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Abstract

Following Laczkovich we consider the partially ordered set
B1(R) of Baire class 1 functions endowed with the pointwise
order, and investigate the order types of the linearly ordered
subsets. Answering a question of Komjath and Kunen we
show (in ZF'C) that special Aronszajn lines are embeddable
into By (R). We also show that under Martin’s Axiom a lin-
early ordered set L with |L| < 2¢ is embeddable into B;(R)
iff L does not contain a copy of w; or wj. We present a
Z FC-example of a linear order of size 2“ showing that this
characterisation is not valid for orders of size continuum.

These results are obtained using the notion of a compact-
special tree; that is, a tree that is embeddable into the class of
compact subsets of the reals partially ordered under reverse
inclusion. We investigate how this notion is related to the
well-known notion of an R-special tree and also to some other
notions of specialness.
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Introduction

Definition 0.1 Given two partial orders (P, <p) and (P, <p:) the
order P will be said to embed into P’, denoted by P — P, if there is
a mapping ¢: P — P’ such that py <p p; implies ©(pg) <pr ©(p1).

Note that this ¢ need not be one-to-one in general, but for a linear
order LL the relation . — PP implies that there is an order-isomorphic
copy of L in P. As it is usual for trees, instead of P — P' we will
sometimes say that P is P'-special. From now on we will often write
P instead of (P, <p) when there is no danger of confusion.

B1(R) is the class of Baire class 1 functions from R to R; that
is, pointwise limits of sequences of continuous real functions. This
class is partially ordered under the usual pointwise ordering; that is,
f <giff f(r) < g(r) for every r € R. Note that f < g iff f < g and
f(r) # g(r) for some r € R. The following problem was posed by
Laczkovich.

Problem 0.2 Characterise those linear orders L. for which L —
Bi(R) holds.

What makes the Baire class 1 case particularly interesting is that
the corresponding questions for all other Baire classes are solved.
In the Baire class 0; that is, continuous case it is easy to see that
L — By(R) iff L — R, while for o > 2 Komjath [6] showed that
even the question whether wy < B, (R) is independent of ZFC.

Another motivation may be that Problem 0.2 is apparently closely
related to the theory of Rosenthal compacta, however, so far no direct
connection has been found.

The earliest result concerning Problem 0.2 is a classical theorem
of Kuratowski [8, 24.1I1.2°] stating that w; <» By (R). Note that oo —
R < B (R) for o < w;. For some related results see [3]. It is shown in
[2] that, loosely speaking, starting from a class of simple linear orders,
say the finite ones, and applying all sorts of countable operations one
always obtains B; (R)-embeddable linear orders. Therefore it is quite
natural to guess that Kuratowski’s theorem is the only restriction;
that is, L — B;(R) iff wy,wf <» L. (Here w} is the reversed ws.)
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However, Komjath [6] gave a consistent counterexample by showing
that if IL is a Souslin line then L <& B;(R). But this still leaves
open the possibility that the above answer to Laczkovich’s problem
is consistent with ZFC.

Question 0.3 Is it consistent that a linear order L. — B;(R) iff
wy, wi < L%

Komjiath and Kunen independently asked the following natural
question.

Question 0.4 Is there an Aronszajn line A such that A — B1(R)?

In this paper we answer Question 0.3 and Question 0.4.

First we establish our basic tool in Section 1, then make some
preparations in Section 2 by proving that nine notions of specialness
coincide for countably branching trees. Then we answer Question
0.4 in the positive in Section 3. More precisely, we show that special
Aronszajn lines are B;(R)-embeddable, hence there exists (in ZFC')
a B;(R)-embeddable Aronszajn line, and consistently all Aronszajn
lines are B (R)-embeddable. We also show in this section that under
Martin’s Axiom the characterisation in Question 0.3 is valid for linear
orders of cardinality strictly less than the continuum. In Section 4
we answer Question 0.3 in the negative (in ZFC). Finally, in Section
5 we formulate some open problems.

