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Abstract. Let G and D, respectively, denote the partially ordered sets of
homomorphism classes of finite undirected and directed graphs, respectively,
both ordered by the homomorphism relation. Order theoretic properties of
both have been studied extensively, and have interesting connections to familiar
graph properties and parameters. In particular, the notion of a duality is closely
related to the idea of splitting a maximal antichain. We construct both splitting
and non-splitting infinite maximal antichains in G and in D. The splitting
maximal antichains give infinite versions of dualities for graphs and for directed
graphs.

1. Introduction

For any fixed type of finite relational structure, homomorphisms induce an or-
dering of the set of all structures. In particular, given two graphs [respectively,
directed graphs] G and H write G ≤ H or G → H provided that there is a
homomorphism from G to H, that is, a map f : V (G) → V (H) such that for
all {x, y} ∈ E(G), {f(x), f(y)} ∈ E(H) [respectively, for all 〈x, y〉 ∈ E(G),
〈f(x), f(y)〉 ∈ E(H)]. Then the relation ≤ is a quasi-order and so it induces
an equivalence relation: we say that G and H are homomorphism-equivalent or
hom-equivalent and write G ∼ H if and only if G ≤ H and H ≤ G. The homo-
morphism posets G and D are the partially ordered sets of all equivalence classes
of finite undirected and directed graphs, respectively, ordered by the ≤. We will
often abuse notation by replacing the classes that comprise G and D with their
members.

These partially ordered sets are of significant intrinsic interest and are useful
tools in the study of graph and directed graph properties. For instance, it is
easily seen that both are countable distributive lattices: the supremum, or join,
of any pair is their disjoint sum, and the infimum, or meet, is their categorical or
relational product. Both G and D are “predominantly” dense – the former shown
by Welzl [20] and the latter, by Nešetřil and Tardif [16]. Both also embed all
countable partially ordered sets – see [19] for a presentation. Basic order-theoretic
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properties, such as the existence of suprema and infima for several natural families
in G, are considered in [13].

The maximal chains and antichains of an ordered set are subobjects of interest.
In this case, maximal antichains are particularly relevant because of their relation-
ship to the notion of a homomorphism duality, introduced by Nešetřil and Pultr
[14]: say that an ordered pair 〈F,D〉 of graphs, or directed graphs, is a duality pair
if

(1) F→ = 9 D

where F→ = {G : F → G} and 9D = {G : G 9 D}. Equivalently, the set of
all structures is partitioned by the upset [or final segment] F → and the downset
[or initial segment]→D. [Here we also use the other common notation F ↑ and D↓

for upsets and downsets, respectively.]
One important motivation for consideration of duality pairs is that of an “ob-

struction” to a graph property. For instance, the possibility of a homomorphism of
a graph G to K2, a 2-coloring, is obstructed by the existence of a homomorphism
of some odd cycle to G. While there are no nontrivial duality pairs in G, in D,
each tree can play the role of F in (1). In fact, in [16], Nešetřil and Tardif ob-
tain a correspondence between duality pairs and gaps in the homomorphism order
for general relational structures. They use this to characterize duality pairs and
generalize this by describing exactly when the left handside of (1) can be replaced
by a finite union of final segments. They further note in [17] that the 2-element
maximal antichains in D are exactly the duality pairs 〈F,D〉 where F is a tree and
D is its dual.

Foniok, Nešetřil and Tardif [10] are concerned with the most general circum-
stance. Let F and D both be finite antichains of structures of fixed type ∆. Call
〈F ,D〉 a generalized duality if

(2)
⋃
F∈F

F→ =
⋂
D∈D

9D

Equivalently, with S denoting the homomorphism poset of ∆-structures, S is par-
titioned by

(3) S =

( ⋃
F∈F

F→

)
∪

( ⋃
D∈D

→D

)
.

The generalized dualities are characterized in [10]. They also show that when ∆
consists of one k-ary relation, which contains the graph cases, every finite maximal
antichain in the lattice of ∆-structures is of the form F∪D. Conversely, for all but
three exceptional cases, the generalized dualities 〈F ,D〉 yield a maximal antichain
F ∪ D.

It is quite natural to ask, in more general circumstances, if maximal antichains
possess these sorts of partitions. Indeed, Ahlswede, Erdős and Graham [1] intro-
duced the notion of “splitting” a maximal antichain. Say that a maximal antichain
A of a poset P splits if A can be partitioned into two subsets B and C such that
P = B↑ ∪C↓; say that P has the splitting property if all of its maximal antichains
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split. They obtained sufficient conditions for the splitting property, from which
they proved, in particular, that all finite Boolean lattices possess it. The property
is also a useful tool in combinatorial investigations of posets, particularly distribu-
tive lattices; see, for instance [2, 3]. It is also a natural notion for infinite posets;
see [4, 8, 9].

The correspondence between generalized dualities and maximal antichains ob-
tained in [10] and the partition in (3) demonstrate that for ∆ = (k), essentially all
finite maximal antichains in the lattice S of ∆-structures split.

This paper is motivated by two goals. First, we would like to obtain general
order theoretic conditions on countable posets that ensure antichains split and,
thereby, obtain some of the duality results that had been restricted to finite maxi-
mal antichains, as described above. See Section 4 for applications to G and Section
5 for results on D. Second, we obtain splitting and non-splitting results for infinite
maximal antichains; in particular, these results underscore differences between the
structures G and D. The necessary results on splitting and related notions are
given in Section 3, which is preceded in Section 2 by a directed version of what is
known as the Sparse Incomparability Lemma.

