two chains in a poset intersect,
if they share at least one poset element. P. L. Erdős, Faigle, and Kern [24]
pointed out that certain frequently studied problems well belong to this
line. For example, let M1,M2, . . . ,Mn be n pairwise disjoint sets of
the same cardinality q. The associated generalized Boolean algebra (or
sequence space) consists of the family

B(n, q) = {C ⊆ M1 ∪ . . . ∪Mn : |C ∩Mi| ≤ 1, i = 1, . . . , n}

ordered by inclusion. Observe that B(n, q) may be viewed as the col-
lection of chains of an order P = P (n, q) on M1 ∪ . . . ∪Mn with order
relation

x < y if i < j

for all x ∈ Mi, y ∈ Mj . Frankl and Füredi [29] and Deza and Frankl [20]
proved that, for q ≥ 2 and k = 1, . . . , n, there are at most

(n−1
k−1

)
qk−1

pairwise intersecting k-chains. Their method did not apply for the case
q = 1. This is, however, the ”classical” power set case, and therefore the
original Erdős-Ko-Rado theorem also fits into this framework by solving
the case q = 1.

It is worth pointing out, that these results can be strengthened to
Bollobás type inequalities (see [24] or Engel [21]).

P. L. Erdős, Faigle, and Kern [24], among other results on intersect-
ing chains, posed the problem of finding the largest number of pair-
wise intersecting k-chains in Bc

n, where Bc
n denotes the poset of sets

{X ⊆ {1, 2, ..., n} : c ≤ |X| ≤ n − c} for inclusion. Füredi solved this
problem first, using the kernel method, for c = 0, 1 and n > 6k log k
(personal communication). Ahlswede and Cai [2] solved the problem for
c = 0. For an arbitrary value of c it was solved by Ákos Seress and the
authors ([25, 26]). More precisely:
Definition. For c ≤ m ≤ n − c, let T c

n,k(m) denote the set of those
k-chains in Bc

n, which contain as element the initial segment {1, . . . ,m}.
Clearly |T c

n,k(m)| is also the cardinality of the set of those k-chains in
Bc

n,k which contain a specified (but otherwise arbitrary) subchain of
length 1 with specified size m.
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Theorem 1 ([26]) Let c ≥ 1 and let F be a family of intersecting k-
chains in Bc

n. Then |F| ≤ |T c
n,k(m)|, and there is an injection φ : F →

T c
n,k(c) such that every chain L = (L1, L2, . . . , Lk) ∈ F and its image

φ(L) = H = (H1,H2, . . . ,Hk) ∈ T c
n,k(c) satisfy

|Lk| ≥ |Hk|.

The proof is based on a version of the shifting technique and uses math-
ematical induction. It is interesting to remark, that the same technique
could apply for t-intersecting k-chains, if we had an easy base case for
the induction, that we do not have. In lack of a good base case, the
corresponding result in [26] uses the kernel method, and therefore does
not give all n’s for which the theorem holds. Finding the exact threshold
for t-intersecting problem seems to be a very challenging problem.

The following problem fits the scheme of “structured intersection the-
orems” [34, 35] of Simonovits and Vera Sós: given a graph G, what is the
maximum number of pairwise intersecting complete k-subgraphs? The
maximum number of pairwise intersecting k-chains in a poset is exactly
this problem if G is the comparability graph of the poset.

Whenever the poset elements are sets, the maximum number of pair-
wise intersecting k-chains in a poset fits the description of higher-order
problems. Rota type analogues also came into play. Czabarka [16, 18]
made the q-analogue of the shifting technique and gave new proofs
to Hsieh’s theorem [33]—the q-analogue of the classic Erdős-Ko-Rado
theorem—in this way. Czabarka [17] also obtained a q-analogue of the
shifting proof of the theorem of Seress and the authors on intersecting
k-chains in Bc

n to intersecting k-chains for subspaces in an n-dimensional
linear space over GF (q), although for c = 0, 1 only.

