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Abstract

Biologists seek to reconstruct evolutionary trees for increasing number of species,

n, from aligned genetic sequences. How fast the sequence length N must grow, as
a function of n, in order to accurately recover the underlying tree with probability
1 — ¢, if the sequences evolve according to simple stochastic models of nucleotide
substitution? We show that for a certain model,a reconstruction method exists for
which the sequence length N can grow surprisingly slowly with n (sublinearly for
a wide range of parameters, and even as a power of logn in a narrow range, which
roughly meets the lower bound from information theory). By contrast a more tra-
ditional technique (maximum compatibility) provably requires N to grow faster
than linearly in n. Our approach is based on a new, and computationally efficient
approach for reconstructing phylogenetic trees from aligned DNA sequences.
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1 INTRODUCTION

Simple models of nucleotide substitution are often used to analyse or justify methods for
reconstructing evolutionary trees from aligned DNA sequences. One of the earliest, and
still most striking examples of this approach, due to Felsenstein [14], reveals that two
popular methods—mazimum parsimony and mazimum compatibility—can be seriously
misled when the underlying mutation model has its parameters lying in a particular
region (subsequently nicknamed “Felsenstein zone”). This result, and other more recent
embellishments (see Hendy [17], Zharkikh and Li [28], Takezaki and Nei [26], Steel et al.
[24]) concern statistical consistency, and as such are asymptotic results— that is they
are concerned with outcomes as the sequence length (i.e. the number of sites) tends to
infinity.

A more difficult question to analyse, particularly for large numbers of sequences, is
how well methods perform for sequences of a given length, N. In particular, even if
one is in a “good” region of the parameter space, it is clear that one needs at least a
“reasonable” number of sites in order to be sure of recovering the correct tree by any
method. Exactly how large this “reasonable” number must be, will surely depend also
on the number of sequences (see Philippe and Douzery [20]), n.

More precisely, consider the question of how many sites N must be generated inde-
pendently and identically, according to a substitution model M in order to reconstruct
the underlying binary tree on n species with pre-specified probability 1 — € by a particu-
lar method ®. Clearly, the answer will depend on @, €, and n, and also on the fine details
of M—in particular the unknown values of its parameters. It is clear that for all models
that have been proposed, if no restrictions are placed on the parameters associated with
edges of the tree then the sequence length might need to be astronomically large, even
for four sequences, since the “edge length” of the internal edge(s) of the tree can be
made arbitrarily short (as was pointed out by Philippe and Douzery [20]). A similar
problem arises for four sequences when one or more of the four non-internal edges is
“long”—that is, when site saturation has occurred on the line of descent represented by
the edge(s). Thus our question is interesting only if we assume that, for each tree, the
parameters lie in some “good” region R (in the extreme, we might ask how long the
sequences would need to be if the parameters were as favourable to us as possible).

This is related to, but different from, the question considered by Lecointre et al.
[18]. In that paper the authors consider the length of sequences required in order for
the reconstructed tree to be supported by high bootstrap proportions.

Before describing our results in more detail, we first provide a summary of notation
used throughout this paper, and define more precisely the objects of study.

Notation: P[A] denotes the probability of event A; E[X] denotes the expectation of
random variable X; all bold letters denote vectors, and if the coordinates of vector @
are indexed by particular elements j we sometimes emphasis this by writing &= [z;].



We denote the natural logarithm by log. The set [r] denotes {1,2,... ,n} and for any
set S, (‘Z) denotes the collection of subsets of S of size k. R denotes the real numbers,

and Rs[x] denotes the vector space of quadratic polynomials in indeterminates & = [z;]
and coefficients in R.

Definitions: (I) Trees. A binary phylogenetic tree (shortly bph tree) T is a tree whose
leaves (vertices of degree 1) are labelled (by extant species, numbered 1,2,... ,n) and
whose remaining internal vertices (representing ancestral species) are unlabelled and of
degree three. (Such trees are often assumed to represent the underlying evolutionary
history of the collection of extant species.) Let B(S) denote the set of bph trees on
leaf set S, and let B(n) = B([r]). For T' € B(n), S C [n], there is a unique minimal
subtree of T', containing all elements of S. We call this tree the subtree of T induced by
S, and denote it by Tjs. We obtain the binary subtree induced by S, denoted by T,
if we substitute edges for all maximal paths of T|g, in which every internal vertex has
degree 2. Thus, T}5 € B(S). It | S| = k, then we refer to Ts as a binary k-subtree.

