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Abstract

It is known that in every finite poset 2 any maximal antichain § with some denseness
property may be partitioned into disjoint subsets S, and §,, such that the union of the downset
of §; with the upset of S, yields the entire poset: 2(S;)U%(S;) = #. Hereby we give analogues
results for infinite posets.
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1. Introduction
Let # = (P, <p) be an arbitrary (finite or infinite) partially ordered set (poset) and
let H be a subset of P. The downset 2(H) of the subset H is
2H)={xeP:Ise H(x <s)}.
The upset of H is
UH)={xeP:IseH(s <x)}.
We introduce also the sets
9*H)={xeP:Ise H(x < s)}
and

#*H)={xeP:3se H(s < x)}.
! Research was partially carried out on a visit to Bielefeld, Germany and partially supported by OTKA
under grant no. T 016358.
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A subset S < P is called antichain or Sperner system if no two elements of S are
comparable. An antichain S is maximal if for every antichain S’ < P, § = §’ implies
S = §'. It is easy to see that S is a maximal antichain iff

P(S)uu(S) = P. (1)

Definition. A subset H < P is called a generator if it satisfies condition (1) (S replaced
by H.. We say that a generator H satisfies the splitting property if there exists
a partition (H,, H,) of H into disjoint subsets such that

UH)UD(H,) =P )

holds. Finally, a subset H < P is called dense in the poset 2 if there is no open interval
{x,y)> ={z€ P: x <z < y} which intersects H in exactly one element.

In [1] Ahlswede et al. have shown that

Theorem 1. Let S be a maximal, dense antichain in the finite poset #. Then § satisfies
the splitting property.

In fact, there are a lot of finite posets where every maximal antichain satisfies the
splitting property. One example for this is the Boolean algebra of n elements. On the
other hand, there was already in paper [1] posed the question: what can someone say
about the infinite case? The first results in that direction were proved by Ahlswede and
Khachatrian in [2]. In this paper we prove several results on splitting properties of
infinite posets.

2. Results

In this paper a partially ordered set (poset) means always an arbitrary, finite or
infinite one, except it is stated otherwise.

Definition. Let S be a maximal antichain in the poset P. The well-ordering y on S is
called closed if for every element z e % *(S) there exists another (not necessarily
different) element y € % *(S) such that y <z and there is a maximal element of
S (concerning p) which is comparable to y:

3m:1x [2(y)nS]. A3)

Definition. For the maximal antichain S < P the splitting (S,, S, ) is (upper) minimal, if
there is no proper subset S; of S, such that # *(S) = #*(S3).

Theorem 2. Let S be a maximal, dense antichain in P. Let the well ordering u of S be
closed. Then S has a minimal splitting.
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Proof. At first we are going to determine a splitting then we will choose a minimal
subset S, which still ensures the splitting.

Let an element y € % *(S) be closed if the maximum described in (3) exists for y. Then
define the subposet 2#* as follows: the elements are P* = 2*(S)uSu{ye X *(S):
y is closed}, and take the restricted partial order from #2. (We use the same notation
for it.) It is quite clear that a minimal splitting of S concerning the poset #* is also
minimal splitting for 2.

Let

St = {max [@(y)nSJ:ye%.(S)} )

u

Furthermore, let S~ = S\S*. We claim that
D*(S7) = F*(S). (5)

To prove this assume the contrary. Then there is an x € 2*(S) such that x¢ 2*(S™).
Let s = min, [%(x)n S]. Since s¢S ~ therefore there exists an y € %4« (S) such that the
maximum in condition (3) is equal to s. But then

[2(NNSne(x)] =1

which is a contradiction since S is dense. This proves (5). Therefore, (S7,87) is
a splitting for 2.

Now we are going to choose a minimal subset S, of S* which still ensures a good
splitting. Define the well ordering u* as the restriction of u for S*. It is easy to see that
u* is closed on $*. Indeed, u is closed on S and each maximum taken from S is
included to S*. Let §* = {5;:{ < a} (that is s; <., iff £ < < a). We define S, by
transfinite induction. Suppose that § <o and for all y < we already decided,
whether s, belongs to S, or not. Let s4 € S, if and only if

dyeUm(S): s;=max[2(y)nS]

and
Z(y)n{s,eS:y<f} =0 (6

Furthermore let §; = S\S,. We claim that (S;, S;) is 2 minimal splitting in £* (and
therefore in 2 as well). The relation % *(S,) = # *(S™) is clear by definition, so we
have to prove the minimality of S,. Assume the contrary. Then there exists sz € S
such that % *(S;) = % *(S2\ {ss}). By definition there is a y €  *(S™) for which the
desired maximum is s and for which, by condition (6), y¢% *(s,) for all £ < . On the
other hand, for all £ < a where < £ we know that y¢% *(s;) by the maximality of s4.
Therefore, y¢% *(S,\ {s3}), a contradiction. This proves the minimality of S, and
finishes the proof of Theorem 2. [
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Theorem 1 is a consequence of this result, since in a finite poset every ‘well-ordering’
on S is closed (because S is finite). However, if we apply this proof to the finite case we
get back the original proof of Theorem 1.

