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ABSTRACT: A phylogenetic tree, also called an ‘‘evolutionary tree,’’ is a leaf-labeled tree
which represents the evolutionary history for a set of species, and the construction of such
trees is a fundamental problem in biology. Here we address the issue of how many sequence
sites are required in order to recover the tree with high probability when the sites evolve
under standard Markov-style i.i.d. mutation models. We provide analytic upper and lower
bounds for the required sequence length, by developing a new polynomial time algorithm. In
particular, we show when the mutation probabilities are bounded the required sequence

Ž .length can grow surprisingly slowly a power of log n in the number n of sequences, for
almost all trees. Q 1999 John Wiley & Sons, Inc. Random Struct. Alg., 14, 153]184, 1999

1. INTRODUCTION

Rooted leaf-labeled trees are a convenient way to represent historical relationships
between extant objects, particularly in evolutionary biology, where such trees are
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called phylogenies. Molecular techniques have recently provided large amounts of
sequence data which are being used to reconstruct such trees. These methods
exploit the variation in the sequences due to random mutations that have occurred
at the sites, and statistically based approaches typically assume that sites mutate
independently and identically according to a Markov model. Under mild assump-
tions, for sequences generated by such a model, one can recover, with high
probability, the underlying unrooted tree provided the sequences are sufficiently
long in terms of the number k of sites. How large this value of k needs to be
depends on the reconstruction method, the details of the model, and the number n
of species. Determining bounds on k and its growth with n has become more
pressing since biologists have begun to reconstruct trees on increasingly large
numbers of species, often up to several hundred, from such sequences.

With this motivation, we provide upper and lower bounds for the value of k
Ž .required to reconstruct an underlying unrooted tree with high probability, and

address, in particular, the question of how fast k must grow with n. We first show
that under any model, and any reconstruction method, k must grow at least as fast
as log n, and that for a particular, simple reconstruction method, it must grow at
least as fast as n log n, for any i.i.d. model. We then construct a new tree

Ž .reconstruction method the dyadic closure method which, for a simple Markov
model, provides an upper bound on k which depends only on n, the range of the
mutation probabilities across the edges of the tree, and a quantity called the

Ž Ž ..‘‘depth’’ of the tree. We show that the depth grows very slowly O log log n for
Ž .almost all phylogenetic trees under two distributions on trees . As a consequence,

we show that the value of k required for accurate tree reconstruction by the dyadic
closure method needs only to grow as a power of log n for almost all trees when
the mutation probabilities lie in a fixed interval, thereby improving results by

w xFarach and Kannan in 23 .
The structure of the paper is as follows. In Section 2 we provide definitions, and

in Section 3 we provide lower bounds for k. In Section 4 we describe a technique
for reconstructing a tree from a partial collection of subtrees, each on four leaves.
We use this technique in Section 5, as the basis for our ‘‘dyadic closure’’ method.
Section 6 is the central part of the paper, here we analyze, using various probabilis-
tic arguments, an upper bound on the value of k required for this method to
correctly recover the underlying tree with high probability, when the sites evolve
under a simple, symmetric 2-state model. As this upper bound depends critically

Ž .upon the depth a function of the shape of the tree we show that the depth grows
Ž Ž ..very slowly O log log n for a random tree selected under either of two distribu-

tions. This gives us the result that k need grow only sublinearly in n for nearly all
trees.

w xOur follow-up paper 21 extends the analysis presented in this paper for more
general, r-state stochastic models, and offers an alternative to dyadic closure, the
‘‘witness]antiwitness’’ method. The witness]antiwitness method is faster than the
dyadic closure method on average, but does not yield a deterministic technique for
reconstructing a tree from a partial collection of subtrees, as the dyadic closure
method does; furthermore, the witness]antiwitness method may require somewhat

Ž .longer by a constant multiplicative factor input sequences than the dyadic closure
method.
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2. DEFINITIONS

w x w xNotation. P A denotes the probability of event A; E X denotes the expectation
w xof random variable X. We denote the natural logarithm by log. The set n denotes

S� 41, 2, . . . , n and for any set S, denotes the collection of subsets of S of size k.ž /k

R denotes the real numbers.

Ž .Definitions. I Trees. We will represent a phylogenetic tree T by a tree whose
Ž . Ž .lea¨es vertices of degree 1 are labeled by extant species, numbered by 1, 2, . . . , n

Ž .and whose remaining internal vertices representing ancestral species are unla-
beled. We will adopt the biological convention that phylogenetic trees are binary,
so that all internal nodes have degree 3, and we will also assume that T is

Ž . Žunrooted, for reasons described later in this section. There are 2ny5 !!s 2ny
.Ž .5 2ny7 ??? 3 ?1 different binary trees on n distinctly labeled leaves.

Ž .The edge set of the tree is denoted by E T . Any edge adjacent to a leaf is
called a leaf edge, any other edge is called an internal edge. The path between the

Ž .vertices u and ¨ in the tree is called the u¨ path, and is denoted P u, ¨ . For a
w xphylogenetic tree T and S: n , there is a unique minimal subtree of T , contain-

ing all elements of S. We call this tree the subtree of T induced by S, and denote it
by T . We obtain the contracted subtree induced by S, denoted by TU , if we< S < S
substitute edges for all maximal paths of T in which every internal vertex has< S
degree 2. Since all trees are assumed to be binary, all contracted subtrees,
including, in particular, the subtrees on four leaves, are also binary. We use the

<notation ij kl for the contracted subtree on four leaves i, j, k, l in which the pair
<i, j is separated from the pair k, l by an internal edge, and we also call ij kl a ¨alid

quartet split of T. Clearly any four leaves i, j, k, l in a binary tree have exactly one
< < <valid quartet split out of ij kl, ik jl, il kj.

Ž .The topological distance d u, ¨ between vertices u and ¨ in a tree T is the
Ž .number of edges in P u, ¨ . A cherry in a binary tree is a pair of leaves at

Ž .topological distance 2. The diameter of the tree T , diam T , is the maximum
topological distance in the tree. For an edge e of T , let T and T be the two1 2

Ž .rooted subtrees of T obtained by deleting edge e from T , and for is1, 2, let d ei
be the topological distance from the root of T to its nearest leaf in T . The depthi i

� Ž . Ž .4of T is max max d e , d e , where e ranges over all internal edges in T. We saye 1 2
Ž .that a path P in the tree T is short if its topological length is at most depth T q1,

and say that a quartet i, j, k, l is a short quartet if it induces a subtree which
contains a single edge connected to four disjoint short paths. The set of all short

Ž .quartets of the tree T is denoted by Q T . We will denote the set of validshort
U Ž .quartet splits for the short quartets by Q T .short

Ž . Ž � 4II Sites. Let us be given a set C of character states such as Cs A, C, G, T
� 4 � 4for DNA sequences; Cs the 20 amino acids for protein sequences; Cs R, Y or

� 4 .0, 1 for purine-pyrimidine sequences . A sequence of length k is an ordered
k-tuple from C}that is, an element of C k. A collection of n such sequences}one

w xfor each species labeled from n }is called a collection of aligned sequences.
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Aligned sequences have a convenient alternative description as follows. Place
the aligned sequences as rows of an n=k matrix, and call site i the ith column of

< < nthis matrix. A pattern is one of the C possible columns.

Ž .III Site substitution models. Many models have been proposed to describe,
stochastically, the evolution of sites. Usually these models assume that the sites
evolve identically and independently under a distribution that depends on the
model tree. Most models are more specific and also assume that each site evolves
on a rooted tree from a nondegenerate distribution p of the r possible states at

Žthe root, according to a Markov assumption namely, that the state at each vertex
.is dependent only on its immediate parent . Each edge e oriented out from the

Ž .root has an associated r= r stochastic transition matrix M e . Although these
models are usually defined on a rooted binary tree T where the orientation is
provided by a time scale and the root has degree 2, these models can equally well

Ž .be described on an unrooted binary tree by i suppressing the degree 2 vertex in T ,
Ž . Ž .ii selecting an arbitrary vertex leaves not excluded , assigning to it an appropriate

X Ž .distribution of states p , possibly different from p , and iii assigning an appropri-
XŽ . w Ž .xate transition matrix M e possibly different from M e for each edge e. If we

regard the tree as now rooted at the selected vertex, and the ‘‘appropriate’’ choices
Ž . Ž .in ii and iii are made, then the resulting models give exactly the same distribu-

Ž w x.tion on patterns as the original model see 46 and as the rerooting is arbitrary we
see why it is impossible to hope for the reconstruction of more than the unrooted
underlying tree that generated the sequences under some time-induced, edge-
bisection rooting. The assumption that the underlying tree is binary is also in
keeping with the assumption in systematic biology, that speciation events are
almost always binary.

Ž .IV The Neyman model. The simplest stochastic model is a symmetric model
w xfor binary characters due to Neyman 37 , and also developed independently by

w x w x � 4Cavender 12 and Farris 25 . Let 0, 1 denote the two states. The root is a fixed
leaf, the distribution p at the root is uniform. For each edge e of T we have an
associated mutation probability, which lies strictly between 0 and 0.5. Let p:
Ž . Ž .E T ª 0, 0.5 denote the associated map. We have an instance of the general

Ž . Ž . Ž .Markov model with M e sM e sp e . We will call this the Neyman 2-state01 10
model, but note that it has also been called the Cavender]Farris model. Neyman’s
original paper allows more than 2 states.

