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Abstract. The set system H C 2 x satisfies Property B if there exists a partition X 1 U S  2 : X such 
that any element of H intersects both classes. Here, we study the following problem: We are 
given k set systems on the underlying set X, and we are seeking a k-partition of X such that any 
element of the ith set system intersects Xi for every i. 
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1. Introduct ion 

A set system H C 2 x is said to have Property B if there exists a partition X1 I j X 2 = X 
such that every element of  H intersects both classes. E.W. Miller introduced this notion 
in 1937 [10], and the letter B was given in honor of  Felix Bernstein due to his seminal 
result. 

Theorem 1.1. (Bernstein's Lemma) If H is a countable system of infinite sets, then H 
has Property B. 

In (infinite) combinatorial set theory, several analogous results were proved (e.g., 
[3,7]). 

In 1961, Paul Erd6s and A. HajnaI revived the study of  Property B on finite and 
infinite set systems [3]; in general, they were interested to find conditions when some 
set systems do not have Property B. (For a thorough survey, see [4, Chapter 4].) On 
the other hand, in 1979, L. Lovfisz proved [9, Problem 13.33] the following "positive" 
theorem: 

* The paper received its final form when the author enjoyed the hospitality of L.A. Sz6kely of the University 
of South Carolina, Columbia, South Carolina, USA. The research was partially supported by the Hungarian 
Scientific Fund, Grant no. T16358. 
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Theorem 1.2. Let H be a hypergraph on the finite set X such that there are no edges 
E, F of H with tEMF[ = 1. Then there is a 2-partition of the underlying set X such 
that every edge intersects both partition classes. 

In [5] this problem and result were generalized for two families. The purpose of 
this paper is to prove further generalizations of Lov~isz's theorem for more families. 

2. Splitting Property 

In this section we give the above mentioned generalization of Property B for two set 
systems, and show its connection to the notion of splitting in partially ordered sets 
(posets). In [5] it was pointed out that an earlier result of  Ahlswede et. al. (see [1]) can 
be formalized as an analogous result to Theorem 1.2 for two simultaneous set systems. 

T h e o r e m  2.1. Let A and B be two set systems on the finite set X. Assume that, for all 
A C A a n d B  E B, 

IAMBI ¢ 1. (2.1) 

Then there is a 2-partition Xa to Xb = X such that every element of A intersects Xa and 
every element of B intersects Xb. 

We call such a partition a split of X (with respect to the set systems A and B). In 
order to be self-contained we give a short proof of Theorem 2.1 here. 

Proof Let the underlying set be X = {Xl, x2, . . .  ,xn}. We assume the elements of  X are 
totally ordered and xi < xj whenever i < j .  Define the class Xa as Xa = {min(A) : A E 
A}. We claim that the partition Xa and Xb = X \ Xa is a split. For this end it is enough to 
show that, for every B E B, its maximal element max(B) belongs to Xb. On the contrary, 
assume there is a set B E B such that max(B) ~ Xb. Then there is an A E A such that 
min(A) = max(B) which clearly contradicts condition (2.1). | 

Lov~isz's theorem is an immediate consequence of this result: Let both A and B be 
equal to H .  We remark that this result can be generalized for infinite set systems on 
infinite underlying sets (using some additional conditions) (see [5]). 

In the rest of  this section we show the connection of  the previous result to the notion 
of splitting in posets. In the partially ordered set P = (P, <) ,  a subset A is called an 
antichain if and only if its elements are pairwise incomparable. Let G be a subset 
off ' .  Then its downset is D(G) = {x E P : 3g E G s.t. x < g}, and its upset is U(G) = 
{x E P :  3g E G s.t. g < x}. A subset G is called a generator system if D(G) U U(G) = P. 
It is easy to see that every maximal (for inclusion) antichain is a generator system. The 
generator system G satisfies the splitting property if there is a partition Gt LI G2 = G 
such that D(G1) tO U(G2) = P. Finally, the antichain A C P is dense in P if and only if, 
for all x E D(A) \ A  and y E U(A) \A ,  

IU(x) M D(y) MA I ¢ 1. (2.2) 

Ahlswede et. al. proved the following in [1]: 
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Theorem 2.2. In every finite partially ordered set, every dense maximal antichain 
satisfies the splitting property. 

Proof The proof is straightforward from Theorem 2.1. Let A be a maximal, dense 
antichain in P. Then for every x E D(A) \A ,  let the set A(x) = U(x) AA, and for every 
y C U(A) \A ,  let the set B(y) : D(y) NA. Then due to Theorem 2.1, the underlying set 
A has the splitting property with respect to the set systems {A(x) :x E D(A) \ A }  and 
{B(y) :y E U(A) \A }. This gives us the partition A = Aa tAAb where Aa intersects every 
element of {A(x)} and Ab intersects every element of {B(x)}. Now it is easy to see that 
by choosing A1 = Aa and A2 = Ab, we obtain an appropriate split of the antichain A in 
the poset. II 

It is worth mentioning that Theorems 2.1 and 2.2 are essentially equivalent. In [5] 
Theorem 2.1 was proved from Theorem 2.2. On the other hand, in [1] some other 
splitting results for posets are proved, which do not have analogs for set systems yet. 

