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Abstract. D denotes the homomorphism poset of finite directed
graphs. An antichain duality is a pair 〈F ,D〉 of antichains of D
such that (F→) ∪ (→D) = D is a partition.

A generalized duality pair in D is an antichain duality 〈F ,D〉
with finite F and D. We give a simplified proof of the Foniok -
Nešetřil - Tardif theorem for the special case D, which gave full
description of the generalized duality pairs in D.

Although there are many antichain dualities 〈F ,D〉 with infinite
D and F , we can show that there is no antichain duality 〈F ,D〉
with finite F and infinite D.

1. Introduction

If G and H are finite directed graphs, write G ≤ H or G → H iff there
is a homomorphism from G to H, that is, a map f : V (G) → V (H) such
that 〈f(x), f(y)〉 is a directed edge ∈ E(H) whenever 〈x, y〉 ∈ E(G).
The relation≤ is a quasi-order and so it induces an equivalence relation:
G and H are homomorphism-equivalent if and only if G ≤ H and
H ≤ G. The homomorphism poset D is the partially ordered set of all
equivalence classes of finite directed graphs, ordered by ≤.

In this paper we continue the study of antichain dualities in D (what
was started, in this form, in [2]). An antichain duality is a pair 〈F ,D〉
of disjoint antichains of D such that D = (F→) ∪ (→D) is a partition
of D, where the set F→ := {G : F ≤ G for some F ∈ F}, and →D :=
{G : G ≤ D for some D ∈ D}.

Special cases of antichain dualities were introduced and studied ear-
lier in many papers. A duality pair is an antichain duality 〈F ,D〉 with
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F = {F} and D = {D}. This particularly useful instance of the an-
tichain duality was introduced by Nešetřil and Pultr in [16]. Clearly,
〈F, D〉 ∈ D× D is a duality pair if

(1) F→ = 9D,

(where, recall, F→ := {G : F → G} and 9D := {G : G 9 D}). In
[18], Nešetřil and Tardif gave full description of the single duality pairs
in D (see Theorems 2.2 and 3.3 below).

Foniok, Nešetřil and Tardif studied a generalization of the notion of
single duality pairs, which is another special case of antichain dualities
([8, 9, 10]): a generalized duality pair is an antichain duality 〈F ,D〉
such that both F and D are finite. The generalized duality pairs (in
the much more general context of homomorphism poset of relational
structures) are characterized in [9]. The specialization of this general
result of Foniok, Nešetřil and Tardif to the homomorphism poset of
directed graphs D states that every maximal finite antichain (with the
two exceptional cases of 1-element maximal antichains {P1} and {P2})
has exactly one partition 〈F ,D〉 which is generalized duality pair.

Meanwhile, independently from the above mentioned investigations,
R. Ahlswede, P.L. Erdős and N. Graham [1] introduced the notion of
“splitting” of maximal antichains. If P is a poset and A is a maximal
antichain in P , then a split of A is a partition 〈B, C〉 of A such that
P = (B→)∪ (→C). (In the papers dealing with the splitting property
usually the notations B↑ and C↓ are used instead of B→ and→C.) The
poset P has the splitting property iff all of its maximal antichains have
a split. They obtained sufficient conditions for the splitting property
in finite posets, from which they proved, in particular, that all finite
Boolean lattices possess it. The splitting property was also studied for
infinite posets; see [5, 6].

A split of a maximal antichain in D is just an antichain duality.

As we already mentioned, the “finite-finite” antichain dualities, i.e.
antichain dualities 〈F ,D〉 with finite F and D, were described in [9].
It is quite natural to ask, what about the other possible (by cardinality
type) antichain dualities?

Using techniques from [6], Duffus, Erdős, Nešetřil and Soukup stud-
ied (in [2]) the existence of “infinite-infinite” antichain dualities in D,
i.e. antichain dualities 〈F ,D〉 with infinite F and D and got the fol-
lowing results: Although there exist infinite-infinite antichain dualities
in D, it is not true that every infinite antichain has exactly one split:
some of them have infinitely many splits, some others do not have splits
at all, and there are maximal infinite antichains with exactly one split
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as well. At the very moment there is no reasonable descriptions of
“infinite-infinite” antichains dualities, the structure of these antichain
dualities is unknown. It seems to be a promising research subject.