The Neyman 2-state model is hereditary on the subsets of the leaves}that is, if
w xwe select a subset S of n , and form the subtree T , then eliminate vertices of< S

degree 2, we can define mutation probabilities on the edges of TU so that the< S
probability distribution on the patterns on S is the same as the marginal of the
distribution on patterns provided by the original tree T. Furthermore, the mutation
probabilities that we assign to an edge of TU is just the probability p that the< S
endpoints of the associated path in the original tree T are in different states. The
probability that the endpoints of a path p are in different states is nicely related to
the mutation probabilities p , p , . . . , p of edges of the k-path,1 2 k

k1
ps 1y 1y2 p . 1Ž . Ž .Ł iž /2 is1

Ž .Formula 1 is well known, and is easy to prove by induction.
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Ž .V Distances. Any symmetric matrix, which is zero-diagonal and positive off-
diagonal, will be called a distance matrix. An n=n distance matrix D is calledi j

Ž .additï e, if there exists an n-leaf not necessarily binary with positive edge weights
on the internal edges and nonnegative edge weights on the leaf edges, so that Di j

Ž .equals the sum of edge weights in the tree along the P i, j path connecting i and
w xj. In 10 , Buneman showed that the following Four-Point Condition characterizes

Ž w x w x.additive matrices see also 42 and 53 :

Ž .Theorem 1 Four-Point Condition . A matrix D is additive if and only if for all
Ž .i, j, k, l not necessarily distinct , the maximum of D qD , D qD , D qD isij kl ik jl il jk

not unique. The edge-weighted tree with positive weights on internal edges and
nonnegative weights on leaf edges representing the additive distance matrix is
unique among the trees without vertices of degree 2.

Ž .Given a pair of parameters T , p for the Neyman 2-state model, and sequences
Ž .of length k generated by the model, let H i, j denote the Hamming distance of

sequences i and j and

H i , jŽ .
i jh s 2Ž .

k

denote the dissimilarity score of sequences i and j. The empirical corrected distance
between i and j is denoted by

1 i jd sy log 1y2h . 3Ž . Ž .i j 2

The probability of a change in the state of any fixed character between the
i j Ž i j.sequences i and j is denoted by E sE h , and we let

1 i jD sy log 1y2 E 4Ž . Ž .i j 2

denote the corrected model distance between i and j. We assign to any edge e a
positive weight,

1w e sy log 1y2 p e . 5Ž . Ž . Ž .Ž .2

Ž . Ž .By Eq. 1 , D is the sum of the weights see previous equation along the pathi j
Ž .P i, j between i and j. Therefore, d converges in probability to D as kª`.i j i j

Corrected distances were introduced to handle the problem that Hamming dis-
tances underestimate the ‘‘true evolutionary distances.’’ In certain continuous time
Markov models the edge weight means the expected number of back-and-forth
state changes along the edge, and defines an additive distance matrix.

Ž .VI Tree reconstruction. A phylogenetic tree reconstruction method is a function
F that associates either a tree or the statement fail to every collection of aligned
sequences, the latter indicating that the method is unable to make such a selection
for the data given. Some methods are based upon sequences, while others are
based upon distances.
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Ž w x.According to the practice in systematic biology see, for example, 29, 30, 49 , a
method is considered to be accurate if it recovers the unrooted binary tree T , even
if it does not provide any estimate of the mutation probabilities. A necessary
condition for accuracy, under the models discussed above, is that two distinct trees,
T , T X, do not produce the same distribution of patterns no matter how the trees are
rooted, and no matter what their underlying Markov parameters are. This ‘‘iden-
tifiability’’ condition is violated under an extension of the i.i.d. Markov model when
there is an unknown distribution of rates across sites as described by Steel, Szekely,´

w x w x Žand Hendy 46 . However, it is shown in Steel 44 see also Chang and Hartigan
w x.13 that the identifiability condition holds for the i.i.d. model under the weak

Ž Ž ..conditions that the components of p are not zero and the determinant det M e
/0, 1, y1, and in fact we can recover the underlying tree from the expected
frequencies of patterns on just pairs of species.

Theorem 1 and the discussion that follows it suggest that appropriate methods
applied to corrected distances will recover the correct tree topology from suffi-
ciently long sequences. Consequently, one approach to reconstructing trees from

Ždistances is to seek an additive distance matrix of minimum distance with respect
.to some metric on distance matrices from the input distance matrix. Many metrics

have been considered, but all resultant optimization problems have been shown or
w xare assumed to be NP-hard; see 1, 15, 24 .

ŽWe will use a particular simple distance method, which we call the Extended
Ž .Four-Point Method FPM , to reconstruct trees on four leaves from a matrix of

interleaf distances.
Ž .Four-Point Method FPM . Gï en a 4=4 distance matrix d, return the set of splits

< � 4ij kl which satisfy d qd Fmin d qd , d qd .i j k l ik jl i l jk
Note that the Four-Point Method can return one, two, or three splits for a given

quartet. One split is returned if the minimum is unique, two are returned if the two
smallest values are identical but smaller than the largest, and three are returned if
all three values are equal.

w xIn 26 , Felsenstein showed that two popular methods}maximum parsimony and
maximum compatibility}can be statistically inconsistent, namely, for some parame-
ters of the model, the probability of recovering the correct tree topology tends to 0
as the sequence length grows. This region of the parameter space has been
subsequently named the ‘‘Felsenstein zone.’’ This result, and other more recent

Ž w x w x w xembellishments see Hendy 28 , Zharkikh and Li 54 , Takezaki and Nei 50 , Steel,
w x.Szekely, and Hendy 46 , are asymptotic results}that is, they are concerned with´

outcomes as the sequence length, k, tends to infinity.
We consider the question of how many sites k must be generated independently

and identically, according to a substitution model M, in order to reconstruct the
underlying binary tree on n species with prespecified probability at least e by a
particular method F. Clearly, the answer will depend on F, e , and n, and also on
the fine details of M}in particular the unknown values of its parameters. It is
clear that for all models that have been proposed, if no restrictions are placed on
the parameters associated with edges of the tree then the sequence length might
need to be astronomically large, even for four sequences, since the ‘‘edge length’’

Ž . Žof the internal edge s of the tree can be made arbitrarily short as was pointed out
w x.by Philippe and Douzery 38 . A similar problem arises for four sequences when

one or more of the four noninternal edges is ‘‘long’’}that is, when site saturation
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Ž .has occurred on the line of descent represented by the edge s . Unfortunately, it is
difficult to analyze how well methods perform for sequences of a given length, k.
There has been some empirical work done on this subject, in which simulations of
sequences are made on different trees and different methods compared according

Ž w xto the sequence length needed see 31 for an example of a particularly interesting
.study of sequence length needed to infer trees of size 4 , but little analytical work

Ž w x.see, however, 38 .
In this paper we consider only the Neyman 2-state model as our choice for M.

However, our results extend to the general i.i.d. Markov model, and the interested
w xreader is referred to the companion paper 21 for details.

3. LOWER BOUNDS

Ž .Since the number of binary trees on n leaves is 2ny5 !!, encoding deterministi-
cally all such trees by binary sequences at the leaves requires that the sequence

Ž . nk Ž .length, k, satisfy 2ny5 !!F2 , i.e., ksV log n . We now show that this infor-
mation-theoretic argument can be extended for arbitrary models of site evolution
and arbitrary deterministic or even randomized algorithms for tree reconstruction.
For each tree, T , and for each algorithm A, whether deterministic or randomized,
we will assume that T is equipped with a mechanism for generating sequences,
which allows the algorithm A to reconstruct the topology of the underlying tree T
from the sequences with probability bounded from below.

Theorem 2. Let A be an arbitrary algorithm, deterministic or randomized, which is
used to reconstruct binary trees from 0-1 sequences of length k associated with the
lea¨es, under an arbitrary model of substitutions. If A reconstructs the topology of any

Žbinary tree T from the sequences at the lea¨es with probability greater than e respec-
1 nk nk. Ž . Ž Ž .tï ely, greater than , then 2ny5 !!e-2 respectï ely, 2ny5 !!F2 , under the2

Ž .assumption of stochastic independence of the substitution model and the reconstruc-
. Ž .tion and so ksV log n .

We prove this theorem in a more abstract setting:

Theorem 3. We ha¨e finite sets X and S and random functions f : SªX and
g : XªS.

( ) w Ž . x < < < <i If P fg x sx )e for all xgX then S )e X .
1( ) w Ž . x < < < <ii If f , g are independent and P fg x sx ) for all xgX then S G X .2

Ž . < < w Ž . x w Ž .Proof. Proof of i . By hypothesis e X -Ý P fg x sx sÝ Ý P g x ss andx x s
Ž . x Ž w Ž . x. < <f s sx FÝ Ý P f s sx sÝ 1s S .s x s

Ž . w Ž . x w Ž . x w Ž . xProof of ii . First note that P fg x sy sÝ P f s sy P g x ss by indepen-s
1w Ž . xdence. Observe that for each x, there exists an sss for which P f s sx ) ,x x 2

1w Ž . xsince otherwise we have P fg x sx F . Now, the map sending x to s isx2
Ž < < < < .one-to-one from X into S and so X F S as required since otherwise, if two

1 1w Ž . xelements get mapped to s, then 1sÝ P f s sx ) q . Bx 2 2



˝ERDOS ET AL.160

1The following example shows that our theorem is tight for e- : Let Xs2
� 4 � 4 Ž . Žx , x , x , x , . . . , x , x and Ss 1, 2, . . . , n , and let g x s i with probabil-11 12 21 22 n1 n2 i j

1 1. Ž . w Ž .ity 1 ; and let f i sx with probability ; x with probability . Then P fg x si1 i22 2
1 1x w Ž . xx s , so P fg x sx )e , for any epsilon less than . However, notice that2 2

< < < <X r2s S .
1 < < < <Curiously, once e exceeds we must have X F S , under the assumption of2

w xindependence. Examples 52 show that the assumption of independence is neces-
sary. Independence is a reasonable assumption if we try to apply this result for
evolutionary tree reconstruction, and holds automatically if the tree reconstruction
method is deterministic.