In addition to the selected papers cited in this section, we refer the reader to the
book [11] by Hell and Nešetřil that is devoted to graph homomorphisms. Chapter
3 gives a thorough introduction and many of the key results on maximal antichains
and dualities in G and D.

2. A Directed Sparse Incomparability Lemma

Recall that the girth of a graph, girth(G), is the length of a shortest cycle con-
tained in the graph. In case G is directed, its girth is that of the underlying
undirected graph, that is, of the symmetric version of G. In one of the first appli-
cations of the probabilistic method, in 1959 Paul Erdős [5] showed the existence
of graphs with independently prescribed girth and chromatic number. More pre-
cisely, for all natural numbers k and ` there is a graph G such that χ(G) > k and
girth(G) > `.

Based on another probabilistic argument due to Erdős and Hajnal [6], Nešetřil
and Rödl [15] obtained an interesting generalization, referred to as the “Sparse
Incomparability Lemma”: for every pair of graphs H and G such that G→ H but
H 6→ G, and for every positive integer ` there exists a graph H ′ with girth(H ′) > `
such that H ′ → H and H ′ 6→ G.

Here is a formulation from which the Sparse Incomparibilty Lemma follows,
itself a special case of a more far-reaching generalization.

Theorem 2.1 (Nešetřil-Zhu [18]). For every graph H and for every positive inte-
gers k and ` there exists a graph G with the following properties:

(i): girth(G) > `, and
(ii): for every graph H0 with at most k vertices, G → H0 if and only if
H → H0.

Here, we require a directed graph version of Theorem 2.1. The following is a special
case of a Sparse Incomparability Lemma for finite relational structures [12].
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Theorem 2.2 (Directed Sparse Incomparability Lemma). For each directed graph
H = (W,F ) and for all integers m, ` ∈ N there is a directed graph H ′ such that

(i): girth(H ′) > `,
(ii): for each directed graph G with |V (G)| < m we have H ′ → G if and only

if H → G, and
(iii): H and H ′ have the same numbers of connected components. In partic-

ular, if H is connected then so is H ′.

Regarding the proof of Theorem 2.2, there are both probabilistic and determin-
istic arguments available. For instance, it is straightforward to adapt the proba-
bilistic proof of Nešetřil-Rödl. We found an alternative approach based on what
appears to be a new graph parameter. Here is a brief outline of the argument.

Given a graph G = (V,E) let the bipartite stability number αb(G) be the maxi-
mum integer β such that:

∃A,B ∈ [V ]βwith A ∩B = ∅ and no edge between A and B.

Clearly αb(G) ≥ α(G)/2, where α(G) denotes the usual stability or independence
number of G. The following result is obtained by adjusting the Erdős-Rényi proof
[7] that there are graphs of large girth and small independence number.

Lemma 2.3. For all k, ` ∈ N and for all but finitely many n ∈ N there exists a
connected graph G′ = (V,E) with |V | = n, girth(G′) > ` and αb(G′) < n/k.

Let H, m and ` be as in the statement of Theorem 2.2. Let k = 3m|W | and
n = kj for sufficiently large j. By Lemma 2.3, there exists a graph G′ = (V,E)
such that

• V = W × [3mj]
• girth(G′) > `
• αb(G′) < n/k = j

In effect, we “blow up” each vertex of H into a class of 3mj vertices.
Define a directed graph H∗ = (V,E∗) as follows: if 〈h, i〉 , 〈h′, i′〉 ∈ V then

〈〈h, i〉 , 〈h′, i′〉〉 ∈ E∗ if and only if (〈h, i〉 , 〈h′, i′〉) ∈ E and 〈h, h′〉 ∈ F .
One now argues that if H is connected then H∗ has a large enough connected

component that satisfies (1), (2), and (3) of the theorem.
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Addendum
Here we give one possible proof of Theorem 2.2, for the sake of completeness. One
can easily come up with shorter probabilistic proof.

Theorem A (Directed Sparse Incomparability Lemma)For each directed graph H =
(W,F ) and for all integers m, ` ∈ N there is a directed graph H ′ such that
(1) girth(H ′) > `
(2) for each directed graph G with |V (G)| < m we have H ′ → G if and only if

H → G.
(3) χ(H) = χ(H ′).
(4) H and H ′ have the same numbers of connected components. Especially, if H is

connected then so is H ′.
The proof is based on a Paul Erdős-type result (see Theorem 2.3). At first we need
one more definition:

Definition B Given a graph G = (V,E) let the bipartite stability number

αb(G) = max
{
β ∈ N : ∃A,B ∈ [V ]β A ∩B = ∅

and there is no edge between A and B
}
.

Clearly αb(G) ≥ α(G)/2. We need:

Theorem C For all k, ` ∈ N and for all but finitely many n ∈ N there exists a
connected graph G′ = (V,E) with |V | = n, girth(G′) > ` and αb(G′) < n/k.
Proof. Fix θ < 1/` and let G ∼ G(n, p) with p = nθ−1. Let X be the number of
circuits of size at most `. Then:

E[X] =
∑̀
i=3

(n)i
2i

pi ≤
∑̀
i=3

nθi

2i
= o(n).

as θ` < 1. In particular,

(4) Pr[X ≥ n/2k] = o(1).

