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In any dense poset a ~ (and in any Boolean lattice ill particular) every maxhnal antichain S 
may be partitioned into disjoint subsets S1 and $2, such that the union of the downset of b'l with 
the upset of $2 yields the entire poser: ~ ($1 )U? / (S2 ) -~ .  To find a similar splitting of maximal 
antichains in posets is NP-hard in general. 

1. I n t r o d u c t i o n  

Let. ~ = ( P , < p )  be  a pose t  and  let  H be  a subse t  of  P .  T h e  downset ~ ( H )  of 
t h e  subse t  H is: 

~ ( H )  = {x  c P :  ~ c H(:~ _< .j  }. 
T h e  upset of H is: 

We  i n t r o d u c e  also t he  sets 

and  

u * ( H )  = {:~, ~ P :  ~.~ c fI(.~. < :,:1}. 
A subse t  S C P is ca l led  an  antichain or a Sperner system if no  two e l e m e n t s  of  S 

are  c o m p a r a b l e .  An  an t i cha in  a ~ is maximal  if for eve ry  a n t i c h a i n  S ~ C P ,  S C S ~ 

impl ies  S = S ~. I t  is easy to  see t h a t  a n t i c h a i n  S is m a x i m a l  il l  

(1) ~ ( S )  U U(S)  = P. 
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Let X be an ~z-element set and let S be the set of all its k-element subsets. 
Furthermore let $1 C S be the family of all k-element subsets containing a fixed 

element of X, and let $2 = S \ S 1 .  Then it is easy to check that  ~ ) ( S 1 ) U ' ~ ( S 2 ) - ~ 2  X . 

In fact a similar splitting can be achieved for every maximal antichain of 2 x .  The 
purpose of this note is to prove this claim and to generalize it to a wide class of 
posets. 

The structure of this paper is as follows: Section 2 describes maximal  antichains 
in general posers which satisfy the splitting property. Section 3 determines a large 
class of posers where every maximal antichain possesses such splittings. Section 4 
gives further examples for posets which satisfy the splitting property, and which do 
not. The last part,  Section 5 shows that  to find a suitable splitting of a maximal 
antichain in posers is NP-hard in general. 

Finally, for the convenience, let us introduce the following notation: For H, G C 
P we write H > I < G iff for all h E H and all s E G elements h and s are incomparable. 

For s , . s ' c P  and G C P  we also write s > l  < s '  instead of {s} > I < { J }  and s > I  < G  
instead of {s} > I < G. 

2. Dense sets in posets 

In this section we describe a class of maximal antichains which satisfies the 
property described above. 

Definition. Let, if) = ( P , < p )  be a finite partially ordered set (poser). A subset 
H C P is called dense in the poset ;P if any non-empty open interval (x,y) = 

{z E P :x <pZ <py})  which intersects H contains at least two elements of H. We 

also say that  a maximal antichain S C P satisfies the splitting property if there 
exists a partition of S into disjoint subsets S1 and $2 such that  

(2) U(S1) U ~O(S~) = P 

holds. The poset 2P has the splitting proper'ty if every maximal antichain b ~ in if) 
satisfies the splitting condition expressed in (2). 

It is easy to find a poset ;P and a maximal antichain S in ~ such that  S has 
no splitting. Indeed if if) has a (non-maximal and non-minimal) element s which 
is comparable to any other element of P then S = {s} is a maximal antichain and 
does not satisfy the splitting property. On the other hand we prove the following 
statement: 

Theorem 2.1. Let S be a maximal, dense antichain in the poser ~.  Then S satisfies 
the splitting property. 

Proof. Let S be a dense maximal antichain in the poset 5 D and let <ord be an 
arbi trary linear ordering of S. For every element z E~*(S)  let .f(z) be the greatest 
element s E S (with respect to  <ord)  such that  z <p s. Set 

$1 = { / ( x )  : xE~)* (S )}  

$2 = S \ S1. 
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We claim that S1 and $2 satisfy the splitting condition (2). Assume tile contrary. 
Then there exists yE~*(S )  such that y~72($2). Let f (y )  be the smallest element 
s E S (with respect to <ord) such that s <v Y" We know that f(y)  r $2 therefore 

there exists an element x C~*(S) such that f(x)=.]'(!])= s. Then the open interval 

(x,y} contains the elelnent s, therefbre there exists a n  . t ~  (;1: g} {~ ( ,S ' \  {.'-;}). ~lF}le 

linear ordering gives us an order between .s and s t. If, say, s <c,d J them due to 

the definitions, f (x)  cannol be s, a contradiction. The other case~ s t <ord s, leads 
1o a contradiction with f ( y ) =  s. | 

We remark here that the splitting of a maxilnal antichai~ is not unique in 
general. 

