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Abs t r ac t .  The construction of evolutionary trees is a fundamental 
problem in biology, and yet methods for reconstructing evolutionary trees 
are not reliable when it comes to inferring accurate topologies of large 
divergent evolutionary trees from realistic length sequences. We address 
this problem and present a new polynomial time algorithm for recon- 
structing evolutionary trees called the Short Quartets Method which is 
consistent and which has greater statistical power than other polyno- 
mial time methods, such as Neighbor-Joining and the 3-approximation 
algorithm by Agarwala et al. (and the "Double Pivot" variant of the 
Agarwala et al. algorithm by Cohen and Farach) for the Loo-nearest 
tree problem. Our study indicates that our method will produce the cor- 
rect topology from shorter sequences than can be guaranteed using these 
other methods. 

1 I n t r o d u c t i o n  

Evolutionary trees indicate how species evolved from a common ancestor and are 
of fundamental  concern to biologists. There are many  methods for reconstruct~ 
ing trees from biomolecular sequences, and all potentially competi t ive methods 
are evaluated according to their accuracy ~br topology prediction [11]. However, 
reconstructing this topology is a difficult task for at least two reasons. First, 
all accepted optimization problems in this area are NP-hard,  so tha t  methods 
which are efficient typically do not provide good performance on large sets of 
sequences. More importantly,  even if we could solve some of the NP-hard  op- 
t imization problems in this domain, the sequence length required in order to 
be able to guarantee an accurate topology estimation can be beyond what  is 
available or even possible. A polynomial t ime algorithm tha t  can only be guar- 
anteed to be accurate on unavailable sequence lengths is simply not reliable, 
and it must either not be used, or if used its output  must  not be believed. On 
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the other hand, a method which is accurate on realistic length sequences can 
be used even if it requires more computational resources. We may simply need 
to use more machines, wait longer, employ more sophisticated techniques to im- 
plement the same basic objective, etc. Thus, the sequence length needed by a 
method imposes a significantly more severe limitation than its computational 
requirements. The importance to biologists of this measure of accuracy (called 
efficiency or power in the systematic biology literature [14]) is reflected in the 
extensive performance analysis literature in systematic biology in which meth- 
ods are analyzed according to their performance on model tree reconstruction 
under various stochastic models of evolution [12]. Initially these studies focused 
on consistency [7], i.e. the question of whether a method would be guaranteed to 
produce the correct topology given long enough sequences. Since the discovery 
around 1970 [13] of consistent distance transformations (which produce "cor- 
rected distances"), it has been clear that all reasonable distance-based methods 
can recover the true tree with high probability given long enough sequences when 
applied to corrected distances computed on sequences generated by binary trees. 
All this is well-understood in the systematic biology community. What is not so 
well-understood is the sequence length needed to obtain an accurate topology 
with high probability using a given method on a given model tree. Unfortunately, 
sequence lengths are limited, and especially so when the tree to be reconstructed 
is large and contains widely divergent sequences. 

This paper contains several results: 

- We present a probabilistic analysis of the depth and diameter of random trees 
under two distributions. 

- We describe a framework based upon topology-invariant neighborhoods which 
permits the comparison of the statistical power of different distance-based 
tree reconstruction methods. 

- We develop a new consistent polynomial time method, the Short Quartet 
Method for reconstructing evolutionary trees, and provide an analytical study 
of its convergence rate for inferring trees under the Cavender-Farris model. 
(This analysis extends to a large class of r-state Markov models.) We show 
that this method has superior statistical power to Neighbor-Joining, the most 
popular distance-based method of phylogenetic tree reconstruction, and to 
new results from the theoretical computer science community by Agarwala 
et aL (STOC 1996) [1] and Cohen and Farach (SODA 1997 and RECOMB 
1997) [5]. 

Due to space constraints, we cannot give proofs in this extended abstract. 

2 Bas ics  

We begin by describing a simple model of sequence evolution, called the 
Cavender-Felsenstein model, or sometimes the Cavender-Farris model. The 
Cavender-Felsenstein model of evolution for binary sequences associates to ev- 
ery edge e in a model tree T a mutation probability Pe with 0 < Pe < .5, and 
the mutations on each edge are independent. The sites (i.e. positions within 
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the sequences) are assumed to evolve identically and independently, with the 
state at the root selected according to some distribution (usually uniform). If 
k sites evolve under this model, then the tree generates a set of sequences of 
length k at, the leaves. We allow the input to our method to be any symmetric 
zero-diagonal non-negative matrix, and we will abuse the notation and call such 
matrices distance matrices. 