(IT) Sites. Let us be given a set C of character states (such as C = {A,C,G, T}
for DNA sequences; C' = the 20 amino acids for protein sequences; C = {R,Y} or
{0,1} for purine-pyrimidine sequences). A sequence of length N is an ordered N-tuple
from C—that is an element of CV. A collection of n such sequences—one for each
species labelled from [n]—is called a collection of aligned sequences. (In practice such a
collection 1s derived from sequences of varying lengths by an “alignment” process, which
aims to identify insertion and deletion events, and thereby to extract a subset of “sites”
that differ between the sequences due to character substitutions). Aligned sequences
have a convenient alternative description as follows. Let us call any map x : [n] — C
a pattern. Then, a collection of n aligned sequences, each of length N. can equally
well be represented as an ordered collection s = (s1,...,sn), of sites, where site s; is
the pattern that assigns j € [n] the character state at position ¢ in sequence j. Let
x[s] be the vector, indexed by all possible |C|™ patterns, and whose y-coordinate is the
proportion of sites where pattern x occurs. Note that the map s— @[s] represents s up
to the order of the sites. In the rest of the paper we work with C = {0, 1} only.

(IIT) Site substitution models. In this paper we assume that the sites are indepen-
dently and identically distributed (i.i.d.) and are generated by some model, denoted
M, which depends, in part, on the underlying bph tree, Th;. We let §S; denote the
random variable site at position ¢, and let S = (S51,..., Sy); and define @[S] as for [s]
but with s replaced by the random variable S. Let f, = P[S; = x], and f, or more
precisely, f(M) = [f,]. Thus, f equals the vector E[2[S]], and «[S] has a multinomial
distribution with parameters N and f.

(IV) The Cavender—Farris model. Many models have been proposed to describe,
stochastically, the evolution of sites. The simplest model, for two-state sites, is the
symimetric model, due to Cavender [6] and Farris [13], which we have elsewhere called
the CF (=Cavender—Farris) model. Let {0,1} denote the two states. Although the
CF model is usually described, for biological reasons, on a rooted bph tree, we can,



without loss of generality, disregard this feature of the model. For each edge e of T
we have an associated mutation probability, which lies strictly between 0 and 0.5. Let
p: E(T) — (0,0.5) denote the associated map. Select one of the leaves, and assign
it state 0 or state 1 with probability 0.5. Direct all edges away from this leaf and
recursively assign random states to the vertices of T' as follows: if e = {u, v} is directed
from w to v, and u (but not v) has a state assignment, then v is assigned the same
state as w with probability 1 — p. or the other state with probability p.. It is assumed
that all assignments are made independently, and so the pair (7', p) determines the joint
probability of any assignment of states to the vertices of 7', and thereby the marginal
probability of any assignment of states to the leaves of T—and this then provides a
probability distribution on all binary patterns on [r]. We let f denote the vector of
these 2™ pattern probabilities.

The CF model is hereditary on subsets of the leaves—that is, if we select a subset S
of [r], and form the binary subtree Tis; then we can define mutation probabilities on the
edges of Ts so that the probability distribution on the patterns on S is the same as the
marginal of the distribution on patterns provided by the orginal tree 7'. Furthermore,
the mutation probabilities that we assign to an edge of Ts is just the probability p that
the endpoints of the associated path in the original tree T' are in different states, and p
is nicely related to the mutation probabilities pi, ps, ..., pr of edges of the k-path of the
original tree:

p=3(1-TI0-200) - (1

=1
Formula (1) is well-known, and it is easy to prove by induction.

(V) Tree reconstruction. A phylogenetic tree reconstruction method is a function
® that associates to every collection of sites either a bph tree, or the statement fail,
indicating that the method is unable to make such a selection for the data given. Many
such methods have been proposed, and mostly these are invariant under permutation of
the sites. Thus, we will regard ® as operating on the vector [s], or more generally, on
the (K — 1)-dimensional simplex (where K = |C|") : {(%1,...,2x) 1 @; > 0,2 ¢; = 1} in
which @[s] sits.

It is essential for tree reconstruction that two different bph trees cannot underlie
models that produce the same distribution on sites—that is

Tas # Tags implies £(M) # F(M') . (2)

A case where (2) is violated arises when there is an unknown distribution of rates across
sites as described by Steel et al. [24]. However, provided the sites evolve i.i.d. under a
suitable Markov-style assumption condition, (2) holds (Steel [23], Chang [8]). Now we
discuss a specific, popular tree reconstruction method.

(VI) Maximum compatibility. Given a bph tree T with leaf set [n], deleting an
edge e of T' disconnects 7' into two components, and thereby induces a bipartition of
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[n] consisting of the leaves of the two components. This bipartition is called a split of
T induced by the edge e; the split is called non-trivial, if both components contain at
least 2 leaves. Now each site also gives a bipartition of [r] by grouping together the taxa
that have the same character state at that site. If this bipartition is a non-trivial split
of T', the site is said to support T', and in this case we also call the site non-trivial. The
mazimum compatibility method selects a tree that maximizes the number of supporting
sites.

Buneman [4] showed that each bph tree T' is uniquely defined by its non-trivial splits.
This fact justifies the use of the maximum compatibility method.

Of fundamental interest in phylogenetic analysis is the probability of recovering the
correct tree, that is P[®(«[S]) = Ta]. This probability is dependent on M, ® and N,
the number of sites. The method @ is said to be statistically consistent for a class ¢
of models M, if for all M € ¥, imy_,oo P[®(2[S]) = Tim] = 1. In this paper we are
concerned with the question of how fast N must grow as function of n in order for
P[®(z[S]) = Tm] to remain close to 1.

