

DISCRETE MATHEMATICS

Discrete Mathematics 163 (1997) 251-256

Note

Splitting property in infinite posets

Péter L. Erdős¹

Department of Computer Science, University of Agricultural Science, Gödöllő, Hungary

Received 10 February 1995; revised 3 October 1995

Abstract

It is known that in every finite poset \mathscr{P} any maximal antichain S with some denseness property may be partitioned into disjoint subsets S_1 and S_2 , such that the union of the downset of S_1 with the upset of S_2 yields the entire poset: $\mathscr{D}(S_1) \cup \mathscr{U}(S_2) = \mathscr{P}$. Hereby we give analogues results for infinite posets.

Keywords: Maximal antichain; Infinite poset

AMS classifications: 05D05, 06A07

1. Introduction

Let $\mathscr{P} = (P, <_P)$ be an arbitrary (finite or infinite) partially ordered set (poset) and let H be a subset of P. The downset $\mathscr{D}(H)$ of the subset H is

$$\mathscr{D}(H) = \{ x \in P : \exists s \in H (x \le s) \}.$$

The upset of H is

$$\mathscr{U}(H) = \{ x \in P : \exists s \in H (s \leqslant x) \}.$$

We introduce also the sets

$$\mathscr{D}^*(H) = \{ x \in P : \exists s \in H(x < s) \}$$

and

$$\mathscr{U}^*(H) = \{ x \in P \colon \exists s \in H(s < x) \}.$$

¹ Research was partially carried out on a visit to Bielefeld, Germany and partially supported by OTKA under grant no. T 016358.

A subset $S \subset P$ is called *antichain* or *Sperner system* if no two elements of S are comparable. An antichain S is *maximal* if for every antichain $S' \subset P$, $S \subset S'$ implies S = S'. It is easy to see that S is a maximal antichain iff

$$\mathscr{D}(S) \cup \mathscr{U}(S) = P. \tag{1}$$

Definition. A subset $H \subset P$ is called a *generator* if it satisfies condition (1) (S replaced by H.). We say that a generator H satisfies the *splitting property* if there exists a partition (H_1, H_2) of H into disjoint subsets such that

$$\mathscr{U}(H_1) \cup \mathscr{D}(H_2) = P \tag{2}$$

holds. Finally, a subset $H \subset P$ is called *dense* in the poset \mathcal{P} if there is no *open interval* $\langle x, y \rangle = \{z \in P : x < z < y\}$ which intersects H in exactly one element.

In [1] Ahlswede et al. have shown that

Theorem 1. Let S be a maximal, dense antichain in the finite poset \mathcal{P} . Then S satisfies the splitting property.

In fact, there are a lot of finite posets where every maximal antichain satisfies the splitting property. One example for this is the Boolean algebra of n elements. On the other hand, there was already in paper [1] posed the question: what can someone say about the infinite case? The first results in that direction were proved by Ahlswede and Khachatrian in [2]. In this paper we prove several results on splitting properties of infinite posets.

2. Results

In this paper a partially ordered set (poset) means always an arbitrary, finite or infinite one, except it is stated otherwise.

Definition. Let S be a maximal antichain in the poset P. The well-ordering μ on S is called *closed* if for every element $z \in \mathcal{U}^*(S)$ there exists another (not necessarily different) element $y \in \mathcal{U}^*(S)$ such that $y \leq z$ and there is a maximal element of S (concerning μ) which is comparable to y:

$$\exists \max_{\mu} \left[\mathscr{D}(y) \cap S \right]. \tag{3}$$

Definition. For the maximal antichain $S \subset P$ the splitting (S_1, S_2) is (upper) minimal, if there is no proper subset S_3 of S_2 such that $\mathcal{U}^*(S) = \mathcal{U}^*(S_3)$.

Theorem 2. Let S be a maximal, dense antichain in P. Let the well ordering μ of S be closed. Then S has a minimal splitting.

Proof. At first we are going to determine a splitting then we will choose a minimal subset S_2 which still ensures the splitting.

Let an element $y \in \mathcal{U}^*(S)$ be *closed* if the maximum described in (3) exists for y. Then define the subposet \mathscr{P}^* as follows: the elements are $P^* = \mathscr{D}^*(S) \cup S \cup \{y \in \mathcal{U}^*(S): y \text{ is closed}\}$, and take the restricted partial order from \mathscr{P} . (We use the same notation for it.) It is quite clear that a minimal splitting of S concerning the poset \mathscr{P}^* is also minimal splitting for \mathscr{P} .