Set x = (3/p) lnn so that

(5) Pr[αb(G) ≥ x] ≤
(
n

x

)(
n− x
x

)
(1− p)x2

< n2x
[
e−px

]x =
[
n2e−px

]x =[
e2 lnn−p(3/p) lnn

]x
=
[
e− lnn

]x
= e− lnn(3/p) lnn = e−3n1−θ ln2 n = o(1).

Since p = nθ−1 > logn
n therefore by the well known Erdős-Rényi theorem ([7]) the

graph almost surely connected, therefore

(6) Pr[G is not connected] = o(1).

Let n be sufficiently large so that
(1) the probabilities in (4), (5) and (6) are all less than 1/3,
(2) x = d(3/p) lnne = d3n1−θ lnne < n/2k.
Then there is a specific G with less than n/2k cycles of length ≤ ` and with αb(G) <
n/2k. Remove, one by one, one edge from each cycle of G of length at most `. This
new graph G′ has a girth greater than `. Furthermore if αb(G) = α and we delete
one edge from it then α(G \ e) ≤ α + 1. Therefore αb(G′) ≤ n/2k + n/2k ≤ n/k,
as required. Finally the described operation clearly preserve the connectedness of
G. �
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Denote by ~Kn the full directed graph on n points: ~Kn = 〈{0, ..., n− 1}, E〉, where
E = {〈i, j〉 : i 6= j < n}. Clearly χ(H) ≤ n if and only if H → ~Kn.

Proof. of Theorem A: We can assume that m > |W |.
Assume first that H is connected.
Let k = 3m|W |. Let n = k·j for some large enough j. By Theorem 2.3 we can obtain
an undirected G′ = (V,E) on n vertices with girth(G′) > ` and αb(G′) < n/k = j.
We can assume that V = W × 3mj. For w ∈ W write Vw = {w} ×mj. (We will
”blow up” each vertex of H into a class of 3mj vertices.)
Define a digraph graph H∗ = (V,E∗) as follows: if 〈h, i〉 , 〈h′, i′〉 ∈ V then
〈〈h, i〉 , 〈h′, i′〉〉 ∈ E∗ if and only if (〈h, i〉 , 〈h′, i′〉) ∈ E and 〈h, h′〉 ∈ F .
One could prove that H∗ satisfies (1)–(3), but unfortunately H∗ is not necessarily
connected. We are going to show that the greatest connected component of H∗

works as H ′, i.e. it satisfies all the requirements (1)–(4).

Claim D H∗ has a connected component of size ≥ n/3.
Proof. If the Claim fails then there is a partition (X0, X1) of V such that n/3 ≤
|X0|, |X1| ≤ 2n/3 and there is no edge in H∗ between X0 and X1.
For i < 2 let Yi = {w ∈ W : |Xi ∩ Vw| ≥ n/k}. Since |Vw| = n/|W | ≥ 2(n/k) and
Vw = (Vw ∩X0) ∪ (Vw ∩X1) we have Y0 ∪ Y1 = W .
For i < 2 we have |Xi| ≥ n/3 so there is wi ∈ W such that Xi ∩ Vwi ≥ n/(3|W |) ≥
n/k, and so wi ∈ Yi.
Since Y0 6= ∅ 6= Y1 and Y0 ∪ Y1 = W there are non-empty disjoint sets Z0 ⊂ Y0 and
Z1 ⊂ Y1 such that Z0 ∪ Z1 = W .
Since H = (W,F ) is connected there is 〈w,w′〉 ∈ F such that w ∈ Zi and w′ ∈ Z1−i.
Then αb(G′) < n/k ≤ |Xi ∩ Vw|, |X1−i ∩ Vw′ | holds which implies that there is
a ∈ Xi ∩ Vw and a′ ∈ X1−i ∩ Vw′ with (a, a′) ∈ E. Then (a, a′) ∈ E∗ is an edge
between Xi and X1−i. Contradiction. �

Claim E H∗ has an even bigger connected component X0, with size

|V (X0)| ≥
(

1− 1
3m

)
n.

Proof. Let X0 be the greatest connected component and X1 = V \X0.
For i < 2 let Yi = {w ∈ W : |Xi ∩ Vw| ≥ n/k}. Since |Vw| = n/|W | ≥ 2(n/k) and
Vw = (Vw ∩X0) ∪ (Vw ∩X1) we have Y0 ∪ Y1 = W .
If the Claim fails then |X1| > n/(3m). Thus there is w1 ∈W such that |X1∩Vw1 | ≥
(n/(3m))/|W | = n/k. Thus Y1 6= ∅.
Since |X0| ≥ n/3 there is w0 ∈ W such that X0 ∩ Vw0 ≥ (n/3)/|W | ≥ n/k. Thus
Y0 6= ∅ as well.
Since furthermore Y0 ∪ Y1 = W there are non-empty disjoint sets Z0 ⊂ Y0 and
Z1 ⊂ Y1 such that Z0 ∪ Z1 = W .
Since H = (W,F ) is connected there is 〈w,w′〉 ∈ F such that w ∈ Zi and w′ ∈ Z1−i.
Then αb(G′) < n/k ≤ |Xi ∩ Vw|, |X1−i ∩ Vw′ | implies that there is a ∈ Xi ∩ Vw and
a′ ∈ X1−i∩Vw′ with (a, a′) ∈ E. Then (a, a′) ∈ E∗ is an edge between Xi and X1−i.
Contradiction. �
Let H ′ be the greatest connected component of H∗. We show that H ′ satisfies
(1)–(4).
Clearly girth(H ′) ≥ girth(H∗) ≥ girth(G′) > ` holds. (Recall if there is no cycle in
the graph, then the girth is ∞.) Hence (1) holds.
Write V ′ = V (H ′). To check (2) assume that f : V ′ → V (G) witnesses H ′ → G.
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Let w ∈W be fixed. Then