In Section 2 we show that for the method of maximum compatibility, the number N
of sites must grow faster than linearly in n, for this reconstruction probability to be at
least 1 — € for € fixed. This is regardless of the details of the model M, or the values
any parameters in this model may take. This result is hardly surprising, but it makes a
useful contrast to our main, and somewhat surprising result in Section 3.

The main result of the paper is a method (which is a polynomial time algorithm
in nN) for reconstructing trees from sequences developed under the Cavender—Farris
model. For this method N does not need grow very quickly with n—indeed slower
than n—provided the underlying parameters in the model (related to the times between
speciation events) lie in a certain range.

There i1s a simple information theoretic lower bound for N, if tree reconstruction is
possible. The number of bph trees with n labelled leaves is |B(n)| = (2n — 5)!! [5]. If all
bph trees are encoded with N sites, each site has 2™ character states, and all trees can
be reconstructed (for sure, or for almost sure), then we must have (2n — 5)!! < 2"V je.
clogn < N. Surprisingly enough, setting the transition probabilities in the CF model in
the proper narrow range, we get very close to this bound by our reconstruction method.
As far as we are aware, these are the first such analytic results in this area.

It is important to stress that we are not advocating the use of the method we
describe. For a small n it may well require a sequence length N larger than other
more conventional statistical techniques, such as maximum likelihood (Felsenstein [15],
Goldman [16], Saitou [21]). Furthermore the bounds we give for our method are also,
almost certainly, not the best possible. Our results are described for a two-state model,
but it seems likely that similar results apply for models on four (or an arbitrary number)
or states.



The main result required the development of algorithmic techniques to reconstruct
bph trees from “local” binary 4-subtrees (Theorem 2), a new method to reconstruct
4-leaf trees (Theorem 3), and probabilistic techniques to extend this to a proceedure on
n-leaf trees. At the end of the paper we illustrate a further application to the study of
quadratic invariants (Proposition 1).

2 MAXIMUM COMPATIBILITY: A LOWER BOUND
ON N FOR ALL MODELS

We first show that a simple, conventional method—mazimum compatibility—requires
a superlinear sequence length in order to recover the correct tree with close-to-one
probability, regardless of how favourable are the parameters in the underlying model.

Theorem 1 Assume that sites on n species evolve according to any model M of nu-
cleotide substitution (as in Section 1 definition (III)). Suppose the mazimum compati-
bility method ®pro is applied to reconstruct Thy.

If N(n) denotes the smallest number of sites for which P[®pc(x2[S]) = Tu] > 1/2,

then for n large enough,

N(n) > (n—3)log(n —3) — (n — 3). (3)

Proof. Assume that we are given N(n) < (n — 3)log(n — 3) — (n — 3) sites, and the
the number of non-trivial sites among them is less or equal to N*, the smallest integer
greater or equal to (n — 3)log(n — 3) + z(n — 3). We will show that the probability of
obtaining the correct tree under ®;¢ is at most e™® ", which proves the theorem by
setting # = —1, since N(n) > N*.

Let o(T') denote the set of non-trivial splits of T = Tpy. We have |o(T)| = n — 3
[4]. For o € o(T), let the random variable X, be the number of non-trivial sites which

induce split 0. Let X := Y X,. A necessary (though not sufficient) condition for
oca(T)
maximum compatibility to select 7' is that all the non-trivial splits of 7' are present

amongst the N* non-trivial sites. Thus, we have the inequality:
Pl@ac(2[S]) = Tul < Plloarm X, > 0}
Conditioning on the size of X,

Pl weoir{Xo > 0} = Y PNoeony{Xs > 0} | X = k] x PIX = K]

 ax, PlNoeory{Xs >0} | X = k] =



P[OGEU(T){XG > 0} | X = N*] . (4)

Let p(o) denote the probability of generating split o at a particular site. Due to the
model, p(o) does not depend on the site. We will show that (4) is maximized when the
p(o)’s are all equal (0 € o(7T')) and sum to 1. In that case, determining (4) is just the
classical occupancy problem where N* balls are randomly assigned to (n —3) boxes with
uniform distribution, and one asks for the probability that each box has at least one
ball in it. Equation (3) now follows from a famous result concerning the asymptotics of
this problem (Erddés and Rényi [12]): for # € R, N* balls (N* as defined above), and
(n — 3) boxes, the limit of probability of filling each boxes is e~

i From compactness arguments, there exists a probability distribution maximizing
(4). We show that it cannot be non-uniform, and therefore the uniform distribution
maximizes (4). Assume that the maximizing distribution p is non-uniform, say, p(o) #
p(p). We introduce a new distribution p’ with p'(¢) = p/(p) = 3(p(o) + p(p)), and
p'(a) = p(a) for a # o, p. The probability of having exactly ¢ sites supporting o or p is
the same for p and p'. Conditioning on the number of sites supporting o or p, it is easy
to see that any distribution of sites supporting all non-trivial splits has strictly higher

probability in p’ than in p. O

3 AN UPPER BOUND ON N FOR THE CAVENDER-
FARRIS MODEL

In this section we describe a tree reconstruction method for which the sequence length
can (for certain models) grow relatively slowly as a function of the number of species,
in order that the correct tree be recovered with high probability.