3. Dense posets 

In this section a wide class of posers will be described where every Inaximal 
antichain possesses the splitting property. 

Definition. Tile poser Y~ is called (weakly) dense if every non-empty open interval 
(x,y} contains at least two elements. The poset Y~ is called (strongly) des.se if' for 
every non-empty interval (:c, y} and for every element of this interval z C (a:, y} there 

exists another element z ~ of the interval such that z and z ~ are incomparable (that 

is  : > I < ~'), 
It is easy to show that for finite posets the two notions are equivalent, that is 

any weakly dense finite poser a ~ is strongly dense as well. But for infinite posets 
the two notions do not necessarily coincide. For example the totally ordered chain 
of the rational numbers is weekly dense but not strongly dense. Thus in the case 
of finite posets we simply consider dense posers. 

Theorem 3.1. Let Y) be a defuse poser, Tlmn evew maximal antid~a.in S satislies 
the splitting propert..y. 

Here we give two proofs, We remark that the first argument (:an be applied to 
the proof of Theoreln 2.1, as well. The second proof reduces the statement to an 
application of Theorem 2.1. 

First proof. We apply induction on the eardinatity of S. 

Base case. The unique element of the maxinlal antichain S = {s} is comparable to 
any other element of P. It is impossible that x < s < y for some x,y E P because 
otherwise by (strong) denseness there is a z E (x, y) with z > [ < s and this contradicts 
the maximality of S. Therefore we have either a maximal element 1 or a minimal 
element 0 equal to s and the splitting property holds. 

General case. Let Y} = (P ,<p)  be a finite dense poser and let S be a maximal 
antichain in 5 D. Assume that for every finite poset and for every maximal antichain 
with less elements than S the statement is true. 

Assmne first that for some s E S neither 

(:.~) ~*(,~) C ~ * ( S \  { d )  
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nor 

(4) c u*(s\ {s}) 

holds, that  is, for soIne Z '~*(8 )  and some ~jCZL*(s) 

(5) y} > I < s \ {s} 

(because S is antichain). Since .s E @,y), by the (strong) denseness of ~ there is 

a z C (z,.~j) with z > ] <  s. However, z > [ < S also holds, because z > s' (or z < s') 

for some s~E S would imply J <  ~j (or z < s') in contradiction to (5). But this fact 
contradicts the maximality of S. 

We know therefore that  for every s C S condition (3) or condition (4) holds. 
By symmetry we can assume that  condition (3) holds for an arbitrary, but fixed, s. 
Then 

Claim a.2. The poser Y =  (P \g t ( s ) ,  < p )  is dense and the antichain S ' =  S \  {s} is 
maximal in it. 

Proof. Due to condition (3) and the maximali ty of S any element :c C Y is 

comparable to some elements of S ~. So S t is maximal in Y .  Furthermore, for 

any x and :q E p t  in obvious notation 

(6) ( . ,y ) . ,  

holds. Indeed, otherwise there would be an element z E (x, y)2 such that  z ~ p/.  But 

in that  case s < z and therefore s < y, so y EZ~(s), a contradiction. By relation (6) 

the poset Y is dense. This proves Claim 3.2. 

By our inductive hypothesis we have a parti t ion (S~,S~) of S '  with ~(S~)U 

ZZ(S~)=P I and hence 

D(s ) u u(s  u {s } )  = P. m 

Second proof. We proceed by constructing a subposet ~t  in 5 s such that  the 

maximal antichain S has the partitioning property in Y if and only if it has tile 
property in 5 a. Let D be the set of maximal elements of ~?*(S) in ~ and let U 

be the set of the minimal elements of Zt*(S) in 5 D. Take the subposet Y where 

p / =  D U S U U and <2 '  is the induced order. Our definition of Y necessitates that  

a good splitting of ~t  supplies a good splitting of ~ .  Obviously, S is maximal in 
Y ,  since Y is an induced subposet of ~.  Furthermore the antichain S is dense 

in Y otherwise either ~ was not dense or S was not maximal. The application of 

Theorem 2.1 to ~/  completes the proof. II 



A S P L I T T I N G  P R O P E E T Y  O F  M A X I M A L  A N T I C H A I N S  479  

4. Examples 

In this section we furnish some posets which satis[y the splitting property and 
some which do not. 