|Vw ∩ V ′| ≥
(

1− 1
3m

)
n− (|W | − 1)

n

|W |
=
(
n− n

3m

)
−
(
n− n

|W |

)
,

therefore |Vw ∩ V ′| ≥ n/|W | − n/(3m) ≥ n/|W | − n/(3|W |) > n/(3|W |) (recall that
m ≥ |W |). Furthermore |range(f)| ≤ V (G) < m so there is vh ∈ V (G) such that
|Vh ∩ V ′ ∩ f−1{vh}| ≥ (n/3|W |)/m = n/k. Let f ′(h) = vh. Then f ′ witnesses
H → G.
To prove (3) it is enough to observe that H 6→ ~Kχ(H)−1, so H ′ 6→ ~Kχ(H)−1 by (2).
Thus χ(H ′) ≥ χ(H).
So far we proved the theorem for connected digraphs. Now let H be an arbitrary
digraphs and let let (H1, . . . Hj) be an enumeration of the connected components
of H. Applying the theorem for each connected components we get H ′i for each
i = 1, . . . j. Then H ′ = H1 + H2 + · · · + Hj works for H. Indeed girth(H ′) =
min1≤i≤j{girthH ′i} > `. (2) holds because H → G if and only if we have Hi → G
for each 1 ≤ i ≤ j. Moreover χ(H) = max1≤i≤j{χ(Hi)} = max1≤i≤j{χ(H ′i)} =
χ(H ′). �

This approach in Theorem 2.2 gives a new proof to Theorem 2.1 which gives slightly
stronger result as well:

Theorem F For every undirected graph H = (V,E) and for every positive integers
k and ` there exists a graph G with the following properties:

(i) girth(G) > `,
(ii) For every graph H0 with at most k vertices, G→ H0 if and only if H → H0,
(iii) χ(H) = χ(G),
(iv) H and G have the same numbers of connected components. Especially, if H is

connected then so is G.
Proof. Let the directed graph ~H = (V, F ) defined with F = {〈x, y〉, 〈y, x〉 : (x, y) ∈
E}. The application of Theorem 2.2 provides us the directed graph ~G. Let ~G′ be
the directed graph derived from ~G with oriented all edges on both directions. It is
easy to see that the graph ~G′ also satisfies each condition of Theorem 2.2. Indeed,
properties (i), (iii) and (iv) are clearly satisfied. For each small graph H0 if ~G′ → H0

then ~G→ H0 holds again (with the same embedding). Finally since k > |V (H)| and
so ~G → ~H. The same embedding shows us that ~G′ → ~H. Therefore whenever for a
small directed graph H0 we have ~G→ H0 then we also have ~G′ → H0 (through the
embedding ~G′ → H. So property (ii) also holds.
Removing the orientation of each edge of ~G′ and keeping just one-one copies of the
edges we get the graph G. It trivially satisfies properties (i), (iii) and (iv). To check
(ii) remark at first that we already saw that G→ H therefore direction ← is done.
For the other direction assume that |V (H0)| < k and G→ H0. Create ~H0 from H0

in the same manner as ~H was made. Then the same embedding V (G) → V (H0)
witnesses ~G → ~H0. But then ~H → ~H0 holds, and the same embedding witnesses
H → H0. �
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3. The splitting property

In the forthcoming sections we would like to apply some results from [9] to the
posets G and D to obtain antichains with certain properties related to dualities
and partitions of G and D. Concerning G it would be enough just to quote some
theorems from [9], but concerning D we should reformulate them a bit to make
them applicable here.

Let P = (P,≤) be a poset. [We find it useful sometimes to maintain a distinction
between P and the underlying set P .] We say that a subset A ⊂ P is cut-free in
P provided there are no y ∈ A and x, z ∈ P such that x < y < z and A ∩ [x, z] =
A∩ ([x, y] ∪ [y, z]). An element y ∈ P is called cut-point iff there are x, z ∈ P such
that x < y < z and [x, z] = [x, y]∪ [y, z]. Clearly there is no cut-point in a cut-free
set.

If P = (P,<) is a poset and A ⊂ P then recall that the upset A↑ and the
downset A↓ of A are the sets

A↑ = {p ∈ P : ∃a ∈ A a ≤ p}, A↓ = {p ∈ P : ∃a ∈ A p ≤ a};

also, use this natural extension of the notation,

Al = A↑ ∪A↓.

As usual, we drop the braces and write a↑, a↓, and al in place of {a}↑, {a}↓ and
{a}l, respectively.

A maximal antichain A in P is a set of pairwise incomparable elements [an
antichain] that is maximal with respect to containment. We say that a maximal
antichain A splits if there is a partition (B,C) of A such that P = B↑ ∪ C↓. We
say that A strongly splits if and only if there is a partition (B,C) of A such that
for each p ∈ P \A either the set B ∩ p↓ or the set C ∩ p↑ are infinite.