We first discuss how partial information on binary 4-subtrees of 7' can be used to
determine T'. Then we provide for a novel technique to reconstruct the binary 4-subtrees.

Finally we give an algorithm that uses the two techniques discussed above as proce-
dures to reconstruct trees on n species that has the claimed sublinear performance when
the parameters in the underlying model lie in a certain region.

3.1 RECONSTRUCTING A BPH TREE FROM BINARY 4-
SUBTREES

For a bph tree T' € B(n), and a quartet of leaves, ¢ € ([Z]), let L7(q) denote the length

of the longest path of T}, which turned into an edge of T};. For ¢ = {a,b,c,d} we say
that t, = abled is a valid quartet split of T', if abled is a split of Ty As in Bandelt and



Dress [2], it is easy to see that
if abled is a valid quartet split of 7', then so are ba|cd and cd|ab, (5)

and we identify these three splits. If (5) holds, then ac|bd and ad|bc are not valid quartet
splits of T', and we say that any of them contradicts to (5). Also,

if abled and ac|de are valid quartet splits of T', then so are ab|ce, ablde, and be|de,
(6)

and,

if ab|ed and ablce are valid quartet splits of 7', then so is ab|de. (7)

Let Q(T) = {tq 1q € ([Z])} denote the set of valid quartet splits of 7'. It is a classical
result that Q)(7') determines 7' (Colonius and Schulze [10], Bandelt and Dress [2]); indeed

for each ¢ € [n], {t,: ¢ € q} determines T', and T can be computed in polynomial time.
For example, a simple algorithm for reconstructing 7' from @(7') is simply to build up
T recursively from the tree with leaf set 1,2,3 by attaching (in any order) the remaining
elements from [n] as new leaves to the tree so far constructed. In this way, one uses
Q(T') to determine the unique edge of each partial tree to which the new leaf must be
attached by bisecting the edge and making the newly created vertex adjacent to the new

leaf.

An extension of this result is that for any 7' € B(n) a carefully chosen subset of Q(T")
of cardinality n — 3 determines 7' (Steel [22]). Another extension is that an unknown
bph tree T with n leaves can be constructed by asking at most O(nlogn) queries of the
form: “what is £,7” for a choice of g that depends on the answers to the queries so far

asked (Pearl and Tarsi [19], Warnow [27]).

It would be useful to tell from a set of quartet splits if they are valid quartet splits
of any bph tree. Unfortunately, this problem is NP-complete (Steel [22]). It also would
be useful to know, which subsets of Q(7') determine 7' and which subsets would allow
for a polynomial time procedure to reconstruct 7'. A natural step in this direction is to
define inference: a set of quartet splits A infers a quartet split ¢, if whenever A C Q(T)
for a bph tree T', then ¢t € Q(T') as well.

Setting a complete list of inference rules seems hopeless (Bryant and Steel [3]). In-
stead, Dekker [11] introduced a restricted concept, dyadic and higher order inference.
He says that a set of quartet splits A dyadically infers a quartet split ¢, if ¢ can be
derived from A by repeated applications of rules (5), (6) and (7). We say that a set of
quartet splits A semidyadically infers a quartet split ¢, if ¢ can be derived from A by
repeated applications of rules (5), (6).

Quartet splits (semi)dyadically inferred by a set of quartet splits can be computed
in polynomial time, and quartet splits (semi)dyadically inferred by a set of valid quartet



splits of a tree are valid. We denote by cly(A) the set of quartet splits semidyadically in-
ferred by a set of quartet splits, A. We say that a set of quartet splits A (semi)dyadically
determine T, if they (semi)dyadically infer all valid quartet splits of T, i.e. Q(T).

Here we provide a third extension of Colonius and Schulze’s classical result, by
showing that for a binary tree T', the subset of Q(T') consisting of those quartets ¢, for
which Lz(q) < clogn, determines T', where ¢ is a constant. We show that ¢ can be
taken to be 18, which suffices for the proof of our main result (Theorem 4), though with
more work this value can be reduced further (see comment (3) in Section 4).

Theorem 2 For a bph tree T on [n] (n > 4), let
D(T)y={q€ ([Z]) : Lr(q) < 18logn}.

Then S(T') = {t, valid quartet split of T : ¢ € D(T)} semidyadically determines T'. In

particular, T can be reconstructed from S(T') in polynomial time.

