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A maximal antichain A of poset P splits if and only if there is a set B ⊂ A such that
for each p ∈ P either b ≤ p for some b ∈ B or p ≤ c for some c ∈ A \B. The poset P is
cut-free if and only if there are no x < y < z in P such that [x,z]P = [x,y]P ∪ [y,z]P .
By [1] every maximal antichain in a finite cut-free poset splits. Although this statement
for infinite posets fails (see [2])) we prove here that if a maximal antichain in a cut-free
poset “resembles” to a finite set then it splits. We also show that a version of this theorem
is just equivalent to Axiom of Choice.
We also investigate possible strengthening of the statements that “A does not split”

and we could find a maximal strengthening.

1. Introduction

Given a poset P=(P,<) and subset A⊂P we define the upset A↑ and the
downset A↓ of A as follows:

A↑ = {p ∈ P : ∃a ∈ A a ≤P p}

and
A↓ = {p ∈ P : ∃a ∈ A p ≤P a}.

An antichain in P is a set of pairwise incomparable elements. If A is a
maximal antichain in P then clearly P =A↑ ∪A↓. We say that A splits if
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there is B⊂A such that P =B↑∪(A\B)↓. Some maximal antichain may split
in a trivial way: e.g. P =A↑. Some antichains can not split for the following
trivial reason: there are x,y,z ∈P such that x<P y <P z and y is the only
element in the antichain which is comparable to x or z.

Let us remark that the splitting property can be considered as a gener-
alization of property-B, for an explanation see [7].

You can not expect an “easy” characterization of the maximal antichains
in finite posets which splits because this question is NP-complete, see [1].
However in the same paper it was also shown that if a finite poset P has a
property which is just a bit stronger than the lack of above type obstacle
points y then every maximal antichain of P splits. To recall that result we
should introduce some new notions.

An element y∈P is called cutting point if and only if there are x,z ∈P
such that x<P y<P z and [x,z] = [x,y]∪ [y,z]. (The interval [x,z] ={y∈P :
x≤y≤z}.) We say that P is cut-free if there is no cutting point in it. (This
property was called dense, see e.g. [1], but the current wording seems to be
more adequate.)

Theorem 1.1 ([1, Theorem 3.1]). Let P be a finite cut-free poset. Then
every maximal antichain A splits.

This result yields immediately following question: what about infinite
posets?

Ahlswede and Khachatrian showed ([2]) that the plain generalization
of Theorem 1.1 for infinite posets fails: the finite-subset-lattice 〈[ω]<ω ,⊂〉,
which is cut-free, contains an infinite antichain which does not split.

In Section 2 we prove Theorem 2.7 saying that if a maximal antichain of
an infinite poset satisfies some extra assumptions than it splits. This result
yield that if a maximal antichain of a cut-free poset “resembles” a finite
antichain then it splits (see Theorem 2.10).

On the other hand, in Section 3 we show that the non-splitting behavior
of the poset 〈[ω]<ω ,⊂〉 is not exceptional: if an infinite poset is rich enough
in elements then it should contain non-splitting antichains, see Theorem 3.6.
Let us recall that Ahlswede and Khachatrian use number theory in [2] to
construct a non-splitting antichain; our proof is purely combinatorial. Be-
sides this result in Section 3 we also investigate possible strengthening of the
statements that “A does not split”. To formulate these results we introduce
the following notation. If P is a poset and A⊂P is a maximal antichain put

S(A) = {〈B,C〉 : B ⊂ A,C ⊂ A,P = B↑ ∪ C↓}.
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Clearly A splits if and only if there is 〈B,C〉 ∈ S(A) with B ∩C = ∅. The
maximal strengthening of the above mention result of Ahlswede and Khacha-
trian would be a cut-free poset P and a maximal antichain A ⊂ P with
S(P )= {〈A,A〉}, but Corollary 3.3 says that this is not possible. In Theo-
rem 3.8 we show that Theorem 3.6 is the maximal possible strengthening.

Quite surprisingly, the technique we developed to construct non-splitting
antichain can be used to build splitting antichains as well, see Theorem 3.9.

Our notation is standard. Put A�=A↓∪A↑. If x∈P write x↑ for {x}↑,
x↓ for {x}↓ and x� for {x}�. If A⊂P and P is not clear form the context
we write A↑P for A↑, and A↓P for A↓. On the poset P we always think the
poset P=(P,<).