This lower bound applied to an arbitrary algorithm, but particular algorithms
may admit much larger lower bounds. Consider, for example, the Maximum

Ž .Compatibility Method MC , which we now define. Given a set of binary sequences,
each site defines a partition of the sequences into two sets, those containing a 0 in
that position, and those containing a 1 in that position. The site is said to be
compatible on a tree T if the tree T contains an edge whose removal would define
the same partition. The objective of the maximum compatibility method is a tree T
which has the largest number of sites compatible with it. Maximum compatibility is

w xan NP-hard optimization problem 16 , although the MC method can clearly be
implemented as a nonpolynomial time algorithm. We now show that the sequence
length needed by MC to obtain the correct topology with constant probability must
grow at least as fast as n log n.

Theorem 4. Assume that 2-state sites on n species e¨ol̈ e on a binary tree T
according to any stochastic model in which the sites e¨ol̈ e identically and indepen-

Ž .dently. Let k n denote the smallest number of sites for which the Maximum Compati-
bility Method is guaranteed to reconstruct the topology of T with probability greater than
1 . Then, for n large enough,2

k n ) ny3 log ny3 y ny3 . 6Ž . Ž . Ž . Ž . Ž .
Proof. We say that a site is trï ial if it defines a partition of the sequences into
one class or into two classes so that one of the classes is a singleton. Now, fix x and

U uŽ . Ž . Ž .vassume that we are given k s ny3 log ny3 qx ny3 nontrivial sites inde-
pendently selected from the same distribution. We show that the probability of
obtaining the correct tree under MC is at most eyeyx

for n large enough. This
Ž . U <proves the theorem by setting xsy1, since k n Gk is needed.xsy1

Ž . < Ž . <Let s T denote the set of internal splits of T. Since T is binary, s T sny3
w x Ž .10 . For sgs T , let the random variable X be the number of nontrivial sitess

Ž .which induce split s . Define XsÝ X . A necessary though not sufficients g s ŽT . s

condition for maximum compatibility to select T is that all the internal splits of T
are present among the kU nontrivial sites. Thus, we have the inequality,

� 4P MC S sT FP F X )0Ž . s g s ŽT . s

kU

< w x� 4s P F X )0 Xs i =P Xs iÝ s g s ŽT . s
is1

<� 4F max P F X )0 Xs is g s ŽT . sU1FiFk

U<� 4sP F X )0 Xsk . 7Ž .s g s ŽT . s
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Ž .Let p s denote the probability of generating split s at a particular site. Due to
Ž . Ž .the model, p s does not depend on the site. It is not difficult to show that 7 is

Ž . Ž Ž ..maximized when the p s s are all equal sgs T and sum to 1.
Indeed, by compactness arguments, there exists a probability distribution maxi-

Ž .mizing 7 . We show that it cannot be nonuniform, and therefore the uniform
Ž .distribution maximizes 7 . Assume that the maximizing distribution p is nonuni-

Ž . Ž . X XŽ . XŽ .form, say, p s /p r . We introduce a new distribution p with p s sp r
1 XŽ Ž . Ž .. Ž . Ž .s p s qp r , and p a sp a for a/s , r. The probability of having2

exactly i sites supporting s or r is the same for p and pX. Conditioning on the
number of sites supporting s or r, it is easy to see that any distribution of sites
supporting all nontrivial splits has strictly higher probability in pX than in p.

Ž . Ž Ž .. Ž .Knowing that the p s s are all equal sgs T and sum to 1, determining 7
is just the classical occupancy problem where kU balls are randomly assigned to
ny3 boxes with uniform distribution, and one asks for the probability that each

Ž .box has at least one ball in it. Equation 6 now follows from a result on the
Ž w x. U Ž Uasymptotics of this problem Erdos and Renyi 18 : for xgR, k balls k as˝ ´

.defined above , and ny3 boxes, the limit of probability of filling each boxes is
eyeyx

. B

This theorem shows that the sequence length that suffices for the MC method to
Ž .be accurate is in V n log n , but does not provide us with any upper bound on that

sequence length. This upper bound remains an open problem.
w Ž .xIn Section 5, we will present a new method the Dyadic Closure Method DCM

for reconstructing trees. DCM has the property that for almost all trees, with a
wide range allowed for the mutation probabilities, the sequence length that suffices
for correct topology reconstruction grows no more than polynomially in the lower

Ž .bound of log n see Theorem 2 required for any method. In fact the same holds
for all trees with a narrow range allowed for the mutation probabilities. First,
however, we set up a combinatorial technique for reconstructing trees from
selected subtrees of size 4.

4. DYADIC INFERENCE OF TREES

w xCertain classical tree reconstruction methods 6, 14, 47, 48, 55 are based upon
reconstructing trees on quartets of leaves, them combining these trees into one
tree on the entire set of leaves. Here we describe a method which requires only

Ž .certain quartet splits be reconstructed the ‘‘representative quartet splits’’ , and
then infers the remaining quartet splits using ‘‘inference rules.’’ Once we have

Žsplits for all the possible quartets of leaves, we can then reconstruct the tree if one
.exists that is uniquely consistent with all the quartet splits.

w xIn this section, we prove a stronger result than was provided in 19 , that the
representatï e quartet splits suffice to define the tree. We also present a tree

Ž .reconstruction algorithm, DCTC for Dyadic Closure Tree Construction based upon
dyadic closure. The input to DCTC is a set Q of quartet splits and we show that
DCTC is guaranteed to reconstruct the tree properly if the set Q contains only
valid quartet splits and contains all the representative quartet splits of T. We also
show that if Q contains all representative quartet splits but also contains invalid
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quartet splits, then DCTC discovers incompatibility. In the remaining case, where
Q does not contain all the representative quartet splits of any T , DCTC returns

Ž . ŽInconsistent and then the input was inconsistent indeed , or a tree which is then
.the only tree consistent with the input , or Insufficient.

4.1. Inference Rules

Recall that, for a binary tree T on n leaves, and a quartet of leaves,

w xn <� 4qs a, b , c, d g , t sab cdqž /4

U < Žis a ¨alid quartet split of T if T sab cd i.e., there is at least one edge in T whose< q
.removal separates the pair a, b from the pair c, d . It is easy to see that

< < <if ab cd is a valid quartet split of T, then so are ba cd and cd ab, 8Ž .

< < <and we identify these three splits; and if ab cd holds, then ac bd and ad bc are not
<valid quartet splits of T , and we say that any of them contradicts ab cd. Let

w xn
Q T s t : qgŽ . q½ 5ž /4

Ž .denote the set of valid quartet splits of T. It is a classical result that Q T
Ž w x w x.determines T Colonius and Schulze 14 , Bandelt and Dress 6 ; indeed for each

w x � 4 � 4ig n , t : igq determines T , and T can be computed from t : igq inq q
polynomial time.

It would be nice to determine for a set of quartet splits whether there is a tree
for which they are valid quartet splits. Unfortunately, this problem is NP-complete
Ž w x. Ž .Steel 43 . It also would be useful to know which subsets of Q T determine T ,
and for which subsets a polynomial time procedure would exist to reconstruct T. A
natural step in this direction is to define inference: we can infer from a set of

Ž .quartet splits A a quartet split t, if whenever A:Q T for a binary tree T , then
Ž .tgQ T as well.

w xInstead, Dekker 17 introduced a restricted concept, dyadic and higher order
inference. Following Dekker, we say that a set of quartet splits A dyadically implies
a quartet split t, if t can be derived from A by repeated applications of rules
Ž . Ž .8 ] 10 :

< <if ab cd and ac de are valid quartet splits of T ,

< < <then so are ab ce, ab de, and bc de, 9Ž .

and,

< < <if ab cd and ab ce are valid quartet splits of T , then so is ab de. 10Ž .

It is easy to check that these rules infer valid quartet splits from valid quartet splits,
and the set of quartet splits dyadically inferred from an input set of quartet splits
can be computed in polynomial time. Setting a complete list of inference rules

Ž w x.seems hopeless Bryant and Steel 9 : for any r, there are r-ary inference rules,
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which infer a valid quartet split from some r valid quartet splits, such that their
action cannot be expressed through lower order inference rules.

4.2. Tree Inference Using Dyadic Rules

In this section we define the dyadic closure of a set of quartet splits, and describe
conditions on the set of quartet splits under which the dyadic closure defines all
valid quartet splits of a binary tree. This section extends and strengthens results

w xfrom earlier work 19, 45 .

Definition 1. Given a finite set of quartet splits Q, we define the dyadic closure
Ž .cl Q of Q as the set of quartet splits than can be inferred from Q by the repeated

Ž .use of the rules 8]10 . We say that Q is inconsistent, if Q is not contained in the
set of valid quartet splits of any tree, otherwise Q is consistent. For each of the
ny3 internal edges of the n-leaf binary tree T we assign a representatï e quartet
� 4s , s , s , s as follows. The deletion of the internal edge and its endpoints defines1 2 3 4
four rooted subtrees t , t , t , t . Within each subtree t , select from among the1 2 3 4 i
leaves which are closest topologically to the root the one, s , which is the smallesti

Ž .natural number recall that the leaves of our trees are natural numbers . This
Žprocedure associates to each edge a set of four leaves, i, j, k, l. By construction, it

is clear that the quartet i, j, k, l induces a short quartet in T}see Section 2 for the
.definition of ‘‘short quartet.’’ We call the quartet split of a representative quartet

a representatï e quartet split of T , and we denote the set of representative quartet
splits of T by R .T

The aim of this section is to show that the dyadic closure suffices to compute the
tree T from any set of valid quartet splits of T which contain R . We begin with:T

Lemma 1. Suppose S is a set of ny3 quartet splits which is consistent with a unique
binary tree T on n lea¨es. Furthermore, suppose that S can be ordered q , . . . , q in1 ny3

� 4such a way that q contains at least one label which does not appear in q , . . . , qi 1 iy1
Ž .for is2, . . . , ny3. Then, the dyadic closure of S is Q T .