Proof. We use induction on n. Let us be given T' € B(n). There is an edge e; in T,
which defines a split of [r] into classes as equally-sized as possible. Then each class has
> n/3 leaves. (For if not, one can find a split even closer to equal by considering the
split induced by the edge connecting e; to the bigger subtree on the big side.) Let AUB
and C'U D denote the classes of the split. Let Tj4up and T|¢up denote the two subtrees
of T' obtained by the deletion of e;. A similar argument would provide for an edge e,
of T\4up and e3 of T|cup, so that each side of the split of T\4up, say A and B, and each
side of the split of Tcup, say C and D, has at least n/9 leaves. We make, however, an
extra condition:

es and e are vertex disjoint from eq, (8)

thus we achieve only that each side of the split of T\4up and Tjcup is at least n/18.
This partitioning with ei, e;, and es fails only if T\4up or Ticup has two leaves only.
Then n < 5 or n = 6 and 7" has no path longer than four. These are the base cases for
our induction, the quoted theorem of Colonius and Schulze yields the proof of the base

cases, since S(T') = Q(T) holds for them.

For the induction step, consider the leaf partition we just defined:

€2 €1 €3

A B C D (9)

Recall that |[B| > 2 and |C| > 2 by (8). Let T} g ¢ denote the left binary subtree of
T — es3, and let Tp ¢ p denote the right binary subtree of ' — e;. Observe that T} 5 ¢
and T cyp each has at least 5, but at most (17/18)n leaves.

Assume that t = ¢, € Q(T"). We have to show t € cl2(S(T')). We do it through inves-
tigating the distribution of the elements of ¢ in A, B, C, D. We neglect giving refences
to (5) in the proof.



Case left: g C AUBUC.
First we show that S(Tﬁcquuc) C S(T). Take any ¢’ € S(T|t4uBuC)- Note that 18log n >
181og(17n/18)+1 > LleUBUC(q’)—I—l > Lr(q'), thus ¢’ € S(T). Since ¢l; is monotone, t €

cl2(S(T1ausuc)) will imply ¢ € cl5(S(T)). jFrom the drawing (9) ¢t = ¢, € Q(T7aupuc)
as well, and using the hypothesis ¢ € cl2(S(T7aupu0))-

Case right: g C BUC U D.
Exchange Tiausuc to Tpucup in the proof of the previous case.

In the rest of the proof lower case letters denoting leaves indicate as well the partition
class where they belong to. Due to the first two cases settled above, any t = t, € Q(T),
for which we still have to show t € ¢l5(S(T)), has the property that ¢ intersects A and
D. Case xyuv below means that [N A| =z, [¢gNB| =y, |¢gNC| =wu, |gND| = .
Using the left-right symmetry of the drawing we further reduce the number of cases.
We neglect references in the proof to (5).

Case 1111: abled € Q(T).

Let e4 denote an edge which separates e; and e3. Then we also have two leaves ¢, ¢’ € C,
separated by es. Edge e; in drawing (9) shows that ablec’ € Q(T'). Edge e4 shows
that either be|c'd € Q(T') or bc'led € Q(T), but bd|ec’ ¢ Q(T). In the first case the
sought for quartet is inferred by ablcc’ € clo(S(T')) (Case left) and be|c'd € cl2(S(T))
(Case right) by (6). In the second case use bc’led € cl2(S(T)) (Case right) instead of
be|d'd € cly(S(T)) (Case right).

Case 2101: aa’|bd € Q(T).
By €2, ad’|bc € Q(T) and by e1, a’bled € Q(T'). Hence aa'lbe € cl2(S(T')) (Case left) and
a'bled € cly(S(T)) (Case 1111); (6) finishes the proof.

Case 2011: aa’|ed € Q(T).
By e, ad'|bc € Q(T') and by eq, abled € Q(T'). Hence ad'|bc € ¢l2(S(T)) (Case left) and
abled € ¢ly(S(T)) (Case 1111); (6) finishes the proof.

Case 2002: ad'|dd € Q(T).
By e1, ad'|ed € Q(T'), and by es, ac|dd’ € Q(T'). Hence ad’|cd € cly(S(T)) (Case 2011)
and acldd’ € cly(S(T')) (symmetry to Case 2101); (6) finishes the proof.

Case 3001: ajaz|asd € Q(T).

Note that ajas|ashb € Q(T'), from the drawing (9), and ajas|asb € cl2(S(T)) (Case left).
By e, araslbd € Q(T), and ajas|bd € cl2(S(T)) (Case 2101). Using (6) finishes the
proof.

Case 1201: Subcase ab|bod € Q(T).

Note that ab|bsc € Q(T'), from the drawing (9), and by e;, biba|ed € Q(T'). We have
aby|bsc € clo(S(T)) (Case left) and bibs|ed € cla(S(T')) (Case right). Using (6) finishes
the proof.

Subcase ad|bib, € Q(T).
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Note that aclbibs € Q(T'), due to the subcase that we are in and drawing (9). By edge e;,
we have abi|ed € Q(T). We have ac|bibs € clo(S(T)) (Case left) and ab|ed € cl2(S(T))
(Case 1111). Using (6) finishes the proof.