2. Positive theorems

Definition 2.1. Let P be a poset and A⊂P be a maximal antichain. An
element x ∈ A↓ \A is high if and only if there is no y ∈ x↑∩ (A↓ \A) with
y↑ ∩A � x↑ ∩A. An element z ∈ A↑ \A is low if and only if there is no
v∈z↓∩(A↑ \A) with v↓∩A�z↓∩A.

Lemma 2.2. If P is a poset, A ⊂ P is a maximal antichain which does
not contain cutting points, x ∈ A↓ \A is high and z ∈ A↑ \A is low then
|[x,z]∩A| �=1.

Proof. Assume on the contrary that [x,z]∩A={y}. Since y is not a cutting
point there is u∈ [x,z] such that y and u are incomparable. By the indirect
assumption we have u /∈A. If u ∈ A↑ then u↓ ∩A ⊂ (z↓ ∩A)\{y}, i.e. z is
not low. Hence u∈A↓. But then u↑∩A⊂ (x↑∩A)\{y}, i.e. x is not high.
Contradiction.

Definition 2.3. Given a family A⊂P(X) a well-ordering ≺ of X is called
maximizing well-ordering for A if and only if max≺A exists for each A∈A.
The family A is said to be maximizing if and only if there is a maximizing
well-ordering for A.

For example, the family [X]<ω is clearly maximizing because any well-
ordering of X is maximizing for this family.

If A⊂P(X) and ≺ is a well-ordering of X let MIN(A,≺)={min≺A :A∈
A} and MAX(A,≺)={max≺A :A∈A and max≺A exists}.

In [9] Klimó gave a characterization of maximizing families. Although he
used a different terminology we can formulate his result as follows:
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Theorem 2.4 ([9, Theorem 7]). A⊂P(X) is a maximizing family if and
only if there is a function f :A→X such that f(A)∈A for each A∈A and
there is no sequence 〈Ai : i<ω〉 in A such that f(Ai) �=f(Ai+1)∈Ai for each
i<ω and the set {Ai : i<ω} is infinite.

Definition 2.5. Given a family A ⊂ P(X) a set Y ⊂ X is called a point
cover if and only if A∩Y �=∅ for each A∈A. Y is a minimal point cover if
and only if it is a point cover but no proper subset of Y is a point cover.

The following lemma gives us a method to construct splits of certain
antichains in certain posets.

Lemma 2.6. Let P be a poset and A⊂P be a maximal antichain. Assume
that there are two functions B and B such that

(i) B:A↑ \A→P(A) and ∅ �=B(y)⊂A∩y↓ for each y∈A↑ \A,
(ii) B:A↓ \A→P(A) and ∅ �=B(x)⊂A∩x↑ for each x∈A↓ \A,
(iii) |B(y)∩B(x)| �=1 for each x∈A↓ \A and y∈A↑ \A
Write B={B(x) :x∈A↓ \A} and B={B(x) :x∈A↑ \A}.
(1) If ≺ is a maximizing well-ordering of B thenMIN(B,≺)∩MAX(B,≺)=∅,

and so A splits.
(2) If C⊂A is a minimal point cover of B then 〈A\C,C〉∈S(A) and so A

splits.

Proof. (1) Indeed, max≺B(x)=min≺B(y) would imply that B(x)∩B(y)=
{max≺B(x)} which contradicts to property (iii) in the choice of B and B.

Since clearly A↓\A⊂MIN(B,≺)↓ and A↑\A⊂MAX(B,≺)↑ we have that
A splits.

(2) Since C is a point cover we have A↓ \A ⊂ C↓. To prove the other
property assume on the contrary that A↑\A �⊂(A\C)↑, i.e. there is y∈A↑\A
such that B(y) ⊂ C. Pick an arbitrary z ∈ B(y). Since C \ {z} is not a
point cover of B there is x ∈ A↓ \A such that B(x)∩C = {z}. But then
{z}⊂B(x)∩B(y)⊂B(x)∩C={z} which contradicts (iii).

Theorem 2.7. Let P be a poset and A⊂P be a maximal antichain which
does not contain cutting points. Assume that

(i) for each y∈A↑ \A there is a low z∈A↑ \A with z≤y,
(ii) for each x∈A↓ \A there is a high t∈A↓ \A such that x≤ t,
If either

(1) the family {x↑∩A :x is high } is maximizing or
(2) the family {x↑∩A :x is high } has a minimal point cover
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then A splits.