At first we remark that  Theorem 2.1 and Theorem 3.1 are incomparable. This 
follows from the fact that  there exists a dense poset ~ ,  and a maximal antichain S 
in 5 ~ which is not dense there. To show that,  let P = {a,b,c,d,e,j',9} and let the 
covering relations be a, < c < .f, (~ < d < f ,  b < c < 9, b < d < 9, finally b < e < 9. This 
poser, is dense but the maximal antichain {a,c} is not dense in 2 .  (Observe l;hat 
$1 ={e} and $2={c~} is a good splitting.) 

Many well-known posets satist*~ the splitting property. For example: 

Corollary 4.1. Every finite geometric lattice (and every Boolean lattice in particu- 
lar) satisfies l, he splitting properI:3,. 

Proof. Since every geometric lattice is relatively complemented, it is dense as well. 
Upon application of Theorem 3.1 the result follows. | 

Furthermore we remark that  the notion of 'denseness' is not necessary to ensure 
tile splitting property. The following lattice is not dense, no maximal antichain is 
dense in the l)oset, either, yet it satisfies the splitting propert;y. The symbol < means 
(again) 'covering' in the poset: 

Example 4.2. (Faigle, [1]) The poser 

{ ( t < b < c < d < c : ,  < f < d ; b < g < c }  

is not dense, and no (non-trivial) maximal antichain is dense in t:he poser, but the 
poser satisfies the splitting property. | 

On the other hand, there are even distributive lattices which do not satisfy the 
splitting property. We remark, that  the splitting property of an antichain bears no 
relationship to the LYM property or even to the Sperner property of the poset, since 
it is easy to find posets satisfying one property and violating tile other. We also 
remark that  the existence of the splitting property in Boolean lattices reveals that  
there are (many) monotonic Boolean functions with the property that  tile minimal 
elements of the Boolean flmction are incomparable with the maximal elements of 
tile complement. 

We close this section with a conjecture. As mentioned earlier the notions of 
weak and strong denseness are different for infinite posets. The totally ordered 
chain of the rational numbers is weakly dense but it; clearly does not have the 
splitting property. However we conjecture: 

Conjecture 4.3. Any countable infinite strongly dense i)oset has tile splitt, ing prop- 
er(y. 
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5. Splitting in general is NP-hard 

It would be interesting to determine exactly which posers have the splitting 
property. The following NP-completeness  result is a cause fbr some pessilnism in 
this regard. We follow the terminology of Garey and Johnson [2]. 
INSTANCE: A finite poset ~ .  

QUESTION: Is there a partition of each maximal antichain b e in ~ into two subsets 
S1,  S 2 such that  ~ ) ( $ 1 ) U ~ A ~ ( S 2 ) = o ~ .  9 

Define MONOSAT as those instances of SATISFIABILITY where each clause 
contains only complemented or uncomplemented literals. It  is straightforward to 
reduce instances of SATISFIABILITY to instances of MONOSAT. Indeed, it is 
mentioned in [2] that  Gold showed that  'MONOTONE 3SAT' is NP-comple te .  

We now construct a rank 3 poset ~ =  (P, < p )  from an instance of MONOSAT 
with variables X = { x l , ' " , z n }  and clauses g = {C1, '- ' ,C.,~}. We parti t ion the 

clauses ~ into two sets 15- and g +  respectively containing the complelnented and 

non-complemented clauses of g. Let P = g - U X U g  +. For each xi, Cj such that  

xi E Cj E g+ let x i <p Cj .  F o r  each xi, C~ such that  ,Yi E Qj E ~g- let, c j  < p  xi. 

Clearly, the maximal antichain X has the splitting property in 5 ~ if and only if the 

collection of clauses g = g - U  g+  is satisfiable. Let Ci < Cj for each incomparable 

pair Ci C ~- ,  Cj E ~+. Now each element in g -  is comparable with every element 

of g+.  Consequently, every maximal antichain in :P other than X satisfies the 
splitting property. Thus, the poset 5 ~ has the splitting property iff the MONOSAT 
instance is satisfiable. 
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