We proved that S(7') semidyadically determines (7). Now there is an obvious
polynomial time algorithm to reconstruct 7': look for new quartet splits semidyadically
inferred by S(7'), and when you have all (Z) quartet splits, use the Colonius—Schulze
algorithm to reconstruct 7'. O

3.2 RECONSTRUCTING BINARY SUBTREES ON FOUR
SPECIES

There are numerous techniques for reconstructing trees for four species. In this section
we construct a method ®* for which we derive a useful lower bound on P[®(z[S]) = T
for any sequence length N when sites evolve under the CF model. We start with some
prerequisites.

For N > 1 consider the linear transformation ¢y on Rs[z] given by:

* *
¢N Zcijwiwj —|— Zdlwl —|— € = Zcijmiwj + Zdz ZT; + c (10)
4,3 z 4,3 z
* = N ... N P S
where ¢ = W Cid and df = d,; w7 Cii-

The following two lemmas will be useful later, and are easily established.

Lemma 1 Suppose X = [X;] has a multinomial distribution with parameters N > 1
and w = [m;]. For any p € Ra[x], YN [p (%X)] is an unbiased estimator of p(w), that

” el b ()] e <

Lemma 2 pr(il)) = Zaijmiwj + Eblm“ then
7, 7

;

p(z) = p(y)] < (alllz]x + [lyll) + b)l[2 =y,

where a = max{|a;;|}; b= max{|b;|}, and || |1 denotes the L' norm. O

The following result is just a special case of the well-known Azuma—Hoeffding in-
equality in martingale theory (see for instance, Alon and Spencer [1]).
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Lemma 3 Suppose X = (X1,Xs,...,Xn) are independent random variables taking
values in any set S, and L : S¥ — R is any function that satisfies the condition.:

IL(w) — L(v)] < ¢
whenever w and v differ at just one coordinate. Then,

PL(X) — E[L(X)] > A < exp (—535) , and

T 2N

PIL(X) - E[L(X)] < =] < exp (—32) .O

2N 2

With an eye on our final goal, we immediately describe our method for reconstruction
of 4-leaf trees in a setting of reconstructing binary subtrees of given tree 7', on which
sites developed according to the CF model. Select a quartet ¢ = {a,3,7,6} from [n].
For i,5 € [n], 3+ # j, let L¥ = L*%(x) be the linear form in indeterminates ® = [z,]

defined by
Li(z):= > .
x: x(8)#x(5)
Thus, L*“(x[s]) is the proportion of sites in the aligned sequences that assign different
states to sequences ¢ and j, often called the dissimilarity score of sequences 7 and j.
Form the following quadratic polynomials in indeterminates & = [z,]:

P = L2 + L[ — 2L*PLY
= L* + [P — 2L[PS
1 = L2 + [P — 2L%[P7,

Consider the following procedure ®' which inputs a quartet ¢ € ([Z]) and outputs a
bph tree € B(q), i.e. a quartet split of q.

Procedure ®* :

Given N sites s and a quartet ¢ from [n], set (for 1 = 3,7, 6),
W(s) := Pn[l'(®)]|x=w(s),

where 9y is the linear transformation on R.[2] described in (10).

If h'(s) is the (strictly) smallest of h®(s), h?(s), h®(s) then output the binary
tree that groups species 1 with a. In case none of these three numbers is strictly
minimal, output fail.

We now provide a lower bound on the probability that method ®! returns the correct
binary subtree T}, i.e. the valid quartet split, for a given sequence length. This bound
will be particularly useful when the tree that generated the data has mutation probabil-
ities that are not too small on the internal edge, and not too large on the pendant edges.
We may assume w.l.o.g. ¢ = {1,2,3,4}. Suppose that in Ty i denotes the mutation
probability on the pendant edge incident with leaf ¢ (for ¢ = 1,2,3,4), and ps denotes
the mutation probability on the internal edge.

12



Theorem 3 Suppose that, in the underlying four-species tree T, in the CF model,

ps > 0, and
pi < (1—¢€)/2
for 3 =1.2.3,4, and some €,6 > 0. If N sites S evolve under the CF model on Ty,

then
P[®'(2[S]) = Tj;] > 1 — 2exp(—B5%*N),

where B > 0 is a constant, not dependent on €,6 or N.