Def in i t i on  1. A distance matrix D is additive if and only if there exists a 
tree T with non-negative edge weighting w such that  for all leaves i , j ,  Dij -~ 
~eEp~j w(e), where P~j is the path between i and j in T. The L ~  distance be- 
tween two distance matrices A and B is defined by L ~  (A, B) = maxijlA~ j -B i j t .  
The L~-nearest tree problem takes as input a distance matrix d and returns an 
additive distance matrix D minimizing L ~  (d, D). The 5-neighborhood around d, 
denoted N(d,5),  is the set of all distance matrices d/ such that  L ~ ( d , d  1) < 5. 
A distance*based method M for phylogeny construction is a mapping from n • n 
distance matrices to n • n additive distance matrices. A tree T1 is said to refine 
a tree T if T can be obtained from T1 by contracting some of the edges in T1. 
A method M is said to be combinatorially consistent if M(D)  = D for all ad- 
ditive distance matrices D, and continuous at D if for every c > 0 there exists 
a 5 > 0 such that  if d E N(D,  5) then M(d) E N (M(D) ,  c). We will say that  a 
distance-based method is reasonable if it is both combinatorially consistent and 
continuous at every additive distance matrix defining a binary tree. 

An interesting characterization of additive matrices D is the following: 

T h e o r e m  2. Four Point Condition, from [4]: A distance matrix D is an additive 
matrix if and only i / for  all i , j ,  k, l, of the three pairwise sums D~j + Dkt, D~k + 
Djt, Di~ + Djk, the largest two are identical. 

The proof of the theorem shows that  the ordering on the three pairwise sums 
indicates the topology induced by the quartet. Thus, if D~j + Dkt is strictly 
smaller than the other two sums, then the topology induced by the quartet 
i, j ,  k, l is a resolved binary tree; otherwise all three sums are identical, and the 
topology induced by i , j ,  k, l is a star. Since we assume that  T is binary, all such 
quartets induce resolved subtrees. We will denote this topology by ijlkl when 
the pairs that  are separated by an internal edge are ij  and kl. 

We now present a characterization of additive distance matrices which define 
the same topology. 

T h e o r e m  3. Two additive distance matrices D and D t define the same topol- 
ogy if and only if for all quartets, the relative orders of the pairwise sums for 
that quartet are identical in the two matrices. Therefore, for every reasonable 
distance-based method M and for every binary tree T defining additive distance 
matrix D, there will be a 5 > 0 such that M is guaranteed to reconstruct the 
topology of T when applied to any d E N(D,  5). Consequently, any reasonable 
distance-based method M will be consistent on every binary tree when applied 
to co~rected distances. However, for every edge-weighted tree T with minimum 
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edge weight x, there is a tree T t with a different leaf-labelled topology such that 
L ~ ( D , D  t) = x /2 ,  where D is the additive distance matrix for T and D ~ the 
additive distance matrix for T ~. 

We will now describe a method we call the Naive Method, based on Bune- 
man's Four-Point Condition. For each quartet of species i , j ,  k, l, compute the 
topology on that  quartet by computing the three pairwise sums (this is called 
the four-point method (FPM) for reconstructing a tree on a single quartet.) If 
the three sums are distinct and the minimum is attained at D,:j + Dkl, then set 
the topology on i, j ,  k, l to be i j lkl .  If the minimum sum is not unique, constrain 
the topology to be a star. Construct the tree (if it exists) consistent with all the 
constraints on the topologies of quartets. If no tree exists consistent with all the 
constraints, output a star tree. (A similar procedure was described by Fitch in 
[9].) Constructing a tree consistent with all quartet topologies is easily done in 
polynomial time through a variety of techniques, hence this is a polynomial time 
method. 

We now present a comparison of various distance based methods based upon 
topology invariant neighborhoods. 