Proof. Let L = {y ∈ A↑ \A : y is low} and H = {x ∈ A↓ \A : x is high}.
Let M =A∪H ∪L and let Q be the subordering of P with the underlining
set M . Since [x,y]⊂M for each {x,y}∈ [M ]2, (i.e. M is “convex” in P ) the
antichain A does not contain cutting points in Q.

Since A is clearly a maximal antichain in Q, every element of H is high
in Q and every element of L is low. Thus, by Lemma 2.2, we have

(1) |[x, y] ∩A| �= 1 for each x ∈ H and y ∈ L.

Let B(x)=x↑∩A and B(y)=y↓∩A. We want to apply Lemma 2.6. Properties
(i)–(ii) are clear. Since B(x)∩B(y)=[x,y]∩A, property (1) implies that the
functions B and B satisfies Lemma 2.6.(iii).

Since (1) implies Lemma 2.6.(1), and (2) implies Lemma 2.6.(2) hence
we have that A splits in Q: there is B⊂A such that B↑=L and (A\B)↓=H
in Q. Since L↑=A↑ \A in P and H↓=L↓ \A in P we have that B↑=A↑ \A
and (A\B)↓=A↓ \A in P . Thus B witnesses that A splits.

Let us remark the nontrivial fact that condition (1) is stronger than (2):
as Klimó proved in [9] a maximizing family A has a minimal point cover.
However we included the statement with proof here because you can get two
different splits for A when {x↑∩A :x is high } is maximizing: one applying
Lemma 2.6.(1) directly and the other by finding a minimal point cover for
{x↑∩A :x is high } and then applying Lemma 2.6.(2).

A poset P = 〈P,<〉 is called well-founded (or satisfies the Descending
Chain Condition), if there exists no infinite descending chain: if x1 ≥ x2 ≥
·· ·≥xn≥ . . . then there exists an integer i such that xi=xj for all j>i.

Theorem 2.8. Let P be a well-founded poset and let A be a maximal,
cutting point free antichain, such that for every p ∈ A↓ \ A there exists
element x(p) ∈ A↓ \A with p ≤ a(p) such that a(p)↑ ∩A is finite. Then A
splits.

Proof. We want to apply Theorem 2.7. Property (ii) holds by assumptions.
Moreover x↑∩A is finite for each high elements and so Property (1) holds.
The minimal elements of A↑ \A are all low, hence Property (i) also holds.

The next observation provides a very useful tool to manipulate the an-
tichain pairs in S(A) of maximal antichains in cut-free posets.

Lemma 2.9. Assume that P is a poset, A⊂P is a maximal antichain, and
〈B,C〉∈S(A). Then for each y∈B∩C if y is not a cutting point then either
〈B \{y},C〉∈S(A) or 〈B,C \{y}〉∈S(A).
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Proof. Assume on the contrary that this is not true, so there are x,z ∈P
such that x < y < z, x /∈ (C \ {y})↓ and z /∈ (B \ {y})↑. Since y is not a
cutting point, there is t ∈ [x,z] such that y and t are incomparable. Then
t∈(B\{y})↑∪(C\{y})↓. If y′<t for some y′∈B\{y} then y′<z, contradiction.
If t<y′ for some y′∈C \{y} then x<y′, contradiction.

Theorem 2.10. Let A be a maximal antichain in the poset P such that A
does not contain cutting points and

|(x�) ∩A| < ω for all x ∈ P,

then A splits.

This result is a direct generalization of Theorem 1.1 ([1]). We give here
two different proofs. However it is not clear yet the complexity of these
methods to find a splitting (at least of the second one) in the case of finite
cut-free posets. It is also a question whether all possible splitting arise along
the second method.

First proof. Consider the poset Q(P )= 〈S(A),≺〉 where 〈B,C〉≺〈B′,C ′〉
if and only if B⊃B′ and C⊃C ′.

We want to apply the Zorn lemma to find a maximal elements of Q(P ).
So let 〈〈Bξ ,Cξ〉 :ξ<η〉 be an increasing chain in Q(P ). Put B=∩{Bξ :ξ<η}
and C=∩{Cξ :ξ<η}. Let x∈P be arbitrary. Since (x�)∩A is finite there is
ζ<η such that (x�)∩B=(x�)∩Bζ and (x�)∩C=(x�)∩Cζ . Since x∈B↑

ζ ∪C
↓
ζ

we have x∈B↑∪C↓. Since x was arbitrary we have 〈B,C〉 ∈S(A), and so
〈B,C〉 is the required upper bound of 〈〈Bξ,Cξ〉 :ξ<η〉.