Let

$$S^{+} = \left\{ \max_{u} \left[\mathscr{D}(y) \cap S \right] : y \in \mathscr{U}_{\mathscr{P}^{*}}(S) \right\}. \tag{4}$$

Furthermore, let $S^- = S \setminus S^+$. We claim that

$$\mathscr{D}^*(S^-) = \mathscr{D}^*(S). \tag{5}$$

To prove this assume the contrary. Then there is an $x \in \mathcal{D}^*(S)$ such that $x \notin \mathcal{D}^*(S^-)$. Let $s = \min_{\mu} [\mathcal{U}(x) \cap S]$. Since $s \notin S^-$ therefore there exists an $y \in \mathcal{U}_{\mathscr{P}^*}(S)$ such that the maximum in condition (3) is equal to s. But then

$$|\mathscr{D}(y) \cap S \cap \mathscr{U}(x)| = 1$$

which is a contradiction since S is dense. This proves (5). Therefore, (S^-, S^+) is a splitting for \mathcal{P} .

Now we are going to choose a minimal subset S_2 of S^+ which still ensures a good splitting. Define the well ordering μ^* as the restriction of μ for S^+ . It is easy to see that μ^* is closed on S^+ . Indeed, μ is closed on S and each maximum taken from S is included to S^+ . Let $S^+ = \{s_{\xi} : \xi < \alpha\}$ (that is $s_{\xi} <_{\mu^*} s_{\eta}$ iff $\xi < \eta < \alpha$). We define S_2 by transfinite induction. Suppose that $\beta < \alpha$ and for all $\gamma < \beta$ we already decided, whether s_{γ} belongs to S_2 , or not. Let $s_{\beta} \in S_2$ if and only if

$$\exists y \in \mathcal{U}_{\mathcal{P}^*}(S): \quad s_{\beta} = \max_{\mu} \left[\mathcal{D}(y) \cap S \right]$$

and

$$\mathscr{D}(y) \cap \{s_{\gamma} \in S_2 \colon \gamma < \beta\} = \emptyset. \tag{6}$$

Furthermore let $S_1 = S \setminus S_2$. We claim that (S_1, S_2) is a minimal splitting in \mathscr{P}^* (and therefore in \mathscr{P} as well). The relation $\mathscr{U}^*(S_2) = \mathscr{U}^*(S^+)$ is clear by definition, so we have to prove the minimality of S_2 . Assume the contrary. Then there exists $s_\beta \in S_2$ such that $\mathscr{U}^*(S_2) = \mathscr{U}^*(S_2 \setminus \{s_\beta\})$. By definition there is a $y \in \mathscr{U}^*(S^+)$ for which the desired maximum is s_β and for which, by condition (6), $y \notin \mathscr{U}^*(s_\xi)$ for all $\xi < \beta$. On the other hand, for all $\xi < \alpha$ where $\beta < \xi$ we know that $y \notin \mathscr{U}^*(s_\xi)$ by the maximality of s_β . Therefore, $y \notin \mathscr{U}^*(S_2 \setminus \{s_\beta\})$, a contradiction. This proves the minimality of S_2 and finishes the proof of Theorem 2. \square

Theorem 1 is a consequence of this result, since in a finite poset every 'well-ordering' on S is closed (because S is finite). However, if we apply this proof to the finite case we get back the original proof of Theorem 1.

We give two applications of Theorem 2. The first one is a generalization of a theorem of Lovász on property B. The finite hypergraph \mathcal{H} satisfies the so called property B iff there is a partition (X_1, X_2) of the underlying set X such that any edge of \mathcal{H} intersects both classes. Lovász proved [4, Problem 13.33] the following result.

Theorem 3 (Lovász [4]). Suppose that for the finite hypergraph \mathcal{H} there are no two edges with exactly one element in common. Then \mathcal{H} satisfies property B.

Let S be an arbitrary (finite or infinite) set, and \mathscr{A} and \mathscr{B} be two set systems on it. \mathscr{B} is called *closed* if there exists a well ordering μ on S such that every $B \in \mathscr{B}$ has a maximal element in μ . Furthermore the pair of these two set systems is called *dense* if there are no $A \in \mathscr{A}$ and $B \in \mathscr{B}$ with precisely one element in common. Now we have

Corollary 4. Let \mathcal{A} and \mathcal{B} be a dense set system pair on the set S where \mathcal{B} is closed on S. Then.

- (i) there is a partition (X_1, X_2) of S such that for any $A \in \mathcal{A}$ and $B \in \mathcal{B}$ we have $X_1 \cap A \neq \emptyset$ and $X_2 \cap B \neq \emptyset$.
- (ii) Furthermore, the partition can be chosen such a way, that X_2 is minimal. (No proper subset of it intersects every and each set in \mathcal{B} .)

Proof. Let the poset \mathscr{P} be defined as follows: the elements are $P = \mathscr{A} \cup S \cup \mathscr{B}$, where $\mathscr{U}^*(S) = \mathscr{B}$ and the relations are derived from the incidencies: s < B iff $s \in B$ and A < s iff $s \in A$. It is easy to see that this poset satisfies the conditions of Theorem 2, and the minimum splitting supplies the desired minimal partition (X_1, X_2) . \square

Since in the case of finite S every (well) ordering is closed, making $\mathcal A$ and $\mathcal B$ equal to $\mathcal H$ gives Lovász's result. Turning to the second application, Klimó proved (in [3]) the following result.