Proof. Without loss of generality, suppose that Ty 1s the binary tree that groups together
species 1 and 2. For ¢ = 3,4, let

R = h'(S) — h*(S).
Then, ®!(z[S]) = T}, precisely if R? and R* are both strictly positive. Thus,
P[o*(2[S]) = T;;] = 1 - P{R® < 0} U{R* < 0}] > 1 — (P[R® < 0] + P[R* <(]) .
Simple algebra gives
PR < 0] = P[R — B[R] < —E[R] (11)
and . . .
E[R'] = E[r'] - E[A*] = I'(f) - I*(f) ,
by Lemma 1. Now,

4

#(5) = 5 (1-T10-20)
P) = 1) = 3 (1- 02 T -2

=1

since, by (1), LY(f) = % (1 = I¢! —2pk)) where {ex : k € A} is the path in T}

2
keA
connecting leaves i and j, and by definition of the I*. Consequently, for i = 3, 4,

4

E[R'] = 2ps(1 —ps) [[(1 — 2p;) = 6¢* . (12)

7j=1
Combining (11) and (12) we have, for ¢ = 2,3,
P[R' < 0] < P[R' — E[R'] < —6¢*] .

Now, regarding R* as a function of S;,..., Sy we see that R’ satisfies the hypothesis of
Lemma 3 with ¢t = #'/N for some constant 3’ > 0. Thus, by Lemma 3, we have

P[R; < 0] < exp(—B368%*N), for B = 1/(28"),

as claimed. O

13



3.3 RECONSTRUCTING N-SPECIES TREES

Suppose a method for constructing a bph tree on four species returns the correct tree
with probability 1 — ¢ under some model. It is easy to extend such a method to one
that constructs a tree on n sequences with high probability, which is both consistent
and efficient (i.e. the time required to output a tree grows polynomially with n)—we
could simply look at all quartet splits, and if they are consistent with a binary tree, then
output this tree, otherwise output the message fail. Such a method may require N to
grow quickly in order to find the true tree with high probability, and for this reason we
wish to avoid using pairs of leaves that are “far apart” in the tree, and thereby likely to
mislead tree reconstruction. Thus, we now describe a more refined algorithm that takes
account of this.

Consider the following procedure, ®*, that, given the dissimilarity score between
species, extends procedure ®* for reconstructing a phylogenetic tree from sites for four
species, to a procedure that applies to n species.

Procedure ®*

Step 1. Define any total order < on ([Z]) for which:
q < ¢ whenever max{L”(z[s]) :i,j € ¢} < max{L"(x[s]):i,j € ¢'}.

Let @); denote the smallest 7 elements of ([Z]) under this ordering. For each q € @);,

calculate ®'(q). Let F; = {®'(q) : ¢ € Q:}-

Step 2. For:=1,2,... do:
Compute cly(F;). If clo(F;) = Q(T) for a binary tree T', output T and stop.
If cly(F;) contains a contradictory pair, or if ¢ =

) output fail and stop.
Otherwise return.

n
4

We now show that if N sites evolve under the CF model, and the mutation probabil-
ities lie in a certain region, this technique ®* requires N to grow sublinearly with n, in
order that the correct tree for the n species be recovered from N sites with probability
1 —e. We first define this “good” region of parameter space for procedure ®*. Let R(n)
be the interval

R(n) = [f(n), g(n)]
where 0 < f(n) < g(n) < 0.5, and let A(n) = (1 — 2g(n))'8lem,

Theorem 4 Suppose N sites evolve under the CF model on T € B(n), so that for
all edges e, p. € R(n). Let N.(n) denote the smallest number of sites for which
P[®*(2[S]) =T] > 1 — ¢, for fized € € (0,1). Then,
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Klogn
WA < )

for a constant K.

(2) In particular, im, . Nc(n)/n =0
if f(n) =n~%, where a < 0.5, and g(n) = §() is a constant small enough.

(8) For fized k > 1, ¢,d constants, if f(n) = ¢ )k; o(n) = dloglogn

(logn log, n
then Ne(n) < (log n)1+2k+864d+o(1).

Proof. Let 8;; = E[¢Yn(L¥(2[S])]. By Lemma 1, L¥(f) = L¥(E[=[S]]) = 8;; is the
probability that species ¢ and j are in different states at a site that evolves under the
CF model.
For N evolving sites S and 7 > 0, let us define the following three random variables:
S = {{ij}: I(a[S]) < 05— 7},
Z = {q¢ ([Z]) : foralli,j € ¢,{¢,j} € Sar}, and
7z = {®'(q):q€ Z}.

Also, recall the definition of D(T') and S(T') from Theorem 2: the “short” quartets of
T and their quartet splits.

Then ®* outputs the correct tree if the following two events A, B occur:

A: D(T) C Z,

B: ®! correctly reconstructs Ty for all g € Z,

because, clo(Z*) 2 clo(S(T)) = Q(T) (by the definition of A and Theorem 2) and
Q(T) 2 clo(Z*) (by the definition of B) and together these give cls(Z*) = Q(T).

Thus,
P[&*([S]) = T] > Plels(2°) = Q(T)] > P[AN B,

Let C be the event:

Ss- contains all pairs {7, j} with 8;; < 0.5 — 37, and no pair {¢, 5} with d;; > 0.5 — 7.