To construct maximal antichains with desired properties [for instance, splitting
or non-splitting], it is useful to be able to extend existing finite antichains to
maximal ones in certain special ways. This motivated Erdős and Soukup [9] to
formulate this definition: call P loose if for all x ∈ P and F ∈ [P ]<ω, if x /∈ F ↑ there
there is y ∈ x↑ \{x} that is incomparable to all elements in F . This property is the
key in showing that very familiar infinite distributive lattices, such as ([ω]<ω,⊆),
the lattice of finite subsets of a countably infinite set, do not have the splitting
property. We shall see that the nontrivial part of G has this property [see Theorem
4.1] but that D requires a sharpening of the definition [see Theorem 5.1].

Definition 3.1. Let P = 〈P,≤〉 be a poset and let P ′ ⊂ P . We say that P ′ is a
loose kernel in P if

(LK) for all finite subsets F ⊆ P ′ and x ∈ P \ F ↑ there is y ∈ [x↑ ∩ P ′], y 6= x,
such that each element of F is incomparable to y.

Of course, P is loose if P itself is a loose kernel in P, just as in [9].

Remarks. (1) A loose kernel P ′ in a poset P does not have maximal elements –
just take F = ∅ in (LK) in the definition and any x in P ′ to produce y ∈ P ′ such
that y > x. In particular, P ′ is infinite. Also, if P contains a loose kernel then
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there is a loose kernel of P that is maximal, with respect to containment. This is
easily shown using Zorn’s Lemma.
(2) Regarding the homomorphism poset D, it is not loose since it has finite max-
imal antichains – a finite maximal antichain as F in (LK) shows that (LK) fails.
Moreover, D has infinitely many finite maximal antichains, so we cannot obtain a
loose kernel for D by deleting finitely many elements, as we can for G.

Here is a condition that allows extension of a finite antichain in a particular
special way.

Definition 3.2. Let P = 〈P,≤〉 be a poset and P ′ ⊂ P . We say that P ′ has the
finite antichain extension property (in P) provided
(FAE) for all finite antichains F ⊆ P ′ and x ∈ P \ F there is y ∈ [xl ∩ P ′] such

that each element of F is incomparable to y.

Observation 3.3. If P ′ ⊂ P is both a loose kernel in P = (P,≤) and a loose
kernel in the dual Pd = (P,≥) then P ′ has the finite antichain extension property
in P.

The following observation is a sharpening of [9, Theorem 3.9]. We include the
straightforward proof to illustrate how the FAE property can be applied.

Theorem 3.4. Let P = 〈P,≤〉 be a countably infinite poset, let P ′ ⊂ P have the
finite antichain extension property in P, and let A1 ⊂ P ′ be a finite antichain.
Then there is a strongly splitting P-maximal antichain A such that A1 ⊂ A ⊂ P ′.

Proof. Let {pn : n < ω} be an ω-abundant enumeration of P , that is, the set
{n : pn = p} is infinite for each p ∈ P . Let A1 = {a0, a1, . . . , ar−1}. Proceed by
induction on i ≥ r to construct an infinite antichain A = {ai : i < ω} ⊂ P ′:

• if pi /∈ {aj : j < i} then let ai be comparable to pi;
• if pi ∈ {aj : j < i} then let ni = min{n : pn /∈ {am : m < i}} and let ai be

comparable to pni .
This construction can be carried out because P ′ has the finite antichain extension
property.

Let p ∈ P \ A. Then the set Ap = {ai : pi = p} is infinite and for each a ∈ Ap
the element a and p are comparable. Let (B,C) be a partition of A such that
|B ∩Ap| = |C ∩Ap| = ω for each p ∈ P \A.

Then the partition (B,C) has the required property. �

The following results show that the existence of a loose kernel guarantees an infinite
non-splitting maximal antichain. The first is a slight generalization of [9, Theorem
3.6] .

Theorem 3.5. Let P = 〈P,≤〉 be a countably infinite poset, and let P ′ ⊂ P be a
loose kernel in P. Then there exists an infinite non-splitting P-maximal antichain
A ⊂ P ′.

Proof. See [9, Theorem 3.6]. �
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Theorem 3.6. Let P = 〈P,≤〉 be a countably infinite poset, let P ′ ⊂ P be a loose
kernel in P, and let A1 ⊂ P ′ be a non-maximal antichain in P . Then there is an
infinite non-splitting P-maximal antichain A such that A1 ⊂ A ⊂ P ′.

Proof. The set P ′ \ Al1 is a loose kernel in P \ Al1, and P \ Al1 6= ∅ because A1

was not a maximal antichain. Hence by Theorem 3.5 there is a P \ A1
l-maximal

antichain A′ ⊂ P ′ \ Al1 which does not split in P \ Al1. Then A = A1 ∪ A′ is a
maximal antichain in P having the required properties. �

4. The homomorphism poset G

The partially ordered set G of hom-equivalence classes of finite undirected graphs
is known to have only two finite maximal antichains — {K1} and {K2}. Conse-
quently, there are no nontrivial dualities. However, in studying the ordered set G,
it is interesting to know whether maximal antichains split and whether antichains
extend to maximal ones that split.

Let G′ = G \ {K1,K2}. For any bipartite graph G, G → K2, so we know that
all graphs in G′ are hom-equivalent to graphs all of whose connected components
contain odd cycles. The odd girth of a graph G, oddgirth(G), is the length of the
shortest odd cycle contained in the graph. As with girth, if graph does not contain
any odd cycles, its oddgirth is regarded as infinite.

The notion of odd girth is useful in dealing with homomorphism questions be-
cause of this: for graphs G and H, if oddgirth(G) < oddgirth(H) then G 9 H.
Also, it is straightforward to contruct graphs of prescribed odd girth and chromatic
number using shift graphs — for instance, see [11, Theorem 2.23]. Alternatively,
the original Erdős result could be used in the first part of the proof below.