However, there are two more, theoretically possible, classes of an-
tichain dualities: the “finite-infinite” and the “infinite-finite” ones. In
this paper we study the first one, and we show that somewhat surpris-
ing fact, that there is no antichain duality 〈F ,D〉 in D where F is finite
while D is infinite (see Theorem 4.1).

We also include a short proof of the (specialized) Foniok - Nešetřil -
Tardif’s theorem ([9]) on generalized duality pairs (see Section 3). In
Section 2 we give the technical prerequisites for the proofs. Finally
in Section 5 we give some “background” information concerning the
problem of the existence of infinite - finite antichain dualities.

In addition to the selected individual papers, we refer the reader to
the book [13] by Hell and Nešetřil that is devoted to graph homomor-
phisms. Chapter 3 of it gives a thorough introduction and many of the
key results on maximal antichains and dualities in posets of (undirected
or directed) finite graphs.

A preliminary, extended abstract version of this paper was published
in the proceedings of the ROGICS’08 ([7]).

2. Prerequisites

Given a poset P = (P,≤) and A ⊂ P denote

A→ = {p ∈ P : ∃a ∈ A a ≤P p}; →A = {p ∈ P : ∃a ∈ A p ≤P a},
furthermore let

A⇑ = (A→) \ A and A⇓ = (→A) \ A,

so for example A⇑ contains everything which is really “above” A.
Let A be a maximal antichain in P . A partition 〈B, C〉 of A is a

split of A iff P = (B→)∪ (→C). We say that A splits iff A has a split.
D denotes the homomorphism poset of the finite directed graphs.

For each F ∈ D (which is an equivalence class of the finite directed
graphs) let the core of F be a digraph C from the equivalence class F
with minimal number of vertices.

Claim 2.1. If C ′ ∈ F, C is a core and f : C → C ′ is a homomorphism,
then f is injective. Hence, the core of F is unique.

Indeed, since there is a homomorphism g : C ′ → C, we have that
C and f(C) are homomorphism equivalent. Since C has the minimal
number of vertices in F , we have that f(C) and C have the same
number of vertices, i.e. f is injective. ¤
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We will use the following convention: if ϕ is a property of digraphs,
then we say that G ∈ D has property ϕ iff the core of G has property
ϕ. Similarly, if G ∈ D, then |G| is the cardinality of the core of G.

The poset D is a countable distributive lattice: the supremum, or
join, of any pair is their disjoint sum, and the infimum, or meet, is
their categorical product. (In this latter the vertices are ordered pairs
from the vertex sets, and 〈xy, vz〉 is a directed edge iff 〈x, v〉 and 〈y, z〉
are directed edges.)

Poset D is “predominantly” dense – it is shown by Nešetřil and Tardif
[18]. Furthermore it embeds all countable partially ordered sets – see
[20]. The latter statement holds for the posets of all directed trees or
even paths, respectively, see [13] and [14].

The equivalence classes of finite directed forests and directed trees
in D will be denoted by F and by T, respectively. The core of the
equivalence class of a directed forest is a directed forest as well, while
the core of any connected graph is connected. Given a directed graph
D denote by Comp(D) the set of connected components of D.

For a given oriented walk (walk of directed edges where the edges are
not necessarily directed consecutively) its net-length is the (absolute)
difference between the numbers of edges oriented in one direction and
in the other direction. Given D ∈ D let the net-length `(D) of D be the
supremum of the net-length of the oriented walks in D. An oriented
cycle is balanced iff the same number of oriented edges are going forward
and backward. Otherwise it is unbalanced. Clearly `(D) = ∞ iff D
contains unbalanced cycle(s).

Write B = {D ∈ D : `(D) < ∞} and U = {D ∈ D : `(D) = ∞}. The
graphs in B are the balanced ones. (It is easy to see that if `(D) < ∞
then `(D) ≤ |D| as well.) Clearly T & F & B.

We need a fundamental result of J. Nešetřil and C. Tardif ([18])
which shows that each directed tree has a dual:

Theorem 2.2. For each tree T ∈ T \
{

~P0, ~P1, ~P2

}
, there is a DT ∈ D

such that 〈T, DT 〉 is a duality pair. The graph DT is called the the dual
of T .

We will use the following special case of the general Directed Sparse
Incomparability Lemma of Nešetřil from [15]. A proof of the following
version can be found in [2].

Theorem 2.3 (Directed Sparse Incomparability Lemma). For each
directed graph H ∈ D \ F and for all integers m, k ∈ N there is a
directed graph H ′ such that
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(1) k < girth(H ′) < ∞, (this is the girth of the underlying undirected
graph, the girth of a tree is ∞),

(2) for each directed graph G with |V (G)| < m we have H ′ → G if and
only if H → G.