Thus the Zorn lemma implies that Q(P ) has a maximal element 〈B,C〉.
But then B∩C=∅ by Lemma 2.9.

Second proof. Apply Theorem 2.7. Since (1) and (2) clearly holds we can
apply that result to get that A splits.

Finally we give one more application of Theorem 2.7: we prove a theorem
on the subset lattice of the natural numbers.

Let A be a maximal antichain in P(ω) and let x ∈ (A↓ \A). Denote
Card(A) the set of the cardinalities present in A, and denote Cardx(A) the
set of cardinalities of those elements in A which are comparable to x. We
say that this x behaves well if |Cardx(A)|=ω then ω∈Cardx(A) as well. If,
for example, |Card(A)| is finite, then every element behaves well.

Theorem 2.11. Let A be a maximal antichain in P(ω). Assume that
(2) ∀y ∈ (A↑ \ A) : [y↓ ∩A ∩ [ω]<ω] �= ∅,
furthermore every element x∈A↓ \A behaves well. Then A splits.
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Proof. Let I = A∩ [ω]ω, F =A∩ [ω]<ω and Q= P(ω)\ I↓. Clearly F is a
maximal antichain in Q. Next we show that:

Claim 2.12. For each c∈(F ↓ \F )∩Q there is a high h∈Q with c⊂h.

Cardc(F ) is finite, because c behaves well. Write n=maxCardc(F ). Fix
f ∈ F ∩ c↑ ∩ [ω]n and pick h ∈ [ω]n−1 with c ⊂ h ⊂ f . Then h is high in Q
because it is maximal in (F ↓ \F )∩Q.

Claim 2.13. For each b ∈ F ↑ \F there is a low % ∈Q such that %⊂ b and
%↓∩F is finite.

Indeed, let j=min{|f | :f ∈F ∩b↓}, pick f ∈b↓∩F ∩ [ω]j and let %∈ [ω]j+1

with f ⊂ %⊂ b. Then % is minimal in F ↓ \F hence it is low in Q. Moreover
%↓∩F is clearly finite.

Hence we can apply Theorem 2.7 for Q−1 (the dual of poset Q) and F
to yield that F splits in Q: there is G⊂ F such that G↑ \G= F ↑ \G and
F \G↓=F ↓.

Then G shows that A splits in P . Indeed, F ↑ =A↑ because of assump-
tion (2). Hence G↑=A↑ in P . On the other hand, if c∈A↓ then either c∈Q
and so c∈(F \G)↓, or c↑∩A∩ [ω]ω �=∅ and so c∈(A\F )↓⊂(A\G)↓.

3. Negative theorems

In this Section we study maximal antichains of countable posets, together
the possible structures of non-splitting maximal antichains.

To start we give some consequences of Lemma 2.9. At first we have:

Corollary 3.1. If a maximal antichain A does not split in a cut-free poset
P then |B∩C|=ω for each 〈B,C〉∈S(A).

Which in turns gives a direct generalization of Theorem 1.1:

Corollary 3.2. Every finite maximal antichain splits in every cut-free
poset.

We think that in the future Lemma 2.9 will provide the standard proof
of Theorem 1.1. Lemma 2.9 also shows that in cut-free posets there are no
maximal antichains A with maximally degenerated S(A):

Corollary 3.3. There exits no cut-free poset P such that S(A)={〈A,A〉}
for some maximal antichain A⊂P .
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On the other hand, in Theorem 3.6 below we show that the structure of
S(A) can be quite degenerated: it might happen that every pair in S(A)
contains A itself. To formulate this result we need one more definition.

Definition 3.4. A poset P is loose if and only if for each x ∈ P and F ∈
[P ]<ω if x /∈F ↑ then there is y∈x↑ \{x} such that y �∈F ↓∪F ↑.

Assume that P is loose and p ∈ P . Let F = ∅. Then p /∈ F ↑ hence by
looseness there is y∈P with y∈x↑ \{x}, i.e. y>x. Thus we have:
Remark. A loose poset does not have maximal elements. Especially, it is
infinite.