Theorem 4.1. G′ is both a loose kernel in G and a loose kernel in Gd. Hence, G′
has the finite antichain extension property in G.

Proof. Let F ⊆ G′ be finite. To see that G′ is a loose kernel in G, let X ∈ G \ F↑,
that is, F 9 X for all F ∈ F . Let Y ′ be a graph such that for all F ∈ F ,

(i): oddgirth(Y ′) > oddgirth(F ′) for all components F ′ of F , and
(ii): χ(Y ′) > χ(F ).

Now let Y = X + Y ′ and let F ∈ F . By (i), F 9 Y , since no component of F has
a homomorphism to Y and F 9 X. By (ii), Y ′ 9 F , so Y 9 F . Hence, (LK)
holds and G′ is loose in G.

Now let us show that G′ is loose in the dual. Let H ∈ G \ F↓, that is, H 9 F
for all F ∈ F . Let k = max {|V (H)|, |V (F )| : F ∈ F} and ` = max{oddgirth(F ) :
F ∈ F}+ 1. Here ` is finite because F ⊂ G′.

By Theorem 2.1 there is a graph G ∈ G such that girth(G) > ` and for all
K ∈ G where |V (K)| ≤ k,

G→ K ⇐⇒ H → K.

Therefore G→ H but for all F ∈ F we have G 6→ F. Since girth(G) > oddgirth(F )
we have F 6→ G for each F ∈ F . Furthermore H 6→ K2 therefore H ∈ G′,
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therefore G 6→ K2 and so G ∈ G′. Thus (LK) holds for G′ in Gd, and we can apply
Observation 3.3. �

As noted above, it is well-known that G′ has no finite maximal antichains.
We include a short proof to illustrate the relationship between loose kernels and
maximal antichains.

Corollary 4.2. There is no finite maximal antichain in G′.
Proof. Indeed, let F ⊂ G′ be a finite antichain. Then K1 < Fi (for each i)
therefore K1 6∈ F↑. The application of Theorem 4.1 gives us an element of G′,
which is incomparable to F . �

Since there are no finite maximal antichains and every finite antichain extends
to a maximal one, each finite antichain can be extended to an infinite maximal
antichain. The following shows that quite different behaviour can be found in the
various extensions.

Corollary 4.3. Let A ⊆ G′ be a finite antichain. Then
(i): there exists a non-splitting maximal antichain A1 ⊂ G′ such that A ⊂ A1,

and
(ii): there exists a strongly splitting maximal antichain A2 ⊂ G′ such that
A ⊂ A2.

Proof. (i): This is a direct consequence of Theorem 3.6, applied to the poset G
and the loose kernel G′.
(ii): We can apply Theorem 3.4 because G′ has the finite antichain extension
property in G. �

The notions of a cut-point and a cut-free subset are closely tied to the splitting
property: see [1] and [9]. They have also been studied independently in the context
of homomorphism orders of graphs: see [12]. We provide a short proof that G′
is cut-free, both to illustrate an application of the sparse incomparability lemma
and to highlight differences between G and D that we shall see again in the next
section.

Proposition 4.4. G′ is cut-free.

Proof. We need to show that for all triples F < G < H, if G ∈ G′ (and therefore
H ∈ G′) then there is a G′ ∈ G′ such that F < G′ < H and G′ is incomparable to
G.

Since oddgirth(G) is finite for G ∈ G′, we can apply Theorem 2.1 to H with
parameters k = max(|V (G)|, |V (F )|) + 1 and ` = oddgirth(G) + 1 to get a graph
H ′ such that:

• H ′ → H, since H → H,
• H ′ 9 G, since H 9 G,
• H ′ 9 F , since H 9 F , and
• girth(H ′) > `.

Since oddgirth(G) < ` we have X 6→ H ′ for each connected component X of G.
Therefore the graph G′ = F +H ′ satisfies the requirements. �
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5. The homomorphism poset D

In [10], the complete characterization of finite maximal antichains in the ho-
momorphism poset for finite relational structures with a single relation shows the
crucial role of forests. In the study of G, odd cycles play a crucial role. So, one
might hope that the investigation the two subsets D′ and D∗ of D defined below
would lead to the construction of interesting antichains by verifying the loose ker-
nel or FAE properties, then employing results such as Theorems 3.4 – 3.6. It turns
out to be a bit more complicated.

Before defining these, it is useful to recall that a finite directed graph X is
a core if every homomorphism of X to itself is bijective. Every directed graph
is homomorphically equivalent to a unique core, and, so, every directed graph
class contains exactly one core (cf. [11]). For the rest of this section, we shall
use “graph” for “directed graph” and, given a directed graph X, X denotes its
undirected version.

We now define the two subsets of D:

• D′ ⊆ D consists of all graph classes with core X such that every connected
component of X contains an odd cycle;
• D∗ ⊆ D consists of all graph classes with core Y such that at least one

connected component of Y has contains an odd cycle.

Of course, D′ ⊆ D∗, while the graph H defined below in the proof of Proposition
5.2 is in D∗ and not in D′.

The following result collects some straightforward observations about these sub-
sets in D. The proofs have been omitted since the methods are not very different
from those encountered in the undirected case.

