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ABSTRACT: In the lattice of subsets of an n-set X, every maximal Sperner family .S
may be partitioned into disjoint subfamilies .4 and B, such that the union of the upset
of A with the downset of B yields the entire lattice: U(.A) U D(B) = 2X. The result
generalizes to certain posets.

1. Introduction

Let X be a finite set and 2% be its power set. If H is a set system on X (that is H C 2%)
then the downset D(H) of the family H is:

DH):={EcCcX:dH e H{E C H}}.

The upset of 'H is:
UH)={EC X:3JH € H{H C E}}.

A set system S C 2% is called a Sperner family if no two elements of S are comparable
under set inclusion. A Sperner family S is mazimal if for every Sperner family S’ C 2%,

S C & implies § = &’. Tt is easy to see that if S is a maximal Sperner family then
US)UD(S) = 2%, (1)

The purpose of this note is to show that the identity (1) can be achieved more efficiently,
namely, by replacing S in (1) with disjoint subfamilies of S.

* The paper was finished when the first author was visiting DIMACS Center, Rutgers
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2. Main Result

Let § be a maximal Sperner family. We now show that & may be partitioned into two
families S = A U B such that U(A) U D(B) = 2%. Specifically, we construct disjoint
subfamilies S;, Sa, and S3 which satisfy D(S;) UU(S2) USs = 2%, Then, any partition of
S into subfamilies A and B such that A D 81 and B D S, satisfies U(A) U D(B) = 2¥.

Theorem 1. There exist disjoint subfamilies 81, Sa, and S3 of S such that
D(S)) UU(Sy) U Sy = 2% (2)

holds.

Proof. For every integer ¢ (0 <i < | X |) let <; be an arbitrary ordering of the i-element
subsets of X. For example, we may choose the lexicographic ordering for every i. Let the
total ordering <; of the elements of 2% be defined as follows: If £, F C 2% then

|E| < | F| or

E<tF*:){|E|:|F|/\E<|E| F

With every subset H € 2% \ S we associate an element f(H) of S in the following way.
If H € D(S)\ S then let f(H) be the greatest element of S (with respect to the total
ordering <;) whose downset contains H. Similarly, if H € U(S) then let f(H) be the
smallest element of S (with respect to the total order <;) whose upset contains H. Finally

to find the required subfamilies, set:
Si={f(H): HecUS)\S}
S ={f(H): H € D(S)\ S}
S3 =8\ (S1US).

Clearly, U(S1) U D(S2) U S3 = 2% holds. We merely have to show that S; and Sy are
disjoint. Suppose there exists some F € §; N Sy. Then there are H;, Hy C X such that
H, € D(S), Hy € U(S) and f(H,) = f(H2) = E. Consequently, Hi C E C Hs. As
these inclusions are proper, there exists F', another | F |-element subset of X, satisfying
H, C F C Hs,. Suppose, say, that E <; F. Then F ¢ S, otherwise f(H;) = FE is false.
Since S is maximal there is an F* € S such that, say, F C F*. But then f(H;) = E is
false, since | F*| > | E'| and H; C F*, a contradiction. On the other hand, if F* C F,
then f(Hy) = E is false because | F*| < | E'| and F* C Hs, also a contradiction. We
handle the case F' <; F similarly. ]



A consequence of Theorem 1 is that we may associate at least one monotone Boolean
function g with each maximal Sperner family S with the property that the union of A the
minimal vertices in g~ !(1), with B, the maximal vertices in g '(0), is the Sperner family

S.

3. Ranked Posets

Theorem 1 can be generalized to certain partially ordered sets. In this section we discuss
such a possible generalization. The definitions not given here can be found in [1].

Let P = (P, <,) be a finite poset. We say, that P is dense if every non-empty open
interval {z,y} = {z € P: 2z <, z <, y}) contains at least two elements. It is easily shown
that every open interval must then contain two incomparable elements. Thus, if P is dense
and z € {z,y} then there exists an element z* € {x,y} incomparable to z. Let us remark,
that every Boolean algebra is dense. Furthermore if P is ranked, the open interval {z,y}
contains an element z* such that rank(z) = rank(z*).

For any set H C P the definitions of upset U(H) and downset D(H) are defined

analogously to those given for the the Boolean lattice.

Theorem 2. Let P be a finite ranked, dense poset. Then for every maximal Sperner

system S C P there exist disjoint subsystems Sy, So, and S3 of S such that
U(S1)UD(S2)US3 =P (3)
holds.

Proof. The proof follows that of Theorem 1. Let <; be a linear extension of <, for which
every z,y € P, rank(x) < rank(y) satisfies x <; y. For every element x € P\ S, z € D(S5)
let f(z) be the greatest element s € S (with respect to the linear extension <;) such that
x <p s. If £ € U(S) then let f(x) be the smallest element s € S (with respect to the linear

extension <;) such that s <, x. Finally, set
Si = {f(x) : 2 € D(S)}
So = {f(x) : z €U(S)}
S3 =8\ (S1US,).

By the same argument presented in Theorem 1, one may show, by contradiction, that Sy

and Sy are disjoint. [ ]



4. Examples and Conjecture

In this section we furnish some posets which satisfy property (3) and some which do not.

Example 1. Every finite geometric lattice satisfies (3). Indeed, a geometric lattice is
ranked, and since it is relatively complemented, is dense as well (see [1], Section II.3).
Upon application of Theorem 2, the result follows.

We remark that the notion of ‘denseness’ is not essential. The following lattice is

neither dense, nor ranked, yet satisfies (3). The symbol < means ‘covers’ in the poset:

Example 2. (Faigle, [2]) The lattice {a <b<c<d<eja< f<d;b<g< e} satisfies
(3).

On the other hand, there are distributive lattices which do not satisfy (3). For exam-
ple, the distributive lattice in Figure 2.2 L, given in the book of Aigner [1,p.34], does not
satisfy (3).

As Example 2 shows, the ‘denseness’ of a poset is not necessary, but we believe that

it is sufficient. We conjecture:
Conjecture. Every dense poset satisfies (3).

It is interesting to remark, that property (3) of a Sperner system bears no relationship
to the LYM property or even to the Sperner property of the poset. Indeed, in the disjoint
union of some r-chains, which is a LYM poset, no maximal Sperner family satisfies (3).
On the other hand, if the ranked posets P; and P, satisfy (3), but the length of the posets
are different, then their disjoint union also satisfies (3), but it is not a Sperner poset.

The authors would like to express their gratitude to L. A. Székely for introducing the

authors to each other.
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