Here we cite two other, general theorems of Seress and the authors
[26] on intersecting chains in posets. These are the basis to prove result
on t-intersecting chains in Bc

n. The first is an Erdős-Ko-Rado type result,
the second is a Hilton-Milner type result.

Let us be given a fixed k and a sequence of posets Pn. For a given
t-chain L, let Tn,k(L) denote the set of k-chains in Pn which contain L as
a subset. Define Tn,k(L) = |Tn,k(L)|. Also define rt(n) = max Tn,k(L),
where the maximum is taken for t-chains L in Pn.

Theorem 2 For fixed 1 ≤ t < k, and a sequence of posets Pn, let us be
given a family Fn of t-intersecting k-chains in Pn. Assume that

lim
n→∞

rt+1(n)/rt(n) = 0.

Then, for n sufficiently large, |Fn| ≤ rt(n), and equality implies that the
elements of Fn share a t-subchain.
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For a t-chain X ⊂ Pn and y /∈ X , let T (X , y) denote the number of
k-chains which contain X and y. For a t-chain X and a k-chain L in Pn,
such that |X ∪ L| = k + 1, let y∗L ∈ L \ X such that T (X , y∗L) minimize
T (X , yL) for the elements y ∈ L \ X , and set

τ(X ,L) =
∑

y∈L\X , y 6=y∗L

T (X , y).

Also define
Mτ (n) = max

X ,L
τ(X ,L),

and
M∗

τ (n) = max
X ,L:

τ(X ,L)=Mτ (n)

T (X , y∗L).

Now the following Hilton-Milner type theorem [32] holds:

Theorem 3 For fixed 1 ≤ t < k, and a sequence of posets Pn, let us be
given a maximum sized family Fn of non-trivially t-intersecting k-chains
in Pn. Assume further that

lim
n→∞

rt+2(n)/M∗
τ (n) = 0.

then, for n sufficiently large, Fn has one of the following two descrip-
tions:

(i) there exists a t-chain X and a (k + 1 − t)-chain Y, such that
X ∩ Y = ∅; and Fn is the following set of k-chains:

{L : X ⊆ L and L ∩ Y 6= ∅} ∪ {L : Y ⊆ L and |L ∩ X | = t− 1},

where the second set of chains is non-empty;

(ii) there exists a (t + 2)-chain Z, and Fn is the following set of
k-chains:

{L : |L ∩ Z| ≥ t + 1},

and |
⋂
L∈Fn

L ∩ Z| ≤ t− 1.

These theorems provide for a common generalization of the classic
Erdős-Ko-Rado theorem and the theorem on intersecting chains in Bc

n.
The proofs depend on the kernel method and may allow for generaliza-
tion to other hereditary families than chains.
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3. INTERSECTING PARTITIONS
This section poses some new problems on intersecting set partitions.

A partition is a collection of disjoint non-empty sets whose union is the
universe. We are going to consider different definitions for intersecting
partitions. All of them are related to the type (2) higher-order problem.
First, we say that two partitions of n elements intersect in a class if the
two partitions share a class. It is natural to conjecture, that the largest
number of k-partitions of an n-set that pairwise intersect in a class can
be obtained by taking a fixed singleton and all (k − 1)-partitions of the
remaining n− 1 elements.

Second, we say that that two partitions of an n-element set intersect
in a pair if there exist respective classes C1, C2 of the two partitions such
that |C1 ∩ C2| ≥ 2. This is the Rota type analogue of the intersection
property to the partition lattice: two partitions intersect if their meet
is above an atom. (We think about the partition lattice such that 0 is
the finest partition and 1 is the coarsest partition.) This problem fits
well the scheme of Simonovits and Vera Sós: consider those graphs on
n vertices, which are vertex-disjoint unions of cliques. Give the largest
number of those graphs which pairwise share at least one edge.

Conjecture 1 If n ≤ 2k− 1, then the largest number of k-partitions of
an n-set that pairwise intersect in a pair is S(n− 1, k). This bound can
be attained by taking a fixed pair and all k-partitions of the n elements
that have this pair in one class.