Proposition 5.1. In the partially ordered set D:

(i): D′ is a loose kernel in D;
(ii): D∗ is a cut-free subset of D; and, MISTAKEN
(iii): D∗ is loose in (D∗)d.

Addendum
Lemma F Let F ∈ [D′]<ω and let X ∈ D \ F↑. Then there is an X ′ ∈ D′ such that
X → X ′ and F 6→ X ′ for each F ∈ F .
Proof. If X has components without odd cycles, then glue one-one big odd cycles to
one-one vertices of those components. Then, of course, X ′ > X. If these cycles has
length > |V (F )| for every F ∈ F then F 6→ X ′ for every F ∈ F . �

Theorem G D′ is an upwards loose kernel in D.
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Proof. Let F ∈ [D′]<ω and let X ∈ D \ F↑. We are looking for a Y ∈ D′ such that
X → Y 6→ X and Y is incomparable to each F ∈ F . If X 6∈ D′ then take X ′ from
Lemma F. If we can construct the required Y for X ′ then it works with X as well.
Therefore we can assume that each component of X contains odd (undirected) cycle.
Let m := max {|F | : F ∈ F} + 1 and ` := max {oddgirth(F ) : F ∈ F} + 1. Apply
Theorem 2.2 for an arbitrary orientation of the complete graph Km with these
parameters. The result is a directed connected graph G with a finite oddgirth > `,
such that G 6→ F ∈ F (since Km 6→ F, due its chromatic number χ(F ) < m).
Furthermore each component in F has odd cycle therefore F 6→ G as well. Finally
the disjoint union Y = G+X satisfies the required conditions. �
Nešetril and Tardiff, [17], described all maximal finite antichains in the direct ho-
momorphism poset, therefore the following statement is a well-known fact:

Corollary H There is no finite maximal antichain in D′.
Proof. Like Corollary 4.2. �

Corollary I Let A1 ∈ [D′]<ω be a non-maximal antichain in D. Then there is
a maximal antichain A ⊂ D′ such that A1 ⊂ A and A does not split, moreover
(A \A1) ⊂ B and C is infinite for all 〈B,C〉 ∈ S(A).

Proof. Due to Theorem G this is just the direct application of Theorem 3.5 for the
poset D and the upwards loose kernel D′. �

We have seen so far that D′ is upward loose kernel in D, however we can not prove
that D′ is a downward loose kernel in D, or that D′ is cut-free in D.
On the other hand, as we will seen soon, D∗ is cut-free in D, D∗ is ”almost” a
downward loose kernel in D, but we will not know if D∗ is upward loose kernel in D
or not.

Theorem J D∗ is cut-free in D.

Proof. We should show that for all triple F < G < H if G ∈ D∗ (and therefore
H ∈ D∗ as well) there is a G′ ∈ D∗ such that F < G′ < H and G′ is incomparable
to G.
Apply Theorem 2.2 for the graph H with parameters m = |V (G)| + 1 and ` =
oddgirth(G) + 1. Since H 6→ G therefore H ′ 6→ G as well. Due to the big odd girth
G 6→ H ′ also holds (as it shows by the component of G which has an odd cycle).
Therefore the graph G′ = F +H ′ satisfies the requirements. �THIS IS
MISTAKEN.

Theorem K Let F ∈ [D∗]<ω and X ∈ D such that X 6∈ F↓. Then there exists
X ′ ∈ D such that X ′ < X and X ′ is incomparable to each F ∈ F . Furthermore if
X ∈ D∗ then X ′ ∈ D∗ holds as well.

Proof. Apply Theorem 2.2 for the graph X with parameters m = max {|V (F )| :
F ∈ F} + 1 and ` = max {oddgirth(F ) : F ∈ F} + 1. Then X ′ 6→ F ∈ F since
X 6→ F. Furthermore if F 6∈ D∗ then the same applies for X ′ therefore F 6→ X ′

since F has odd cycle. However, if X has an odd cycle then all odd cycles of X ′

(and there are such objects) are longer than oddgirth(F ) therefore F 6→ X ′ holds
again. �
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Unfortunately, we can also prove that

Proposition 5.2. In the partially ordered set D:
(i): D′ does not have the finite antichain extension property in D; and
(ii): D∗ does not have the finite antichain extension property in D.

Proof. (i). Let ~T3 be the transitive tournament on three vertices and let ~P3 =
(W,F ) be the directed path on four vertices: W = {x0, x1, x2, x3} and F =
{(xi, xi+1) : i = 0, 1, 2}. Now let H = ~T3 + ~P3, the disjoint union of T and
P3. Then H is a core in D. Also, ~T3 ∈ D′, is a core and ~T3 < H. Regard {~T3} as
an antichain. If D′ had the (FAE) property there would exist a core H ′ ∈ D′ such
that H ′ is incomparable to ~T3 and H ′ < H. However, every connected component
of H ′ contains an odd cycle, so H ′ < H implies that H ′ ≤ ~T3 since no component
of H ′ can be mapped by a homomorphism into ~P3.
(ii) We can base an example on any oriented tree T but to be a bit more specific
let T = ~Pk be a directed path on k vertices. Then the dual D(~Pk) is the transitive
tournament ~Tk on k vertices (see, for instance [11, Proposition 1.20]). Let H =
~Tk + ~Pk. As long as k ≥ 3, H ∈ D∗. Also, H and ~Tk are cores D and ~Tk < H.
Regard {H} as an antichain. If D∗ had the (FAE) property there would exist
a core H ′ ∈ D∗ such that H ′ is incomparable to H and ~Tk < H ′. But (~Pk, ~Tk)
is a dual pair, so the fact that H ′ is not below ~Tk implies ~Pk < H ′ – just apply
equation (3) in this special case. From this it would follow that H = ~Tk+ ~Pk < H ′,
a contradiction. �

Fortunately there is another subset Dc of D which is both an upward loose kernel
in D and has the finite antichain extension property in D. To discuss it, first we
need an easy observation. A finite directed graph ~C is a directed cycle if it is
connected and each vertex has indegree and outdegree 1. It is easily seen that
each directed cycle is a core. Use ~Ck to denote the directed cycle on k vertices.