The set-theoretic terminology followed in this paper can be found
e.g. in [4] and [7]. For an element ¢ of a tree T denote succ(t) the
set, of immediate successors of t. We say that a tree T is countably
branching, if [succ(t)| < w for every ¢t € T. All trees in this paper
are considered to be normal; that is, for ¢5,Z; € T the equation
{t e T:t <p to} = {t € T: ¢t <r t;} implies t, = t;. The basic
facts about Baire class 1 functions can be found e.g. in [5] or [8]. An
F, set is a set that is the union of countably many closed sets, a
G set is a set that is the intersection of countably many open sets.
The symbols N, Q and R denote the set of natural, rational and real
numbers, respectively.



1 The main lemma

For a linear order L, denote Ty, its (binary) partition tree (see [9]),
which is constructed as follows. Denote by T, the a'® level of a tree
T. Elements of the partition tree will be nonempty intervals; that is,
convex subsets of I, and the ordering will be reverse inclusion. Set
(Tr)o = {L}. Once (Ty), is given, split every I € (Ty), of at least
two elements into two disjoint nonempty intervals I;” and I}, and put
(TL)as1 = {I;7: I € (TL)a, |I| > 2, 7 € 2}. We tacitly assume that
I is the ‘left’ interval; that is, for every ly € I and I, € I;" we have
lo < ly. For alimit put (TL)a = {Np<als: Is € (TL)s, Np<alp # 0}.

Denote by IC(R) the set of compact subsets of R ordered under
reverse inclusion.

Definition 1.1 We say that T — K(R) strongly, if there exists an
embedding which maps incomparable elements to disjoint sets; that
is, there exists an embedding ¢: T — K(R) such that p(t) Ne(t;) =
() for every t € T and distinct tg, t; € succ(t).

Main Lemma 1.2 Let L be a linear order such that T, — K(R)
strongly. Then L — B;(R).

Proof. Let ¢: T, — K(R) be a strong embedding. For every [ € L
define
A =U{p(If): TeTy, |I|>2, 1€}

We claim that ¢: L — B (R)

¢(l) = Xat

is the required embedding, where y g is the characteristic function of
the set H. As xp, < xm, ift Hy C H;, we first have to show that for
lo <r Iy the strict inclusion A% C A% holds.

Fix ly <p, l. First we show A C A", Suppose I € (Ty)q, |I] > 2
and Iy € I;F. We have to show that p(I) C A", There is a first level
where [y and [/; are not in the same element of Ty, moreover, this
is necessarily a successor level, say lo,l1 € I* € (Ty)o*, lp € (I*)¢
and l; € (I")]. Clearly, o((I*){) C A", If a < o* then |y € I}
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implies I; € I}, hence () C A4. If o > o* then I C I*, hence
eIy) € o((I7)g) € A

Now we show A% # A, By compactness, C = N{p([): ly € I €
T} # 0. Using o((1*)§) C A" again, we obtain C C A, We claim
that CN Al = (). In order to show this we have to check that ly € I}
implies p(I;7) N C = (. But this is clear, as C C ¢(I;") and ¢ is a
strong embedding.

What remains to be shown is that x4 € Bi(R) for every I € L. A
characteristic function xy is of Baire class 1 iff H is simultaneously
F, and Gy, hence we have to check this for A!. It is well known (see
[5, 22.27] or [8, 24.111.1]) that if for some £ < w; the nonincreasing
transfinite sequences {Fy}ace and {Hy}a<e of closed subsets of R
satisfy F, O H, for every o < § and H, D Fjp for every o < 3 < &,

then the set
U Fa\ Ha)

a<é

is simultaneously F, and Gj.
Fix [ € L. Let & be the ordinal for which {l} € (TL)a holds. As

every strictly decreasing transfinite sequence of compact subsets of
R is countable, £ < w;. For a < &' the unique interval I € (Tp),
with [ € I has at least two elements, so define

Fl. =H. =) Uel),

if | € I, and
Flpy =) uel),
Hé+1 = SO(IfL)

if | € I}t. For a < & limit, which includes the case a = 0, define
Fy = Hy = o(I).