Claim 3.5. 〈[ω]<ω ,⊂〉 is loose.

Proof. Indeed, if x ∈ [ω]<ω and F is a finite subset of [ω]<ω with x /∈ F ↑

then let n be a natural number not belonging to x or any set in F, and put
y=x∪{n}. Let f ∈F . Then ∅ �=f \x=f \y hence y /∈F ↑. Moreover, n∈y\f
and so y /∈F ↓.

Theorem 3.6. Assume that P=〈P,≤〉 is a countable, loose poset. Then P
contains a maximal antichain A such that

(i) if 〈B,C〉∈S(A) then B=A,
(ii) if A is finite then ∩{C :〈B,C〉∈S(A)} �=∅,
(iii) if A is infinite then so is C for each 〈B,C〉∈S(A),
(iv) if P is cut-free then A is infinite.

Proof. Let 〈pn :n<ω〉 be an enumeration of the elements of P . By induction
on n∈ω we choose elements xn,yn,zn∈P with xn<yn<zn as follows.

Let mn =min{m : pm �∈ {yi : i < n}↑∪{yi : i < n}↓}. If mn is not defined
then the we stop the construction. Assume that mn is defined. Since yi<zi
we have pmn /∈{yi,zi : i < n}↑. Furthermore since P is loose there is xn ∈P
with pmn<xn such that

xn /∈ {yi, zi : i < n}↑ ∪ {yi, zi : i < n}↓.

Applying the looseness of P once more there is yn ∈ P with xn < yn such
that

(3) yn /∈ {yi, zi : i < n}↑ ∪ {yi, zi : i < n}↓.

Applying the looseness of P a third time there is zn ∈P with yn<zn such
that

(4) zn /∈ {yi, zi : i < n}↑ ∪ {yi, zi : i < n}↓.
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We claim that A={yn :n<ω,yn is defined} has the required properties.
First observe, that A is an antichain by Property (3).

By induction on n we can see that mn ≥n and so pn∈{yi : i<n}↑∪{yi :
i<n}↓∪yn

↓, hence the antichain A is maximal.
Assume that 〈B,C〉∈S(A). Let n be arbitrary such that mn is defined.

By Property (4) we have zn �∈ {yi : i<n}↑∪{yi : i<n}↓. By Property (3) we
have zn /∈{yi : i>n}↑∪{yi : i>n}↓. Since yn<zn we have zn �∈A↓∪(A\{yn})↑.
Thus zn∈B↑∪C↓ implies then yn∈B. Hence B=A. (That is (i) holds.)

Since pmn < yn we have pmn /∈A↑. By the choice of mn we have pmn /∈
{yi : i<n}↑∪{yi : i<n}↓. Thus pnm ∈{yk ∈C : k≥n}↓. Hence {m :xm ∈C}
is cofinal in {m : xm is defined}. Therefore yn ∈C provided that A is finite
and n=max{n′ :mn′ is defined} and so (ii) holds, and C is infinite provided
that A is infinite. (That is (iii) holds.) Let’s remark that one can prove (iii)
by observing that if C would be finite then Lemma 2.9 and Property (i)
together would prove that 〈B,∅〉∈S(A), a clear contradiction.

Properties (ii) and (iii) imply that A does not split. Since, according to
Corollary 3.2, finite antichains split in a cut-free posets we have that A is
infinite provided that P is cut-free. (That is (iv) holds.)

Since 〈[ω]<ω ,⊂〉 is loose and cut-free, we can apply Theorem 3.6 to get
the following corollary.

Corollary 3.7. 〈[ω]<ω ,⊂〉 contains a maximal antichain A such that if
〈B,C〉∈S(A) then A=B and C is infinite, and so A does not split.

This result is a farfetched generalization of the construction given by
Ahlswede and Khachatrian in [2].

The following result shows that even more can be said about maximal
antichains A in cut-free posets, where every pair in S(A) contains A itself,
showing also that Theorem 3.6 is sharp in a certain sense.

Theorem 3.8. Assume that P=〈P,≤〉 is a countable, cut-free poset, A⊂P
is a maximal antichain such that A=B for each 〈B,C〉∈S(A). Then there
is 〈A,C〉∈S(A) with |A\C|=ω.

Proof. Since 〈A\{a},A〉 /∈S(A) we can pick za ∈ P such that a < za and
za /∈(A\{a})↑ for each a∈A.