(3) H 6→ H ′.

3. The Foniok - Nešetřil - Tardif Theorem

In this Section we give a short proof for the Foniok - Nešetřil - Tardif
Theorem (in the special case of D) using only the Nešetřil -Tardif The-
orem and the Directed Sparse Incomparability Lemma (Theorems 2.2
and 2.3).

We start with two auxiliary results: The connected components of
any core are pairwise incomparable digraphs in D. Hence

Fact 3.1. If G ∈ D and C → ~P2 for some connected component C of
the core of G then G → ~P2.

Lemma 3.2. If B ⊂ D is finite and X ∈ B \ F with X /∈ (B \ {X})⇓
then {X}⇓ 6⊂ (B \ {X})⇓.
Proof. Let n = max{|Q| : Q ∈ B}. Since X /∈ F we can apply the
Directed Sparse Incomparability Lemma for X and k = m = n + 1
to obtain a graph Y satisfying conditions 2.3.(1)–(3). Then Y → Q
implies X → Q for Q ∈ B because |Q| < m. Thus Y ∈ {X}⇓ \ (B \
{X})⇓. ¤

Now we are in the position to present our proof. From now on, for sake

of brevity, we will say that an antichain is trivial if it is one of
{

~P0

}
,{

~P1

}
,
{

~P2

}
.

Theorem 3.3 (Foniok - Nešetřil - Tardif [9]).
(i) If F ⊂ F is a non-trivial finite antichain, then there is a finite an-
tichain DF in D such that (F ,DF) is an antichain duality.
(ii) If 〈F ,D〉 is a generalized duality pair in D, F is a non-trivial an-
tichain, then F ∪ D is also an antichain.
(iii) If A is a non-trivial, finite, maximal antichain in D, then A pos-
sesses exactly one split, namely 〈A ∩ F,A ∩ U〉. Hence A∩U = DA∩F,
and so A∩ (B \F) = ∅ (that is, A does not contain any balanced graph
which is not a forest).

Proof of Theorem 3.3. (i) First observe that F 6= ∅ because D does
not have maximal elements. So we can write F = {F i : i < n} and
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Comp(Fi) = {F i
j : j < ki} for i < n. Since F i

j ∈ T, by Theorem 2.2 we

have D \ (F i
j →) =→ DF i

j
for some digraph DF i

j
∈ D. Then

D \
⋃
i<n

(F i →) =
⋂
i<n

(D \ (F i →)) =
⋂
i<n

(D \
⋂

j<ki

(F i
j →)) =

⋂
i<n

(
⋃

j<ki

(D \ (F i
j →))) =

⋂
i<n

⋃

j<ki

(→ DF i
j
) =

⋃

f∈∏
i<n ki

⋂
i<n

(→ DF i
f(i)

) =

⋃

f∈∏
i<n ki

(→
∏
i<n

DF i
f(i)

).

LetDF be just the D-maximal elements of
{∏

i<n DF i
f(i)

: f ∈ ∏
i<n ki

}
.

Then, by the equation above, we have D\(F→) = →(DF), which proves
(i).

(ii) Let B = F ∪ D. If X ∈ F then X /∈ B \ {X}⇓. So, by Lemma
3.2, if X /∈ F then there is Y ∈ D such that D /∈ F⇑ ∪ D⇓, which is a
contradiction. Therefore F ⊂ F.

Hence, by (i), the non-trivial finite antichain F ⊂ D has the finite
dual DF such that (F→) ∪ (→DF) is a partition of D. Hence →DF =
→D. Since D and DF are antichains we have D = DF . Thus F ∪D =
F ∪DF is an antichain which was to be proved.

(iii) Let A be a non-trivial, finite, maximal antichain in D, we are going
to show that it possesses exactly one split.

To start with identify the oriented paths of length k and the 0 -
1 sequences of length k in a natural way: 1 means a forward, 0 a
backward edge.

Let R(n) be the oriented path described by the sequence
(
(10)n1

)n
,

where the superscript n means the concatenation of n copies of the base.
Then R(n) is the concatenation of n “blocks”, R(n) = Q1

_· · ·_Qi
_· · ·

_Qn, where a block Qi is described by (10)n1, i.e. it is n zigzag followed
by a “forward” edges.