Proof. First, observe that it is sufficient to show the lemma for the case when qi
� 4contains exactly one label which does not appear in q , . . . , q for is2, . . . , ny3,1 iy1

� 4since ny4 quartets have to add ny4 new vertices. Let S s q , . . . , q , and let Li 1 i i
be the union of the leaves of the quartet splits in S , and let T sTU be the binaryi i < Li

subtree of T induced by L . We first makei

Claim 1. The only tree on L consistent with S is T , for 1, . . . , ny3.i i i

Proof of Claim 1. The claim is true by the hypothesis of Lemma 1 for isny3;
Ž .suppose for some i-ny3 it is false. Then there exist at least two trees that

realize S , one of which is T , the other we will call T a. Now each quarteti i
q , . . . , q adds a new leaf to the tree so far constructed from T and T a. Nowiq1 ny3 i
for each quartet we can always attach that new leaf in at least one position in the

Žtree so far constructed so as to satisfy the corresponding quartet split and all
.earlier ones, since they don’t involve that leaf . Thus we end up with two trees

consistent with S, and these are different trees since when we restrict them to L ,i
they differ. But this contradicts our hypothesis. B
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Next we make

<Claim 2. If x is the new leaf introduced by q sxa bc then x and a form a cherryny3
of T.

Proof of Claim 2. First assume that x belongs to the cherry xy but a/y. Since
this quartet is the only occurrence of x we do not have any information about this
cherry, therefore the reconstruction of the tree T cannot be correct, a contradic-
tion.

Now assume that x is not in a cherry at all. Then the neighbor of x has two
other neighbors, and those are not leaves. In turn they have two other neighbors
each. Hence, we can describe x ’s place in T in the following representation in
Fig. 1: take a binary tree with five leaves, label the middle leaf x, and replace the
other four leaves by corresponding subtrees of T.

< ŽNow suppose q sax bc. Regardless of where a, b, c come from among theny3
.four subtrees in the representation , we can always move x onto at least two of the

Žother four edges in T , and so obtain a different tree consistent with S recall that
q is the only quartet containing x, and thereby the only obstruction to usny3

.moving x! . Since the theorem assumes that the quartets are consistent with a
unique tree, this contradicts our assumptions. B

Finally, it is easy to show the following:

Claim 3. Suppose xy is a cherry of T. Select lea¨es a, b from each of the two subtrees
adjacent to the cherry. Let T X be the binary tree obtained by deleting leaf x. Then
Ž Ž X. � < 4. Ž .cl Q T j xy ab sQ T .

Now, we can apply induction on n to establish the lemma. It is clearly
Ž .vacuously true for ns4, so suppose n)4. Let x be the new leaf introduced by
q , and let the binary tree T X be T with x deleted.ny3

In view of Claim 1, S is a set of ny4 quartets that define T sT X, a treeny4 ny4
on ny1 leaves and which satisfy the hypothesis that q introduces exactly one newi

Ž X.leaf. Thus, applying the induction hypothesis, the dyadic closure of S is Q T .ny4
Ž X.Since SsS contains S , the dyadic closure of S also contains Q T , which isny3 ny4

the set of all quartet splits of T that do not include x.

Fig. 1. Position of a leaf x, which is not a cherry, in a binary tree.
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Now, by Claim 2, x is in a cherry; let its sibling in the cherry be y, so
<q sab xy, say, where a and b must lie in each of the two subtrees adjacent tony3
Žthe cherry. It is easy to see that if a, b both lie in just one of these subtrees, then

.S would not define T.
Ž X.Now, as we just said, the dyadic closure of S contains Q T and it also contains

< Ž .ab xy where a, b are as specified in the preceding paragraph and so by the
w Ž . Ž Ž ..xidempotent nature of dyadic closure i.e., cl B scl cl B it follows from Claim 3
Ž .that the dyadic closure of S equals Q T . B B B

Lemma 2. The set of representatï e quartet splits R of a binary tree T satisfies theT
Ž .conditions of Lemma 1. Hence, the dyadic closure of R is Q T .T

Proof. In order to make an induction proof possible, we make a more general
statement. Given a binary tree T with a positive edge weighting w, we define the
representatï e quartet of an edge e to be the quartet tree defined by taking the
lowest indiced closest leaf in each of the four subtrees, where we define ‘‘closest’’

Ž .in terms of the weight of the path rather than the topological distance to the root
of the subtree. We also define the representatï e quartet splits of the weighted tree,
R as in the definition of representative quartets of unweighted trees, with theT , w

only change being that each s g t is selected to minimize the weighted path lengthi i
Žrather than topological path length i.e., the edge weights on the path are summed

.together, to compute the weighted path length . Observe that if all weights are
equal to 1, then we get back the original definitions. When turning to binary
subtrees of a given weighted tree, we assign the sum of weights of the original
edges to any newly created edge which is composed of them, and denote the new
weighting by wU. Now we can easily prove by induction the following generalization
of the statement of Lemma 2:

Claim 4. Take the set of representatï e quartet splits R of a weighted n-leaf binaryT , w
Ž .tree T. Then for e¨ery other n-leaf binary tree F, we ha¨e that R :Q F impliesT , w

TsF as unweighted trees. Furthermore, R can be ordered q , . . . , q in such aT , w 1 ny3
� 4way that q contains exactly one label that does not appear in q , . . . , q fori 1 iy1

is2, . . . , ny3.

Proof of Claim 4. First we show that the only tree consistent with the set of
Ž .representative splits R of a binary tree T is T itself. Look for the smallest in nT , w

Ž .counterexample T , such that R :Q F for a tree F/T. Clearly n has to be atT , w
least 5. Therefore T has at least two different cherries, say xy and u¨ , such that
Ž . Ž .d u, x G4. Let us denote by w l the weight of the leaf edge corresponding to the

Ž . Ž . w Ž . Ž . xleaf l. If w x -w y or w x sw y and x-y , then due to the construction of
R , vertex y occurs in exactly one elements of R , say p, which is theT , w T , w
representative of the edge that separates xy from the rest of the tree. A similar
argument would show that one of u, ¨ , say ¨ , occurs in exactly one element of
R , say q. It also follows that p/q. It is not difficult to check thatT , w

U U � 4 U U � 4R , sR _ p and R sR _ q 11Ž .T w T T w T<w n x_ � y4 <w n x_ �¨ 4
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according to the definition of weight after contracting edges, where TU is the< K
binary tree obtained by contracting paths into edges in the subtree of T spanned
by the vertex set K. Hence, by the minimality of the counterexample, TU s<w nx_� y4

FU and TU sFU . We know that any edge of F defines a bipartition of<w nx_� y4 <w nx_�¨ 4 <w nx_�¨ 4
w x w x � 4 w x � 4n , and traces of these bipartitions on n _ y and n _ ¨ are exactly the

U w x � 4bipartitions produced by the edges of F on n _ y and the bipartitions<w nx_� y4
U w x � 4produced by the edges of F on n _ ¨ . Therefore also in F both xy and u¨<w nx_�¨4

make cherries, and hence TsF, a contradiction.
For the other part of the claim, it immediately follows by induction from

Ž .formula 11 that R can be ordered so that every quartet in the order containsT , w
Ž . wat least one and therefore exactly one new leaf. Eliminate quartet splits recur-
Ž . xsively using 11 , and put R in the reverse order. BT , w

Note that the generalization for weighted trees was necessary, since without
Ž .weights formula 11 would fail. B B B

We note here that representative quartets cannot be defined by selecting any
nearest leaf in the four subtrees associated with an internal edge. For example,
consider the tree T on six leaves labeled 1 through 6, with a central vertex and

Ž . Ž . Ž .cherries 1, 2 , 3, 4 , and 5, 6 , hanging from the central vertex. If we selected the
quartet splits by arbitrarily picking closest leaves in each of the four subtrees

< < <around each internal edge, we could possibly select splits 12 36, 34 15, and 56 24;
however, these splits do not uniquely identify the tree T , since the tree with
cherries 15, 24, and 36, is also consistent with these quartets.

4.3. Dyadic Closure Tree Construction Algorithm

Ž .We now present the Dyadic Closure Tree Construction method DCTC for
computing the dyadic closure of a set Q of quartet splits, and which returns the

Ž . Ž .tree T when cl Q sQ T .
Before we present the algorithm, we note the following interesting lemma:

Ž . Ž .Lemma 3. If cl Q contains exactly one split for each possible quartet then cl Q s
Ž .Q T for a unique binary tree T.

Ž . w x UProof. By Proposition 2 of 6 , a set Q of noncontradictory quartet splits equals
Ž . < UQ T for some tree T precisely if it satisfies the substitution property: If ab cdgQ ,

� 4 < U < Uthen for all ef a, b, c, d , ab cegQ , or ae cdgQ . Furthermore, in that case, T
is unique.