T h e o r e m  4. Let D be an additive n • n distance matrix defining a binary tree 
T, d be a fixed distance matrix, and let ~ = L ~ ( d , D ) .  Assume that x is the 
minimum weight of internal edges of T in the edge weighting corresponding to 
D. 
(i) A hypothetical exact algorithm for the L~-nearest tree is guaranteed to return 
the topology of T from d if ~ < x/4.  
(ii) (a) The 3-approximation algorithm for the L~-nearest tree is guaranteed to 
return the topology of T from d if 5 < x/8 .  (b) For all n there exists at least one 
d with 5 = x /6  for which the method can err. (c) If  5 > x/4 ,  the algorithm can 
err for every such d. 
(iii) The Naive Method is guaranteed to return the topology of T from d if 5 < 
x/2,  and there exists a d ]or any 5 > x /2  for which the method can err. 

In other words, given any matrix d of corrected distances, if an exact al- 
gorithm for the L~-nearest tree can be guaranteed to correctly reconstruct the 
topology of the model tree, then so can the Naive Method. Thus, an exact al- 
gorithm for the L~-nearest  tree can err on longer sequences than the Naive 
Method, when applied to corrected distances, for any model tree T. This sug- 
gests an inherent limitation of the L~-nearest  tree approach to reconstructing 
evolutionary tree topologies. 

3 T h e  S h o r t  Q u a r t e t  M e t h o d  

The Short, Quartet Method is similar in spirit to the Naive Method, in that  
it is based upon reconstructing trees for quartets, and then combining these 
trees if possible. However, the essential difference is that  we at tempt to avoid 
reconstructing the trees for the difficult quartets. Instead, we at tempt to con- 
struct topologies only on those quartets that  are close within the tree; these 
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are called the short quartets. The reconstruction of the tree from these s h o r t  
quartets involves solving a special case of a problem which is in its general form 
NP-complete [15]. The method we use to reconstruct the topology on each quar- 
tet  is not specified; if we can afford the time, we may elect to use maximum 
likelihood which has great statistical power, but  which is computationally too 
expensive to use for all but  small trees. However we do not know apriori which 
quartets are short quartets. Thus, the method we actually employ is a greedy 
method, which surprisingly can be shown to have high probability of accurate 
reconstruction of the topology provided that  the sequence length is adequate, 
even if we reconstruct topologies on quartets using the same (simple and not 
particularly statistically powerful) method used by the Naive Method! 

3.1 Short Quartet Consistency 

We begin by defining the notion of an edi-subtree. 

Definition 5. The topological distance between two leaves i and j in a tree T 
is the number of edges on the path between i and j ,  and the topological length 
of a path P is the number of edges on P.  Consider the subtrees of a binary 
T obtained by deleting a single edge e in T but  not the endpoints of e; call 
such subtrees edi-subtrees (for edge-deletion-induced). Each such edi-subtree can 
be considered a rooted tree, by rooting it at the endpoint of e to which it was 
originally attached. Given an edi-subtree t, r e p ( t )  denotes a leaf in t closest to 
the root  of t. Two edi-subtrees which are disjoint and whose roots are distance 2 
apart  are said to be sibling edi-subtrees. In order to simplify the discussion, we 
may abuse the notation and let t also denote the leaf set of the edi-subtree t. 

We give some more definitions. 

Definition 6. Let the depth of an edi-subtree in T be the number of edges on 
the path from e to the nearest leaf, and let the depth of T (denoted by d ( T ) )  be 
the maximum depth of any edi-subtree in T. We say that  a path P in the tree 
T is short if its length is at most 2d(T) + 2. The quartet  i , j , k , l  is said to be a 
short quartet if it induces a subtree which contains a single edge connected to 
four disjoint short paths. 

Thus, the depth of a complete binary tree of n leaves is log 2 n - 1 but  the 
depth of a caterpillar (a tree consisting of a long path with leaves hanging off 
the path) is just 1. Consequently, every quartet  in a complete binary tree on n 
leaves is a short quartet ,  but there are only O(n) short quartets in a caterpillar. 