We claim that x↑ ∩A is infinite for each x ∈A↓ \A and this statement
finishes the proof: Indeed, in this case there is C∈ [A]ω such that |(x↑∩A)∩
C|= |(x↑∩A)\C|=ω for each x∈A↓\A, and so 〈A,C〉∈S(A) with |A\C|=ω.
(This is the well-known Bernstein’s Lemma [3].)

To prove our claim assume on the contrary that B= x↑∩A is finite for
some x ∈ A↓ \A. Choose x such that |B| is minimal. Clearly |B| > 0. Let
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y ∈B be arbitrary. Then x< y < zy and P is cut-free so there is t∈ [x,zy]
which is incomparable with y.

Now t∈A↓ because a≤ t would imply a<zy and so a=y for any a∈A,
but t and y were incomparable. Moreover t↑ ∩A ⊂ (x↑ ∩A) \ {y}, which
contradicts the minimality of the cardinality of x↑∩A.

Till now we used the looseness to show that certain antichain can not
split, or to restrict the structure of S(A). The next theorem shows that the
looseness can be used even in the other direction: to guarantee the existence
of splitting antichains.

Theorem 3.9. Assume that P = 〈P,≤〉 is a countable poset such that P
and P−1 are loose. Then P contains a maximal antichain A which splits.

Proof. Write P = {pn : n< ω}. By induction on n we will construct finite
disjoint subsets Bn and Cn of P such that

(i) Bn∪Cn is an antichain,
(ii) Bn−1⊂Bn and Cn−1⊂Cn,
(iii) pn−1∈B↑

n∪C↓
n.

It is enough to show that we can carry out the induction because taking
B = ∪{Bn : n ∈ ω} and C = ∪{Cn : n ∈ ω} we have that A := B ∪C is a
maximal antichain having the splitting 〈B,C〉.

Let B0 = C0 = ∅. Assume that Bn−1 and Cn−1 are constructed. Write
p= pn−1. If p∈B↑

n−1∪C
↓
n−1 then let Cn=Cn−1 and Bn=Bn−1. So we can

assume that p /∈B↑
n−1∪C

↓
n−1.

Case 1. p /∈C↑
n−1.

Then p /∈ (Cn−1 ∪Bn−1)↑. Since P is loose there is p ≤ q such that q /∈
(Cn−1∪Bn−1)↑∪(Cn−1∪Bn−1)↓, i.e. Bn−1∪Cn−1∪{q} is an antichain. Let
Cn =Cn−1∪{q} and Bn =Bn−1. Then p∈ q↓ ⊂C↓

n, Bn and Cn are disjoint
and Bn∪Cn is an antichain.

Case 2. p /∈B↓
n−1.

Then p /∈ (Bn−1 ∪Cn−1)↓. Since P−1 is loose there is q ≤ p such that
q /∈(Bn−1∪Cn−1)↓∪(Bn−1∪Cn−1)↑, i.e. Cn−1∪Bn−1∪{q} is an antichain. Let
Bn =Bn−1∪{q} and Cn =Cn−1. Then p∈ q↑⊂B↑

n, Cn and Bn are disjoint
and Cn∪Bn is an antichain.

Case 3. p∈B↓
n−1∩C

↑
n−1.
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Then there is b∈Bn−1 and c∈Cn−1 such that c≤p≤b, i.e. Bn−1∪Cn−1

is not an antichain. Contradiction, this case is not possible which finishes
the proof.

The maximal antichains in the poset Z of the integer are the singletons
and they clear don’t split.

Problem 3.10. Is there a countable cut-free poset P which does not con-
tain splitting maximal antichains?

Consider the following countable, well-founded, cut-free poset. Let the
underlying set of P be ω×ω. Put 〈n,m〉<P 〈n′,m′〉 if and only if n < n′.
Then the antichains in P are the sets {n}×ω for n<ω, and {n}×ω splits
because

P = {〈n, i〉}↓ ∪ {〈n, j〉}↑

whenever i �= j. We do not have any characterization of posets having only
splitting maximal antichains.

Till now we were interested the existence of splitting of maximal an-
tichains. One can ask, however, how many different splits can be found.

Problem 3.11. Fix a cardinal κ. Is there a countable cut-free poset P
having a maximal antichain A such that

κP
def= |{B : 〈B,A \B〉 ∈ S(A)}| = κ?