Corollary 5. Let the set system \mathcal{H} be a covering of the underlying set X. Suppose that \mathcal{H} is closed, that is there exists a well ordering μ on \mathcal{H} such that for every $x \in X$

$$\exists \max_{\mu} \{ H \in \mathcal{H} : x \in H \} \tag{7}$$

holds. Then \mathcal{H} contains a minimal covering of X.

Proof. In Corollary 4, let the underlying set S be equal to \mathcal{H} , let $\mathcal{A} = \emptyset$ and finally let \mathcal{B} be equal to X. For every $x \in X$ let the subset B be the set in condition (7). Then the consequence of Corollary 4 supplies the required minimum cover. \square

To be honest we must remark that applying the proof of Theorem 2 for this special case we get back the original proof of Klimó. We also remark, that in [2] Ahlswede and Khachatrian proved Corollary 4(i) using Klimó's result.

In his paper Klimó found a necessary condition to be the covering \mathcal{H} closed.

Theorem 6 (Klimó [3, Theorem 9]). Let \mathcal{H} be a covering of X such that there exists a finite constant k that for every $x \in X$

$$|\{H \in \mathcal{H} : x \in H\}| \le k. \tag{8}$$

Then *H* is closed.

Applying this result we can prove:

Lemma 7. Let S be a maximal antichain in the poset P. Assume that

in
$$\mathcal{U}^*(S)$$
 there exists an antichain \overline{S} with $\mathcal{U}(\overline{S}) = \mathcal{U}^*(S)$ (9)

and

$$\forall s \in X : \quad |\mathscr{U}(s) \cap \overline{S}| \leqslant k. \tag{10}$$

Then there is a closed well ordering μ on S.

Proof. For every $s \in S$ let $H(s) = \mathcal{U}(s) \cap \overline{S}$. Then $\mathcal{H} = \{H(s) : s \in S\}$ is a covering on \overline{S} . Due to condition (10), condition (8) holds for this covering, therefore there is a well ordering μ on S which makes \mathcal{H} closed. Consequently, the well ordering μ is closed on S in poset \mathcal{P} . \square

Corollary 8. Let S be a maximal dense antichain in \mathcal{P} satisfying conditions (9) and (10). Then S has a minimum splitting.

Proof. Application of Lemma 7 gives that there exists a closed well ordering μ . The application of Theorem 2 finishes the proof. \square

Furthermore, we give here another easy consequence of Theorem 2. Let \mathbb{Z} denote the poset of all subsets of the natural numbers ordered by inclusions.

Corollary 9. Let S be a maximal dense antichain in \mathbb{Z} such that any element of $\mathcal{U}^*(S)$ is comparable some finite (ranked) element of S. Then S has a (minimal) splitting.

To prove this statement it is enough to notify that taking any well ordering μ on S this well ordering is closed. Indeed, if $z \in \mathcal{U}^*(S)$ then take a finite s out S with s < z and take a finite subset y of z which contains s. Then there are just finitely many elements of S which is comparable to y, therefore the maximum in condition (3) does exist. Theorem 2 finishes the proof. \square

Finally, we give another application of Theorem 2.

Definition. The subset H of \mathscr{P} is d_1 -dense iff for any $x, y \in P$ where $\langle x, y \rangle \cap H \neq \emptyset$ we have $|\langle x, y \rangle| \neq 1$. Ahlswede and Khachatrian proved in [2] that:

Theorem 10 (Ahlswede and Khachatrian [2]). Let S be a maximal d_1 -dense antichain in the poset \mathcal{P} satisfying condition (9). Let the well ordering μ be closed on S. Finally, assume that

in
$$\mathscr{D}^*(S)$$
 there exists an antichain S with $\mathscr{D}(S) = \mathscr{D}^*(S)$. (11)

Then S has a splitting.

We can improve this result simply to notify that applying Theorem 2 one can conclude that in Theorem 10 S has a minimal splitting as well.

It is interesting to remark that Theorems 2 and 10 have different consequences. For example, let $\mathscr P$ be the chain of all rational numbers taking two copies of 0. If S consists of these two copies then Theorem 2 gives immediately that S has a splitting. Theorem 10 does not prove it. On the other hand, Theorem 10 proves immediately that each maximal antichain in any finite Boolean algebra has a splitting since the existence of \overline{S} , S and the closed well ordering μ is obvious in every finite poset.

References

- [1] R. Ahlswede, P.L. Erdős and N. Graham, A splitting property of maximal antichains, Combinatorica.
- [2] R. Ahlswede and L. Khachatrian, Splitting properties in partially ordered sets and set systems, Sonderforschungsbereich 343, University Bielefeld, Preprint 94-080 (1994) 1-19.
- [3] J. Klimó, On the minimal covering of infinite sets, Discrete Appl. Math. 45 (1993) 161-168.
- [4] L. Lovász, Combinatorial Problems and Exercises (North-Holland, Amsterdam, 1979).