Clearly, F, D H, for every a < &' and it is easy to see that F, D F},
and Hl, O H} for every o < f < &' Using that F} is monotone
nonincreasing, in order to obtain that H! D F, é for every o < 8 < €
it is sufficient to check that H, D F! , for every a < &, which is



straightforward. Therefore [, . (F: \ HY,) is F, and Gs. Using that
our embedding ¢ is strong we obtain

A= (FL\HY),

a<gl

so the proof is complete. Il

2 Various notions of special trees

In this section we prove that the relation Ty, — IC(R) strongly can
be translated to Tr, — R. As specialness of trees is interesting in
its own right, we prove that, at least for countably branching trees,
this is also equivalent to specialness in certain other senses. Let C
denote the Cantor set with its inherited ordering as a subset of R.
The Prikry-Silver partial order will be denoted by S — it consists of all
partial functions f : N — 2 = {0, 1} with co-infinite domain ordered
under inclusion.

Definition 2.1 We say that T < S strongly, if there exists an em-
bedding which maps incomparable elements to incompatible func-
tions; that is, there exists an embedding ¢: T — S such that
for every t € T and distinct ty,t; € succ(t) there exists n €

dom(¢(to)) N dom(ip(t1)) such that ¢(to)(n) # ¢(t1)(n).

Theorem 2.2 Let T be a countably branching tree, e.q. a partition
tree. Then the following are equivalent.

(1) T is C-special

(2) T is R-special

(3) T is strongly S-embeddable

(4) T is strongly K(C)-embeddable
(5) T is K(C)-special



(6) T is strongly K(R)-embeddable
(7) T is K(R)-special

(8) T is (P(N), C)-special

(9) T is S-special

Proof. (1) = (2): This is immediate.

(2) = (3): Let ¢: T — R be an embedding, and let {g,: n € N}
enumerate Q. Set dom(y(t)) = {n € N: ¢, < ¢(t)} and define
Y(t): {n € N: g, < ¢(t)} — 2 by induction along T as follows. At
limit nodes simply let ¥ (¢) be the union of all ¢(s) such that s C ¢.
Given that () is defined, enumerate succ(t) as {tx: k € N}, and by
induction on k£ pick distinct ny € N such that ¢(t) < ¢, < @(tk).
For n € N such that ¢, < p(tx) set ¥(tx)(n) = ¥ (t)(n) if ¢, < (1),
Y(tr)(ng) = 1, and 9 (tx)(n) = 0 otherwise. It is easy to check that
¥: T — S is a strong embedding.

(3) = (4): Let ¢: T — S be a strong embedding. Identify C with
2N that is, the set of functions from N to 2. For ¢ € T define 9(t) =
{fe2Y:¢(t) C f}. Then ¢: T — K(C) is a strong embedding.

(4) = (5): Obvious.

(5) = (1): Again, identify C with 2V. Let {g,}°°, enumerate all
g: k — 2 where k € N and send K € K(C) to

> o

n+1"
neN 3
ZfeK g, Cf

(4) = (6): Obvious.

(6) = (7): Obvious.

(7) = (2): Enumerate {(p,q): p,q € Q p < q} as {(Pn;qn): 1 €
N}, and send K CR to >, kg >

(2) = (8): Enumerate Q as {¢,: » € N}, and send r € R to
{neN:gq, <r}.

(8) = (9): Send H C N to the function that is constant 0 on
{2n: n € H} and undefined elsewhere.

(9) = (2): Send f €S to — 3=, saom(p) o O



Remark 2.3 The assumption that the tree T is countably branch-
ing cannot be dropped, as if succ(t) has cardinality larger than the
continuum for some ¢ € T then T is clearly not strongly K(C)-special
but it can be R-special.

3 Consequences for Bi-embeddability

In this section we answer Question 0.4 and give an affirmative answer
to Question 0.3 in the case |L| < 2¥.

Theorem 3.1 Let A be a special Aronszajn line; that is, Ty — Q.
Then A — Bi(R).