U Ž . < Ž . <Applying this characterization to Q scl Q , suppose ab cdgcl Q but ab cef
Ž . < Ž . < Ž .cl Q . Thus, either ae bcgcl Q or ac begcl Q . In the either case, the dyadic

� < < 4 � < < 4 <inference rule applied to the pair ab cd, ae bc or to ab cd, ac be implies ae cdg
Ž . Ž . Ž . Ž .cl Q , and so cl Q satisfies the substitution property. Thus cl Q sQ T for a

Ž .unique tree T. Finally, since cl Q contains a split for each possible quartet, it
follows that T must be binary. B
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We now continue with the description of the DCTC algorithm.

Algorithm DCTC.

Ž .Step 1. We compute the dyadic closure, cl Q , of Q.

Step 2.

v Ž .Case 1. cl Q contains a pair of contradictory splits for some quartet: return
Inconsistent.

v Ž .Case 2. cl Q has no contradictory splits, but fails to have a split for every
quartet: Return Insufficient.

v Ž .Case 3. cl Q has exactly one split for each quartet: apply standard algo-
w x Ž . Ž . Ž .rithms 6, 51 to cl Q to reconstruct the tree T such that Q T scl Q .

Return T.

Ž .Case 3 depends upon Lemma 3 above.
To completely describe the DCTC method we need to specify how we compute

the dyadic closure of a set Q of quartet splits.

Efficient computation of dyadic closure. The description we now give of an
efficient method for computing the dyadic closure will only actually completely

Ž . Ž . Ž .compute the dyadic closure of Q if cl Q sQ T for some tree T. Otherwise, cl Q
Ž .will either contain a contradictory pair of splits for some quartet, or cl Q will not

contain a split for every quartet. In the first of these two cases, the method will
return Inconsistent, and in the second of these two cases, the method will return

Ž .Insufficient. However, the method can be easily modified to compute cl Q for all
sets Q.

We will maintain a four-dimensional array Splits and constrain
Splits to either be empty, or to contain exactly one split that has beeni,"j,"k,"l

inferred so far for the quartet i, j, k, l. In the event that two conflicting splits are
inferred for the same quartet, the algorithm will immediately return Inconsistent,
and halt. We will also maintain a queue Q of new splits that must be processed.new
We initialize Splits to contain the splits in the input Q, and we initialize Q tonew
be Q, ordered arbitrarily.

Ž . Ž .The dyadic inference rules in equations 8 ] 10 show that we infer new splits by
combining two splits at a time, where the underlying quartets for the two splits

<share three leaves. Consequently, each split ij kl can only be combined with splits
� 4 � 4 � 4 � 4 � 4on quartets a, i, j, k , a, i, j, l , a, i, k, l , and a, j, k, l , where af i, j, k, l . Con-

Ž .sequently, there are only 4 ny4 other splits with which any split can be combined
using these dyadic rules to generate new splits.

<Pop a split ij kl off the queue Q , and examine each of the appropriatenew
Ž .4 ny4 entries in Splits. For each nonempty entry in Splits that is examined

Ž .in this process, compute the O 1 splits that arise from the combination of the two
<splits. Suppose the combination generates a split ab cd. If Splits contains aa, b, c, d

<different split from ab cd, then Return Inconsistent. If Splits is empty, thena, b, c, d
< <set Splits s ab cd, and add ab cd to the queue Q . Otherwisea, b, c, d new

<Splits already contains the split ab cd, and we do not modify the dataa, b, c, d
structures.
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Continue until the queue Q is empty, or Inconsistency has been observed. Ifnew
the Q empties before Inconsistency is observed, then check if every entry ofnew

Ž . Ž .Splits is nonempty. If so, then cl Q sQ T for some tree; Return Splits. If
some entry in Splits is empty, then return Insufficient.

Ž 5.Theorem 5. The efficient computation of the dyadic closure uses O n time, and at
Ž .the termination of the algorithm the Splits matrix is either identically equal to cl Q ,

or the algorithm has returned Inconsistent. Furthermore, if the algorithm returns
Ž .Inconsistent, then cl Q contains a pair of contradictory splits.

Proof. It is clear that if the algorithm only computes splits using dyadic closure, so
Ž .that at any point in the application of the algorithm, Splits:cl Q . Conse-

Ž .quently, if the algorithm returns Inconsistent, then cl Q does contain a pair of
contradictory splits. If the algorithm does not return Inconsistent, then it is clear
from the design that every split which could be inferred using these dyadic rules
would be in the Splits matrix when the algorithm terminates.

Ž .The running time analysis is easy. Every combination of quartet splits takes O 1
Ž .time to process. Processing a quartet split involves examining 4 ny4 entries in

Ž . <the Splits matrix, and hence costs O n . If a split ij kl is generated by the
combination of two splits, then it is only added to the queue if Splits isi, j, k , l

< Ž 4.empty when ij kl is generated. Consequently, at most O n splits ever enter the
queue. B

We now prove our main theorem of this section:

Theorem 6. Let Q be a set of quartet splits.

Ž . Ž X. X X X1. If DCTC Q sT , DCTC Q sT , and Q:Q , then TsT .
Ž . X Ž X.2. If DCTC Q sInconsistent and Q:Q , then DCTC Q sInconsistent.
Ž . X Ž X.3. If DCTC Q sInsufficient and Q :Q, then DCTC Q sInsufficient.

Ž . Ž .4. If R :Q:Q T , then DCTC Q sT.T

Ž . Ž .Proof. Assertion 1 follows from the fact that if DCTC Q sT , then the dyadic
closure phase of the DCTC algorithm computes exactly one split for every quartet,

Ž . Ž . X Ž . Ž X.so that cl Q sQ T by Lemma 3. Therefore, if Q:Q , then cl Q :cl Q , so that
Ž . Ž X. Ž X. X Ž . Ž X.Q T :cl Q sQ T . Since T and T are binary trees, it follows that Q T sQ T

and TsT X.
Ž . Ž . Ž .Assertion 2 follows from the fact that if DCTC Q sInconsistent, then cl Q

X Ž X.contains two contradictory splits for the same quartet. If Q:Q , then cl Q also
Ž X.contains the same two contradictory splits, and so DCTC Q sInconsistent.

Ž . Ž . Ž .Assertion 3 follows from the fact that if DCTC Q sInsufficient, then cl Q
does not contain contradictory pairs of splits, and also lacks a split for at least one

X Ž X.quartet. If Q :Q, then cl Q also does not contain contradictory pairs of splits
Ž X .and also lacks a split for some quartet. Consequently, DCTC Q sInsufficient.

Ž . Ž .Assertion 4 follows from Lemma 2 and Assertion 1 . B

Ž . Ž .Note that DCTC Q sInsufficient does not actually imply that Q;Q T for any
Ž . Ž .tree; that is, it may be that QQ T for any tree, but cl Q may not contain any

contradictory splits!
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5. DYADIC CLOSURE METHOD

We now describe a new method for tree reconstruction, which we call the Dyadic
Closure Method, or DCM.

Suppose T is a fixed binary tree. From the previous section, we know that if we
Ž . Ž .can find a set Q of quartet splits such that R :Q:Q T , then DCTC Q willT

reconstruct T.
One approach to find such a set Q would be to let Q be the set of splits

Ž .computed using the Four-Point Method on all possible quartets. However, it is
possible that the sequence length needed to ensure that e¨ery quartet is accurately
analyzed might be too large to obtain accurate reconstructions of large trees, or of
trees containing short edges.

The approach we take in the Dyadic Closure Method is to use sets of quartet
splits based upon the quartets whose topologies should be easy to infer from short

Žsequences, rather than upon all possible quartets. By contrast, other quartet based
w x w xmethods, such as Quartet Puzzling 47, 48 , the Buneman tree construction 7 , etc.

.infer quartet splits for all the possible quartets in the tree. Basing the tree
reconstruction upon properly selected sets of quartets makes it possible to expect,
even from short sequences, that all the quartet splits inferred for the selected
subset of quartets will be valid.

Ž .Since what we need is a set Q such that R :Q:Q T , we need to ensure thatT
we pick a large enough set of quartets so that it contains all of R , and yet not tooT
large that it contains any invalid quartet splits. Surprisingly, obtaining such a set Q

Ž .is quite easy once the sequences are long enough , and we describe a greedy
approach which accomplishes this task. We will also show that the greedy approach
can be implemented very efficiently, so that not too many calls to the DCTC
algorithm need to be made in order to reconstruct the tree, and analyze the

Ž .sequence length needed for the greedy approach to succeed with 1yo 1 probabil-
ity.

We now describe how this is accomplished.

w xDefinition 2. Q , and the width of a quartet . The width of a quartet i, j, k, l isw
defined to be the maximum of hi j, hik, hil, h jk, h jl, hk l, where hi j denotes the

Ž .dissimilarity score between sequences i and j see Section 2 . For each quartet
whose width is at most w, compute all feasible splits on that quartet using the
four-point method. Q is defined to be the set of all such reconstructed splits.w

ŽWe note that we could also compute the split for a given quartet of sequences in
any number of ways, including maximum likelihood estimation, parsimony, etc., but

.we will not explore these options in this paper.
For large enough values of w, Q will with high probability contain invalidw

Ž .quartet splits unless the sequences are very long , while for very small values of w,
ŽQ will with high probability only contain valid quartet splits unless the sequencesw

.are very short . Since our objective is a set of quartet splits Q such that R :Q;T
Ž .Q T , what we need is a set Q such that Q contains only valid quartet splits, andw w

yet w is large enough so that all representative quartets are contained in Q asw
well.
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We define sets

AAs wg hi j : 1F i , jFn : R :Q , 12� 4 Ž .� 4T w

and
BBs wg hi j : 1F i , jFn : Q :Q T . 13� 4 Ž . Ž .� 4w

Ž .In other words, AA is the set of widths w drawn from the set of dissimilarity scores
which equal to exceed the largest width of any representative quartet, and BB is the

Ž .set of widths drawn from the same set such that all quartet splits of that
dissimilarity score are correctly analyzed by the Four-Point Method.