01

PSfrag replacements

(10)3 1

Figure 1. Path R(3) assigned to
(
(10)31

)3
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Clearly `(R(n)) = n, and

(2) if C ∈ D is connected, |C| ≤ n and C → R(n), then C → P2.

Indeed, if f : C → R(n) then the image of C is inside two consecutive
“blocks”, f : C → Qi

_Qi+1, and clearly Qi
_Qi+1 → P2.

Let ` = max{`(Q) : Q ∈ A ∩ B} and n = max{|Q| : Q ∈ A}.
Lemma 3.4. A⇓ = (A ∩ U)⇓.

Proof of the lemma. Assume that X ∈ A⇓. Let Y be the disjoint union
of the graphs X and R(n+1). Then Y and some Q ∈ A are comparable.

If Q → Y then Q 6→ X implies that C → R(n+1) for some connected

component C of the core of Q. Since |C| ≤ |Q| < n+1 we have C → ~P2

by (2). Thus Q → ~P2 by the Fact 3.1, and so A is one of the trivial
antichains, a contradiction.

Therefore Y → Q. Thus R(n+1) → Q. Since `(R(n+1)) = n+1 >
n ≥ ` = max{`(Q) : Q ∈ A ∩ B}, we have Q /∈ B, i.e Q ∈ U, which
proves the lemma. ¤

Since A is an antichain, applying Lemma 3.2 for B = A we obtain

Lemma 3.5.
({X}⇓) 6⊂ (A \ {X})⇓ for X ∈ A \ F.

Lemmas 3.4 and 3.5 together yield

(3) A ∩ F = A ∩ B,

that is, every balanced element in A is equivalent to a directed forest.

Lemma 3.6. (A ∩ F)⇑ = A⇑.

Proof. Assume that X ∈ (A \ F)⇑. Then Q → X for some Q ∈ A ∩ U
and so X ∈ U. Hence we can apply the Directed Sparse Incomparability
Lemma for X and k = m = n + 1 to obtain a graph Y satisfying
conditions 2.3.(1) – (3).

Then Y and some Q′ ∈ A are comparable.
If Y → Q′, then X → Q′ because |Q′| < n + 1 = m. Thus Q →

X → Q′ implies Q = X = Q′ ∈ A, which contradicts X ∈ A⇑.
Therefore Q′ → Y . The image of Q′ is a forest in Y because

girth(Y ) > |Q′|. Hence Q′ ∈ B, therefore Q′ ∈ F by (3). So Q′ →
Y → X implies X ∈ (A ∩ F)⇑ which was to be proved. ¤

Lemma 3.7. {F}⇑ 6⊂ (A \ {F})⇑ for each F ∈ A ∩ F.
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Proof. Let F ∈ A ∩ F. Put Y = F + R(n + 1). Then F → Y but
`(Y ) > `(F ) so Y 6→ F . Hence Y ∈ F ⇑.

Let Q ∈ A with Q → Y . Then every connected component C of Q
can be mapped either into F or into R(n + 1). If C → R(n + 1), then

C → ~P2 by (2). Thus Q → ~P2 by the Fact 3.1, and so A is one of the
trivial antichains, a contradiction. Therefore C → F , and so Q → F ,
which implies Q = F . Thus Y ∈ {F}⇑ \ (A \ {F})⇑. ¤

By equation (3),
(A∩F)∪(A∩U)

is a partition of A. Hence Lemmas
3.4 and 3.6 imply that 〈A ∩ F,A ∩ U〉 is a split in D.

If 〈B, C〉 is a split of A then C ⊃ A∩U by Lemma 3.5, and B ⊃ A∩F
by Lemma 3.7. Hence 〈B, C〉 = 〈A ∩ F,A ∩ U〉. This proves Theorem
(iii). ¤

4. There is no finite-infinite antichain duality

In the remaining part of this paper we will study those antichain du-
alities, where one class is finite while the other one is infinite. In this
Section we will show that there exists no antichain duality 〈F ,D〉 in D
such that F is finite while D is infinite.

An ordered pair 〈D,E〉 of finite digraphs is a gap in D iff D is strictly
below E and there is no H strictly between D and E. In the coming
proof we need the following week version of a theorem of Nešetřil and
Tardif:

Proposition 4.1 ([18]). If C /∈ T and C is connected, then 〈G,G + C〉
can not be a gap for any G ∈ D.