We now proceed with the description of the algorithm which we wilt use to 
construct binary model trees from a set of topologies on quartets. Our algorithm 
operates by determining siblinghood, first of leaves, and then of larger and larger 
rooted edi-subtrees, until the tree is constructed from the leaves inward. The 
determination of siblinghood of edi-subtrees is based upon detecting witnesses 
and anti-witnesses among the quartets, which we now define. 
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D e f i n i t i o n  T. Given a quartet  {i, j ,  k, l} of leaves, we will denote by i j tkl  the 
induced topology on i, j ,  k, l in which i and j are separated in T from k and 1 via 
a path. Let tl and t2 be two edi-subtrees. A witness to the siblinghood of tx and 
t2 is a short quartet  { u , v , w , x }  with topology uvlwx such that  u C tl ,  v E t2, 
and {w, x} M (tt Ut2) = 0. We call such quartets witnesses. An anti-witness to the 
siblinghood of tl and t2 is a short quartet  {p, q, r, s} with topology pq[rs, such 
that p C t~, r C t2, and {q, s} N (t~ U t2) = ~. We will call these anti-witnesses. 

We now present the property upon which the algorithm is based: 

A x i o m  1 Let tl and t2 be disjoint edi-subtrees of T and assume T - tl - t2 has 
at least two leaves. Then tl and t2 are siblings if and only if the following two 
conditions hold: 

1. There are leaves y and z such that the quartet { rep( t l ) , rep( t2) ,y , z}  is a 
witness to the siblinghood oft1 and t2, and 

2. I f  there is an antiwitness to the siblinghood of tl and t2, then there is a 
witness for it as well. 

This axiom provides the basis for determining if there is at least one tree 
consistent with the constraints in the set  of quartets, but  may not be enough 
to verify that  there axe not two such trees. Verifying uniqueness of the solution 
turns out to be easy, fortunately, but  it is also necessary due to the way in which 
we selectively apply the short quartet  consistency algorithm. 

In each edi-subtree, there may be more than one leaf that  is closest to the root 
of the subtree (in terms of the number of edges on the path from the leaf to the 
root). However, among all such closest leaves in each edi-subtree, there is a unique 
leaf which has a smallest label, if the species are labelled by 1,2, ..., n. We call this 
leaf the sm a l l e s t  r e p r e s e n t a t i v e  of the edi-subtree. This allows us to define 
a special set of short quartets, which we call the r e p r e s e n t a t i v e  q u a r t e t s ,  as 
follows. Each short quar te t  is composed of a single edge e -- (a, b), so that  if we 
delete both a and b from T we create four edi-subtrees. We will say that  a short 
quartet  is a r e p r e s e n t a t i v e  q u a r t e t  if its leaves are the smallest representatives 
of the four edi-subtrees created in this manner. Then the following can be shown: 

T h e o r e m  8. I f  a binary tree T is consistent with a set Q of quartet topologies 
such that Q contains all representative quartets, then T is uniqely consistent with 
Q. 

This observation and the axiom above suggests the following algorithm: 

- Start  with every leaf of T (i.e. the taxa) defining an edi-subtree. 
- While the graph has more than three ed/-subtrees, do: 

�9 Form the graph on vertex set given by the edi-subtrees, and with edge 
set defined by siblinghood; i.e., (x, y) is an edge if and only if edi-subtrees 
x and y satisfy the conditions of Axiom 1 for siblinghood. 
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* Make a sibling pair out of each connected component,  and make the 
roots of the edi-subtrees in tha t  connected component children of 
a common root r, and replace the pair of edi-subtrees by one edi- 
subtree. 

* If no new sibling pairs are found, then return fail. 
. If there are at most three edi-subtrees left, connect their roots each to 

one internal node, and call the resultant tree T. 
- Verify that  T satisfies all the constraints given in the input, and that  Q 

contains the representative quartet  for every edge in T. If so, return T, and 
else return fail. 

The correctness of this algorithm follows from the discussion above, and the 
runtime of this algorithm depends upon how the two ed/-subtrees are found that  
can be siblings. It is obvious that  this can be achieved in polynomial time, but  
the details of the implementation are omitted due to space constraints. 

T h e o r e m  9. Given a set Q containing all short quartets of a tree T and satis- 
fying Axiom 1, we can determine T in O(IQt logn + n 2 logn) time. 

3.2 T h e  e n t i r e  m e t h o d  

We now describe how we use the short quartet  consistency algorithm to construct 
the tree. One issue we address is how we select the set of quartets to consider. 
As it turns out, this is done in a greedy fashion, which we now describe: 

D e f i n i t i o n 1 0 .  We define the s i m i l a r i t y  between sequences i and j to be 
s( i , j )  = 1 -  2H( i , j ) / k ,  where k is the sequence length, and H(i , j )  is 

t h e  Hamming distance of sequences i and j .  Let Q be the set of all pos- 
sible quartets on [n], and let Q~, be those quartets a,b,c,d such that  
min{s(a, b), s(a, c), s(a, d), s(b, c), s(b, d), s(c, d)} > w. 