Proof. Clearly, Ty — R, hence Theorem 2.2 yields Ty — K(R)
strongly, therefore by the Main Lemma 1.2 we obtain A — B;(R).
U

Theorem 3.2 Assume Martin’s Axiom. Then for a linear order L
with |L| < 2¥ the relation L — Bi(R) holds iff wi,w] <# L.

Proof. First suppose w; — L or wj — L. By the theorem of
Kuratowski [8, 24.1I1.2°] every strictly monotone transfinite sequence
in B;(R) is countable, hence L < B;(R). Now suppose w;,w] <# L.
It follows that there is no strictly decreasing sequence of subintervals
of I of length w;, hence Ty, has at most w; levels. Each level is
a disjoint family of nonempty intervals of L, so |L| < 2¥ implies
|(TL)a| < 2¢ for every a. By Martin’s Axiom w; < 2¥ and 2% is
regular, therefore |Tp| < 2“. Under Martin’s Axiom every tree of
cardinality less than 2¢ with no branch of length w; is Q-special [1],
hence Ty, — Q, and we can repeat the previous proof. ]

4 Answer to Question 0.3

Now we answer Question 0.3 in the negative, using some ideas from
[9]-



Theorem 4.1 There exists a linear order L. such that wy,w] <# L
but still L — By (R).

Proof. Define
oBi(R) ={l: £ <wi, l: &€ = By(R) strictly increasing}.

This set becomes a tree if we partially order it by extension; that is,
lo <pliff Iy C ;.

Lemma 4.2 (0B5:(R), <r) = B:(R).

Proof. Suppose ¢: cBi(R) — Bi(R) is an embedding. Then the
transfinite recursion

() = (")
produces a strictly increasing sequence of length w; in B (R), which
is impossible by Kuratowski’s theorem [8, 24.111.2"]. 0

This lemma shows that in order to finish the proof of Theorem 4.1
it is sufficient to construct a linear order <p, on oB;(R) extending
<p such that wy,w} < (6B1(R),<p,). So fix an arbitrary bijection
®: B;(R) — R and define <y, to be the usual lexicographical ordering
as follows. The functions ly: €% — B;(R) and [;: £ — B;(R) are
incomparable with respect to <r iff there exists o < &, €'t such that
lo(a) # l1(e). In such a case choose the minimal such « and define
lo <yl iff D(lp(r)) < D(I1()).-

Now we prove that wy,w] <# (0B1(R), <p). Suppose {l;}y<w; is
strictly monotonic. We prove by induction on f < w; that there
exists I*: wy — B1(R) such that for every 8 < w; there exists 7z such
that for n > ng

l(B) = 1I"(8).
Suppose this holds for every v < . If n > sup{n,: v < B} then
l,18 = U*]B, and hence ®(l,(5)) is monotonic in R, and therefore is
constant above some 7. As ® is a bijection, [,(3) is also constant
for n > ng. Defining I*(3) = I,,,(3) finishes the induction. But once
again, the existence of the strictly monotone sequence {I*(&)}a<w;
contradicts Kuratowski’s theorem. O



5 Open questions

The fundamental open problem is still of course Problem 0.2. How-
ever, we formulate here a couple of related questions.

We mentioned in the Introduction that, starting from some sim-
ple linear orders, countable operations always result in B;(R)-
embeddable orders. However, we do not know whether the class
of Bi(R)-embeddable orders itself is closed under these operations.
It is shown in [2] that the answer is affirmative for all these opera-
tions provided that it is affirmative for the simplest such operation,
namely, for the operation that doubles the points of the order. That
is why we are particularly interested in the following.

Question 5.1 Suppose L — B{(R), where L is a linear order. Does
L x {0,1} — Bi(R), where the ordering of . x {0,1} is the usual
lexicographical order?

Denote AJ(R) the class of subsets of R that are simultaneously F,
and G4. The ordering is reverse inclusion. Clearly,

Q — R <= A)(R) — B;(R),

and it can be shown that the first two arrows cannot be reversed.
How about the third one?

Question 5.2 B;(R) — A)(R)?

Question 5.3 Suppose L — Bi(R), where L is a linear order. Does
L — AY(R)? How about trees instead of linear orderings?
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