It is clear that BB is an initial segment in the list of widths, and that AA is a final
Ž .segment these segments can be empty . It is easy to see that if wgAAlBB, then

Ž .DCTC Q sT. Thus, if the sequences are long enough, we can apply DCTC tow
Ž 2 .each of the O n sets Q of splits, and hence reconstruct the tree properly.w

However, the sequences may not be long enough to ensure that such a w exists;
i.e., AAlBBsB is possible! Consequently, we will require that AAlBB/B, and

Žstate this requirement as an hypothesis later, we will show in Theorem 9 that this
.hypothesis holds with high probability for sufficiently long sequences ,

AAlBB/B. 14Ž .
When this hypothesis holds, we clearly have a polynomial time algorithm, but we

can also show that the DCTC algorithm enables a binary search approach over the
Ž 2 .realized widths values, so that instead of O n calls to the DCTC algorithm, we

Ž .will have only O log n such calls.
Ž .Recall that DCTC Q is either a tree T , Inconsistent, or Insufficient.w

v Insufficient. This indicates that w is too small, because not all representative
quartet splits are present, and we should increase w.

v Tree output. If this happens, the quartets are consistent with a unique tree,
and that tree is returned.

v Inconsistent. This indicates that the quartet splits are incompatible, so that no
tree exists which is consistent with each of the constraints. In this case, we
have computed the split of at least one quartet incorrectly. This indicates that
w is too large, and we should decrease w.

If not all representative quartets are inferred correctly, then every set Q willw
be either insufficient or inconsistent with T , perhaps consistent with a different
tree. In this case the sequences are too short for the DCM to reconstruct a tree
accurately.

We summarize our discussion as follows:

Dyadic Closure Method.

ŽStep 1. Compute the distance matrices d and h recall that d is the matrix of
corrected empirical distances, and h is the matrix of normalized Hamming dis-

.tances, i.e., the dissimilarity score .

� i j4 Ž .Step 2. Do a binary search as follows: for wg h , determine Q . If DCTC Qw w
sT , for some tree T , then Return T. If DCTC returns Inconsistent, then w is too
large; decrease w. If DCTC returns Insufficient, then w is too small; increase w.
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Step 3. If for all w, DCTC applied to Q returns Insufficient or Inconsistent, thenw
Return Fail.

We now show that this method accurately reconstructs the tree T if AAlBB/B
w Ž . xi.e., if hypothesis 14 holds .

Theorem 7. Let T be a fixed binary tree. The Dyadic Closure Method returns T if
Ž . Ž 5 .hypothesis 14 holds, and runs in O n log n time on any input.

Proof. If wgAAlBB, then DCTC applied to Q returns the correct tree T byw
Ž .Theorem 6. Hypothesis 14 implies that AAlBB/B, hence the Dyadic Closure

Method returns a tree if it examines any width in that intersection; hence, we need
only prove that DCM either examines a width in that intersection, or else
reconstructs the correct tree for some other width. This follows directly from
Theorem 6.

The running time analysis is easy. Since we do a binary search, the DCTC
Ž .algorithm is called at most O log n times. The dyadic closure phase of the DCTC

Ž 5. Ž .algorithm costs O n time, by Lemma 5, and reconstructing the tree T from cl Q
Ž 5.uses at most O n time using standard techniques. B

Note that we have only guaranteed performance for DCM when AAlBB/B;
indeed, when AAlBBsB, we have no guarantee that DCM will return the correct
tree. In the following section, we discuss the ramifications of this requirement for
accuracy, and show that the sequence length needed to guarantee that AAlBB/B
with high probability is actually not very large.

6. PERFORMANCE OF DYADIC CLOSURE METHOD FOR TREE

RECONSTRUCTION UNDER THE NEYMAN 2-STATE MODEL

In this section we analyze the performance of a distance-based application of DCM
to reconstruct trees under the Neyman 2-state model under two standard distribu-
tions.

6.1. Analysis of the Dyadic Closure Method

Our analysis of the Dyadic Closure Method has two parts. In the first part, we
Ž .establish the probability that the estimation using the Four-Point Method of the

split induced by a given quartet is correct. In the second part, we establish the
probability that the greedy method we use contains all short quartets but no
incorrectly analyzed quartet.

Our analysis of the performance of the DCM method depends heavily on the
following two lemmas:

w w xx Ž .Lemma 4 Azuma]Hoeffding inequality, see 3 . Suppose Xs X , X , . . . , X1 2 k
are independent random ¨ariables taking ¨alues in any set S, and L: Sk ªR is any

< Ž . Ž . <function that satisfies the condition: L u yL v F t whene¨er u and v differ at just
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one coordinate. Then,

l2

P L X yE L X Gl Fexp y ,Ž . Ž . 2ž /2 t k

l2

P L X yE L X Fyl Fexp y . BŽ . Ž . 2ž /2 t k

Ž . Ž X. <We define the standard L metric on distance matrices, L d, d smax d` ` i j i j
X <yd . The following discussion relies upon definitions and notations fromi j

Section 2.

Lemma 5. Let T be an edge weighted binary tree with four lea¨es i, j, k, l, let D be the
additï e distance matrix on these four lea¨es defined by T , and let x be the weight on
the single internal edge in T. Let d be an arbitrary distance matrix on the four lea¨es.

Ž .Then the Four-Point Method infers the split induced by T from d if L d, D -xr2.`

Ž . <Proof. Suppose that L d, D -xr2, and assume that T has the valid split ij kl.`

<Note that the four-point method will return a single quartet, split ij kl if and only if
� 4 <d qd -min d qd , d qd . Note that since ij kl is a valid quartet split ini j k l ik jl i l jk

Ž .T , D qD q2 xsD qD sD qD . Since L d, D -xr2, it follows thati j k l ik jl i l jk `

d qd -D qD qx ,i j k l i j k l

d qd )D qD yx ,i k jl i k jl

and

d qd )D qD yx ,i l jk i l jk

Ž .with the consequence that d qd is the unique smallest of the three pairwisei j k l
sums. B

Recall that DCM applied to the Neyman 2-state model computes quartet splits
Ž .using the four-point method FPM .

Theorem 8. Assume that z is a lower bound for the transition probability of any edge
of a tree T in the Neyman 2-state model, yGmax Ei j is an upper bound on the
compound changing probability o¨er all ij paths in a quartet q of T. The probability that
FPM fails to return the correct quartet split on q from k sites is at most

2 2'y 1y 1y2 z 1y2 y kŽ .Ž .
18 exp . 15Ž .

8

Ž .Proof. First observe from formula 1 that z is also a lower bound for the
compound changing probability for the path connecting any two vertices of T. We
know that FPM returns the appropriate subtree given the additive distances D ;i j

1< < Ž .furthermore, if d yD Fy log 1y2 z for all i, j, then FPM also returns thei j i j 4
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appropriate subtree on all ijkl, by Lemma 5. Consequently,
1< <w xP FPM errs FP ' i , j: D yd )y log 1y2 z . 16Ž . Ž .i j i j 4

Ž .Hence by 16 , we have
1< <w xP FPM errs F P D yd )y log 1y2 z . 17Ž . Ž .Ý i j i j 4

ij

Ž .For convenience, we drop the subscripts when we analyze the events in 17 and
just write D and d; we write p for the corresponding transition probability Ei j and
p for the relative frequency hi j. By simple algebra,ˆ

1 1y2 p
< <Dyd s log , if p-p , 18Ž .ˆ

2 1y2 p̂

1 1y2 p̂
< <Dyd s log , if pGp. 19Ž .ˆ

2 1y2 p

Now we consider the probability that the Four-Point Method fails, i.e., the event
Ž . Ž . w xestimated in 17 . If pGp, then formula 19 applies, so that P FPM errs isˆ

algebraically equivalent to
y1r21pypG 1y2 z y1 1y2 p . 20Ž . Ž . Ž .ˆ 2

This can then be analyzed using Lemma 4. The other case is where p-p. In thisˆ
Ž . w xcase, formula 18 applies, and P FPM errs is algebraically equivalent to

pyp 1ˆ y1r2G 1y2 z y1 . 21Ž . Ž .
1y2 p 2ˆ

Ž .Select an arbitrary positive number e . Then pypG 1y2 p e with probabilityˆ
22ye 1y2 p kŽ .

exp , 22Ž .
2

Ž .by Lemma 4. If pyp- 1y2 p e , thenˆ
1 1 1 1

- s .
1y2 p 1y2 p y2e 1y2 p 1y2 p 1y2eŽ . Ž . Ž . Ž .ˆ

Hence

pyp 1ˆ y1r2
P G 1y2 z y1Ž .

1y2 p 2ˆ
22pyp 1 ye 1y2 p kŽ .ˆ y1r2FP G 1y2 z y1 qexpŽ .

1y2 p 1y2e 2 2Ž . Ž .
22ye 1y2 p kŽ .

Fexp 23Ž .
2

22 2 y1r2y 1y2 p 1y2e 1y2 z y1 kŽ . Ž . Ž .
qexp . 24Ž .

8
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1 1r2Ž .w Ž . x Ž .Note that es 1y 1y2 z is the optimal choice. Formulae 22]24 con-2
Ž . Ž .tribute each the same exponential expression to the error, and 16 or 17

multiplies it by 6, due to the six pairs in the summation. B

This allows us to state our main result. First, recall the definition of depth from
Section 2.