On a given set Qw, the result of applying the Short Quartet  Consistency algo- 
ri thm will either be a binary tree tha t  is uniquely consistent with all the topology 
constraints in Q~, or fail. This permits us to define our method as follows. The 
structure of the method is to do a "halving" search among the w by applying the 
Short Quartet  Consistency algorithm to Q~. starting with w = 1/2, 1/4, etc., 
until we either find a tree tha t  is uniquely consistent with the  Short Quartet  
consistency algorithm or realize tha t  no such tree can be found (this evidence 
of failure occurs when w < l /k ) .  We can show that  with high probability, given 
adequate sequence length this search will examine a set Qw which contains all 
short quar te ts  and which also satisfies Axiom 1. Consequently, in polynomial 
time we will reconstruct the tree topology. 

T h e o r e m  11. The Short Quartets Method takes O(n 4 l o g n l o g k  + n2k) time in 
the worst case. On any input d of distances derived from sequences generated on 
a model tree T,  if the Naive Method accurately reconstructs the topology of T 
from d then SQM will also accurately reconstruct the topology of T from d. 
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A more realistic analysis of the running time of the Short Quartet Method is 
based upon analyzing typical trees can be obtained by using Theorem 13. Typical 
trees under both the uniform and Yule-Harding distributions have O(log log n) 
depths. If the p~ probabilities on the edges of a tree of depth O(log log n) are 
equal or almost equal, then certain Q~'s with IQ~I -- O(n polytogn) will yield a 
tree through the consistency algorithm, and the halving sea~'ch will hit such a w, 
with probability 1 - o(1). Consequently, for typical tree shapes and for mutation 
probabilities that just slightly vary, applying the Short Quartet Method is likely 
to take only O(n2k + n 2 logn) time. 

We now state our main result: 

Th eo rem 12. Suppose k sites evolve under the Cavender-Farris model on a 
binary tree T, so that for all edges e, Pe E [f,g], where we allow f , g  to be 
functions of n. Assume that g is separated from 1/2. The Short Quartet Method 
returns the tree T with probability 1 - o(1), if 

c- log n 
k > (1) (1 - ~ 2 ( 1  - 2g) 4depth(T) 

where c is a fixed constant. 

4 D e p t h  vs .  D i a m e t e r  o f  R a n d o m  T r e e s  

We have shown that the sequence length needed by our method depends expo- 
nentially upon the minimum of the depth or the diameter of the tree it attempts 
to reconstruct. We study these topological quantities in this section. 

Two simple models for describing semi-labelled binary trees are the uniform 
model, in which each tree has the same probability, and the Yule-Harding model, 
studied in [2, 3, 10]. This distribution is based upon a simple model of speciation, 
and results in "bushier" trees than the uniform model. 

The following results are needed to analyse the performance of phylogeny 
reconstruction algorithms on random binary trees. Recall the definitions of depth 
and diameter from Section 3. 

T h e o r e m  13. a) For a random semilabelled binary tree T with n leaves under 
the uniform model, d(T) <_ (2 + o(1)) log 2 log2(2n ) with probability 1 - o(1), 
and diam(T) > ex/~ with probability 1 - O(e2). 

b) For a random semilabelled binary tree T with n leaves under the Yule-Harding 
distribution, d(T) = O(loglog n) and diam(T) = O(log n), with probability 
1 - o(1) 

4.1 Analysis  of  the  Short  Quar t e t  M e t h o d  

In [6], Farach and Ka~nan proposed a method (FK) for reconstructing Cavender- 
Farris trees based upon applying the 3-approximation of Agarwata et al (dis- 
cussed in Section 2) for the L~-nearest tree problem to corrected distances. 
They proved that the method converged quickly for the variational distance (a 
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related but different concern than the topology estimation), but did not analyze 
the convergence to the topology of the model tree. Recently, Kannan extended 
the analysis (personal communication) and obtained the following counterpart 
to (1): If T is a model tree with mutation probabilities in the range If, g], and if 
sequences of length k I are generated on this tree, where 

c' �9 log n 
k' > f2(1 _ 2g)2diam(T), (2) 

and d is some constant, then with high probability the result of applying Agar- 
wala et al to Cavender-Farris distances will be a tree with the same topology as 
T. 