Proposition 5.3. Let ~C be a directed cycle and T be a graph such that T is an
arbitrary tree. Then T → ~C.

Proof. Map a vertex v of T to any vertex of the cycle. Next the vertices adjacent
to v in T can be mapped into vertices of ~C so that directed edges are preserved.
Since there is no cycle in T we can finish the process easily. �

Let Dc be the set of all homomorphism classes in D whose core X has the property
that for some ~C, ~C → X. Here is a direct consequence of Proposition 5.3.

Observation 5.4. Let G ∈ Dc and let T ∈ D be an oriented tree. Then G+T ∼ G.

Hence we can assume that no component of an element of Dc can be embedded
into a tree. Therefore from now on we assume that each component X of each
element of Dc has the property that X contains a cycle.

Theorem 5.5. Dc is a loose kernel in D.
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Proof. Let F ⊆ Dc be finite, and X ∈ D but X /∈ F↑. We are going to find an
Y ∈ Dc such that X → Y , Y 6→ X, and Y is incomparable to each F ∈ F .

Let n := max{|X|, |F | : F ∈ F}. Using the Erdős theorem, obtain a graph Z
such that χ(Z) > n, girth(Z) > n, Z is connected, and Z contains at least one
directed cycle. Then Z ∈ Dc. Let Y = X + Z. Since Z ∈ Dc therefore Y ∈ Dc as
well. Clearly X → Y while Y 6→ X because χ(Y ) > |X|.

Assume that f is a homomorphism of F to Y . Then there is a component K
of F such that f [K] ⊆ Z. But |V (K)| ≤ n while girth(Z) > n, hence the image
f [K] is a tree, which contradicts the assumption that no component of an element
of Dc can be mapped into a tree. �

Theorem 5.6. Let A1 ⊆ Dc be a finite antichain. Then there is a non-splitting
antichain A such that A1 ⊆ A ⊆ Dc and A is maximal in D.

Proof. Since Dc is an upward loose kernel it can be used in Theorem 3.5 to extend
a non-maximal antichain into a non-splitting antichain, maximal in D. �

Theorem 5.7. Dc has the finite antichain extension property in D.

Proof. Let F ⊆ Dc be a finite antichain and X ∈ D. We need to find Y ∈ (Xl ∩
Dc) \ Fl. In case X /∈ F↑ then Theorem 5.5 provides the required Y.

Assume now that X ∈ F↑ . Then X ∈ Dc because there exists F ∈ F with
F → X and the image of its directed cycle of F is a directed cycle in X. Let us
assume that X contains the directed cycle ~Ck.

Let n = max{|X|, |F | : F ∈ F}. Apply Theorem 2.2 with H = X and m = ` = n

to obtain X ′ = H ′. Now let Y = X ′+ ~Ckn. Then X ′ → X and ~Ckn → ~Ck therefore
Y → X. At the same time X 6→ Y since girth(Y ) > ` ≥ |X|. Thus, the cycle ~Ck
of X cannot be embedded into Y. The same applies for the directed cycles in each
F ∈ F . Therefore, F 6→ Y. Finally we have X 6→ F and so Y 6→ F . �

Corollary 5.8. Dc does not contain finite maximal antichains.

We recall that a full description of the finite maximal antichains in D is given in
[10].

Corollary 5.9. Let A1 ⊆ Dc be a finite antichain in D. Then there is a strongly
splitting D-maximal antichain A1 ⊂ A ⊂ Dc.

Proof. This is just the direct application of Theorem 3.4 to the posets D and
Dc. �

Here is a final use of our methods in describing the order structure of D.

Theorem 5.10. Dc is cut-free in D.

Proof. Let F < G < H where G ∈ Dc (and therefore H ∈ Dc as well). We need a
G′ ∈ Dc, which is incomparable to G but F < G′ < H.

Let n = max{|F |, |G|, |H|}. Apply Theorem 2.2 to H with parameters m =
` = n to obtain the directed graph H ′. Since H ∈ Dc, there is k such that ~Ck is a
subgraph of H. Let G′ = F +H ′ + ~Ckn.
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Then F → G′ since F is a subgraph of G′. Furthermore H ′ → H due to the fact
that |H| = n ≤ m and H → H. Due to our assumption on Dc, each component of
the graph G contains cycles, and at least one of them, say K, cannot be embedded
into F. Therefore if G → Y then for this component we have K → H ′ + Cnk.
However, girth(H ′+Cnk) > |K|, hence K is embedded into a tree, a contradiction.

�
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[15] J. Nešetřil, V. Rödl: Chromatically optimal rigid graphs, J. Comb. Theory Ser. (B) 46 (1989)

133–141
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[17] J. Nešetřil, C. Tardif: On maximal finite antichains in the homomorphism order of directed

graphs. Discuss. Math. Graph Theory 23 (2003) 325–332
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