Theorem 9. Suppose k sites e¨ol̈ e under the Neyman 2-state model on a binary tree
Ž . w xT , so that for all edges e, p e g f , g , where we allow f , g to be functions of n. Then

Ž .the dyadic closure method reconstructs T with probability 1yo 1 , if

c ? log n
k) , 25Ž .2 Ž .4 depth T q6'1y 1y2 f 1y2 gŽ .Ž .

where c is a fixed constant.

Ž . ŽProof. It suffices to show that hypothesis 14 holds. For k evolving sites i.e.,
. �� 4sequences of length k , and t)0, let us define the following two sets, S s i, j :t

i j 4h -0.5yt and

w xn � 4Z s qg : for all i , jgq , i , j gS ,t 2t½ 5ž /4

and the following four events,

AsQ T :Z , 26Ž . Ž .short t

w xn
B sFPM correctly returns the split of the quartet qg , 27Ž .q ž /4

Bs B , 28Ž .F q
qgZt

� 4 i j � 4CsS contains all pairs i , j with E -0.5y3t and no pair i , j2t

with Ei j G0.5yt . 29Ž .

w x w xThus, P AAlBB/B GP AlB . Define

Ž .2 depth T q3
ls 1y2 g . 30Ž . Ž .

We claim that

w x 2 yt 2 k r2P C G1y n yn e , 31Ž . Ž .
and

l
<w xP A C s1, if tF . 32Ž .

6

Ž . i jTo establish 31 , first note that h satisfies the hypothesis of the Azuma]Hoeff-
Ž .ding inequality Lemma 4 with X the sequence of states for site i and ts1rk .i
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Suppose Ei j G .5yt . Then,

i jw x� 4P i , j gS sP h -0.5y2t2t

2i j i j i j i j i j yt k r2w x w xFP h yE F0.5y2tyE FP h yE h Fyt Fe .

n � 4 � 4Since there are at most pairs i, j , the probability that at least one pair i, jž /2

i j n yt 2 k r2with E G0.5yt lies in S is at most e . By a similar argument, the2t ž /2
� 4 i jprobability that S fails to contain a pair i, j with E -0.5y3t is also at most2t

n yt 2 k r2 Ž .e . These two bounds establish 31 .ž /2
Ž . Ž .We now establish 32 . For qgR T and i, jgq, if a path e e ??? e joins leaves1 2 t

Ž . Ž . Ž .i and j, then tF2 depth T q3 by the definition of R T . Using these facts, 1 ,
Ž . i j w Ž . Ž .x Ž .and the bound p e Fg, we obtain E s0.5 1y 1y2 p ??? 1y2 p F0.5 1yl .1 t
i j Ž . � 4Consequently, E -0.5y3t by assumption that tFlr6 and so i, j gS once2t

we condition on the occurrence of event C. This holds for all i, jgq, so by
Ž .definition of Z we have qgZ . This establishes 32 .t t

Define a set,

w xn i jXs qg : max E : i , jgq -0.5yt ,� 4½ 5ž /4

Ž .note that X is not a random variable, while Z , S are . Now, for qgX, thet t

Ž .induced subtree in T has mutation probability at least f n on its central edge, and
� i j 4mutation probability of no more than max E : i, jgq -0.5yt on any pendant

edge. Then, by Theorem 8 we have

2 2'y 1y 1y2 f t kŽ .
P B G1y18 exp . 33Ž .q 8

whenever qgX. Also, the occurrence of event C implies that

Z :X , 34Ž .t

Ž . i jsince if qgZ , and i, jgq, then i, jgS , and then by event C , E -0.5yt ,t 2t

hence qgX. Thus, since BsF B , we haveq g Z qt

w xP BlC sP B lC GP B lC ,F Fq qž /ž /
qgZ qgXt

Ž .where the second inequality follows from 34 , as this shows that when C occurs,
F B =F B . Invoking the Bonferonni inequality, we deduce thatq g Z q q g X qt

w x w xP BlC G1y P B yP C . 35Ž .Ý q
qgX

Thus, from above,

w x w x w xP AlB GP AlBlC sP BlC ,



˝ERDOS ET AL.176

Ž w < x . Ž . Ž .since P A C s1 , and so, by 33 and 35 ,

2 2'y 1y 1y2 f t kŽ . 2n 2 yt k r2w xP AlB G1y18 exp y n yn e .Ž .ž /4 8

Ž .Formula 25 follows by an easy calculation. B

6.2. Distributions on Trees

In the previous section we provided an upper bound on the sequence length that
suffices for the Dyadic Closure Method to achieve an accurate estimation with high
probability, and this upper bound depends critically upon the depth of the tree. In
this section, we determine the depth of a random tree under two simple models of
random binary trees.

These models are the uniform model, in which each tree has the same probabil-
w x Žity, and the Yule]Harding model, studied in 2, 8, 27 the definition of this model is

.given later in this section . This distribution is based upon a simple model of
speciation, and results in ‘‘bushier’’ trees than the uniform model. The following
results are needed to analyze the performance of our method on random binary
trees.

Theorem 10.

( )i For a random semilabeled binary tree T with n lea¨es under the uniform model,
Ž . Ž Ž .. Ž . Ž .depth T F 2qo 1 log log 2n with probability 1yo 1 .2 2

( )ii For a random semilabeled binary tree T with n lea¨es under the Yule]Harding
Ž . Ž Ž ..distribution, after suppressing the root, depth T s 1qo 1 log log n with2 2

Ž .probability 1yo 1 .

Proof. This proof relies upon the definition of an edi-subtree, which we now
Ž . Ž .define. If a, b is an edge of a tree T , and we delete the edge a, b but not the

endpoints a or b, then we create two subtrees, one containing the node a and one
Ž .containing the node b. By rooting each of these subtrees at a or b , we obtain an

edge-deletion induced subtree, or ‘‘edi-subtree.’’
Ž .We now establish i . Recall that the number of all semilabeled binary trees is

Ž . Ž . t2ny5 !! Now there is a unique unlabeled binary tree F on 2 q1 leaves with
the following description: one endpoint of an edge is identified with the degree 2
root of a complete binary tree with 2 t leaves. The number of semilabeled binary

Ž t . 2 ty1trees whose underlying topology is F is 2 q1 !r2 . This is fairly easy to check
and this also follows from Burnside’s lemma as applied to the action of the

w xsymmetric group on trees, as was first observed by 32 in this context. A rooted
semilabeled binary forest is a forest on n labeled leaves, m trees, such that every
tree is either a single leaf or a binary tree which is rooted at a vertex of degree 2. It

w xwas proved by Carter et al. 11 that the number of rooted semilabeled binary
forests is

2nymy1N n , m s 2ny2my1 !!.Ž . Ž .ž /my1
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Now we apply the probabilistic method. We want to set a number t large enough,
such that the total number of edi-subtrees of depth at least t in the set of all

ŽŽ . .semilabeled binary trees on n vertices is o 2ny5 !! . The theorem then follows
Ž Ž .. Ž .for this number t. We show that some ts 2qo 1 log log 2n suffices. We2 2

count ordered pairs in two ways, as usual: Let E denote the number of edi-sub-t
Žtrees of depth at least t edi-subtrees induced by internal edges and leaf edges

.combined counted over of all semilabeled trees. Then E is equal to the numbert
of ways to construct a rooted semilabeled binary forest on n leaves of 2 t q1 trees,

t Žthen use the 2 q1 trees as leaf set to create all F-shaped semilabeled trees as
.described above , with finally attaching the leaves of F to the roots of the elements

ŽŽ t . 2 ty1 . Ž t .of the forest. Then E s 2 q1 !r2 N n, 2 q1 . Hence everything boils downt
to finding a t for which

2 t q1 ! tŽ . 2ny2 y2 tq12ny2 y3 !!so 2ny5 !! .Ž . Ž .Ž .t t2 y1 ž /22
Ž . Ž .Clearly ts 2qd log log 2n suffices.2 2

Ž .We now consider ii . First we describe the proof for the usual rooted
Yule]Harding trees. These trees are defined by the following construction proce-
dure. Make a random permutation p , p , . . . , p of the n leaves, and join p and1 2 n 1
p by edges t a root R of degree 2. Add each of the remaining leaves sequentially,2

Ž .by randomly with the uniform probability selecting an edge incident to a leaf in
the tree already constructed, subdividing the edge, and make p adjacent to thei
newly introduced node. For the depth of a Yule]Harding tree, consider the

Ž .following recursive labeling of the edges of the tree. Call the edge p R for is1, 2i
Ž .‘‘i new.’’ When p is added iG3 by insertion into an edge with label ‘‘ j new,’’ wei

given label ‘‘i new’’ to the leaf edge added, give label ‘‘ j new’’ to the leaf part of the
subdivided edge, and turn the label ‘‘ j new’’ into ‘‘ j old’’ on the other part of the
subdivided edge. Clearly, after l insertions, all numbers 1, 2, . . . , l occur exactly
once with label new, in each occasion labeling leaf edges. The following which may
help in understanding the labeling: edges with ‘‘old’’ label are exactly the internal
edges and j is the smallest label in the subtree separated by an edge labeled
‘‘ j old’’ from the root R, any time during the labeling procedure.