In general, we do not know the answer. Since |A| is countable 2A can
be considered as a topological space homeomorphic to the ωth power of the
two element discrete topological space 2 = {0,1}, i.e. to the Cantor set.
Hence we have the Borel hierarchy on 2A. Since S(A) is a Gδ-subset of
2A×2A hence either S(A) is at most countable or has cardinality 2ω by [8,
Theorem 11.18(iii)]. The case κ=2ω is trivial. The case κ=1 is also trivial:
let P be well-founded and A be the minimal points of P . However the κP

can be 1 in a less trivial way.

Claim 3.12. There is a countable, cut-free poset P and an infinite maximal
antichain A⊂P such that

(i) ∀a∈A ∃x,y∈P x<a<y,
(ii) |{B⊂A :〈B,A\B〉∈S(A)}|=1.

Proof. Consider the poset Q on Figure 1. The poset Q is cut-free. The set
A={b,c} is a maximal antichain inQ and {B⊂A :〈B,A\B〉∈S(A)}={{b}}.
Let P be the disjoint union of countable many copies of Q.
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Figure 1. Poset Q

4. Some set-theory

In this section we will use the standard set-theoretical notation throughout,
see e.g. [8].

The answers to the questions which we investigated in connection with
countable posets in Section 3 does not depend on the actual set-theoretical
universe in which we work. The reason is that all the statements can be for-
mulated as a Σ1

2(a) or Π
1
2 (a) formula with some parameter a∈ωω, and so

they are absolute by Schoenfield’s absoluteness theorem, [8, Theorem 25.20].
For example, given a countable poset P and maximal antichain A⊂P state-
ments like “A splits”, or “no maximal antichains of P splits”, or “every
maximal antichain of P splits” are all absolute: their truth value depends
on only P and A and independent of the set-theoretical universe. Same ar-
gument gives that although we do not know the answer to the problem 3.10
we can expect a yes or no answer in ZFC.

The situation changes dramatically if we consider uncountable partially
ordered sets. We will give an example after Proposition 4.3 that given a
poset P of size ω1 and maximal antichain A⊂P the statement “A splits”
can depend on the set-theoretical universe in which we live. We will also show
that axiom ♣ can be reformulated as a statement on splitting property of
certain antichains in certain posets, see proposition 4.3.

Definition 4.1. Let L be the set of the countable limit ordinals. We say
that 〈Tα :α∈L〉 is a ♣-sequence if and only if Tα⊂α is cofinal for each α∈L
and for each X ∈ [ω1]

ω1 there is α∈L with Tα ⊂X. Axiom ♣ holds if and
only if there is a ♣-sequence.
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It is well-known that axiom ♣ is independent from ZFC: there is a ♣ se-
quence in the constructible universe L of Gödel but Martin’s Axiom excludes
the existence of such a sequence.

Definition 4.2. Given a sequence T ={Tβ :β∈L}, where Tα⊂α is cofinal,
we define the poset Q(T ) as follows. The underlying set of Q(T ) is ({2}×
L)∪ (2×ω1). Let 〈0,η〉≺ 〈1,ξ〉 if and only if η < ξ. Let 〈1,ζ〉≺ 〈2,β〉 if and
only if ζ∈Tβ. Let ≤Q(T ) be the partial ordering generated by ≺.

The poset Q(T ) is clearly cut-free.

Proposition 4.3. Let T = {Tβ : β ∈ L}, where Tα ⊂ α is cofinal. The
maximal antichain A = {1} × ω1 splits in Q(T ) if and only if T is not a
♣-sequence.

Proof. If T is not a ♣ sequence then there is X∈ [ω1]
ω1 such that Tα\X �=∅

for each α ∈ L. Let B = {1} × (ω1 \X) and C = {1} ×X. Then for each
α∈L there is ξ∈ω1 \X with ξ∈Tα and so 〈1,ξ〉≺ 〈2,α〉, i.e. B↑⊃{2}×L.
Moreover for each η<ω1 there is ξ∈X with η<ξ and so 〈0,ξ≺〈1,η〉〉. Thus
{0}×ω1⊂C↓. Hence B↑∪C↓=Q(T ).