Finally there is an analog of Theorem 2.2 where the role of the maximal antichains 
is played by certain generator systems. Let C(x) denote the cone ofx in the poset P, that 
is, C(x) = D(x) U U(x). The generator system G has the cone-splitting property with 
respect to the pair (P1, P2) (where P1 t3 P2 C_ P \ G) if and only if there exists a partition 
G1 tA G2 = G such that every x E P1 belongs to C(G1) and every y C P2 belongs to 
C(G2). (We remark that P1 and P2 are not necessarily disjoint.) The generator system 
G is cone-dense with respect to the pair (PI, P2) if and only if, for all elements x E P1 
and y C P2, we have [C(x) f3 C(y) N G] ~ 1. Now one can easily prove (like in the proof 
of Theorem 2.2) the following result: 

Theorem 2.3. Let the generator system G be cone-dense with respect to the pair (P1, P2) 
in the partially ordered set P. Then G has the cone-splitting property with respect to 
that pair 

The proof is left to the diligent reader. 

3. The k-splitting Property 

In this section we generalize the notion of splitting for several simultaneous set systems. 

Definition 3.1. Let A1, A2,... , -~ be set systems on the finite underlying set X.  Then 
X has a k-split with respect to these families if and only if there is a k-partition X1 U 
X2 U . . . U Xk = X such that, for every i = 1,... , k and for all A E Ai, we have Xi fq A ~ O. 
In the case of  i = 2 we get back the original notion of  splitting. 

The following result is a direct generalization of Theorem 2.1. 

Theorem 3.2. Let A1, A2,.. • ,-~ be set systems on the finite set X, with k >_ 2. Assume 
that for every i = 1 , . . . ,  k and for all set systems Aj l , . . .  , Aji (where I < j l  < " "  < ji < 
k), we have for atl Al E Ajt, 1 = 1,... ,i 

]A1 nA2n...nAil ~ {1,... , i -  1). (3.1) 

Then X has a k-split with respect to these families. 



56 P.L. Erd6s 

Proof Let the underlying set be X = {xl, x2, . . .  ,Xn} and let X be ordered by the sub- 
scripts. We apply induction on k; our base case is k = 2, that is, Theorem 2.1. In 
the inductive step we assume the statement has already been proved for less than k set 
systems and we are proceeding to prove it for k set systems. 

For that end, let X1 = {rain(A1) : At C -,ql} and let X = X \X1. Furthermore, for 
every j = 2 , . . .  ,k, let N--j = {Aj:  a.i C ..qj} where A.j = a j  A X  = Aj  \ X1. We remark 
that from Theorem 2.1 we know that no Aj is empty, since the families -~1 and Aj satisfy 
condition (3.1) and so does condition (2.1). 

Claim: The set systems A 2 , . . . ,  Nk on the underlying set X satisfy condition (3.1). 

On the contrary, assume there are Ai2,... ,Aiz which violate condition (3.1). Then we 
have 

1 <_ [-AizN.-.N-Ait[ <_ I - 2 .  

Denote the previous intersection by H and letAi2,. . .  ,Air be the original sets with inter- 
section H. Let H \ H = {YI,. -. ,Yt } with maximum element yr. Since yt C X1, therefore, 
there exists an A1 C -~1 with rain(A1) = Yr. Let us check the intersection of A1 with H.  
This contains the element Yt but none of Y 1,.. .  ,Yt-1, because Yt was minimal in A1. 
Therefore, 

1 <_ IalNaizN. . . f" la i l]  <( I -  1, 

contradicting condition (3.1). This proves the claim and the correctness of  our inductive 
step as well. | 

We believe that a stronger form of this theorem is also true. 

Conjec ture  3.3. Let A1, A2, . . .  , ~ be set systems on the finite set X.  Assume that for  
i = 1, . . .  ,k and for every set systems A j l , . . .  ,Aji (where 1 < J1 < "'" < ji <_ k), we 
havefor allAt E A h, l = 11... ,i 

]A1 fqA2 f-) . . .nAil ¢ i -  1. (3.2) 

Then X has a k-split with respect to these set systems. 

We can prove the following weaker result: 

T h e o r e m  3.4. Let A1, A2 , . . . , Mk be set systems on the finite set X.  Assume (3.2) holds 
for  these families. Furthermore assume that for  every j = 1 , . . . ,  k and for  every ( k - l )- 
element subset Y of  X, 

there exists A j (Y)  C .~j such that Y C Aj (Y) .  (3.3) 

Then X has the k-splitting property with respect to these set systems. 

Proof Again, let the underlying set be X = {xt , . . .  ,Xn} and let X be ordered by the 
subscripts. We apply double induction on k and on the total number of  subsets in the 
set systems. Our base case is k = 2, where the total number of  the subsets is arbitrary. 
This case is exactly Theorem 2. t (since in the case of  k = 2 conditions (2.1) and (3.2) 
coincide). In the general case we assume the statement has already been proved for 
fewer than k set systems and for k families with fewer subsets in total. 
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LetA i E -ql be a subset such that 

max{rain(A) : A E A1} = min(A1). 