Proof. Assume that G is strictly below G + C. Apply the Directed
Sparse Incomparability Lemma 2.3 for C with parameters k = m =
max{|C|, |G|}+ 1 to get a digraph H satisfying Theorem 2.3 (1) – (3).
Then G + H is strictly between G and G + C. ¤

The main result of this paper is the following:

Theorem 4.2. There is no antichain duality 〈F ,D〉 in D with |F| < ω
and |D| = ω.

Proof. Assume on the contrary that 〈F ,D〉 is such a pair.
Let T =

⋃{Comp(F ) : F ∈ F} ∩ T and C =
⋃{Comp(F ) : F ∈

F}\T. The sets T and C are finite and since ~P0, ~P1, ~P2 /∈ T by Fact 3.1,
we can put A = {DT : T ∈ T }, where DT is the dual of the directed
tree T . Let

A∗ =
{∏

B′ : B′ ⊂ A
}

and D1 = D ∩A∗.
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Since D is infinite, we can fix E ∈ D \ D1. Put B = {DT : T ∈
T and T 6→ E}.

Let G0 =
∏B provided B 6= ∅, while in case of B = ∅ let G0 be an

arbitrary graph which is strictly bigger than E (that is E → G0 6→ E).
Then E → G0, but they are not homomorphism equivalent: This

is clear if B = ∅. If B 6= ∅, then E → DT for each DT ∈ B. Thus
E → G0. But G0 ∈ A∗ and E /∈ A∗, so G0 and E are not equivalent.

Enumerate C as {Ci : i < m}. By finite induction on i ≤ m define
graphs G0, G1, .., Gm such that

(1) E → Gm → · · · → G1 → G0,
(2) if Ci 6→ E then Ci 6→ Gi+1.

The digraph G0 satisfies (1). Assume that we have already con-
structed G0, ..., Gi. If Ci 6→ E, but Ci → Gi then consider the ordered
pair (E,E +Ci). Since Ci is not a tree, this pair is not a gap by Propo-
sition 4.1. Let Gi+1 be any element which is strictly between E and
E + Ci.

Since 〈F ,D〉 is a antichain duality and Gm ∈ {E}⇑ ⊆ D⇑ we have
F → Gm for some F ∈ F . Since F 6→ E, there is a C ∈ Comp(F ) such
that C 6→ E.

If C ∈ T , then DC ∈ B, and so Gm → G0 =
∏B → DC . Thus

C 6→ Gm and so F 6→ Gm as well.
Assume now that C ∈ C. Then C = Ci for some i < m and so

C 6→ E implies C 6→ Gi+1. Thus C 6→ Gm , and so F 6→ Gm as well.
Contradiction, Theorem 4.2 is proved. ¤

5. Do there exist infinite-finite antichain dualities?!

In this Section we discuss briefly the last open case: the possible ex-
istence of infinite-finite antichain dualities in D. This case has some
theoretical interest due to its close connection to the constrain satis-
faction problems.

More specifically let 〈F ,D〉 be an antichain duality where F ⊂ T but
it can be infinite, while D consists of precisely one element D. After
Hell, Nešetřil and Zhu, we say that D has a tree duality. The following
theorem is a seminal result in the constrain satisfaction problem:

Theorem 5.1 (Hell - Nešetřil - Zhu [12]). If digraph D has the tree
duality then the D-colorability of each directed graph G (that is the
existence of a G → D homomorphism) can be decided in polynomial
time.
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The basic tool to prove this statement is the so-called consistency check
procedure. This procedure is always finite and it succeeds if and only
if G → D. An even stronger result applies as well:

Theorem 5.2 (Hell - Nešetřil - Zhu [12]). The ”tree duality of H” is
equivalent to the following property: ∀G : (G → H if and only if the
consistency check for G with respect to H succeeds).

As far as these authors are aware, it is still an open problem whether
there exists antichain duality 〈F ,D〉 with infinite F ⊂ T and |D| = 1.

We want to add that one of the (anonymous) referees was kind
enough to point out, there is known example of infinite - singleton
antichain duality in case of a more general relational structure with
three relations. However it is not known whether this example can be
mapped into the graph homomorphism poset D.
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[2] D. Duffus - P.L. Erdős - J. Nešetřil - L. Soukup: Antichains in the homomor-
phism order of graphs, Comment Math Univ Carolinae 48 (4) (2007), 571–583.

[3] P. Erdős: Graph theory and probability. Canad. J. Math. 11 (1959) 34–38
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