We claim that:

P[C] > 1 — (n? —n)e ™ N/ (13)
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and
P[A|IC] =1, if T < A*(n)/6 . (14)

To establish (13), first note that L¥(x[S]) satisfies the hypothesis of Lemma 3 (with
X; = S; and t = 1/N). Suppose 0;; > 0.5 — 7. Then,

P[{i,j} € Sar] = P[L¥(x[S]) < 0.5 —27] < P[L¥(2[S]) — 0;; < 0.5 — 27 — 0] <
P[L9(2[S]) - E[L9(2[S])] < —7] < e V2.

Since there are at most (Z) such pairs {¢, 7}, the probability that at least one such pair

~7’N/2 By a similar argument, the probability that S, fails

to contain a pair {7, j} with 0;; < 0.5—37 is also at most (’2"‘) e~ TN/2

establish (13).

lies in S5, 1s at most (Z) e

. These two bounds

We start to establish (14). For ¢ € D(T') and ¢, 5 € ¢, if a path ejes...ep joins leaves
¢ and j, then k& < 54log n by the definition of D(T'), and

0 =0.5[1— (1—2p1) -+~ (1—2pt)] < 0.5 [1— (1 — 2g(n))*="]

using p. < g(n) for edges e in T and (1). Thus, J;; < 0.5[1 — A3(n)]. Consequently,
0;; < 0.5 — 37 (by assumption that 7 < A*(n)/6 ) and so {i,5j} € S, once we condition
on the occurence of event C'. This holds for all 7,5 € ¢, so by definition of Z we have
q € Z. This establishes (14).

Set 7 = A3(n)/6. Then for any quartet ¢ € D(T), the tree T}, has mutation prob-
ability at least f(n) on its central edge, since p > min{ps,...,pr} in (1). Further-
more, conditional on C', the mutation probability on any pendant edge is no more than
max{8;; : 4,7 € ¢} <0.5—7=10.5 [1 — %ﬂ] Thus, by Theorem 3 for € = 7 and the

Bonferroni inequality,

PBIC) = 1 -2 ('} ) exp(—AF )\ (m)), (15)
for a suitable constant 8 > 0.
Combining the above, and invoking (14), we have:
P[3*(z[S]) = T] > P[AN B] = P[An B|C] x P|C] = P[B|C] x P[C] .
;From (13) and (15) we have:
PO (2[S]) = T] = 1 -2 (] ) exp(—B LN (0) V) — (u? — n)e V17

and so if we set N(n) = % for a constant C', then we can choose C sufficiently
large so that both of the terms involving exponentials decay to zero as n tends to infinity.
Now Part (1) holds for a large constant K. Parts (2) and (3) now follow from (1) after

some straightforward calculations. O
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4 CONCLUSION

(1) A desirable goal would be a tree reconstruction method ® which satisfies the fol-
lowing three conditions for some suitably small value of € (such as 0.05):

(1) ®(x[s]) can be constructed by an algorithm whose complexity is polynomial in

nN.

(2) The probability that ®(x[S]) is either the true tree (Tps) or is the message fail
is at least 1 — € whatever the parameter settings in M.

(3) The probability that ®(x[S]) is the message fail tends to zero as N tends to
infinity.

We do not have such a method and do not know if such methods exist at all.

(2) The techniques developed in Subsection 3.2 are likely to be useful in the theory
of phylogenetic invariants. A phylogenetic invariant for a bph tree 7' and class ¥ of
models M is a polynomial p in variables = [z,] with p(f(M)) = 0, whenever Ty =T
and M € 9. For example, the Cavender—Farris model possesses two quadratic poly-
nomial invariants for each binary tree on four leaves, first discovered by Cavender and
Felsenstein [7]. Phylogenetic invariants are potentially useful in reconstructing Ty from
x[S]. The idea is that if p is a phylogenetic invariant for 7', then under the assumption
that T = Ty, the random variable p(x[S]) is asymptotically (for N large) normally
distributed with mean 0 and a standard deviation that is proportional to N~%° Thus,
if p(x[S]) lies too far from 0 for the particular value of N, then one can reject T' as a
possible candidate for T}y.

However this analysis is asymptotic, and for any particular value of N, and any non-
linear phylogenetic invariant p, the expected value of p differs from 0 (since E[p(x[S])] #
p(E[2[S]) = p(f) = 0). However for any value of N we have the following result whose
proof follows directly by combining Lemmas 1, 2, 3.

Proposition 1 Suppose p(«) is a quadratic phylogenetic invariant for a model M with
underlying tree T'. Then, if N sites S evolve under this model, i(S) := ¥n[p(2[S])] has

expected value 0. Furthermore,
P[li(S)| = A] < 2exp(=BA*N),

where 3 > 0 is a constant dependent only on the coefficients of p. a

(3) We have a result stronger than Theorem 2. Define the depth d(T') of a bph tree,
which 1s the maximum distance of any edge from the nearest leaf. Then the valid quartet
splits of 4-subtrees in which:

(1) the middle edge is not subdivided, and

(i) none of the 4 paths representing edges of the 4-subtree is longer than 2d(7'),
semidyadically determine 7. The proof is too lengthy for this paper.
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