We give two applications of Theorem 2. The first one is a generalization of
a theorem of Lovasz on property B. The finite hypergraph s# satisfies the so called
property Biff there is a partition (X, X ;) of the underlying set X such that any edge of
A intersects both classes. Lovasz proved [4, Problem 13.33] the following result.

Theorem 3 (Lovasz [4]). Suppose that for the finite hypergraph # there are no two
edges with exactly one element in common. Then 3 satisfies property B.

Let S be an arbitrary (finite or infinite) set, and o/ and £ be two set systems on it.
2 is called closed if there exists a well ordering 4 on S such that every B e # has
a maximal element in y. Furthermore the pair of these two set systems is called dense if
there are no 4 € &/ and B € # with precisely one element in common. Now we have

Corollary 4. Let of and B be a dense set system pair on the set S where & is closed on S.
T hen.

(i) there is a partition (X, X;) of S such that for any Ae o/ and Be % we have
XinA#@and X,nB #0.

(ii) Furthermore, the partition can be chosen such a way, that X, is minimal. (No
proper subset of it intersects every and each set in A.)

Proof. Let the poset 2 be defined as follows: the elements are P = o/ US U %, where
U*(S) =% and the relations are derived from the incidencies: s < B iff se€ B and
A < siff se A. It is easy to see that this poset satisfies the conditions of Theorem 2,
and the minimum splitting supplies the desired minimal partition (X;,X,). O

Since in the case of finite S every (well) ordering is closed, making < and # equal to
H# gives Lovasz’s result. Turning to the second application, Klimo proved (in [3]) the
following result.

Corollary S. Let the set system H# be a covering of the underlying set X. Suppose that
H is closed, that is there exists a well ordering p on H# such that for every xe X

dmax{He #:xeH} (7
n
holds. Then # contains a minimal covering of X.
Proof. In Corollary 4, let the underlying set S be equal to #, let &/ = (@ and finally let

28 be equal to X, For every x € X let the subset B be the set in condition (7). Then the
consequence of Corollary 4 supplies the required minimum cover. []
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To be honest we must remark that applying the proof of Theorem 2 for this special
case we get back the original proof of Klim6. We also remark, that in [2] Ahlswede
and Khachatrian proved Corollary 4(i) using Klimé’s result.

In his paper Klimoé found a necessary condition to be the covering # closed.

Theorem 6 (Klim6 [3, Theorem 9]). Let # be a covering of X such that there exists
a finite constant k that for every xe X

[{He#:xeH}| <k ®)
Then 3 is closed.

Applying this result we can prove:

Lemma 7. Let S be a maximal antichain in the poset P. Assume that

in U *(S) there exists an antichain S with % (S) = U *(S) 9)
and

VseX: |#()nS| <k (10)

Then there is a closed well ordering u on S.

Proof. Foreveryse Slet H(s) = #(s)nS. Then # = {H(s):s € S} is a covering on S.
Due to condition (10), condition (8) holds for this covering, therefore there is a well
ordering u on S which makes # closed. Consequently, the well ordering y is closed on
S in poset Z. [

Corollary 8. Let S be a maximal dense antichain in P satisfying conditions (9) and (10).
Then S has a minimum splitting.

Proof. Application of Lemma 7 gives that there exists a closed well ordering u. The
application of Theorem 2 finishes the proof. []

Furthermore, we give here another easy consequence of Theorem 2. Let Z denote
the poset of all subsets of the natural numbers ordered by inclusions.

Corollary 9. Let S be a maximal dense antichain in Z such that any element of % *(S) is
comparable some finite (ranked) element of S. Then S has a (minimal) splitting.

To prove this statement it is enough to notify that taking any well ordering u on
S this well ordering is closed. Indeed, if z € % *(S) then take a finite s out S with s < z
and take a finite subset y of z which contains s. Then there are just finitely many
elements of § which is comparable to y, therefore the maximum in condition (3) does
exist. Theorem 2 finishes the proof. [J

Finally, we give another application of Theorem 2.
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Definition. The subset H of 2 is d,-dense iff for any x, y € P where {x,y> nH # 0 we
have |{x,y>| # 1. Ahlswede and Khachatrian proved in [2] that:

Theorem 10 (Ahlswede and Khachatrian [2]). Let S be a maximal d,-dense antichain
in the poset 2 satisfying condition (9). Let the well ordering u be closed on S. Finally,
assume that

in 9*(S) there exists an antichain § with 2 (§) = 2*(S). (1)
Then S has a splitting.

We can improve this result simply to notify that applying Theorem 2 one can
conclude that in Theorem 10 § has a minimal splitting as well.

It is interesting to remark that Theorems 2 and 10 have different consequences. For
example, let 2 be the chain of all rational numbers taking two copies of 0. If S consists
of these two copies then Theorem 2 gives immediately that S has a splitting. Theorem
10 does not prove it. On the other hand, Theorem 10 proves immediately that each
maximal antichain in any finite Boolean algebra has a splitting since the existence of S,
S and the closed well ordering u is obvious in every finite poset.
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