Let  

AI = -,ql \ {A E AI :  min(a 1) E A}. 

(We remark that the set system A1 may be empty.) Furthermore, let ~" = X \ {min(A 1) }, 

and for all A C .~, let A = A NX = A \ {rain(A1)} (for every i = 2 , . . .  ,k). Finally, for 
i > 1, let -¢/i = {A :A E N/}. 

Claim: The set systems A1, . . .  ,A~ on the underlying set X satisfy the conditions of 
Theorem 3.4. 

First of  all we claim that no element of any system Ai is the empty set. Assume the 
opposite: Let an A E --qi be empty. Then, by the construction, i > 1. Furthermore, we 
have removed exactly one element of X (namely, min(A1)), therefore, (since originally 
A was not empty) A n A 1 = {min(A 1 ) } would occur, contradicting condition (3.2). On 
the other hand, the set system A i (i ~ 1) may become a multiset. In that case the 
simplest solution is to keep exactly one copy of every multiple subset in Ai. At the end 
this copy will intersect Xi, and the same holds for every additional copy as well. 

By assumption, condition (3.3) trivially holds for every (k - 1)-element (and there- 
fore, every 0 < 1 < k element) subset o f F .  

To prove condition (3.2), assume the contrary: We have sets At E A--j1,... ,Ai E Aji, 
where 1 < j l  < "'" < ji <_ k such that 

I~ n~2n...n~ I = i -  1. (3.4) 

Let all Al's denote those sets from which Al was derived. Now, we distinguish two cases 
with respect to j l .  If j l  = 1, then min(A 1) ~ A1. Therefore, A1 = A1, and we have 

-A1 n . . .  N-Ai = At N.. .  nAi. 

The cardinality of  the right-hand side is i - 1, contradicting condition (3.2). 
The other case is j l  > 1. Then either [At n - - .  nAil = i - 1 or for all l the relation 

min(A 1) E At holds. In the first subcase we have a contradiction with Condition (3.2). 
In the second subcase we have at most k - 1 subsets, thus, i - 1 < k - 2. Now let us 
denote this intersection by K. Then AI n . . .  n A i -- K U {min(A1 ~ := K r. Choose an 
integer t E { 1 , . . . ,  Ix I} \ { jx, . . .  , j i} and take the subset At (K') E At. (We have such an 
element due to condition (3.3).) Now 

IA,(K ') hA1 n . . .  nAil  = IK'I = i 

contradicts condition (3.2). | 

Theorem 3.4 is not the only way in which one can vary the conditions of Theo- 
rem 3.2. Levon Khachatrian proved the following result [8]: 
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Theorem 3.5. Let AS, A2,... ~ be set systems on the finite set X. For l = 1 , . . . ,  k - 1, 

assume that f o r  arbitrary Ai C .~" where i = l, . . . , k, we have 

{At n . . .  NAtal f~ { 1 , . . .  , k -  l}.  (3.5) 

Furthermore, assume that f o r  every j = 2 , . . .  ,k, we have 

U A : X. (3.6) 
AEAj 

Then X has a k-split with respect to these set systems. 

It is also interesting to remark that P. Frankl and G.O.H. Katona [6] proved the 
following nice theorem which clearly has a close connection to our Conjecture: 

Theorem 3.6.[6] Let H be a set system on X.  Assume any k elements o f  H has a 

n o n - ( k -  1)-elementintersection fo r  every 1 < k < IHI. Then IHI _< txl, 

While this result supports our conjecture in a very special case, the real connection 
still should be discovered. 

4. k-splitting in Posets 

It is easy to see that Theorems 3.2 and 3.4 imply some direct generalizations of  Theo- 
rem 2.3. We give a possible generalization applying Theorem 3.2 here. 

Let P = (P, <)  be a finite partially ordered set. Let G be a generator system in P.  Let 
P1 , . . . ,  Pk be subsets of  P which satisfy P1 U---  U Pk C_ P \ G. The generator system G 
has the k-cone-splitting property with respect to those subsets if and only if there exists 
a partition G~ O G2 O. . .  O G~ = G such that, for every i = 1 , . . . ,  k, we have Pi C_ C(Gi). 
We say that G is k-cone-dense with respect to these subsets if, for every i = 1, . . .  ,k and 
1 <_ j l  < "'" < ji  <_ k taking arbitrary elements xl C PI, we have 

IC(x~) n . . . n  C(x,)no[ ¢ {1, . . .  , i -  1}. 

Theorem 4.1. Let the generator system G be k-cone-split with respect to the subsets 

P1, . . . , Pb Then G has a k-cone-split with respect to those subsets. 

The proof is based on Theorem 3.2 and is very similar to the proof  of Theorem 2.3. 
It is left to the diligent reader. We remark that if G is a maximal antichain and the 
subsets belong entirely (independently from each other) to D(A) or U(A),  then in the 
definitions and in the theorem, it is sufficient to consider operations U and D respec- 
tively, but we do not discuss it here in detail. 
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