We now compare the sequence length requirements for the Short Quartet 
method as compared to the 3-approximation algorithm for the nearest L~-tree. 
Comparing this formula to (1), we note that the the comparison of depth and 
diameter is the most important issue. We always have diam(T) >_ 2depth(T) + 1. 
The constants do not affect the comparison unless the depth and the diameter 
are close to each other, which in general they are not (from our earlier results, 
for almost all trees, the depth is O(log log n) while the diameter is $2(v/-n), under 
the uniform distribution, while for the Yule-Harding distribution, the depth is 
still O(log log n) and the diameter is ~2(log n). Consequently, the Short Quartet 
Method requires much shorter sequence lengths than the Agarwala et al algo- 
rithm for almost all binary trees. 

We summarize these results in the following table. 
range of mutation probabilities on edges: 

binary trees SQM 
FK 

If, g] 1 loglogn 
f , g  are constants l o g n '  logn 

polynomial potylog 
superpolynomial superpolynomial worst-case 

random binary trees SQM polylog polylog 
(uniform model) FK superpolynomial superpolynomiat 
random binary trees SQM polylog polylog 
(Yule-Harding) FK polynomial polylog 

This comparison establishes that our method requires significantly shorter 
sequences in order to ensure accuracy of the topology estimation than the algo- 
rithm of Agarwala et al, for almost all trees under both probability distributions. 
The trees for which the two methods need comparable length sequences are those 
in which the diameter and the depth are as close as possible - such as complete 
binary trees. In these cases, the previous analysis given in Section 3 indicates 
that SQM will nevertheless need shorter sequences than Agarwala et al will need 
to obtain the topology with high probability. 

Although their running time is likely to be faster than ours on most data 
sets, our method is fast enough to be useful for all data sets that we might wish 
to analyze (even up to several thousand sequences). The real advantage of this 
method is its increase in accuracy on sequences of realistic length. 
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However, both algorithms are fast enough to make real-time computation of 
evolutionary trees feasible even for very large (n = 500 to 1000) data  sets. This 
means that  the issue of accuracy realistically is the most important issue, and 
needs to be the focus of the study. 

5 L o w e r  b o u n d s  

A careful analysis of the table above concerning the sequence length needed by 
the short quartet method reveals that  for almost all trees under either distribu- 
tion, the required sequence length grows polylogarithmically in the number of 
taxa for each fixed range of mutation probabilities. In this section, we show that  
this is a polynomial of the minimum possible sequence length for any method, 
whether deterministic or randomized. 

We will henceforth assume that  all trees we consider are binary trees bi- 
jectively leaf-labelled by the elements of {1, 2 , . . .  ,n} = [n]; we will call these 
semi-labelled binary trees. Since the number of semi-labelled binary trees on n 
leaves is ( 2 n -  5)!!, encoding deterministically all such trees by binary sequences 
at the leaves requires that  the sequence length, k, satisfy (2n - 5)!! _< 2 nk, i.e. 
k = $2(logn). We now show that  this information-theoretic argument can be 
extended for arbitrary models of evolution and arbitrary deterministic or even 
randomized algorithms for tree reconstruction. For each semi-labelled binary 
tree, T, and for each algorithm A, whether deterministic or randomized, we will 
assume that  T is equipped with a mechanism for generating sequences, which 
allows the algorithm A to reconstruct the topology of the underlying tree T from 
the shortest possible sequences with constant probability. 

T h e o r e m  14. Let T be a tree with n leaves labelled by sequences o/ {0,1} k, and 
let A be an arbitrary algorithm, deterministic or randomized. For A to be able 
to reconstruct the topology of T / r a m  the sequences at the leaves with probability 
greater than 1/2 (respectively greater than ~), it must hold that (2n - 5)!! _< 2 nk 
(respectively, (2n - 5)!!E ~ 2nk), and so k = ~( logn) .  

The Theorem above shows that  model and algorithm have to be a very good 
match, if not much more than log n length sequences suffice for tree reconstruc- 
tion with high probability for each trees. In view of the very mild conditions, it 
is amazing, that  this bound basically can be attained by our SQM, applied to 
the Cavender-Farris model! 
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