We now derive an upper bound for the probability that an edi-subtree of depth
d develops. If it happens, then a leaf edge inserted at some point has to grow a
deep edi-subtree on one side. Let us denote by T R the rooted random tree that wei
already obtained with i leaves. Consider the probability that the most recently
inserted edge i new ever defines an edi-subtree with depth d. Such an event can
happen in two ways: this edi-subtree may emerge on the leaf side of the edge or on

Ž .the tree side of the edge these sides are defined when the edge is created . Let us
w < R x w < R xdenote these probabilities by P i, OUT T and P i, IN T , since these probabili-i i

Žties may depend on the shape of the tree already obtained and, in fact, the second
R.probability does so depend on the shape of T . We estimate these quantities withi

tree-independent quantities.
For the moment, take for granted the following inequalities,

R R< <P i , OUT T FP i , IN T , 36Ž .i i

R<P i , IN T Fe d , n , 37Ž . Ž .i
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Ž .for some function e d, n defined below. Clearly,

n
R R R R< <w xP ' depth d edi-subtree F P i , OUT T P T qP i , IN T P T ,Ý Ý i i i i

Ris1 Ti

38Ž .

Ž . Ž . Ž .and using 36 and 37 , 38 simplifies to

w xP ' depth d edi-subtree F2ne d , n . 39Ž . Ž .

Ž .We now find an appropriate e d, n .
For convenience we assume that 2 s sny2, since it simplifies the calculations.

Set ks2 dy1 y1, it is clear that at least k properly placed insertions are needed to
make the current edge ‘‘i new’’ have depth d on its tree side. Indeed, p wasi
inserted into a leaf edge labeled ‘‘ j new’’ and one side of this leaf edge is still a
leaf, which has to develop into depth dy1, and this development requires at least
k new leaf insertions.

Focus now entirely on the k insertions that change ‘‘ j new’’ into an edi-subtree
of depth dy1. Rank these insertions by 1, 2, . . . , k in order, and denote by 0 the
original ‘‘ j new’’ leaf edge. Then any insertion ranked iG1 may go into one of
those ranked 0, 1, . . . , iy1. Call the function which tells for is1, 2, . . . , k, which
depth i is inserted into, a core. Clearly, the number of cores is at most k k.

We now estimate the probability that a fixed core emerges. For any fixed
i - i - ??? - i , the probability that inserting p will make the insertion enumer-1 2 k i j

ated under depth j, for all js1, 2, . . . , k, is at most

1 1 1
? ??? ,

i y1 i y1 i y11 2 k

by independence. Summarizing our observations,

1 1 1
R k k<P i , IN T Fk s , , . . . ,i nyi ž /i iq1 ny1

1 1 1
k kFk s , , . . . , , 40Ž .ny2 ž /2 3 ny1

where s k is the symmetric polynomial of m variables of degree k. We setm
1 1 1kŽ . Ž . Ž .e n, d s s , , . . . , . To estimate 40 , observe that any term inny2 2 3 n y 1

1 1 1k Ž .s , , . . . , can be described as having exactly a reciprocals of integersny2 i2 3 n y 1
Ž yŽ iq1. yi xsubstituted from the interval 2 , 2 . The point is that those reciprocals differ

little in each of those intervals, and hence a close estimate is possible. A generic
term of s k as described above is estimated from above byny2

2yŽ1?a1q2 ?a2q ? ? ? qŽ sy1.asy 1. . 41Ž .
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Ž .Hence e n, d is at most

2 4 8 sy12 yŽ1?a q2 ?a q ? ? ? qŽ sy1.a .1 2 sy1??? 2 , 42Ž .Ý a a až / ž / ž / až /1 2 3 sy1a qa q ??? qa sk1 2 sy1
ia F2i

Ž .by 41 . Since

i 12 yi ai2 F ,až /i a !i

Ž .42 is less than or equal

1
. 43Ž .Ý a !a ! ??? a !1 2 sy1a qa q ??? qa sk1 2 sy1

ia F2i

Ž .Observe that the number of terms in 43 is at most the number of compositions of
k into sy1 terms,

kqsy2 .ž /sy2

Ž i.The product of factorials is minimized irrespective of a F2 if all a s are takeni i
1qd Ž .equal. Hence, setting kss for any fixed d)0, 43 is at most

sy2kqsy2 kŽ .
k! ,ž /ž /ž /sy2 ! sy1Ž .

and hence

sy2kqsy2 kŽ .
k k yc log n log log ne n , d Fk ! Fn ,Ž . ž /ž /ž /sy2 ! sy1Ž .

Ž . Žand 39 goes to zero. For the depth d, our calculation yields 1qdq
Ž .. Ž .o 1 log log n with probability 1yo 1 .2 2

Ž .We leave the establishment of 36 to the reader. Now, to obtain a similar result
for unrooted Yule]Harding trees, just repeat the argument above, but use the
unrooted T instead of the rooted T R. The probability of any T is the sum ofi i i
probabilities of 2 iy3 rooted T Rs, since the root could have been on every edge ofi

Ž . w < x Ž . Ž .T . Hence formula 37 has to be changed for P i, IN T F 2ny3 e d, n . Withi i
this change the same proof goes through, and the threshold does not change. B

6.3. The Performance of Dyadic Closure Method and Two Other Distance Methods

for Inferring Trees in the Neyman 2-State Model

In this section we describe the convergence rate for the DCM method, and
compare it briefly to the rates for two other distance-based methods, the Agarwala

w xet al. 3-approximation algorithm 1 for the L nearest tree, and neighbor-joining`
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w x40 . We make the natural assumption that all methods use the same corrected
empirical distances from Neyman 2-state model trees.

The neighbor-joining method is perhaps the most popular distance-based method
Ž w xused in phylogenetic reconstruction, and in many simulation studies see 33, 34, 41

.for an entry into this literature it seems to outperform other popular distance
w xbased methods. The Agarwala et al. algorithm 1 is a distance-based method which

provides a 3-approximation to the L nearest tree problem, so that it is one of the`

few methods which provide a provable performance guarantee with respect to any
relevant optimization criterion. Thus, these two methods are two of the most
promising distance-based methods against which to compare our method. Both
these methods use polynomial time.

w xIn 23 , Farach and Kannan analyzed the performance of the 3-approximation
algorithm with respect to tree reconstruction in the Neyman 2-state model, and
proved that the Agarwala et al. algorithm converged quickly for the ¨ariational

Ž . w xdistance a related but different concern . Recently, Kannan 35 extended the
Ž .analysis and obtained the following counterpart to 25 : If T is a Neyman 2-state

w x Xmodel tree with mutation rates in the range f , g , and if sequences of length k
are generated on this tree, where

cX
? log n

Xk ) , 44Ž .Ž .2 diam T2f 1y2 gŽ .

X Ž .for an appropriate constant c , and were diam T denotes the ‘‘diameter’’ of T ,
Ž .then with probability 1yo 1 the result of applying Agarwala et al. to corrected

w xdistances will be a tree with the same topology as the model tree. In 5 , Atteson
proved an identical statement for neighbor-joining, though with a different con-

Žstant the proved constant for neighbor-joining is smaller than the proved constant
.for the Agarwala et al. algorithm .

Ž .Comparing this formula to 25 , we note that the comparison of depth and
2 2Ž . Ž .'diameter is the issue, since 1y 1y2 f sQ f for small f. It is easy to see

Ž . Ž .that diam T G2 depth T for binary trees T , but the diameter of a tree can in fact
Ž .be quite large up to ny1 , while the depth is never more than log n. Thus, for

every fixed range of mutation probabilities, the sequence length that suffices to
guarantee accuracy for the neighbor-joining or Agarwala et al. algorithms can be

Ž .quite large i.e., it can grow exponentially in the number of leaves , while the
sequence length that suffices for the Dyadic Closure Method will never grow more

w xthan polynomially. See also 20, 21, 39 for further studies on the sequence length
requirements of these methods.

The following table summarizes the worst case analysis of the sequence length
that suffices for the dyadic closure method to obtain an accurate estimation of the
tree, for a fixed and a variable range of mutation probabilities. We express these

Ž .sequence lengths as functions of the number n of leaves, and use results from 25
Žand Section 6.2 on the depth of random binary trees. ‘‘Best case’’ respectively,

. Ž .‘‘worst case’’ trees refers to best case respectively worst case shape with respect
to the sequence length needed to recover the tree as a function of the number n of
leaves. Best case trees for DCM are those whose depth is small with respect to the
number of leaves; these are the caterpillar trees, i.e., trees which are formed by
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TABLE 1 Sequence Length Needed by Dyadic Closure Method to Return Trees under the
Neyman 2-State Model

Range of Mutation Probabilities on Edges:

w xf , g 1 log log n
f , g are constants ,

log n log n

Worst case trees polynomial polylog
Best case trees logarithmic polylog

Ž .Random uniform trees polylog polylog
Ž .Random Yule]Harding trees polylog polylog

attaching n leaves to a long path. Worst case trees for DCM are those trees whose
depth is large with respect to the number of leaves; these are the complete binary
trees. All trees are assumed to be binary.

One has to keep in mind that comparison of performance guarantees for
algorithms do not substitute for comparison of performances. Unfortunately, no
analysis is available yet on the performance of the Agarwala et al. and neighbor-
joining algorithms on random trees, therefore we had to use their worst case
estimates also for the case of random leaves.

7. SUMMARY

We have provided upper and lower bounds on the sequence length k for accurate
tree reconstruction, and have shown that in certain cases these two bounds are
surprisingly close in their order of growth with n. It is quite possible that even
better upper bounds could be obtained by a tighter analysis of our DCM approach,
or perhaps by analyzing other methods.

Our results may provide a nice analytical explanation for some of the surprising
Ž w x.results of recent simulation studies see, for example, 30 which found that trees

on hundreds of species could be accurately reconstructed from sequences of only a
few thousand sites long. For molecular biology the results of this paper may be
viewed, optimistically, as suggesting that large trees can be reconstructed accu-
rately from realistic length sequences. Nevertheless, some caution is required, since
the evolution of real sequences will only be approximately described by these
models, and the presence of very short andror very long edges will call for longer
sequence lengths.
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