Assume now that T is a ♣-sequence and let 〈B,C〉 ∈ S(A). We show
that A \B is countable and C is uncountable. If C ⊂ A is countable then
〈0,sup{α : 〈1,α〉 ∈ C}+1〉 /∈ C↓. Assume on the contrary that e.g. A \B
is uncountable. Then X = {ξ : 〈1,ξ〉 /∈ B} ∈ [ω1]

ω1 and so there is α ∈ L
with Tα ⊂ X. Let x = 〈2,α〉. Then A∩ x↓ = {1} × Tα and so B ∩ x↓ = ∅,
i.e. x /∈ B↑. Since C↓ is disjoint to {2}×L we obtain that x /∈ B↑ ∪C↓, a
contradiction. Hence the set A\B is countable.

Example. Fix a ♣-sequence T =〈Tβ :β∈L〉 in L. Then, by proposition 4.3,
the antichain A={1}×ω1 does not split in Q(T ). It is well-known that there
is a c.c.c generic extension of L in which Martin’s Axiom holds, and so axiom
♣ fails, especially T is not a ♣-sequence. Hence, applying proposition 4.3
again we obtain that A splits in this generic extension. Hence the statement
“A splits” is not absolute.

As we have seen splitting property can be used to formulate an equivalent
of axiom ♣. The next proposition shows that even the Axiom of Choice can
be reformulated in a similar way.

Theorem 4.4. (ZF) The Axiom of Choice is equivalent to the statement
of Theorem 2.8.

Proof. Assume that the statement of Theorem 2.8 holds. Let A={Ai : i∈I}
be a family of pairwise disjoint nonempty sets. Without loss of generality
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|Ai| �=1 for each i∈I. We need to show that there is a choice function on A.
To do so define the poset R(A)=〈R,≤R〉 as follows:

R = I ∪
(
∪

{
Ai : i ∈ I

})
∪

(
∪

{
[Ai]

2 : i ∈ I
})

,(5)

≺=
{
〈a, i〉 : i ∈ I, a ∈ Ai

}
∪

{
〈{a, b}, a〉 : a ∈ Ai, b ∈ Ai \ {a}, i ∈ I

}
,(6)

and let ≤R be the partial order generated by ≺.

I i j
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The poset R(A) is well-founded and cut-free. The set A=∪{Ai : i∈I} is
a maximal antichain in it and |x↑∩A|=2 for each x∈A↓\A=∪{[Ai]

2 : i∈I}.
Hence A splits by theorem 2.8, R=B↑∪(A\B)↓ for some B⊂A. Since I⊂B↑

we have B∩Ai �= ∅ for each i ∈ I. On the other hand |Ai ∩B| ≤ 1. Indeed
{b,c}∈ [B]2∩ [Ai]

2 would imply that {b,c} /∈ (A\B)↓. Hence |B∩Ai|=1 for
each i ∈ I and so we have a choice function f on A: let f(i) = ∪(Ai ∩B)
for i∈I.

Let us conclude this Section with a generalization of property “loose” to
bigger cardinals. The proofs of the results are very similar to those in the
first part of Section 3, therefore we leave them to the diligent reader.

Definition 4.5. Given a cardinal κ, a poset P is κ-loose if and only if for
each x ∈ P and F ∈ [P ]<κ if x /∈ F ↑ then there is y ∈ x↑ \ {x} such that
y /∈F ↓∪F ↑.

Claim 4.6. If κ and λ cardinal such that λ < κ or λ = κ = cf(κ) then
〈[κ]<λ ,⊆〉 is κ-loose.

Theorem 4.7. Assume that P= 〈P,≤〉 is a κ-loose poset of cardinality κ.
Then P contains a maximal antichain A such that

(i) if 〈B,C〉∈S(A) then B=A,
(ii) cf(|C|)=cf(|A|) for each 〈B,C〉∈S(A).
(iii) if P is cut-free then A is infinite.
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Corollary 4.8. If κ<λ=λ=κ then 〈[κ]<λ ,⊆〉 contains a maximal antichain
which does not split. In particular,

(i) for each infinite cardinal κ the poset 〈[κ]<ω ,⊆〉 contains maximal an-
tichain which does not split,

(ii) if the continuum hypothesis holds then 〈[ω1]
ω ,⊆〉 contains maximal

antichain which does not split.

Proof. Since | [κ]<λ | = κ<λ = κ, and 〈[κ]<λ ,⊆〉 is cut-free and κ-loose we
can apply Theorem 4.7 to get the required maximal antichain.

Corollary 4.9. If 2ω =ω1 then the cut-free poset P(ω)/ [ω]<ω contains an
antichain which does not split.
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