Note that if n = 2k, then we can freely add to the above construction
any partition which has a single class of size k + 1 and k − 1 singletons.
Therefore, for n = 2k, the construction in the conjecture is no longer
optimal.

Third, we say that that two partitions of n elements intersect in a
co-pair if there exist a two-partition {C1, C2} of {1, 2, ..., n} such that
both partitions refine {C1, C2}. This is also a Rota type analogue of the
intersection property on the partition lattice: two partitions intersect if
their join is under a co-atom.

Conjecture 2 If n ≥ 2k− 1, then the largest number of k-partitions of
an n-set that pairwise intersect in a co-pair is S(n−1, k−1). This bound
can be attained by taking a fixed singleton and all (k − 1)-partitions of
the remaining n− 1 elements.

Note that if n = 2k−2, then we can freely add to the above construc-
tion any partition which has a single class of size k−1 and k−1 singletons.
Such k-partitions intersect in a co-pair every other k-partitions, other-
wise the other partition would have a class whose size exceeds k, which is
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impossible. Therefore, for n = 2k−2, the construction in the conjecture
is no longer optimal. The threshold in this conjecture is somewhat bold,
the conjecture might require a larger value of n.

Theorem 4 For fixed k > t ≥ 1 and n > n0(k), the largest number
of k-partitions of an n-set that pairwise intersect in at least t classes is
S(n − t, k − t). This bound can be attained by taking t singletons fixed
and all (k − t)-partitions of the remaining n− t elements.

For the proof of the theorem we review facts about sunflowers that we
use in the kernel method. A set system {A1, A2, . . . , Am} is called a
sunflower or delta-system, if Ai ∩ Aj =

⋂m
l=1 Al for all 1 ≤ i < j ≤ m.

The sets Ai are called the petals and
⋂m

l=1 Al is called the kernel of the
sunflower.

We say that a set system is of rank k, if |H| ≤ k for all H ∈ H; andH is
t-intersecting, if |H1∩H2| ≥ t for all H1,H2 ∈ H. For t ≥ 1, we say that
H is non-trivially t-intersecting, if it is t-intersecting, and |

⋂
H| < t. We

say that H is critically t-intersecting, if it is t-intersecting, and deleting
any x ∈ H from any H ∈ H, the resulting set system H\{H}∪{H \{x}}
is not t-intersecting.

Estimates in the kernel method are usually based on the following
simple observation.

Lemma 1 Let H be a critically t-intersecting system (t ≥ 1) of rank k.
Then H does not contain a sunflower with k + 1 petals.

Proof. Indeed, if {H1,H2, . . . ,Hk+1} is a sunflower in H, then any H ∈
H must intersect the kernel K of the sunflower in at least t elements,
since a ≤ k-element set cannot intersect each of the k + 1 disjoint sets
H1 \ K, H2 \ K,. . . , Hk+1 \ K. Hence the deletion of H1 \ K from
H1 (if H1 6= K) results a t-intersecting set system, contradicting the
minimality of H. 2

We will also need the Erdős-Rado theorem [23]:

Lemma 2 For every i and l, there exists a number f(i, l), such that any
family of f(i, l) sets of size i each, contains a sunflower with l petals. 2

Now we return to the proof of the theorem. Identify a partition P
with the k-element set of its classes. Throw out classes of partitions
until we obtain a critically intersecting family H. Let Hi denote the set
of i-element collections in H. If Ht 6= ∅, then we have t identical classes
present in all partitions, and the theorem follows by the monotonicity of
S(n, k), the Stirling number of the second kind, in n.
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If Ht = ∅, then from the Lemmas we have |Hi| ≤ f(i, k + 1). Any
element of Hi can be extended in at most S(n− i, k − i) ways toward a
partition P. Hence the total number of partitions in this case is at most

k∑
i=t+1

f(i, k + 1)S(n− i, k − i).

Using the fact that for fixed k the asymptotic formula

S(n, k) ∼ kn

k!

holds ([19] p. 293), it follows that the number of partitions is o(S(n −
t, k − t)).
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